
Data Replication Strategies for Fault Tolerance and Availability on Commodity
Clusters

Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel
Department of Computer Science

Rice University
�amza, alc, willy�@cs.rice.edu

Abstract

Recent work has shown the advantages of using persis-
tent memory for transaction processing. In particular, the
Vista transaction system uses recoverable memory to avoid
disk I/O, thus improving performance by several orders of
magnitude. In such a system, however, the data is safe when
a node fails, but unavailable until it recovers, because the
data is kept in only one memory.

In contrast, our work uses data replication to provide
both reliability and data availability while still maintain-
ing very high transaction throughput. We investigate four
possible designs for a primary-backup system, using a clus-
ter of commodity servers connected by a write-through ca-
pable system area network (SAN). We show that logging
approaches outperform mirroring approaches, even when
communicating more data, because of their better locality.
Finally, we show that the best logging approach also scales
well to small shared-memory multiprocessors.

1 Introduction

We address the problem of building a reliable transac-
tion server using a cluster of commodity computers, i.e.,
standard servers and system area networks (SAN). We use
the Vista system as the transaction server [5]. Vista is a
very high-performance transaction system. It relies on re-
coverable memory [2] to avoid disk I/O, thereby achieving
its very high throughput. Because Vista does not store its
data on disk, but rather keeps it in reliable memory, the data
remains safe when the machine fails, but it is unavailable
until the machine recovers.

In contrast, our work uses data replication to provide
both reliability and data availability. We consider a primary-
backup solution in a cluster of computers, in which a pri-
mary normally executes the transactions. The data is repli-
cated on the backup, which takes over when the primary

fails. We focus on the problem of maintaining good trans-
action throughput in spite of having to update the backup.
We do not address other cluster issues such as crash detec-
tion and group view management, for which well-known
solutions are available [12].

Recent work has suggested that such clusters can be built
in a fairly transparent manner, taking a high-performance
single-processor transaction system and simply extending it
to mirror its execution or its data on the backup machine
using write through [15]. Our experience is different: we
found that with current machines and SANs, the perfor-
mance of such a straightforward implementation is disap-
pointing. We attribute this different outcome to the fact that,
in our environment, the processor speed is much higher than
in the experiments reported in Zhou et al. [15], while the
network speed is approximately the same. Based on this
observation, we investigate ways to restructure the single-
processor transaction system to achieve better performance.
We develop and compare four protocols to communicate the
modifications made by the transactions from the primary to
the backup.

From an architectural viewpoint, we also investigate
whether there is any gain to be had from actively involv-
ing the processor on the backup machine during the normal
operation (i.e., when the primary is functioning and pro-
cessing transactions), or whether it suffices for the backup
to be passive and simply function as a mirror site. This issue
has implications for the extent to which the backup can or
should be used to execute transactions itself, in a more full-
fledged cluster, not restricted to a simple primary-backup
configuration.

In our experiments, we use a 600Mhz Compaq Alpha
21164A (EV5.6) processor as both the primary and the
backup, and a second-generation Memory Channel as the
SAN. The Memory Channel is an instance of a network
with “write through” capability, i.e., a memory region on
one node can be mapped to a memory region of another
node, and writes by the first node to that memory region
are written through to the second node. Such capabilities

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


are also available in the VIA standard [3]. We believe the
chosen environment — processor, network, and transaction
processing system — reflects state-of-the-art hardware and
software.

Our conclusion is that log-based approaches with a log
designed for good locality of access lead to the highest
transaction throughput. The advantages of spatial locality
of access in the logging approaches are two-fold. First, lo-
cality in the memory accesses, means better cache utiliza-
tion on the primary. Second, locality in the I/O space ac-
cesses, offers better opportunities for data aggregation and
thus optimal bandwidth utilization on the SAN between the
primary and backup.

In the environment we are using, the difference between
an active and a passive backup is moderate (14% to 29%). It
is essential, however, that the log be designed with locality
and reduced communication to the backup in mind, because
of bandwidth limitations in current SANs, relative to current
processor speeds. This is especially true when executing
multiple transaction streams on a multiprocessor primary as
this puts increased stress on the SAN.

