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Abstract 1 Introduction 
We present two software DSM protocols that dy- 

namically adapt between a single writer (SW) and a 
multiple writer (MW) protocol based on the appli- 
cation's sharing patterns. The first protocol (WFS) 
adapts based on write-write false sharing; the second 
WFS+WG) based on a combination of write-write I alse sharing and write granularity. The adaptation is 

automatic. No user or compiler information is needed. 
The choice between SW and MW is made on a per- 
page basis. 

We measured the performance of our adaptive pro- 
tocols on an 8-node SPARC cluster connected by a 
155 Mbps ATM network. We used eight applications, 
covering a broad spectrum in terms of write-write 
false sharing and write granularity. We compare our 
adaptive protocols against the MW-only and the SW- 
only approach. Adaptation to write-write false shar- 
ing proves to be the critical performance factor, while 
adaptation to write granularity plays only a secondary 
role in our environment and for the applications con- 
sidered. 

Each of the two adaptive protocols matches or ex- 
ceeds the performance of the best of MW and SW in 
seven out of the eight applications. For these appli- 
cations, speedup improvements over SW range from 
1.02 to 2.7. The largest improvements over SW occur 
for applications with high write-write false sharing. 
Compared to MW, speedups improve by a factor of 
1.02 to 1.6, with the largest improvements occurring 
for applications with little or no write-write false shar- 
ing. Both WFS and WFS+WG speedups fall below 
the best of MW and SW for one application, but only 
by a factor of 1.09 and 1.06. In addition, memory us- 
age is reduced considerably compared to MW, in some 
cases making the memory overhead all but negligible. 
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This paper focuses on protocols for implement- 
ing lazy release-consistent (LRC) [14] software dis- 
tributed shared memory (DSM) 16 on commodity 
hardware. Both single writer (SW 5 r l  131 and multiple 
writer MW [6] protocols have been used to imple- 
ment L k s  C. W protocols allow only a single writable 
copy of a page at any given time. Furthermore, they 
always transfer a whole page to satisfy an access miss. 
With MW protocols, several writable copies of a page 
may co-exist. Instead of transferring whole pages, 
MW protocols transfer diffs, records of the modifica- 
tions made to a page. 

SW protocols suffer from the ping-pong effect in 
the case of write-write false sharing (concurrent writes 
from different rocessors to non-overlapping parts of 
the same pager. Furthermore, if only a single word 
in a page is changed, then it is clearly undesirable to 
transmit the entire page, especially on a low band- 
width network. 

MW protocols solve these two problems, but suf- 
fer some drawbacks of their own. First, there is 
an execution cost to recording and merging changes 
from multiple writers (i.e., creating and applying the 
diffs). Much of this overhead is incurred regardless of 
whether the page has multiple writers or not, adding 
unnecessary overhead in the case where there is no 
false sharing. In particular, in the cme where an en- 
tire page is modified by a single writer, a MW protocol 
adds a sizable cost without any reduction in commu- 
nication. Furthermore, there is a significant memory 
overhead for recording the modifications. The mem- 
ory costs can be bounded by garbage collection, but 
frequent garbage collection results in added execution 
time. 

CVM [13] uses a SW protocol, while TreadMarks [3 

for a study of the tradeoffs). Other systems (such as 
Munin [6]) allow multiple protocols to be used, but re- 
quire user annotation to choose between them. In this 
paper we take an alternative approach. We observe 
that for some applications a MW protocol is preferred 
while for others a SW protocol is more desirable. Even 
within a single application, different pages may be best 
handled by one protocol or the other. As a result we 
have designed two adaptive protocols that choose dy- 

uses a MW protocol (see the work of Keleher [13 1 
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namically, on a per-page basis, whether to use a SW 
or a MW protocol. The choice is fully automated, and 
no user or compiler annotations are required. Instead, 
the runtime system monitors the shared memory ac- 
cess patterns and decides on the appropriate protocol. 
We show that this can be done with little overhead, 
as an extension of the SW and MW protocols. The 
first adaptive protocol (WFS) adapts to the presence 
of write-write false sharing. It chooses a MW pro- 
tocol if there is write-write false sharing on a page 
and a SW protocol otherwise. The second adaptive 
protocol (WFS+WG), in addition, takes into account 
write granularity, and uses diffs for pages with small 
write granularity, even if they do not exhibit write- 
write false sharing. 

The adaptive protocols were implemented in Tread- 
Marks 31. Eight applications were used to demon- 

small kernels; Barnes-Hut and Water are from the 
Splash benchmarks suite [19]; IS and 3D-FFT are 
from the NAS benchmark suite [4]; Shallow is a small 
weather modeling code from NCAR [18]; and ILINK is 
a production computational genetics code [ll]. These 
applications cover a wide spectrum in terms of write- 
write false sharing and write granularity. We present 
performance results on a 155Mbps ATM network con- 
necting 8 SPARC-20 model 61 workstations. We com- 
pare the performance of the adaptive protocols to the 
non-adaptive MW protocol used in TreadMarks and 
to a non-adaptive SW protocol similar to the one used 
in CVM. Each of the two adaptive protocols matches 
or exceeds the performance of the best of the non- 
adaptive protocols in seven out of the eight applica- 
tions. Speedup improvements are as high as a factor 
of 2.7 over SW for applications with high write-write 
false sharing and as high as a factor of 1.6 over MW 
for applications with little or no write-write false shar- 
ing. Both WFS and WFS+WG speedups fall below 
the best of MW and SW for one application, but only 
by a factor of 1.09 and 1.06, respectively. In addi- 
tion, memory usage is reduced considerably compared 
to MW, in some cases making memory cost all but 
negligible. 

