
Software DSM Protocols that Adapt
between Single Writer and Multiple Writer

Cristiana Amzat, Alan L. Coxt, Sandhya Dwarkadad, and Willy Zwaenepoelt
t Department of Computer Science

{amza, alc, willy}@cs.rice.edu

4 Department of Computer Science

sandhya@ cs . roches t er. edu
Rice University University of Rochester

Abstract 1 Introduction
We present two software DSM protocols that dy-

namically adapt between a single writer (SW) and a
multiple writer (MW) protocol based on the appli-
cation's sharing patterns. The first protocol (WFS)
adapts based on write-write false sharing; the second
WFS+WG) based on a combination of write-write I alse sharing and write granularity. The adaptation is

automatic. No user or compiler information is needed.
The choice between SW and MW is made on a per-
page basis.

We measured the performance of our adaptive pro-
tocols on an 8-node SPARC cluster connected by a
155 Mbps ATM network. We used eight applications,
covering a broad spectrum in terms of write-write
false sharing and write granularity. We compare our
adaptive protocols against the MW-only and the SW-
only approach. Adaptation to write-write false shar-
ing proves to be the critical performance factor, while
adaptation to write granularity plays only a secondary
role in our environment and for the applications con-
sidered.

Each of the two adaptive protocols matches or ex-
ceeds the performance of the best of MW and SW in
seven out of the eight applications. For these appli-
cations, speedup improvements over SW range from
1.02 to 2.7. The largest improvements over SW occur
for applications with high write-write false sharing.
Compared to MW, speedups improve by a factor of
1.02 to 1.6, with the largest improvements occurring
for applications with little or no write-write false shar-
ing. Both WFS and WFS+WG speedups fall below
the best of MW and SW for one application, but only
by a factor of 1.09 and 1.06. In addition, memory us-
age is reduced considerably compared to MW, in some
cases making the memory overhead all but negligible.

This work is supported in part by the National Sci-
ence Foundation under Grants CCR-9410457, BIR-9408503,

and ME'-9521386, by the Teras TATP pregram under Grant
003604017, and by grants from IBM Corporation and from
Tech-Sym, Inc.

CCR-9457770, CCR-9502500, CCR-9521735, CDA-9502791,

This paper focuses on protocols for implement-
ing lazy release-consistent (LRC) [14] software dis-
tributed shared memory (DSM) 16 on commodity
hardware. Both single writer (SW 5 r l 131 and multiple
writer MW [6] protocols have been used to imple-
ment L k s C. W protocols allow only a single writable
copy of a page at any given time. Furthermore, they
always transfer a whole page to satisfy an access miss.
With MW protocols, several writable copies of a page
may co-exist. Instead of transferring whole pages,
MW protocols transfer diffs, records of the modifica-
tions made to a page.

SW protocols suffer from the ping-pong effect in
the case of write-write false sharing (concurrent writes
from different rocessors to non-overlapping parts of
the same pager. Furthermore, if only a single word
in a page is changed, then it is clearly undesirable to
transmit the entire page, especially on a low band-
width network.

MW protocols solve these two problems, but suf-
fer some drawbacks of their own. First, there is
an execution cost to recording and merging changes
from multiple writers (i.e., creating and applying the
diffs). Much of this overhead is incurred regardless of
whether the page has multiple writers or not, adding
unnecessary overhead in the case where there is no
false sharing. In particular, in the cme where an en-
tire page is modified by a single writer, a MW protocol
adds a sizable cost without any reduction in commu-
nication. Furthermore, there is a significant memory
overhead for recording the modifications. The mem-
ory costs can be bounded by garbage collection, but
frequent garbage collection results in added execution
time.

CVM [13] uses a SW protocol, while TreadMarks [3

for a study of the tradeoffs). Other systems (such as
Munin [6]) allow multiple protocols to be used, but re-
quire user annotation to choose between them. In this
paper we take an alternative approach. We observe
that for some applications a MW protocol is preferred
while for others a SW protocol is more desirable. Even
within a single application, different pages may be best
handled by one protocol or the other. As a result we
have designed two adaptive protocols that choose dy-

uses a MW protocol (see the work of Keleher [13 1

261
0-8186-7764-3/97 $10.00 0 1997 IEEE

mailto:willy}@cs.rice.edu

namically, on a per-page basis, whether to use a SW
or a MW protocol. The choice is fully automated, and
no user or compiler annotations are required. Instead,
the runtime system monitors the shared memory ac-
cess patterns and decides on the appropriate protocol.
We show that this can be done with little overhead,
as an extension of the SW and MW protocols. The
first adaptive protocol (WFS) adapts to the presence
of write-write false sharing. It chooses a MW pro-
tocol if there is write-write false sharing on a page
and a SW protocol otherwise. The second adaptive
protocol (WFS+WG), in addition, takes into account
write granularity, and uses diffs for pages with small
write granularity, even if they do not exhibit write-
write false sharing.

The adaptive protocols were implemented in Tread-
Marks 31. Eight applications were used to demon-

small kernels; Barnes-Hut and Water are from the
Splash benchmarks suite [19]; IS and 3D-FFT are
from the NAS benchmark suite [4]; Shallow is a small
weather modeling code from NCAR [18]; and ILINK is
a production computational genetics code [ll]. These
applications cover a wide spectrum in terms of write-
write false sharing and write granularity. We present
performance results on a 155Mbps ATM network con-
necting 8 SPARC-20 model 61 workstations. We com-
pare the performance of the adaptive protocols to the
non-adaptive MW protocol used in TreadMarks and
to a non-adaptive SW protocol similar to the one used
in CVM. Each of the two adaptive protocols matches
or exceeds the performance of the best of the non-
adaptive protocols in seven out of the eight applica-
tions. Speedup improvements are as high as a factor
of 2.7 over SW for applications with high write-write
false sharing and as high as a factor of 1.6 over MW
for applications with little or no write-write false shar-
ing. Both WFS and WFS+WG speedups fall below
the best of MW and SW for one application, but only
by a factor of 1.09 and 1.06, respectively. In addi-
tion, memory usage is reduced considerably compared
to MW, in some cases making memory cost all but
negligible.