We have also developed mirroring approaches, which
have the lowest data communication requirements among
the passive backup versions, but their performance is infe-
rior to logging, because of their lesser locality.

These results reflect commonly held wisdom in disk-
based transaction processing systems, where sequential disk
access resulting from using logs leads to better performance
than mirroring approaches [4]. Somewhat surprisingly, this
wisdom appears to apply to memory-based systems as well,
because of the importance of locality and the limited band-
width of SANs relative to processor speeds and memory
bandwidths.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the necessary background for our work. Sec-
tion 3 evaluates the straightforward implementation of Vista
on our platform. Section 4 describes how we restructure
Vista for improved standalone performance. In Section 5
we report the performance of these restructured versions
using a passive backup. A comparison to using an active
backup is presented in Section 6. We discuss scaling to
larger databases in Section 7. We investigate how the use
of a small shared-memory multiprocessor as a primary af-
fects the results in Section 8. Section 9 discusses related
work. Section 10 concludes the paper.

2 Background

This section describes the transaction API, the imple-
mentation of that API in (single-node) Vista, the relevant
characteristics and performance of the hardware on which
we did the experiments, and the benchmarks used.

2.1 API

We support a very simple API, first introduced by
RVM [8] and later implemented by a variety of systems,
including Vista [5]. The transaction data is mapped into the
virtual address space of the server. The API contains the
following routines:

begin_transaction()
set_range()
commit_transaction()
abort_transaction()

begin transaction, commit transaction, and
abort transaction implement the customary transac-
tion semantics [4]. The set range operation takes as its
argument a contiguous region of virtual memory. It indi-
cates to the system that the transaction may modify some or
all of the data in this region.

As in Zhou et al. [15], our primary-backup implements
a 1-safe commit mechanism [4]. In a 1-safe design, the
primary returns successfully from a commit as soon as the
commit is complete on the primary. It does not wait for the
commit flag to be written through to the backup. This leaves
a very short window of vulnerability (a few microseconds)
during which a failure may cause the loss of a committed
transaction.

The API contains no provisions for expressing concur-
rency control. It is assumed that concurrency control is im-
plemented by a separate layer of software.

2.2 Vista

We use Vista because it is, to the best of our knowl-
edge, the fastest open-source transaction system available.
As such, it provides a good “stress test” for a cluster-based
server.

Vista achieves high performance by avoiding disk I/O.
Instead, it relies on the Rio reliable memory system [2] to
achieve persistence. Rio protects main memory against its
two common causes of failure, namely power failures and
operating system crashes. An un-interruptible power supply
guards against power failures. Guarding against operating
system crashes is done by protecting the memory during a
crash and restoring it during reboot. Extensive tests have
shown that very high levels of reliability can be achieved
by these methods (see Chen et al. for detailed measurement
results [2]).

Besides avoiding disk I/O, the presence of a reliable
memory underneath allows considerable simplification in
the implementation of transaction semantics [5]. Vista
stores the database proper and all of its data structures,
including an undo log, in Rio reliable memory. On a
set range it copies the current contents of the specified



region to the undo log. Modifications to the database are
then made in-place. In the case of an abort or a crash be-
fore the transaction completes, the data from the undo log is
re-installed in the database during abort handling or during
recovery. In the case of a commit, the undo log entry is sim-
ply deleted. No redo log is necessary, because the updates
are already made in-place.

2.3 Hardware Environment

Compaq’s Memory Channel network enables a proces-
sor within one machine to write directly into the physical
memory of another machine without software intervention.
In reality, a processor writes to an I/O space address that
is backed by its local Memory Channel interface. That in-
terface transmits the written value to the remote machine’s
interface, which then performs a DMA operation to deposit
the value into physical memory. Thus, the remote processor
is not involved in the transfer, but the normal cache coher-
ence mechanism ensures that it sees the new value promptly.
The kernel (software) and the remote processor are only in-
volved at initialization time, when a mapping is created be-
tween the I/O space on the sending machine and the physi-
cal memory on the receiving one.