The rest of this paper is organized as follows. Sec- 
tion 2 discusses LRC, MW, and SW protocols. Sec- 
tion 3 presents the mechanisms by which the protocols 
adapt between SW and MW mode. Section 4 describes 
the experimental environment. Section 5 describes the 
eight applications used. Section 6 presents the results 
of the performance comparison. Section 7 discusses 
related work. Section 8 presents our conclusions. 

strate t L e performance: Red-Black SOR and TSP are 

2 Background 
In the following, we introduce LRC, the Tread- 

Marks MW protocol, and our implementation of the 
CVM SW protocol. 
2.1 Lazy Release Consistency 

Release consistency (RC) is a relaxed memory con- 
sistency model [lo]. In RC, ordinary shared memory 
accesses are distinguished from synchronization ac- 
cesses, with the latter category subdivided into acquzre 
and release accesses. Acquire and release accesses cor- 
respond roughly to the conventional synchronization 

operations on a lock, but other synchronization mech- 
anisms can be built on this model as well. Essentially, 
RC allows the effects of ordinary shared memory ac- 
cesses to be delayed until a subsequent release by the 
same processor is performed. 

The Lazy Release Consistency (LRC) algo- 
rithm [14] delays the propagation of modifications to 
a processor until that processor executes an acquire. 
To do so, LRC uses the happened-before-1 partial or- 
der [2]. The happened-before-1 partial order is the 
union of the total processor order of the memory ac- 
cesses on each individual processor and the partial or- 
der of release-acquire pairs. Vector timestamps are 
used to represent the partial order [14]. When a pro- 
cessor executes an acquire, it sends its current vector 
timestamp in the acquire message. The last releaser 
then piggybacks on its response a set of write notices. 
These write notices describe the shared data modifica- 
tions that precede the acquire according to the partial 
order. These shared data modifications must be re- 
flected in the acquirer’s copy. In this paper we consider 
invalidate protocols, in which the arrival of a write no- 
tice for a page causes the page to be invalidated. On 
a subsequent access miss to an invalid page, it is made 
valid by requesting and applying all modifications de- 
scribed by the write notices for that page. 

One of the appealing aspects of LRC is that it 
avoids any ping-pong effect due to read-write false 
sharing. If one processor writes on one part of a page 
and another processor reads from another part of the 
same page, there need not be any communication be- 
tween the two processors until they subsequently syn- 
chronize. Write-write false sharing, however, remains 
a problem. 
2.2 The Multiple Writer Protocol 

MW protocols have been developed to address the 
write-write false sharing problem. With a MW proto- 
col, two or more processors can simultaneously modify 
their local copy of a shared page. Their modifications 
are merged at the next synchronization operation in 
accordance with the definition of RC, thereby reducing 
the effect of false sharing. 

The write notices used in the MW protocol include 
the processor id and the vector timestamp of the in- 
terval during which the page was modified. A faulting 
processor uses this information to locate and apply the 
modifications required to update its copy of the page. 

In TreadMarks, detection of modifications is done 
by twinnzng and difing. A page is initially write- 
protected, so that at the first write a protection vi- 
olation occurs. TreadMarks then makes a copy of the 
page (a twin), and removes the write protection so that 
further writes to the page can occur without any soft- 
ware intervention. The twin and the current copy are 
later compared to create a difl, a runlength encoded 
record of the modifications to the page. These diffs 
are transmitted in response to requests from faulting 
processors. 

Garbage collection is initiated when the diff space 
on one or more processors is exhausted. Global syn- 
chronization is used to implement garbage collection. 
All concurrent writers of a page validate their copy 
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of the page by applying all necessary diffs. All other 
copies of the page and all diffs are deleted. 
2.3 The Single Writer Protocol 

A SW protocol allows only one writer for a page at 
any given time. The processor currently holding write 
privileges to the pages is called the owner. Each page 
has a version number, which is incremented every time 
ownership is acquired (or reacquired by the same pro- 
cessor). When ownership changes, both nodes have 
the new version number for the page. In response to 
an acquire request, the owner sends out owner write 
notices for the pages it modified. An owner write no- 
tice includes the processor id and the page’s version 
number. 

On a write fault, the faulting processor requests 
ownership of the page. A static ownership algorithm 
is used to locate the owner. This method involves for- 
warding of requests through a statically assigned home 
processor. Ownership and the page contents are then 
sent from the current owner to the requester. On a 
read fault, there is no transfer of ownership. Instead, 
the faulting processor p asks for a copy of the page 
from the processor q named in the owner write notice 
with the highest version number that p has received. 
Processor q may not be the current owner, but this is 
correct, because, according to LRC, p does not neces- 
sarily need to see the latest write, but only the latest 
write by a processor with which it has synchronized. 
In either case, read fault or write fault, whole pages 
are sent, without any twinning or diffing. 

A SW protocol uses memory only for owner write 
notices. Since the last owner’s copy is always up- 
to-date, garbage collection of old owner write notices 
is done on-the-fly without extra synchronization be.- 
tween processors. 

Our SW protocol improves on the original CVM 
protocol in the mechanism used for locating valid 
pages on read faults. In the CVM protocol, the fault- 
ing processor requests a page from the owner, possibly 
after forwarding through the home. Thus, a page re- 
quest on a read miss can take 2 or 3 messages depend- 
ing on whether the current owner happens to be the 
home or not. In our protocol, a faulting processor al- 
ways asks for a page from the processor named in the 
owner write notice with the highest version number 
that it has received. Read faults are therefore always 
serviced in two messages. However, on write faults, 
the last version of the page needs to migrate to the 
new owner, thus the exact location of the last owner 
needs to be determined. 

In our implementation of SW, as in the CVM proto- 
col and Mirage [8], we address the ping-pong problem 
by guaranteeing a processor ownership for a newly ob- 
tained page for a minimum quantum of time before it 
can be taken away by another processor. We use a 
fixed 1 millisecond quantum. The results do not ap- 
pear to be sensitive to the exact value of the quantum. 