The rest of this paper is organized as follows. Sec-
tion 2 discusses LRC, MW, and SW protocols. Sec-
tion 3 presents the mechanisms by which the protocols
adapt between SW and MW mode. Section 4 describes
the experimental environment. Section 5 describes the
eight applications used. Section 6 presents the results
of the performance comparison. Section 7 discusses
related work. Section 8 presents our conclusions.

strate t L e performance: Red-Black SOR and TSP are

2 Background
In the following, we introduce LRC, the Tread-

Marks MW protocol, and our implementation of the
CVM SW protocol.
2.1 Lazy Release Consistency

Release consistency (RC) is a relaxed memory con-
sistency model [lo]. In RC, ordinary shared memory
accesses are distinguished from synchronization ac-
cesses, with the latter category subdivided into acquzre
and release accesses. Acquire and release accesses cor-
respond roughly to the conventional synchronization

operations on a lock, but other synchronization mech-
anisms can be built on this model as well. Essentially,
RC allows the effects of ordinary shared memory ac-
cesses to be delayed until a subsequent release by the
same processor is performed.

The Lazy Release Consistency (LRC) algo-
rithm [14] delays the propagation of modifications to
a processor until that processor executes an acquire.
To do so, LRC uses the happened-before-1 partial or-
der [2]. The happened-before-1 partial order is the
union of the total processor order of the memory ac-
cesses on each individual processor and the partial or-
der of release-acquire pairs. Vector timestamps are
used to represent the partial order [14]. When a pro-
cessor executes an acquire, it sends its current vector
timestamp in the acquire message. The last releaser
then piggybacks on its response a set of write notices.
These write notices describe the shared data modifica-
tions that precede the acquire according to the partial
order. These shared data modifications must be re-
flected in the acquirer’s copy. In this paper we consider
invalidate protocols, in which the arrival of a write no-
tice for a page causes the page to be invalidated. On
a subsequent access miss to an invalid page, it is made
valid by requesting and applying all modifications de-
scribed by the write notices for that page.

One of the appealing aspects of LRC is that it
avoids any ping-pong effect due to read-write false
sharing. If one processor writes on one part of a page
and another processor reads from another part of the
same page, there need not be any communication be-
tween the two processors until they subsequently syn-
chronize. Write-write false sharing, however, remains
a problem.
2.2 The Multiple Writer Protocol

MW protocols have been developed to address the
write-write false sharing problem. With a MW proto-
col, two or more processors can simultaneously modify
their local copy of a shared page. Their modifications
are merged at the next synchronization operation in
accordance with the definition of RC, thereby reducing
the effect of false sharing.

The write notices used in the MW protocol include
the processor id and the vector timestamp of the in-
terval during which the page was modified. A faulting
processor uses this information to locate and apply the
modifications required to update its copy of the page.

In TreadMarks, detection of modifications is done
by twinnzng and difing. A page is initially write-
protected, so that at the first write a protection vi-
olation occurs. TreadMarks then makes a copy of the
page (a twin), and removes the write protection so that
further writes to the page can occur without any soft-
ware intervention. The twin and the current copy are
later compared to create a difl, a runlength encoded
record of the modifications to the page. These diffs
are transmitted in response to requests from faulting
processors.

Garbage collection is initiated when the diff space
on one or more processors is exhausted. Global syn-
chronization is used to implement garbage collection.
All concurrent writers of a page validate their copy

262

of the page by applying all necessary diffs. All other
copies of the page and all diffs are deleted.
2.3 The Single Writer Protocol

A SW protocol allows only one writer for a page at
any given time. The processor currently holding write
privileges to the pages is called the owner. Each page
has a version number, which is incremented every time
ownership is acquired (or reacquired by the same pro-
cessor). When ownership changes, both nodes have
the new version number for the page. In response to
an acquire request, the owner sends out owner write
notices for the pages it modified. An owner write no-
tice includes the processor id and the page’s version
number.

On a write fault, the faulting processor requests
ownership of the page. A static ownership algorithm
is used to locate the owner. This method involves for-
warding of requests through a statically assigned home
processor. Ownership and the page contents are then
sent from the current owner to the requester. On a
read fault, there is no transfer of ownership. Instead,
the faulting processor p asks for a copy of the page
from the processor q named in the owner write notice
with the highest version number that p has received.
Processor q may not be the current owner, but this is
correct, because, according to LRC, p does not neces-
sarily need to see the latest write, but only the latest
write by a processor with which it has synchronized.
In either case, read fault or write fault, whole pages
are sent, without any twinning or diffing.

A SW protocol uses memory only for owner write
notices. Since the last owner’s copy is always up-
to-date, garbage collection of old owner write notices
is done on-the-fly without extra synchronization be.-
tween processors.

Our SW protocol improves on the original CVM
protocol in the mechanism used for locating valid
pages on read faults. In the CVM protocol, the fault-
ing processor requests a page from the owner, possibly
after forwarding through the home. Thus, a page re-
quest on a read miss can take 2 or 3 messages depend-
ing on whether the current owner happens to be the
home or not. In our protocol, a faulting processor al-
ways asks for a page from the processor named in the
owner write notice with the highest version number
that it has received. Read faults are therefore always
serviced in two messages. However, on write faults,
the last version of the page needs to migrate to the
new owner, thus the exact location of the last owner
needs to be determined.

In our implementation of SW, as in the CVM proto-
col and Mirage [8], we address the ping-pong problem
by guaranteeing a processor ownership for a newly ob-
tained page for a minimum quantum of time before it
can be taken away by another processor. We use a
fixed 1 millisecond quantum. The results do not ap-
pear to be sensitive to the exact value of the quantum.

Our adaptive protocols choose dynamically, on a
per-page basis, whether to use a SW or a MW proto-
col. The choice is fully automated, and no user or com-
piler annotations are required. Instead, the run-time

3 The Adaptive Protocols

system monitors the shared memory access patterns,
and decides on the appropriate protocol accordingly.
Roughly speaking, pages in MW mode use the Tread-
Marks twinning and diffing protocol, while pages in
SW mode use an extension of the CVM SW protocol.
Pages may be in a transitional state where some pro-
cessors have the page in SW mode and others have it
in MW mode.