Only remote writes are supported; remote reads are not.
This asymmetry gives rise to the double mapping of shared
data: one (I/O space) mapping is used to write the data and
another (ordinary) mapping is used to read the local copy of
the data in physical memory. When the Memory Channel
interface is configured in “loopback” mode, it applies any
changes to the local copy in addition to transmitting them
over the network. Loopback is not, however, instantaneous.
There is a substantial delay between the write to I/O space
and the change appearing in the local copy. This presents
a problem, because a processor may not see its own last
written value on a subsequent read. Consequently, the most
practical method for implementing shared data is to disable
loopback and perform “write doubling”. In other words, the
same write is performed on the local copy and the I/O space.

In our experiments, we use AlphaServer 4100 5/600 ma-
chines, each with 4 600 MHz 21164A processors and 2
GBytes of memory. Each AlphaServer runs Digital Unix
4.0F, with TruCluster 1.6 (Memory Channel) extensions.
Each processor has three levels of cache, two levels of
on-chip cache and an 8 Mbyte, direct-mapped, board-level
cache with a 64-byte line size.

The servers are connected with a Memory Channel II
network. We measured the network latency and bandwidth
characteristics by a simple ping-pong test sending increas-
ing size “packets” over the Memory Channel (we write con-
tiguous chunks of memory of the “packet” size to simu-
late this). Uncontended latency for a 4 byte write is 3.3
microseconds. When one processor writes to another pro-

0
10
20
30
40
50
60
70
80
90

4�bytes 8�bytes 16�bytes 32�bytes

B
an

d
w

id
th

�(
M

B
/s

)

Figure 1. Effective Bandwidth (in Mbytes/sec)
with Different Packet Sizes

cessor and the network is otherwise idle, we measured a
maximum bandwidth of 80 Mbytes per second (for 1 Mbyte
“packet” sizes).

Secondly, we used a test program to approximate the
bandwidth variation of the system with the Memory Chan-
nel packet size. The Alpha chip has 6 32-byte write buffers.
Contiguous stores share a write buffer and are flushed to the
system bus together. The Memory Channel interface sim-
ply converts the PCI write to a similar-size Memory Chan-
nel packet. The current design does not aggregate multi-
ple PCI write transactions into a single Memory Channel
packet, so the maximum packet size supported by the sys-
tem as a whole is 32 bytes. We measured the bandwidth
variation by writing large regions with varying strides (a
stride of one would create 32-byte packets, a stride of two,
16-byte packets and so on). Figure 1 shows the measured
process-to-process bandwidths for 4 to 32-byte packets.

2.4 Benchmarks

We use the Debit-Credit and Order-Entry benchmarks
provided with Vista [5]. These benchmarks are variants of
the widely used TPC-B and TPC-C benchmarks.

TPC-B models banking transactions [10]. The database
consists of a number of branches, tellers, and accounts.
Each transaction updates the balance in a random account
and the balances in the corresponding branch and teller.
Each transaction also appends a history record to an audit
trail. The Debit-Credit benchmark differs from TPC-B pri-
marily in that it stores the audit trail in a 2 Mbytes circular
buffer in order to keep it in memory.

TPC-C models the activities of a wholesale supplier
who receives orders, payments, and deliveries [11]. The
database consists of a number of warehouses, districts, cus-
tomers, orders, and items. Order-Entry uses the three trans-
action types specified in TPC-C that update the database.

In both Debit-Credit and Order-Entry we issue transac-
tions sequentially and as fast as possible. They do not per-
form any terminal I/O in order to isolate the performance of
the underlying transaction system.



Debit-Credit Order-Entry
Single machine 218627 73748
Primary-backup 38735 27035

Table 1. Transaction Throughput for Straight-
forward Implementation (in transactions per
second)

The size of the database is 50 Mbytes, unless we explic-
itly say otherwise. This is the largest possible size for which
we can do the appropriate mapping to the Memory Channel
for all versions and configurations. We have also experi-
mented with other database sizes (up to 1 Gbyte) and we
show the results in section 7. For the experiments in sec-
tion 8, where we run multiple transaction streams within a
node, we use a 10 Mbyte database per transaction stream.