Our adaptive protocols choose dynamically, on a 
per-page basis, whether to use a SW or a MW proto- 
col. The choice is fully automated, and no user or com- 
piler annotations are required. Instead, the run-time 

3 The Adaptive Protocols 

system monitors the shared memory access patterns, 
and decides on the appropriate protocol accordingly. 
Roughly speaking, pages in MW mode use the Tread- 
Marks twinning and diffing protocol, while pages in 
SW mode use an extension of the CVM SW protocol. 
Pages may be in a transitional state where some pro- 
cessors have the page in SW mode and others have it 
in MW mode. 

Our protocols adapt based on two different char- 
acteristics in an application’s shared data access pat- 
terns: write-write false sharing and write granularity. 
3.1 Adapting to Write-Write False Sharing 

On each processor a state variable is associated with 
each page indicating whether the processor believes 
this page is in SW or MW mode. At times, this vari- 
able may have different values on different processors. 
When the state variable indicates that the page is in 
SW mode, the processor checks for the occurrence of 
write-write false sharin , and, if so, switches to MW 
mode (see Section 3 .1 .8  . Conversely, when the state 
variable indicates that the page is in MW mode, the 
processor checks for the absence of write-write false 
sharing, and, if so, switches to SW mode (see Sec- 
tion 3.1.2). 

3.1.1 Detecting Write-Write False Sharing in 
Single Writer Mode 

Principle and Examples If there is no write-write 
false sharing on a page, then all writes to that page 
must be totally ordered by synchronization, or, in 
other words, by happens-before-1. A modification to 
the SW protocol for locating and transferring own- 
ership allows this condition to be checked efficiently. 
The principle is: There is no write-write false sharing 
if and only if the processor taking a write fault and 
trying to get ownership knows the correct location of 
the owner and the correct version number for the page. 

Before giving the details of the protocol, we illus- 
trate the principle with a few examples. 

0 Consider the case where there is no write-write 
false sharing on a particular page. For instance, 
say processor pl acquires a lock, writes on the 
page, and then releases the lock. At the time a 
processor p z  acquires the lock, it receives a write 
notice containing the version number of the page, 
and invalidates the page. When it then takes a 
write fault on the page and requests ownership, 
it knows the correct owner and version number of 
the page. 

0 Consider next the case where there is write-write 
false sharing. Continuing the above example, as- 
sume that, after processor pz  writes to the page, 
p l  writes to a different part of the same page with- 
out synchronizing with pa. Processor p2 does have 
the right version number at the time of its write, 
because there is no write-write false sharing at 
this point. It will become the new owner and in- 
crement the version number. When p l  writes to 
the page, it no longer has an up-to-date value of 
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the version number, indicating the onset of write- 
write false sharing. 

0 Finally, consider the case where processor p l  ac- 
quires the lock i,, writes on data item a in the 
page, releases the lock I,, acquires the lock la ,  
writes on data items b in the same page, and re- 
leases the lock l b .  Processor p~ acquires I,, writes 
on data item a, and becomes the owner of the 
page. Now assume that processor p3 acquires lock 
Ib to write on data item b .  When it writes on b ,  the 
resulting page fault causes it to request ownership 
from p l ,  but p l  is no longer the owner, signifying 
that write-write false sharing has occurred. 

The Ownership Refusal Protocol At an acquire, 
the releasing processor creates write notices for each 
page that it has modified. For a page in SW mode, the 
owner creates an owner write notice, containing the 
processor id, the version number of the page, and the 
vector timestamp of its current interval. For a page 
in MW mode, a non-owner write notice is created, 
containing only the processor id and the current vector 
timestamp. 

On a write fault to a page in SW mode, a proces- 
sor tries to achieve ownership. In contrast to the SW 
protocol, there is no notion of a “home” to locate the 
owner. Instead, the processor uses the owner write 
notice with the highest version number, and sends the 
ownership request to the processor from which it has 
received that write notice (i.e., to the last perceived 
owner of the page). It includes in this message the 
version number in that write notice. If that processor 
is no longer the owner, or if the version number has 
changed, write-write false sharing has been detected 
and the ownership request is refused. Otherwise, own- 
ership is granted. In either case, unlike with the SW 
protocol, ownership requests are never forwarded and 
always involve two messages. 

If ownership is granted, the new owner incre- 
ments the page’s version number and makes the page 
writable. If the ownership request is refused, the re- 
quester puts the page in MW mode. It creates a twin 
and will later make a diff as in the MW protocol. If the 
target processor of the ownership request is still the 
owner, it maintains its ownership status until the next 
release. At that point, it generates an owner write no- 
tice for the page, but then drops ownership and puts 
the page in MW mode. Although at first glance it 
would seem appealing to drop ownership immediately 
at the time of the incoming ownership request, this is 
not possible because the owner does not have a twin, 
and therefore cannot make a diff. 

The advantage of the adaptive protocol over the 
SW protocol is that it does not suffer from the ping- 
pong effect. The disadvantage compared to the MW 
protocol is the need for ownership messages. However, 
in the case of a write fault on an invalid page, the own- 
ership request gets piggybacked on the page request, 
which was already present in the MW protocol. 

Figure 1 demonstrates the behavior of the proto- 
col with three different access patterns: producer- 
consumer, migratory, and write-write false sharing. In 

Producer Consumer A -. 

* 

1 

sync- (P1,vl) 

page req. 

B 
sync - (PI, v2) 

* 

Migratory Y l  
I 

page req. 
R fault 

R fault ’4 
own req. (HVN = v l  W fault 

* (granted ) 

Write Sharing 

page req. 
R fault 

WFS 

Figure 1: Behavior of the protocol with three access 
patterns: producer-consumer top left) and migratory 
(top right), and write-write fa \ se sharing (bottom) 

all three examples, processor p l  is the initial owner, 
and has created an owner write notice with version 
number 01. Processor pa synchronizes with p l ,  and 
receives this write notice. As a result, v i  becomes 
the highest version number p2 knows about for this 
page (denoted HVN in the figure . In the producer- 

This causes the page to move, but ownership stays 
with p l .  When pl later writes on the page again, it 
is still the owner and does not need to create a twin. 
In the migratory access pattern, the read fault by p l  
causes the page to move, and the subsequent write 
fault causes ownership to be migrated, so that pa can 
write on the page without making a twin. Finally, in 
the case of write-write false sharing, the write fault by 
p2 also results in an ownership request message, but 
this request is refused by p i ,  because p l  has already 
written on the page and increased its version number 
to v2 as a result. In this case, p2 has to make a twin. 

consumer pattern, p2 takes a rea d)  fault on the page. 