Our protocols adapt based on two different char-
acteristics in an application’s shared data access pat-
terns: write-write false sharing and write granularity.
3.1 Adapting to Write-Write False Sharing

On each processor a state variable is associated with
each page indicating whether the processor believes
this page is in SW or MW mode. At times, this vari-
able may have different values on different processors.
When the state variable indicates that the page is in
SW mode, the processor checks for the occurrence of
write-write false sharin , and, if so, switches to MW
mode (see Section 3 .1 .8 . Conversely, when the state
variable indicates that the page is in MW mode, the
processor checks for the absence of write-write false
sharing, and, if so, switches to SW mode (see Sec-
tion 3.1.2).

3.1.1 Detecting Write-Write False Sharing in
Single Writer Mode

Principle and Examples If there is no write-write
false sharing on a page, then all writes to that page
must be totally ordered by synchronization, or, in
other words, by happens-before-1. A modification to
the SW protocol for locating and transferring own-
ership allows this condition to be checked efficiently.
The principle is: There is no write-write false sharing
if and only if the processor taking a write fault and
trying to get ownership knows the correct location of
the owner and the correct version number for the page.

Before giving the details of the protocol, we illus-
trate the principle with a few examples.

0 Consider the case where there is no write-write
false sharing on a particular page. For instance,
say processor pl acquires a lock, writes on the
page, and then releases the lock. At the time a
processor p z acquires the lock, it receives a write
notice containing the version number of the page,
and invalidates the page. When it then takes a
write fault on the page and requests ownership,
it knows the correct owner and version number of
the page.

0 Consider next the case where there is write-write
false sharing. Continuing the above example, as-
sume that, after processor pz writes to the page,
p l writes to a different part of the same page with-
out synchronizing with pa. Processor p2 does have
the right version number at the time of its write,
because there is no write-write false sharing at
this point. It will become the new owner and in-
crement the version number. When p l writes to
the page, it no longer has an up-to-date value of

263

the version number, indicating the onset of write-
write false sharing.

0 Finally, consider the case where processor p l ac-
quires the lock i,, writes on data item a in the
page, releases the lock I,, acquires the lock la ,
writes on data items b in the same page, and re-
leases the lock l b . Processor p~ acquires I,, writes
on data item a, and becomes the owner of the
page. Now assume that processor p3 acquires lock
Ib to write on data item b . When it writes on b , the
resulting page fault causes it to request ownership
from p l , but p l is no longer the owner, signifying
that write-write false sharing has occurred.

The Ownership Refusal Protocol At an acquire,
the releasing processor creates write notices for each
page that it has modified. For a page in SW mode, the
owner creates an owner write notice, containing the
processor id, the version number of the page, and the
vector timestamp of its current interval. For a page
in MW mode, a non-owner write notice is created,
containing only the processor id and the current vector
timestamp.

On a write fault to a page in SW mode, a proces-
sor tries to achieve ownership. In contrast to the SW
protocol, there is no notion of a “home” to locate the
owner. Instead, the processor uses the owner write
notice with the highest version number, and sends the
ownership request to the processor from which it has
received that write notice (i.e., to the last perceived
owner of the page). It includes in this message the
version number in that write notice. If that processor
is no longer the owner, or if the version number has
changed, write-write false sharing has been detected
and the ownership request is refused. Otherwise, own-
ership is granted. In either case, unlike with the SW
protocol, ownership requests are never forwarded and
always involve two messages.

If ownership is granted, the new owner incre-
ments the page’s version number and makes the page
writable. If the ownership request is refused, the re-
quester puts the page in MW mode. It creates a twin
and will later make a diff as in the MW protocol. If the
target processor of the ownership request is still the
owner, it maintains its ownership status until the next
release. At that point, it generates an owner write no-
tice for the page, but then drops ownership and puts
the page in MW mode. Although at first glance it
would seem appealing to drop ownership immediately
at the time of the incoming ownership request, this is
not possible because the owner does not have a twin,
and therefore cannot make a diff.

The advantage of the adaptive protocol over the
SW protocol is that it does not suffer from the ping-
pong effect. The disadvantage compared to the MW
protocol is the need for ownership messages. However,
in the case of a write fault on an invalid page, the own-
ership request gets piggybacked on the page request,
which was already present in the MW protocol.

Figure 1 demonstrates the behavior of the proto-
col with three different access patterns: producer-
consumer, migratory, and write-write false sharing. In

Producer Consumer A -.

*

1

sync- (P1,vl)

page req.

B
sync - (PI, v2)

*

Migratory Y l
I

page req.
R fault

R fault ’4
own req. (HVN = v l W fault

* (granted)

Write Sharing

page req.
R fault

WFS

Figure 1: Behavior of the protocol with three access
patterns: producer-consumer top left) and migratory
(top right), and write-write fa \ se sharing (bottom)

all three examples, processor p l is the initial owner,
and has created an owner write notice with version
number 01. Processor pa synchronizes with p l , and
receives this write notice. As a result, v i becomes
the highest version number p2 knows about for this
page (denoted HVN in the figure . In the producer-

This causes the page to move, but ownership stays
with p l . When pl later writes on the page again, it
is still the owner and does not need to create a twin.
In the migratory access pattern, the read fault by p l
causes the page to move, and the subsequent write
fault causes ownership to be migrated, so that pa can
write on the page without making a twin. Finally, in
the case of write-write false sharing, the write fault by
p2 also results in an ownership request message, but
this request is refused by p i , because p l has already
written on the page and increased its version number
to v2 as a result. In this case, p2 has to make a twin.

consumer pattern, p2 takes a rea d) fault on the page.

Merging Single Writer Copies and Diffs While
there is a single writer for a page, processors receive
only owner write notices. On an access miss, the
whole page is requested from the last perceived owner.
During the transition from SW to MW, owner copies
and non-owner copies of a given page may co-exist.

264

Some method is needed for merging these two types
of copies.