3 Straightforward Cluster Implementation

In an environment with a write-through network, the
most straightforward extension of Vista to a primary-
backup system is to simply map all of Vista’s data — the
database, the undo log, and the internal data structures —
on to the backup node using the Memory Channel. Double
writes are used to propagate writes to the backup. Other
than inserting the double writes, this extension is com-
pletely transparent. On a failure, the backup simply takes
over using its data structures, invoking the recovery proce-
dure to undo any uncommitted transactions.

Table 1 presents the results for this implementation.
In short, throughput drops by a factor of 5.6 for Debit-

Credit and by a factor of 2.7 for Order-Entry. This large
drop in throughput is explained by the large amount of
data that needs to be sent to the backup in this implemen-
tation, 7172 Mbytes for Debit-Credit and 672 Mbytes for
Order-Entry. This communication and the implied extra lo-
cal memory accesses necessary for the write-doubling adds
104.9 seconds to the 22.8 seconds single-machine execu-
tion time for Debit-Credit, resulting in a 5.6-fold decrease in
throughput. Similarly, for Order-Entry, 672 Mbytes of data
increase the execution time from 6.2 seconds to 17.1 sec-
onds, or a 2.7-fold decrease in throughput. Closer inspec-
tion reveals that a very large percentage of the data commu-
nicated is meta-data, and only a small percentage reflects
data modified by the transaction (see Table 2).

These numbers clearly indicate room for significant im-
provement by restructuring the software to use and commu-
nicate less meta-data. First, we discuss how we re-structure
the standalone copy of the Vista library. Several versions are
presented, reflecting further optimizations (see Section 4).
While this re-structuring is obviously done with the intent of
achieving better performance in a primary-backup configu-

Debit-Credit Order-Entry
Modified data 140.8 38.9
Undo log 323.2 199.8
Meta-data 6708.4 433.6
Total data 7172.4 672.3

Table 2. Data Communicated to the Backup in
the Straightforward Implementation (in MB)

ration, it turns out that it improves standalone performance
as well. Second, we show how to adapt those versions for
primary-backup execution in which the backup remains a
passive entity (see Section 5). We mean by this that the CPU
on the backup is not used. All data travels from the primary
to the backup by virtue of a double write on the primary’s
data structures. Third, we present primary-backup versions
in which the backup takes an active role (see Section 6). In
other words, the data is communicated from the primary to
the backup by message passing, not by write through. The
backup CPU polls for incoming messages, and executes the
commands in those messages.

4 Restructuring the Standalone System

4.1 Version 0: The Vista Library

A set range call results in an undo log record be-
ing allocated in the heap and put in the undo log, which
is implemented as a linked list. The base address and the
length of the range are entered in the appropriate fields of
this record. A second area of memory is allocated from the
heap to hold the current version of the data, a pointer to
that memory area is entered in the log record, and a bcopy
is performed from the range in the database to this area.
Database writes are in-place. On commit, a commit flag is
set, the undo log record and the memory area holding the
old data are freed.

4.2 Version 1: Mirroring by Copying

This version avoids the dynamic allocations and linked
list manipulations of version 0. First, the linked list struc-
ture of the undo log is replaced by an array from which con-
secutive records are allocated by simply incrementing the
array index. On a set range, we only update this array
to record the set range coordinates. Second, a “mirror”
copy of the database is introduced. The mirror copy is ini-
tialized to the same values as in the database. Writes to the
database are then done in-place. On commit, a commit flag
is set and for each set range record, the corresponding
range in the database is copied into the mirror. The undo log



records are de-allocated by simply moving the array index
back to its original location.

4.3 Version 2: Mirroring by Diffing

The mirror copy can also be maintained in a different
fashion. As in Version 1, we maintain an array to record the
areas on which a set range has been performed, and we
maintain a mirror copy of the database. As before, writes
to the databases are done in-place. On a commit, however,
for each set range performed during the transaction, we
compare the database copy and the mirror copy of the corre-
sponding areas, and we update the mirror copy if necessary.

Version 2 has fewer writes than Version 1, because it
only writes the modifications to the mirror, while in Ver-
sion 1 the entire set range area is written to the mirror.
Version 2 does, however, incur the cost of the comparisons,
while Version 1 performs a straight copy.