Merging Single Writer Copies and Diffs While 
there is a single writer for a page, processors receive 
only owner write notices. On an access miss, the 
whole page is requested from the last perceived owner. 
During the transition from SW to MW, owner copies 
and non-owner copies of a given page may co-exist. 
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Some method is needed for merging these two types 
of copies. 

The merging of modifications is done by requesting 
the page from the last perceived owner,  and apply- 
ing the necessary diffs to that copy according to their 
timestamps. In more detail, when taking a fault on 
an invalid page, a processor looks at its list of write 
notices. The list contains write notices that indicate 
modifications of other processors and also local write 
notices. If the list contains only non-owner write no- 
tices, then the processor just needs to get the cor- 
responding diffs from the other processors and apply 
them to its current copy. If the list contains one or 
more owner write notices, the processor selects the 
owner write notice with the highest version number, 
and obtains a copy of the page from the processor 
named in that write notice. It deletes all the write 
notices that are dominated by this owner write notice. 
The remaining write notices identify modifications to 
the page that happened either concurrent with or after 
the modifications reflected in the copy of the page that 
was just retrieved. The processor gets the diffs corre- 
sponding to these write notices, unless it has them 
already, and applies all the diffs to the page in times- 
tamp order. The processor will not need to apply this 
special merging procedure again unless it sees a new 
owner write notice as a result of a switch back from 
MW to SW. 

The global garbage collection of diffs is done at bar- 
riers as in the TreadMarks protocol (see Section 2.2). 
It differs in that only the last owner validates its copy 
by applying all the necessary diffs. Because garbage 
collection of diffs involves global synchronization as in 
TreadMarks, the last perceived owner is in fact the 
last owner of the page. On future access misses, all 
processors will thus retrieve the owner’s copy of the 
page. In contrast, in TreadMarks, all concurrent writ- 
ers of a page validate their copy. Furthermore, in the 
adaptive protocol, the garbage collection of old write 
notices can be done on-the-fly. Any write notice that 
becomes dominated by an owner write notice, includ- 
ing all old owner write notices, can be discarded. 

3.1.2 Detecting the Absence of Write-Write 
False Sharing in MW Mode 

When in MW mode, the adaptive protocol checks for 
the absence of write-write false sharing on a page. The 
principle here is: There is no write-write false sharing 
if there is a write notice for the page that dominates all 
other write notices. The adaptive protocol uses three 
extensions to the TreadMarks MW protocol to check 
for the absence of write-write false sharing. 

First , processors piggyback information on diff re- 
quests indicating whether they perceive the page as 
write-write falsely shared or not according to the write 
notices they received. Each writer of a page moni- 
tors this false sharing information. Whenever a diff 
request comes in, the writer updates its local informa- 
tion to reflect the false sharing information received 
from the requester. Ownership requests to the last 
perceived owner  are resumed if information collected 
from all processors in the approximate copyset for the 

page says that they see the page in SW mode. This ap- 
proximate copyset is already maintained by the Tread- 
Marks MW protocol. Second, as soon as a processor 
sees a new owner write notice and no concurrent sec- 
ondary write notices, it infers that write-write false 
sharing has stopped. Third, at barriers all processors 
become up to date with all existing modifications. If at 
a barrier a processor receives a write notice for a page 
that dominates all other write notices, that processor 
can infer that write-write false sharing has stopped. 

3.2 Adapting to Write Granularity 
The underlying idea is that, even for pages for 

which there is no write-write false sharing, it might 
still be profitable to use diffing, if the size of the mod- 
ifications to the page is small. The cost of twinning, 
diffing, and transferring a small diff may be cheaper 
than transferring a whole page. Besides the write 
granularity of the application, this tradeoff is highly 
dependent on the network bandwidth. 

We use a simple threshold value to decide whether 
or not to use diffs. If the size of the modifications to 
a page is bigger than the threshold value, we switch 
to SW mode, otherwise we keep the page in MW 
mode. The threshold for a particular configuration 
is set at the value at which the cost of twinning, diff- 
ing, and transmitting the diff is equal to the cost of 
transmitting the entire page. While this threshold 
does not take into account other factors such as the 
increased memory usage and garbage collection over- 
head of MW, these factors are hard to quantify, and 
we found that the results are not very dependent on 
the exact value of the threshold. 

Adapting to write granularity also alleviates the diff 
accumulation problem [17] that occurs in the MW pro- 
tocol. Diff accumulation occurs in connection with mi- 
gratory data where a sequence of synchronizing pro- 
cessors write the same data one after another. If a 
processor reads the data written by one of the writers, 
diffs from all of the preceding writers need to be ap- 
plied, even if the modifications overwrite each other. 
This causes extra data to be sent. If the diffs are small, 
then several of them can be sent in a single message, 
limiting the resulting overhead. Diff accumulation be- 
comes a serious problem, however, if the diffs are large. 
Our protocol addresses this problem by switching the 
pages with large diffs to SW mode. 