The merging of modifications is done by requesting
the page from the last perceived owner, and apply-
ing the necessary diffs to that copy according to their
timestamps. In more detail, when taking a fault on
an invalid page, a processor looks at its list of write
notices. The list contains write notices that indicate
modifications of other processors and also local write
notices. If the list contains only non-owner write no-
tices, then the processor just needs to get the cor-
responding diffs from the other processors and apply
them to its current copy. If the list contains one or
more owner write notices, the processor selects the
owner write notice with the highest version number,
and obtains a copy of the page from the processor
named in that write notice. It deletes all the write
notices that are dominated by this owner write notice.
The remaining write notices identify modifications to
the page that happened either concurrent with or after
the modifications reflected in the copy of the page that
was just retrieved. The processor gets the diffs corre-
sponding to these write notices, unless it has them
already, and applies all the diffs to the page in times-
tamp order. The processor will not need to apply this
special merging procedure again unless it sees a new
owner write notice as a result of a switch back from
MW to SW.

The global garbage collection of diffs is done at bar-
riers as in the TreadMarks protocol (see Section 2.2).
It differs in that only the last owner validates its copy
by applying all the necessary diffs. Because garbage
collection of diffs involves global synchronization as in
TreadMarks, the last perceived owner is in fact the
last owner of the page. On future access misses, all
processors will thus retrieve the owner’s copy of the
page. In contrast, in TreadMarks, all concurrent writ-
ers of a page validate their copy. Furthermore, in the
adaptive protocol, the garbage collection of old write
notices can be done on-the-fly. Any write notice that
becomes dominated by an owner write notice, includ-
ing all old owner write notices, can be discarded.

3.1.2 Detecting the Absence of Write-Write
False Sharing in MW Mode

When in MW mode, the adaptive protocol checks for
the absence of write-write false sharing on a page. The
principle here is: There is no write-write false sharing
if there is a write notice for the page that dominates all
other write notices. The adaptive protocol uses three
extensions to the TreadMarks MW protocol to check
for the absence of write-write false sharing.

First , processors piggyback information on diff re-
quests indicating whether they perceive the page as
write-write falsely shared or not according to the write
notices they received. Each writer of a page moni-
tors this false sharing information. Whenever a diff
request comes in, the writer updates its local informa-
tion to reflect the false sharing information received
from the requester. Ownership requests to the last
perceived owner are resumed if information collected
from all processors in the approximate copyset for the

page says that they see the page in SW mode. This ap-
proximate copyset is already maintained by the Tread-
Marks MW protocol. Second, as soon as a processor
sees a new owner write notice and no concurrent sec-
ondary write notices, it infers that write-write false
sharing has stopped. Third, at barriers all processors
become up to date with all existing modifications. If at
a barrier a processor receives a write notice for a page
that dominates all other write notices, that processor
can infer that write-write false sharing has stopped.

3.2 Adapting to Write Granularity
The underlying idea is that, even for pages for

which there is no write-write false sharing, it might
still be profitable to use diffing, if the size of the mod-
ifications to the page is small. The cost of twinning,
diffing, and transferring a small diff may be cheaper
than transferring a whole page. Besides the write
granularity of the application, this tradeoff is highly
dependent on the network bandwidth.

We use a simple threshold value to decide whether
or not to use diffs. If the size of the modifications to
a page is bigger than the threshold value, we switch
to SW mode, otherwise we keep the page in MW
mode. The threshold for a particular configuration
is set at the value at which the cost of twinning, diff-
ing, and transmitting the diff is equal to the cost of
transmitting the entire page. While this threshold
does not take into account other factors such as the
increased memory usage and garbage collection over-
head of MW, these factors are hard to quantify, and
we found that the results are not very dependent on
the exact value of the threshold.

Adapting to write granularity also alleviates the diff
accumulation problem [17] that occurs in the MW pro-
tocol. Diff accumulation occurs in connection with mi-
gratory data where a sequence of synchronizing pro-
cessors write the same data one after another. If a
processor reads the data written by one of the writers,
diffs from all of the preceding writers need to be ap-
plied, even if the modifications overwrite each other.
This causes extra data to be sent. If the diffs are small,
then several of them can be sent in a single message,
limiting the resulting overhead. Diff accumulation be-
comes a serious problem, however, if the diffs are large.
Our protocol addresses this problem by switching the
pages with large diffs to SW mode.

3.3 Protocols Used in the Experiments
We use four protocols in the evaluation. The WFS

protocol adapts to write-write false sharing in the
manner described in Section 3.1. The WFS+WG
protocol, in addition, adapts to the write granular-
ity as described in Section 3.2. In both the WFS and
WFS+WG protocols, all pages start in SW mode. The
WFS+WG protocol, however, switches a page to MW
mode as soon as the page becomes read-write or write-
write shared. This enables the protocol to measure
the write granularity. Afterwards, WFS+WG adapts
to SW as described in Sections 3.1 or 3.2, with prior-
ity to the test for write-write false sharing. In other
words, if the state variable indicates the presence of
write-write false sharing, the page is placed in MW

265

mode. If, however, the state variable indicates the ab-
sence of write sharing, the mode of the page is decided
depending on the size of the diffs. As a baseline for
comparison we include the MW and SW protocols.

4 Experimental Environment
Our experimental environment consists of 8

SPARC-20 model 61 workstations connected by a 155
Mbps ATM network. The processes communicate
with each other over UDP sockets. The minimum
round-trip time using send and receive for the small-
est possible message is 1 millisecond. A remote access
miss, to obtain a 4096 byte page from another proces-
sor, takes 1921 pseconds. A twin and full page diff
take an average of 104 and 179 pseconds, respectively.
To set the threshold for WFS+WG protocol, we mea-
sured the cost of twinning, diffing and sending the diff
for different diff sizes. This led us to a conservative
threshold value of 3KB to switch from MW to SW in
WFS+WG.

5 Applications
We use 8 applications in this study: Red-Black

SOR and TSP; Water and Barnes-Hut from the
SPLASH benchmark suite 191; IS and 3D-FFT from
the NAS benchmark suite [4 I ; Shallow from NCAR [la]
and ILINK, a large computational genetics code [ll].
The applications and input sets vary considerably in
terms of the amount of write-write false sharing and
the write granularity.