4.4 Version 3: Improved Logging

This version avoids the dynamic allocations and linked
list manipulations, as do Versions 1 and 2. In addition,
rather than using a mirror to keep the data for an undo, this
data is kept in-line in the undo log. Specifically, rather than
using a log record with a pointer to an area holding the old
data as in Vista, we use a log record that includes the data.
On a set range we allocate such a log record by simply
advancing a pointer in memory (rather than by incrementing
an array index), and writing to this area the offset and the
length of the set range area followed by the data in it.
Database writes continue to be done in-place. On a com-
mit the corresponding undo log records are de-allocated by
moving the log pointer back over the appropriate amount.

Version 3 has the same write traffic as Version 1. Its
writes are, however, more localized than Versions 1 or 2.
Version 3 only writes to the database and the undo log,
while in Versions 1 and 2, the mirror copy is also written.

4.5 Performance

Table 3 reports the performance for the two benchmarks
for each of the four versions. Although done with the inten-
tion of improving primary-backup performance by reduc-
ing the amount of data written to the backup, all the re-
structured versions improve the standalone performance of
the transaction server. The improvement in Versions 1 and 2
is mainly a result of avoiding linked list manipulations and
dynamic memory allocations. Comparing these two ver-
sions, we see that the cost of performing the comparison
between the database and its mirror over the set range
areas in Version 2 outweighs the gains achieved by perform-
ing fewer writes.

Debit-Credit Order-Entry
Version 0 (Vista) 218627 73748
Version 1 (Mirror by Copy) 310077 81340
Version 2 (Mirror by Diff) 266922 74544
Version 3 (Improved Log) 372692 95809

Table 3. Standalone Transaction Throughput
of the Re-structured Versions (in transactions
per second)

More importantly, the additional substantial improve-
ment in Version 3 results from the increased locality in the
memory access patterns of the server. Accesses are strictly
localized to the database and the undo log, while Versions
1 and 2 also access the mirror copy, which is much larger
than the undo log.

5 Primary-Backup with Passive Backup

5.1 Implementation

For each of the Versions 0 through 3, we can define
an equivalent primary-backup version by simply mapping
a second copy of the data structures in Memory Channel
space, and double writing any updates to those data struc-
tures. The primary-backup Version 0 is what we used for
the experiments in Section 3.

A slight modification allows primary-backup implemen-
tations of Versions 1 and 2 that are more efficient during
failure-free operation, at the expense of a longer recovery
time. When mirroring is used, we maintain the undo log on
the primary, but we do not write it through to the backup.
This reduces the amount of communication that has to take
place. On recovery, the backup will have to copy the entire
database from the mirror, but since failure is the uncommon
case, this is a profitable tradeoff. The primary-backup re-
sults for these Versions reflect this optimization.

5.2 Performance

Table 4 presents the results for Versions 0 through 3 us-
ing a passive backup strategy. In addition, Table 5 shows the
data transmitted over the network for each version, broken
down into modified transaction data, undo data, and meta-
data.

Several conclusions may be drawn from these results.
First, and most important, Version 3, with its improved log-
ging, continues to outperform all other versions by a sub-
stantial margin, and this regardless of the fact that it writes
much more data to the backup than Version 2, mirroring by
diffing. Better locality in its writes, translates to better coa-
lescing in the processor’s write buffers with larger Memory



Benchmark Version Modified Data Undo Data Meta-data Total Data
Debit-Credit Version 0 (Vista) 140.8 323.2 6708.4 7172.4

Version 1 (Mirror by Copy) 140.8 323.2 40.4 504.4
Version 2 (Mirror by Diff) 140.8 140.8 40.4 322.1
Version 3 (Improved Log) 140.8 323.2 141.4 605.4

Order-Entry Version 0 (Vista) 38.9 199.8 433.6 672.3
Version 1 (Mirror by Copy) 38.9 199.8 3.7 242.4
Version 2 (Mirror by Diff) 38.9 38.9 3.7 81.5
Version 3 (Improved Log) 38.9 199.8 14.5 253.2