3.3 Protocols Used in the Experiments 
We use four protocols in the evaluation. The WFS 

protocol adapts to write-write false sharing in the 
manner described in Section 3.1. The WFS+WG 
protocol, in addition, adapts to the write granular- 
ity as described in Section 3.2. In both the WFS and 
WFS+WG protocols, all pages start in SW mode. The 
WFS+WG protocol, however, switches a page to MW 
mode as soon as the page becomes read-write or write- 
write shared. This enables the protocol to measure 
the write granularity. Afterwards, WFS+WG adapts 
to SW as described in Sections 3.1 or 3.2, with prior- 
ity to the test for write-write false sharing. In other 
words, if the state variable indicates the presence of 
write-write false sharing, the page is placed in MW 
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mode. If, however, the state variable indicates the ab- 
sence of write sharing, the mode of the page is decided 
depending on the size of the diffs. As a baseline for 
comparison we include the MW and SW protocols. 

4 Experimental Environment 
Our experimental environment consists of 8 

SPARC-20 model 61 workstations connected by a 155 
Mbps ATM network. The processes communicate 
with each other over UDP sockets. The minimum 
round-trip time using send and receive for the small- 
est possible message is 1 millisecond. A remote access 
miss, to obtain a 4096 byte page from another proces- 
sor, takes 1921 pseconds. A twin and full page diff 
take an average of 104 and 179 pseconds, respectively. 
To set the threshold for WFS+WG protocol, we mea- 
sured the cost of twinning, diffing and sending the diff 
for different diff sizes. This led us to a conservative 
threshold value of 3KB to switch from MW to SW in 
WFS+WG. 

5 Applications 
We use 8 applications in this study: Red-Black 

SOR and TSP; Water and Barnes-Hut from the 
SPLASH benchmark suite 191; IS and 3D-FFT from 
the NAS benchmark suite [4 I ; Shallow from NCAR [la] 
and ILINK, a large computational genetics code [ll]. 
The applications and input sets vary considerably in 
terms of the amount of write-write false sharing and 
the write granularity. 

Tables 1 and 2 summarize the relevant character- 
istics of the applications. Table 1 includes for each 
application, the data set size used, the method of 
synchronization (locks, barriers, or both), and the 
sequential running times. Sequential running times 
were obtained by removing all synchronization from 
the TreadMarks programs; these times were used as 
the basis for the speedup figures reported later in the 
paper. Table 2 provides the prevailing write granu- 
larity, and the percentage of shared pages that are 
write-write falsely shared. A large write granular- 
ity implies a size above our 3KB threshold. Variable 
means that the size of the writes vary with time. The 
write granularity and write-write false sharing data in 
the table are only valid for the particular input set 
used. Some applications (e.g., SOR, Water and Shal- 
low) show variation in write granularity and write- 
write false sharing behavior depending on the input 
set. 

6 Results 
We first compare the speedups of the four protocols. 

We then present a detailed breakdown of the mem- 
ory overheads and the communication requirements. 
Finally, we explain the results for each application. 
Unless otherwise noted, all results refer to 8-processor 
executions. 
6.1 Execution Times 

of the applications using the four protocols. 

protocols. 

Figure 2 shows the speedup on 8 processors for each 

We first compare the non-adaptive SW and MW 
As expected, the amount of write-write 

21 x 14 
3D-FFT 64x64~64 

1000 x 2000 

19 cities 
Water 512 molecules 

Shallow 1024 x 256 
Barnes 32K bodies 

b 
l,b 
1 

Time (sec.) 
7.8 

40.8 
820.1 
48.7 

118.3 
86.5 

242.0 
1388.3 

Table 1: Applications, input data sets, synchroniza- 
tion (l=locks, b=barriers), and sequential execution 
time 

Application 

3D-FFT 

Shallow 
Barnes 
ILINK 

large 
large 
variable 
medium 
small 
med-large 13.9 
small 61.9 
small 58.3 

Table 2: 
write-write falsely shared pages 

Write granularity and the percentage of 

7 1  I I I 

6 

5 

$ 4  

8 
Q 
a, 

c n 3  

2 

1 

n 

MW WFS+WG 

1 

WFS 

i- 

sw 

Figure 2: Speedup comparison on 8 processors: MW, 
WFS+WG, WFS, and SW 
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false sharing determines the tradeoff. The SW pro- 
tocol performs better than MW on applications with 
zero or very low write-write false sharing (IS and 3D- 
FFT), performs comparably on applications with low 
write-write false sharing (Water), and worse for ap- 
plications with medium or high write-write false shar- 
ing (Shallow, Barnes, ILINK). Although there is no 
write-write false sharing in SOR, SW and MW per- 
form comparably because of the high computation- 
to-communication ratio. For TSP, write-write false 
sharing is low, but the MW protocol performs better 
because of the small size of the diffs. The biggest rel- 
ative speedup differences in favor of SW occur for IS 
and 3D-FFT where SW has a speedup of 1.9 and 4.3, 
respectively, vs. 1.2 and 3.5 for MW. The biggest dif- 
ferences in favor of MW occur for Barnes and ILINK 
where MW has a speedup of 3.7 and 5.1, respectively, 
compared to 1.4 and 2.8 for SW. These results are 
similar to those of Keleher [13], allowing for some dif- 
ferences in platform and applications. 

Comparing the adaptive to the non-adaptive pro- 
tocols, we see from Figure 2 that, for all but 3D-FFT 
and TSP, both adaptive protocols match or exceed 
the speedup of the best of the non-adaptive protocols. 
For these six applications, the speedups of WFS and 
WFS+WG are almost identical, with a slight edge for 
WFS with Shallow and Barnes, and a slight edge for 
WFS+WG with Water. For 3D-FFT, the WFS pro- 
tocol matches the performance of SW, the best non- 
adaptive protocol. The WFS+WG protocol slightly 
lags SW, but performs better than MW. For TSP, the 
WFS+WG protocol matches the performance of MW, 
the best non-adaptive protocol. The WFS protocol 
lags MW, but beats SW. 

Evaluated in terms of speedups, we conclude that 
our adaptation to write-write false sharing works well, 
with the adaptation to the write granularity having 
only a secondary effect TSP and occasionally having 
a small negative effect w 3D- FT). 