Tables 1 and 2 summarize the relevant character-
istics of the applications. Table 1 includes for each
application, the data set size used, the method of
synchronization (locks, barriers, or both), and the
sequential running times. Sequential running times
were obtained by removing all synchronization from
the TreadMarks programs; these times were used as
the basis for the speedup figures reported later in the
paper. Table 2 provides the prevailing write granu-
larity, and the percentage of shared pages that are
write-write falsely shared. A large write granular-
ity implies a size above our 3KB threshold. Variable
means that the size of the writes vary with time. The
write granularity and write-write false sharing data in
the table are only valid for the particular input set
used. Some applications (e.g., SOR, Water and Shal-
low) show variation in write granularity and write-
write false sharing behavior depending on the input
set.

6 Results
We first compare the speedups of the four protocols.

We then present a detailed breakdown of the mem-
ory overheads and the communication requirements.
Finally, we explain the results for each application.
Unless otherwise noted, all results refer to 8-processor
executions.
6.1 Execution Times

of the applications using the four protocols.

protocols.

Figure 2 shows the speedup on 8 processors for each

We first compare the non-adaptive SW and MW
As expected, the amount of write-write

21 x 14
3D-FFT 64x64~64

1000 x 2000

19 cities
Water 512 molecules

Shallow 1024 x 256
Barnes 32K bodies

b
l,b
1

Time (sec.)
7.8

40.8
820.1
48.7

118.3
86.5

242.0
1388.3

Table 1: Applications, input data sets, synchroniza-
tion (l=locks, b=barriers), and sequential execution
time

Application

3D-FFT

Shallow
Barnes
ILINK

large
large
variable
medium
small
med-large 13.9
small 61.9
small 58.3

Table 2:
write-write falsely shared pages

Write granularity and the percentage of

7 1 I I I

6

5

$ 4

8
Q
a,

c n 3

2

1

n

MW WFS+WG

1

WFS

i-

sw

Figure 2: Speedup comparison on 8 processors: MW,
WFS+WG, WFS, and SW

266

false sharing determines the tradeoff. The SW pro-
tocol performs better than MW on applications with
zero or very low write-write false sharing (IS and 3D-
FFT), performs comparably on applications with low
write-write false sharing (Water), and worse for ap-
plications with medium or high write-write false shar-
ing (Shallow, Barnes, ILINK). Although there is no
write-write false sharing in SOR, SW and MW per-
form comparably because of the high computation-
to-communication ratio. For TSP, write-write false
sharing is low, but the MW protocol performs better
because of the small size of the diffs. The biggest rel-
ative speedup differences in favor of SW occur for IS
and 3D-FFT where SW has a speedup of 1.9 and 4.3,
respectively, vs. 1.2 and 3.5 for MW. The biggest dif-
ferences in favor of MW occur for Barnes and ILINK
where MW has a speedup of 3.7 and 5.1, respectively,
compared to 1.4 and 2.8 for SW. These results are
similar to those of Keleher [13], allowing for some dif-
ferences in platform and applications.

Comparing the adaptive to the non-adaptive pro-
tocols, we see from Figure 2 that, for all but 3D-FFT
and TSP, both adaptive protocols match or exceed
the speedup of the best of the non-adaptive protocols.
For these six applications, the speedups of WFS and
WFS+WG are almost identical, with a slight edge for
WFS with Shallow and Barnes, and a slight edge for
WFS+WG with Water. For 3D-FFT, the WFS pro-
tocol matches the performance of SW, the best non-
adaptive protocol. The WFS+WG protocol slightly
lags SW, but performs better than MW. For TSP, the
WFS+WG protocol matches the performance of MW,
the best non-adaptive protocol. The WFS protocol
lags MW, but beats SW.

Evaluated in terms of speedups, we conclude that
our adaptation to write-write false sharing works well,
with the adaptation to the write granularity having
only a secondary effect TSP and occasionally having
a small negative effect w 3D- FT).

A more subtle point is that per-page adaptation
pays off. This is shown, for instance, by the improve-
ments of WFS over MW on medium-high write sharing
problems (Shallow, Barnes). Our WFS protocol per-
forms better than the MW protocol on these problems
because not all pages are write-write falsely shared.
Similarly, WFS+WG has an edge over MW for most
applications because, even if the average write granu-
larity is small, most applications have large writes on
some pages (see Section 6.4).

6.2 Memory Overhead
SW does not use twins or diffs. Total memory us-

age in the other three protocols is dominated by the
memory used for twins and diffs. Table 3 presents the
amount of twin and diff space used for all applications
under these three protocols. Additional memory is
used in all protocols for storing write notices, but this
amount is small in comparison and not presented.

SW uses neither twins nor diffs, and so has the
lowest memory overhead, followed by WFS. WFS sub-
stantially reduces the total memory consumption com-
pared to MW. For applications that have no write-
write false sharing (SOR and IS), the WFS protocol

3.55
0.62
0.17
0.33
0.21
0.10

31.59
1.91
0.71

21.08
17.51
16.57
15.36
14.75
10.57

1) Prog I Protocol

13.09
4.10
1.23

15.05
13.64
2.49

64.07
22.24
16.43

105.00
101.73
95.71

138.89
137.52
118.49

H I MW
I

Barnes

ILINK

WFS+WG

WFS

MW
WFS+WG
WFS
MW
WFS+WG
WFS

I I I MW

WFS+WG

U Shallow 1 $V;+WG

Table 3: Memory consumption for MW, WFS+WG,
and WFS

does not create any twins or diffs. In general, the
amount of memory consumed in WFS is far lower than
MW with the exception of the applications with high
write-write false sharing (ILINK and Barnes). As a
hybrid protocol, WFS+WG uses more memory than
WFS for all applications, but has lower memory cost
than MW.

Figure 3 uses 3D-FFT as an example of how our
WFS+WG and WFS protocols adapt. The figure
shows the total number of diffs on all processors as
a function of time during the first 6 iterations. 3D-
FFT overwrites entire pages during each iteration,
and therefore most diffs are 4K in size. We can see
that the diff space is rapidly consumed in MW, corre-
sponding to the first steep ascending part of the graph.
When the diff space exceeds the threshold (1MB) on
one of the processors, garbage collection occurs at the
next barrier. Each drop in the graph corresponds to a
garbage collection. The WFS protocol uses diffs only
when there is write-write false sharing. In 3D-FFT,
only 0.03% of the pages exhibit write-write false shar-
ing, so diff space used is negligible. The WFS+WG
protocol starts out making diffs at the same rate as
MW. However, as it sees that the diff size of each
page is above the allowed threshold, it switches to a
SW protocol for these pages. As pages are switched
to SW mode the slope of the curve flattens. Finally,
after the second iteration, WFS+WG does not create

267

2400.00

2200.00

2000.00

1800.00

1EcQ.00

p 1400.00

1 * MW - WFS

8 WFStWG 8 12w.00

i? 1w.w

w.00

Barnes

400.00

200.00

0.00

MW 224.49
W FS+ WG 196.90
WFS 196.84 sw 831.83

Time

Figure 3: Diff creation and garbage collection patterns
for the MW, WFS+WG and WFS in 3D-FFT

any more large diffs (corresponding to the flat area of
the curve).

6.3 Communication
Table 4 provides data on the amount of commu-

nication for each of the 8 applications with each of
the 4 protocols. Besides the number of messages and
the amount of data, we also indicate the number of
ownership requests for the WFS+WG, WFS and SW
protocols. For ease of comparison, the number given
represents ownership requests and not ownership re-
lated messages. For WFS and WFS+WG, the total
number of ownership related messages is double the
number of ownership requests. For SW, ownership
requests may involve forwards, which are included in
the total number of messages but not in the ownership
request number.

The SW protocol sends the largest number of mes-
sages and the largest amount of data. For applications
with high write-write false sharing, the difference be-
tween SW and the other protocols is due to the ping-
pong effect. For applications with low write-write false
sharing the slight increase is due to forwarding of own-
ership requests.

The tradeoff between MW and the adaptive pro-
tocols is not so uniform. For some applications, the
ownership requests cause the adaptive protocols, es-
pecially WFS, to send more messages than MW. For
Shallow, Barnes and 3D-FFT, the adaptive protocols,
in particular WFS, send fewer messages than MW,
because of the high number of messages exchanged
during MW garbage collection.

6.4 Detailed Discussion
In the following discussion, we focus on the write-

write false sharing and write granularity in each of

Program Protocol Msg I I (103)
MW 3.25

IS 1 WFS+WG I 4.54

21.52

18.79
20.38
87.77

WFS 89.38
89.38
49.00

Water 1 %&+WG I 51.58
52.87
54.70
18.20

21.44
25.44
39.11

39.00
55.65

252.37

236.98
313.44

Owner

0.00
0.75
0.75
0.75
0.00
0.00
0.00
0.01
0.00
0.87
0.87
0.87

(103)

0.00
1.69
2.30
2.64
0.00
0.21
2.18
2.89
0.00
3.41
0.01
8.30
0.00
3.77
3.81

274.90
0.00
0.12
0.35

28.73

Data
(MB.)
20.46
5.73
5.32
5.44

42.59
37.23
37.26
37.30
83.16
84.85

125.92
84.85
17.53
22.71
24.99
36.30

5.70
8.77

29.54
31.90
51.03
53.38
55.71
79.80

132.24
155.62
156.86

1286.60
123.35
129.72
229.86
479.78

Table 4: Number of messages, ownership requests, and
amount of data exchanged for the four protocols

the applications, and how our protocols adapt to these
characteristics.

IS ranks an unsorted sequence of keys using bucket
sort. The keys are divided among the processors. At
first, processors count their keys in their private buck-
ets. In the next phase, the values in the buckets are
summed up. The sharing pattern in IS is migratory:
the shared buckets are passed from one processor to
another, protected by locks. There is no write-write
false sharing, and the pages containing the shared
buckets are completely overwritten by each processor.
WFS keeps all these pages in SW mode during the en-
tire execution. WFS+WG switches to SW mode for
all pages after the first iteration. Although the adap-
tive protocols send more messages than MW due to
ownership requests, diffing overhead and diff accumu-
lation [17] in MW result in poorer performance relative
to the adaptive protocols. The small improvement of
WFS over SW is due to the extra messages in SW for

268

forwarding ownership requests.
3D-FFT solves a differential equation using 3D for-

ward and inverse FFT’s. The phases are separated by
barriers, with a transpose being performed to opti-
mize the computation. Communication occurs in per-
forming the transpose, and is of a producer-consumer
nature. Write-write false sharing occurs on only one
page out of 3072 total shared pages, and the modifi-
cations for this page are small (28 bytes). The other
shared pages are completely overwritten almost every
time they are touched. In WFS, each of the 8 pro-
cessors switch once from SW to MW for the page for
which there is write-write false sharing. WFS+WG
switches to SW mode during the second iteration for
all pages except for the write-write falsely shared page.
Under the adaptive protocols, as in SW, access misses
are handled by merely retrieving a copy of the page
from another process, adding no additional diff cre-
ation/application overhead. MW creates diffs describ-
ing each modification because every page of data is
replicated over the course of the execution. WFS and
SW have identical performance, slightly better than
WFS+WG because of the first iteration, and signifi-
cantly better than MW.

In SOR the shared data structure is a matrix di-
vided into roughly equal size bands of rows. Bands are
assigned to processors. The program iterates over the
matrix computing a new value for each element based
on its four neighbors. Communication occurs across
the boundary between bands. There is no write-write
false sharing for the input size that we used. The
boundary elements of the matrix are initialized to 1,
and the internal elements are initialized to 0. In the
early iterations, few elements change. However, the
number of modifications grows with every iteration.
WFS+WG starts out making diffs, because the write
granularity is below the threshold in the early itera-
tions. It switches to SW mode after the first 86 it-
erations. WFS+WG has the best performance of all
protocols. Since the computation-to-communication
ratio in this application is very high, all protocols per-
form well.

Water is a molecular dynamics simulation. It com-
putes the intra- and inter-molecular forces using an
O(n2) algorithm with a cut-off radius. The main
shared data structure is the array of molecules al-
located contiguously and partitioned among proces-
sors. Depending on how array partitions align to pages
there may or may not be false sharing. On average,
6 molecule data-structures are allocated to the same
page, and write-write false sharin occurs on 3.5% of
the pages. In WFS, 2-3 pages &om a total of 85
shared pages) switch to MW. WFS+WG switches to
moving whole pages for 18% of the pages. However,
the size of writes on these pages is only slightly above
the 3K threshold leading to marginal improvement
over MW.
TSP uses a branch-and-bound algorithm to find

the minimum tour that starts at a designated city,
passes through every other city exactly once, and re-
turns to the original city. In TSP, write granularity
is small. For example, an update to the shared tour
queue modifies a couple of words. There is little write-

write false sharing in TSP. WFS switches from SW to
MW on a total of 2 pages for all 8 processors (out
of 196 shared pages) and thus moves whole pages for
the most part. WFS+WG uses mostly diffs because
only for one page it observes a large diff > 3K) which

the amount of data and the ownership messages cause
WFS and SW to perform worse than WFS+WG and
MW.