A more subtle point is that per-page adaptation 
pays off. This is shown, for instance, by the improve- 
ments of WFS over MW on medium-high write sharing 
problems (Shallow, Barnes). Our WFS protocol per- 
forms better than the MW protocol on these problems 
because not all pages are write-write falsely shared. 
Similarly, WFS+WG has an edge over MW for most 
applications because, even if the average write granu- 
larity is small, most applications have large writes on 
some pages (see Section 6.4). 

6.2 Memory Overhead 
SW does not use twins or diffs. Total memory us- 

age in the other three protocols is dominated by the 
memory used for twins and diffs. Table 3 presents the 
amount of twin and diff space used for all applications 
under these three protocols. Additional memory is 
used in all protocols for storing write notices, but this 
amount is small in comparison and not presented. 

SW uses neither twins nor diffs, and so has the 
lowest memory overhead, followed by WFS. WFS sub- 
stantially reduces the total memory consumption com- 
pared to MW. For applications that have no write- 
write false sharing (SOR and IS), the WFS protocol 

3.55 
0.62 
0.17 
0.33 
0.21 
0.10 

31.59 
1.91 
0.71 

21.08 
17.51 
16.57 
15.36 
14.75 
10.57 

1) Prog I Protocol 

13.09 
4.10 
1.23 

15.05 
13.64 
2.49 

64.07 
22.24 
16.43 

105.00 
101.73 
95.71 

138.89 
137.52 
118.49 

H I MW 
I 

Barnes 

ILINK 

WFS+WG 

WFS 

MW 
WFS+WG 
WFS 
MW 
WFS+WG 
WFS 

I I  I MW 

WFS+WG 

U Shallow 1 $V;+WG 

Table 3: Memory consumption for MW, WFS+WG, 
and WFS 

does not create any twins or diffs. In general, the 
amount of memory consumed in WFS is far lower than 
MW with the exception of the applications with high 
write-write false sharing (ILINK and Barnes). As a 
hybrid protocol, WFS+WG uses more memory than 
WFS for all applications, but has lower memory cost 
than MW. 

Figure 3 uses 3D-FFT as an example of how our 
WFS+WG and WFS protocols adapt. The figure 
shows the total number of diffs on all processors as 
a function of time during the first 6 iterations. 3D- 
FFT overwrites entire pages during each iteration, 
and therefore most diffs are 4K in size. We can see 
that the diff space is rapidly consumed in MW, corre- 
sponding to the first steep ascending part of the graph. 
When the diff space exceeds the threshold (1MB) on 
one of the processors, garbage collection occurs at the 
next barrier. Each drop in the graph corresponds to a 
garbage collection. The WFS protocol uses diffs only 
when there is write-write false sharing. In 3D-FFT, 
only 0.03% of the pages exhibit write-write false shar- 
ing, so diff space used is negligible. The WFS+WG 
protocol starts out making diffs at the same rate as 
MW. However, as it sees that the diff size of each 
page is above the allowed threshold, it switches to a 
SW protocol for these pages. As pages are switched 
to SW mode the slope of the curve flattens. Finally, 
after the second iteration, WFS+WG does not create 
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Figure 3: Diff creation and garbage collection patterns 
for the MW, WFS+WG and WFS in 3D-FFT 

any more large diffs (corresponding to the flat area of 
the curve). 

6.3 Communication 
Table 4 provides data on the amount of commu- 

nication for each of the 8 applications with each of 
the 4 protocols. Besides the number of messages and 
the amount of data, we also indicate the number of 
ownership requests for the WFS+WG, WFS and SW 
protocols. For ease of comparison, the number given 
represents ownership requests and not ownership re- 
lated messages. For WFS and WFS+WG, the total 
number of ownership related messages is double the 
number of ownership requests. For SW, ownership 
requests may involve forwards, which are included in 
the total number of messages but not in the ownership 
request number. 

The SW protocol sends the largest number of mes- 
sages and the largest amount of data. For applications 
with high write-write false sharing, the difference be- 
tween SW and the other protocols is due to the ping- 
pong effect. For applications with low write-write false 
sharing the slight increase is due to forwarding of own- 
ership requests. 

The tradeoff between MW and the adaptive pro- 
tocols is not so uniform. For some applications, the 
ownership requests cause the adaptive protocols, es- 
pecially WFS, to send more messages than MW. For 
Shallow, Barnes and 3D-FFT, the adaptive protocols, 
in particular WFS, send fewer messages than MW, 
because of the high number of messages exchanged 
during MW garbage collection. 

6.4 Detailed Discussion 
In the following discussion, we focus on the write- 

write false sharing and write granularity in each of 

Program Protocol Msg I I (103) 
MW 3.25 

IS 1 WFS+WG I 4.54 

21.52 

18.79 
20.38 
87.77 

WFS 89.38 
89.38 
49.00 

Water 1 %&+WG I 51.58 
52.87 
54.70 
18.20 

21.44 
25.44 
39.11 

39.00 
55.65 

252.37 

236.98 
313.44 

Owner 

0.00 
0.75 
0.75 
0.75 
0.00 
0.00 
0.00 
0.01 
0.00 
0.87 
0.87 
0.87 

(103) 

0.00 
1.69 
2.30 
2.64 
0.00 
0.21 
2.18 
2.89 
0.00 
3.41 
0.01 
8.30 
0.00 
3.77 
3.81 

274.90 
0.00 
0.12 
0.35 

28.73 

Data 
(MB.) 
20.46 
5.73 
5.32 
5.44 

42.59 
37.23 
37.26 
37.30 
83.16 
84.85 

125.92 
84.85 
17.53 
22.71 
24.99 
36.30 

5.70 
8.77 

29.54 
31.90 
51.03 
53.38 
55.71 
79.80 

132.24 
155.62 
156.86 

1286.60 
123.35 
129.72 
229.86 
479.78 

Table 4: Number of messages, ownership requests, and 
amount of data exchanged for the four protocols 

the applications, and how our protocols adapt to these 
characteristics. 