Shallow solves difference equations on a 2D grid for
weather prediction. Paralleliaation is done in bands,
with sharing only across the edges. In our 1024x256
element input set, write-write false sharing occurs on
13.9% of the pages. Shallow makes a clear cwe for per-
page adaptation. The WFS protocol performs better
than both non-adaptive protocols. The WFS protocol
switches to MW mode for all of the writewrite falsely
shared pages, and keeps the other pages in SW mode.
The WFS protocol outperforms the SW protocol be-
cause of the ping-pong effect, and the MW protocol
because of lower diffing and twinning overheads. In
addition, the WFS protocol uses fewer messages than
the MW protocol. The two reasons are that almost all
ownership messages can be piggy-backed on page re-
quests, and the WFS protocol’s garbage collection pol-
icy only validates one copy of the page. Also, memory
consumption in the WFS protocol is much lower. It
creates 75% fewer diffs and uses 98% less memory than
the MW protocol. The WFS+WG protocol performs
identically to the MW protocol and outperforms the
SW protocol. Even though most of the pages have a
single writer, the small size of the diffs keeps the pages
in the MW mode. Only 7.2% of the pages change to
SW mode.

Barnes-Hut simulates the evolution of a system
of bodies under the influence of gravitational forces.
It uses a hierarchical tree-based method to compute
forces between bodies. The space is broken into cells.
The internal nodes of the tree represent the cells, and
the leaves represent the bodies in the corresponding
cells. The tree is built in each time step by loading
bodies into it. The bodies are partitioned among pro-
cessors, and then each processor computes the forces
on its bodies and updates the positions and velocities
of the bodies. In the version that we use, the array
of bodies is shared, and the cells are private. Both
read and write accesses to the global body array are
fine grained. All pages containing this array (61.9% of
the shared pages are write-write falsely shared. The

and moves more data than the other protocols. The
adaptive protocols slightly outperform the MW proto-
col. They switch to the MW mode for all of the pages
containing bodies, while keeping the other pages in
SW mode. Even though the adaptive protocols move
more data, they use fewer messages and generate fewer
twins and diffs than the MW protocol.

ILINK is a genetic linkage analysis program that
locates specific disease genes. The main data struc-
ture is a pool of sparse arrays called genarrays. A
master processor assigns the nonzero elements to all
processors in a round-robin fashion. After each pro-
cessor has worked on its share of non-zero values, the

causes it to put the page in SW mode. T d e increase in

SW protocol per f’ orms poorly. It sends more messages,

269

master processor sums up the contributions. The pool
of sparse genarrays is in shared memory and all pro-
cessors access it. Thus, the dominant access pattern
is write-write false sharing (58% of the pages) and
WFS adapts to MW mode for these pages. There
is a slight decrease in the total message count for the
adaptive protocols compared to MW, as a positive side
effect of the garbage collection method used. How-
ever, the WFS protocol moves more data for the non
write-shared pages, due to the sparse data structures
used in the application and this shows in the total
data movement. WFS+WG adapts to SW mode for
an average of 1-2 pages per processor, the only pages
for which diffs are large, and thus gets a slight im-
provement compared to MW. This program has a lot
of write-write false sharing, but the computation to
communication ratio is higher than Barnes', and thus
all protocols have better speedup.
6.5 Summary

The results confirm the benefits of adaptation to
write-write false sharing: avoiding the ping-pong ef-
fect if write-write false sharing is present, and avoid-
ing the costs of twinning and diffing in its absence.
Adaptation to write granularity has only a second-
order effect for this set of applications and this envi-
ronment, and introduces a hysteresis in the protocol
that can lead to performance degradation and extra
memory consumption. The results also demonstrate
the benefit of per-page adaptation: The adaptive pro-
tocols sometimes outperform both non-adaptive pro-
tocols. A side effect of the adaptive and SW protocols
is reduced memory utilization compared to the MW
protocol. On the other hand, the ownership request
messages in the adaptive protocols may cause some
increase in the total number of messages.

7 Related Work
The SW protocol we use is based on the work of

Keleher [13]. His work demonstrates that the perfor-
mance benefits resulting from using LRC rather than
sequential consistency (SC) are considerably larger
than those resulting from allowing multiple writers.
We show that under LRC the benefits of MW and SW
protocols can be combined into one adaptive algorithm
that uses the appropriate protocol on a per-page basis.

Various techniques have been proposed to replace
diffing by cheaper alternatives [15, 221 or to offload
diffing to a communication coprocessor [5, 231. This
work is orthogonal. to ours, in that we could incor-
porate these techniques into our adaptive protocols.
Using per-word timestamps [l, 15, 221 addresses the
problem of diff accumulation directly. The problem is
alleviated in our system because we switch to using
whole pages whenever the diffs are large.

Cox and Fowler, and Stenstrom and Brorsson [7,
201 describe hardware cache-coherence protocols that
adapt to migratory sharing patterns. Migratory cache
blocks are detected automatically. If a processor first
reads and then writes a block, these protocols invali-
date the old copy and migrate ownership of the block
to the new processor on the read miss rather than
on the write hit. This strategy requires only one bus

transaction, where otherwise two would be required:
one to replicate the block on the read miss, and one to
invalidate the old copy on the write hit. Our adaptive
protocols could be extended to automatically detect
migratory data access and optimize the ownership ac-
quisition accordingly.

Munin [6] uses multiple protocols to handle data
with different access characteristics. The innovation in
our work is that it chooses automatically between SW
and MW protocols. In Munin, the choice of protocol
is based on somewhat burdensome user annotations.