IS ranks an unsorted sequence of keys using bucket 
sort. The keys are divided among the processors. At 
first, processors count their keys in their private buck- 
ets. In the next phase, the values in the buckets are 
summed up. The sharing pattern in IS is migratory: 
the shared buckets are passed from one processor to 
another, protected by locks. There is no write-write 
false sharing, and the pages containing the shared 
buckets are completely overwritten by each processor. 
WFS keeps all these pages in SW mode during the en- 
tire execution. WFS+WG switches to SW mode for 
all pages after the first iteration. Although the adap- 
tive protocols send more messages than MW due to 
ownership requests, diffing overhead and diff accumu- 
lation [17] in MW result in poorer performance relative 
to the adaptive protocols. The small improvement of 
WFS over SW is due to the extra messages in SW for 
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forwarding ownership requests. 
3D-FFT solves a differential equation using 3D for- 

ward and inverse FFT’s. The phases are separated by 
barriers, with a transpose being performed to opti- 
mize the computation. Communication occurs in per- 
forming the transpose, and is of a producer-consumer 
nature. Write-write false sharing occurs on only one 
page out of 3072 total shared pages, and the modifi- 
cations for this page are small (28 bytes). The other 
shared pages are completely overwritten almost every 
time they are touched. In WFS, each of the 8 pro- 
cessors switch once from SW to MW for the page for 
which there is write-write false sharing. WFS+WG 
switches to SW mode during the second iteration for 
all pages except for the write-write falsely shared page. 
Under the adaptive protocols, as in SW, access misses 
are handled by merely retrieving a copy of the page 
from another process, adding no additional diff cre- 
ation/application overhead. MW creates diffs describ- 
ing each modification because every page of data is 
replicated over the course of the execution. WFS and 
SW have identical performance, slightly better than 
WFS+WG because of the first iteration, and signifi- 
cantly better than MW. 

In SOR the shared data structure is a matrix di- 
vided into roughly equal size bands of rows. Bands are 
assigned to processors. The program iterates over the 
matrix computing a new value for each element based 
on its four neighbors. Communication occurs across 
the boundary between bands. There is no write-write 
false sharing for the input size that we used. The 
boundary elements of the matrix are initialized to 1, 
and the internal elements are initialized to 0. In the 
early iterations, few elements change. However, the 
number of modifications grows with every iteration. 
WFS+WG starts out making diffs, because the write 
granularity is below the threshold in the early itera- 
tions. It switches to SW mode after the first 86 it- 
erations. WFS+WG has the best performance of all 
protocols. Since the computation-to-communication 
ratio in this application is very high, all protocols per- 
form well. 

Water is a molecular dynamics simulation. It com- 
putes the intra- and inter-molecular forces using an 
O(n2)  algorithm with a cut-off radius. The main 
shared data structure is the array of molecules al- 
located contiguously and partitioned among proces- 
sors. Depending on how array partitions align to pages 
there may or may not be false sharing. On average, 
6 molecule data-structures are allocated to the same 
page, and write-write false sharin occurs on 3.5% of 
the pages. In WFS, 2-3 pages &om a total of 85 
shared pages) switch to MW. WFS+WG switches to 
moving whole pages for 18% of the pages. However, 
the size of writes on these pages is only slightly above 
the 3K threshold leading to marginal improvement 
over MW. 
TSP uses a branch-and-bound algorithm to find 

the minimum tour that starts at a designated city, 
passes through every other city exactly once, and re- 
turns to the original city. In TSP, write granularity 
is small. For example, an update to the shared tour 
queue modifies a couple of words. There is little write- 

write false sharing in TSP. WFS switches from SW to 
MW on a total of 2 pages for all 8 processors (out 
of 196 shared pages) and thus moves whole pages for 
the most part. WFS+WG uses mostly diffs because 
only for one page it observes a large diff > 3K) which 

the amount of data and the ownership messages cause 
WFS and SW to perform worse than WFS+WG and 
MW. 

Shallow solves difference equations on a 2D grid for 
weather prediction. Paralleliaation is done in bands, 
with sharing only across the edges. In our 1024x256 
element input set, write-write false sharing occurs on 
13.9% of the pages. Shallow makes a clear cwe for per- 
page adaptation. The WFS protocol performs better 
than both non-adaptive protocols. The WFS protocol 
switches to MW mode for all of the writewrite falsely 
shared pages, and keeps the other pages in SW mode. 
The WFS protocol outperforms the SW protocol be- 
cause of the ping-pong effect, and the MW protocol 
because of lower diffing and twinning overheads. In 
addition, the WFS protocol uses fewer messages than 
the MW protocol. The two reasons are that almost all 
ownership messages can be piggy-backed on page re- 
quests, and the WFS protocol’s garbage collection pol- 
icy only validates one copy of the page. Also, memory 
consumption in the WFS protocol is much lower. It 
creates 75% fewer diffs and uses 98% less memory than 
the MW protocol. The WFS+WG protocol performs 
identically to the MW protocol and outperforms the 
SW protocol. Even though most of the pages have a 
single writer, the small size of the diffs keeps the pages 
in the MW mode. Only 7.2% of the pages change to 
SW mode. 

Barnes-Hut simulates the evolution of a system 
of bodies under the influence of gravitational forces. 
It uses a hierarchical tree-based method to compute 
forces between bodies. The space is broken into cells. 
The internal nodes of the tree represent the cells, and 
the leaves represent the bodies in the corresponding 
cells. The tree is built in each time step by loading 
bodies into it. The bodies are partitioned among pro- 
cessors, and then each processor computes the forces 
on its bodies and updates the positions and velocities 
of the bodies. In the version that we use, the array 
of bodies is shared, and the cells are private. Both 
read and write accesses to the global body array are 
fine grained. All pages containing this array (61.9% of 
the shared pages are write-write falsely shared. The 

and moves more data than the other protocols. The 
adaptive protocols slightly outperform the MW proto- 
col. They switch to the MW mode for all of the pages 
containing bodies, while keeping the other pages in 
SW mode. Even though the adaptive protocols move 
more data, they use fewer messages and generate fewer 
twins and diffs than the MW protocol. 