MGS [21], a DSM system for distributed SMPs,
uses a base protocol similar to Munin. Their proto-
col employs a single writer optimization that avoids
diffing overhead when there is only one writable copy.
Although the twin is still made, the entire page is sent
to the home instead of computing a diff. The work
of Zhou et. a1 [23] also avoids diffing when the home
node is in fact the single writer for the page. In con-
trast, our adaptive protocols avoid twinning and diff-
ing overhead without using a fixed home node. This
avoids unnecessary message traffic if the home node is
poorly chosen.

False sharing has also been addressed by compile-
time analysisj[12], remapping of data within the ad-
dress space [9 , and by using objects as a smaller con-
sistency unit 221. All of these techniques seek to elimi-
nate rather than tolerate false sharing. They are, how-
ever, limited in their applicability due to either the re-
quirement of a special-purpose language/compiler or
restrictions on the applications.

8 Conclusions
We have introduced adaptive protocols for software

DSM that dynamically choose between SW and MW
mode on a per-page basis. The choice is based on
the presence of write-write false sharing and/or write
granularity. Write-write false sharing is detected by
a new ownership refusal protocol. Our adaptive pro-
tocols do not require any user, compiler, or hardware
support.

The adaptive protocols perform well, matching or
exceeding the performance of the best of the non-
adaptive approaches on 7 out of 8 applications. Adap-
tation to write-write false sharing is the most impor-
tant factor contributing to performance. Adaptation
to write granularity is a secondary factor in this envi-
ronment and for this set of applications.

In the adaptive protocols, we avoid the worst case
of both the MW protocol (the diff accumulation prob-
lem) and the SW protocol (the ping-pong effect). Fur-
thermore, communication overheads are much lower
than for the SW protocol, and memory consumption
is significantly reduced compared to the MW protocol.

References
[l] S.V. Adve, A.L. Cox, S. Dwarkadas, R. Rajamony,

and W. Zwaenepoel. A comparison of entry consis-
tency and lazy release consistency implementations.
In Proceedings of the Second High Performance Com-
puter Architecture Symposium, pages 26-37, February
1996.

270

[2] S.V. Adve and M.D. Hill. A unified formalization of
four shared-memory models. IEEE Transactions on
Parallel and Distributed Systems, 4(6):613-624, June
1993.

[3] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, and W. Zwaenepoel. TreadMarks:
Shared memory computing on networks of worksta-
tions. IEEE Computer, 29(2):18-28, February 1996.

[4] D. Bailey, J. Barton, T. Lasinski, and H. Simon.
The NAS parallel benchmarks. Technical Report T R
RNR-91-002, NASA Ames, August 1991.

[5] R. Bianchini, L.I. Kontothanassis, R. Pinto, M. De
Maria, M. Abud, and C.L. Amorim. Hiding commu-
nication latency and coherence overhead in software
dsms. In Proceedings of the 7th Symposium on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 198-209, October 1996.

[6] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Tech-
niques for reducing consistency-related information in
distributed shared memory systems. ACM Transac-
tions on Computer Systems, 13(3):205-243, August
1995.

[7] A.L. Cox and R.J. Fowler. Adaptive cache coherency
for detecting migratory shared data. In Proceedings
of the 20th Annual International Symposium on Com-
puter Architecture, pages 98-108, May 1993.

[8] B. Fleisch and G. Popek. Mirage: A coherent dis-
tributed shared memory design. In Proceedings of the
12th ACM Symposium on Operating Systems Princi-
ples, pages 211-223, December 1989.

[9] V.W. Freeh and G.R. Andrews. Dynamically con-
trolling false sharing in distributed shared mem-
ory. In Proceedings of the Fifth Symposium on High-
Performance Distributed Computing, 1996.

[lo] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared-memory multipro-
cessors. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, pages
15-26, May 1990.

[ll] S.K. Gupta, A.A. Schiiffer, A.L. Cox, S. Dwarkadas,
and W. Zwaenepoel. Integrating parallelization
strategies for linkage analysis. Computers and
Biomedical Research, 28:116-139, June 1995.

[12] T.E. Jeremiassen and S. Eggers. Reducing false shar-
ing on shared memory multiprocessors through com-
pile time data transformations. In Proceedings of the
5th ACM Symposium on the Principles and Practice
of Parallel Programming, July 1995.

The relative importance of concurrent
writers and weak consistency models. In Proceedings
of the 16th International Conference on Distributed
Computing Systems, pages 91-98, May 1996.

[13] P. Keleher.

[14] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
release consistency for software distributed shared
memory. In Proceedings of the 29th Annual Interna-
tional Symposium on Computer Architecture, pages
13-21, May 1992.

[15] P.T. Koch, R.J. Fowler, and E. Jul. Write ranges: A
technique for improving capture and propagation of
writes in software DSMs. Submitted for publication.

[16] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4):321-359, November 1989.

[17] H. Lu, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel.
Message passing versus distributed shared memory on
networks of workstations. In Proceedings SuperCom-
puting '95, December 1995.

[18] R. Sadourny. The dynamics of finite-difference mod-
els of the shallow-water equations. Journal of Atmo-
spheric Sciences, 32(4), April 1975.

[19] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH:
Stanford parallel applications for shared-memory.
Technical Report CSL-TR-91-469, Stanford Univer-
sity, April 1991.

An
adaptive cache coherence protocol optimized for mi-
gratory sharing. In Proceedings of the 20th Annual
International Symposium on Computer Architecture,
May 1993.

[21] D. Yeung, J. Kubiatowicz, and A. Agarwal. MGS: A
multigrain shared memory system. In Proceedings of
the 23th Annual International Symposium on Com-
puter Architecture, May 1996.

[22] M.J. Zekauskas, W.A. Sawdon, and B.N. Bershad.
Software write detection for distributed shared mem-
ory. In Proceedings of the First USENIX Sympo-
sium on Operating System Design and Implementa-
tion, pages 87-100, November 1994.

[23] Y. Zhou, L. Iftode, and K. Li. Performance evaluation
of two home-based lazy release consistency protocols
for shared virtual memory systems. In Proceedings of
the Second USENIX Symposium on Operating System
Design and Implementation, pages 75-88, November
1996.

[20] P. Stenstrom, M. Brorsson, and L. Sandberg.

271