ILINK is a genetic linkage analysis program that 
locates specific disease genes. The main data struc- 
ture is a pool of sparse arrays called genarrays. A 
master processor assigns the nonzero elements to all 
processors in a round-robin fashion. After each pro- 
cessor has worked on its share of non-zero values, the 

causes it to put the page in SW mode. T d e increase in 

SW protocol per f’ orms poorly. It sends more messages, 
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master processor sums up the contributions. The pool 
of sparse genarrays is in shared memory and all pro- 
cessors access it. Thus, the dominant access pattern 
is write-write false sharing (58% of the pages) and 
WFS adapts to MW mode for these pages. There 
is a slight decrease in the total message count for the 
adaptive protocols compared to MW, as a positive side 
effect of the garbage collection method used. How- 
ever, the WFS protocol moves more data for the non 
write-shared pages, due to the sparse data structures 
used in the application and this shows in the total 
data movement. WFS+WG adapts to SW mode for 
an average of 1-2 pages per processor, the only pages 
for which diffs are large, and thus gets a slight im- 
provement compared to MW. This program has a lot 
of write-write false sharing, but the computation to 
communication ratio is higher than Barnes', and thus 
all protocols have better speedup. 
6.5 Summary 

The results confirm the benefits of adaptation to 
write-write false sharing: avoiding the ping-pong ef- 
fect if write-write false sharing is present, and avoid- 
ing the costs of twinning and diffing in its absence. 
Adaptation to write granularity has only a second- 
order effect for this set of applications and this envi- 
ronment, and introduces a hysteresis in the protocol 
that can lead to performance degradation and extra 
memory consumption. The results also demonstrate 
the benefit of per-page adaptation: The adaptive pro- 
tocols sometimes outperform both non-adaptive pro- 
tocols. A side effect of the adaptive and SW protocols 
is reduced memory utilization compared to the MW 
protocol. On the other hand, the ownership request 
messages in the adaptive protocols may cause some 
increase in the total number of messages. 

7 Related Work 
The SW protocol we use is based on the work of 

Keleher [13]. His work demonstrates that the perfor- 
mance benefits resulting from using LRC rather than 
sequential consistency (SC) are considerably larger 
than those resulting from allowing multiple writers. 
We show that under LRC the benefits of MW and SW 
protocols can be combined into one adaptive algorithm 
that uses the appropriate protocol on a per-page basis. 

Various techniques have been proposed to replace 
diffing by cheaper alternatives [15, 221 or to offload 
diffing to a communication coprocessor [5, 231. This 
work is orthogonal. to ours, in that we could incor- 
porate these techniques into our adaptive protocols. 
Using per-word timestamps [l, 15, 221 addresses the 
problem of diff accumulation directly. The problem is 
alleviated in our system because we switch to using 
whole pages whenever the diffs are large. 

Cox and Fowler, and Stenstrom and Brorsson [7, 
201 describe hardware cache-coherence protocols that 
adapt to migratory sharing patterns. Migratory cache 
blocks are detected automatically. If a processor first 
reads and then writes a block, these protocols invali- 
date the old copy and migrate ownership of the block 
to the new processor on the read miss rather than 
on the write hit. This strategy requires only one bus 

transaction, where otherwise two would be required: 
one to replicate the block on the read miss, and one to 
invalidate the old copy on the write hit. Our adaptive 
protocols could be extended to automatically detect 
migratory data access and optimize the ownership ac- 
quisition accordingly. 

Munin [6] uses multiple protocols to handle data 
with different access characteristics. The innovation in 
our work is that it chooses automatically between SW 
and MW protocols. In Munin, the choice of protocol 
is based on somewhat burdensome user annotations. 

MGS [21], a DSM system for distributed SMPs, 
uses a base protocol similar to Munin. Their proto- 
col employs a single writer optimization that avoids 
diffing overhead when there is only one writable copy. 
Although the twin is still made, the entire page is sent 
to the home instead of computing a diff. The work 
of Zhou et. a1 [23] also avoids diffing when the home 
node is in fact the single writer for the page. In con- 
trast, our adaptive protocols avoid twinning and diff- 
ing overhead without using a fixed home node. This 
avoids unnecessary message traffic if the home node is 
poorly chosen. 

False sharing has also been addressed by compile- 
time analysisj[12], remapping of data within the ad- 
dress space [9 , and by using objects as a smaller con- 
sistency unit 221. All of these techniques seek to elimi- 
nate rather than tolerate false sharing. They are, how- 
ever, limited in their applicability due to either the re- 
quirement of a special-purpose language/compiler or 
restrictions on the applications. 

8 Conclusions 
We have introduced adaptive protocols for software 

DSM that dynamically choose between SW and MW 
mode on a per-page basis. The choice is based on 
the presence of write-write false sharing and/or write 
granularity. Write-write false sharing is detected by 
a new ownership refusal protocol. Our adaptive pro- 
tocols do not require any user, compiler, or hardware 
support. 

The adaptive protocols perform well, matching or 
exceeding the performance of the best of the non- 
adaptive approaches on 7 out of 8 applications. Adap- 
tation to write-write false sharing is the most impor- 
tant factor contributing to performance. Adaptation 
to write granularity is a secondary factor in this envi- 
ronment and for this set of applications. 

In the adaptive protocols, we avoid the worst case 
of both the MW protocol (the diff accumulation prob- 
lem) and the SW protocol (the ping-pong effect). Fur- 
thermore, communication overheads are much lower 
than for the SW protocol, and memory consumption 
is significantly reduced compared to the MW protocol. 
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