Table 5. Data transferred to Passive Backup for Different Versions (in MB)

Debit-Credit Order-Entry
Version 0 (Vista) 38735 27035
Version 1 (Mirror by Copy) 119494 49072
Version 2 (Mirror by Diff) 131574 51219
Version 3 (Improved Log) 275512 56248

Table 4. Primary-Backup Throughput (in
transactions per second)

Channel packet sizes as a result. Thus, even if the total data
communicated is higher, Version 3 makes much better use
of the available Memory Channel bandwidth. Second, the
differences between the mirroring versions are small, with
Version 2 better than Version 1 (unlike in the standalone
configuration). The overhead of the extra writes in Ver-
sion 1 becomes more important as these writes now have
to travel through the Memory Channel to the backup. All
modified versions are better than Version 0 (Vista), by 208%
to 610% for Debit Credit and 80% to 108% for Order-Entry.

6 Primary-Backup with Active Backup

6.1 Implementation

Unlike the versions described in Section 5, in which
the CPU on the backup node is idle, in active backup
schemes the backup CPU is actively involved. With an ac-
tive backup, the primary processor communicates the com-
mitted changes in the form of a redo log. It is then the
backup processor’s responsibility to apply these changes to
its copy of the data. Since this is the backup processor’s
only responsibility, it can easily keep up with the primary
processor. If the log were to fill up, the primary processor
must block.

We only consider active backup approaches based on a
redo log. The reason is that they always communicate less
data. The redo log-based approaches do not have to com-
municate the undo log or mirror, only the changed data.

The redo log is implemented as a circular buffer with two
pointers: one pointer is maintained by the primary (i.e., the
producer) and the other pointer is maintained by the backup

(i.e., the consumer). Quite simply, the backup processor
busy waits for the primary’s pointer to advance. This indi-
cates committed data for the backup to consume. At com-
mit, the primary writes through the redo log and only af-
ter all of the entries are written, does it advance the end of
buffer pointer (the producer’s pointer). Strictly speaking,
the primary must also ensure that it does not overtake the
backup, however unlikely that event may be. To avoid this
possibility, the backup processor needs to write through its
pointer back to the primary after each transaction is applied
to its copy.

With active backup, although it is unnecessary for the
primary to communicate mirror or undo log data to the
backup, it must still maintain such information locally. We
use the best local scheme, i.e., Version 3, to do this.

6.2 Performance

Table 6 compares the results for the best passive strat-
egy to the active strategy. In addition, Table 7 shows the
data transmitted over the network for these strategies, bro-
ken down in modified transaction data, undo log data, and
meta-data.

The Active backup outperforms the Passive backup,
by 14% for Debit-Credit and 29% for Order-Entry. The
gains of the Active backup over the Passive backup for the
Debit-Credit benchmark are comparatively smaller than the
gains of either logging version over mirroring (14% ver-
sus 100%). We attribute this result to the significant re-
ductions in communication overheads (PCI bus transactions
and Memory Channel packets) due to coalescing already
achieved by the best passive backup scheme. Compared
to Debit-Credit, the throughput improvement of the Active
backup over Passive backup is relatively higher in Order-
Entry. The increased locality in the Active backup logging
and further reduced communication overheads have more
impact as the difference between the data transferred by the
two versions is larger for this benchmark.

From Table 7, we see that the active approach tends to
produce more meta-data to be sent to the backup. In the
passive approach, the undo log carries some meta-data, but
since the undo log is created as a result of set range
operations, a single piece of meta-data describes a whole



Debit-Credit Order-Entry
Best Passive (Version 3) 275512 56248
Active 314861 73940

Table 6. Passive vs. Active Throughput (in
transactions per second)

contiguous region corresponding to the set range argu-
ments. In the active approach, in contrast, the meta-data
describes modified data, which tends to be more spread
out over non-contiguous regions of memory and therefore
requires more meta-data entries. On the other hand, the
set range data is usually much larger than the actual data
modified which results in a factor of 2 and 4 respectively
decrease for the total data communicated.

7 Scaling to Larger Database Sizes

The Active backup is the only version where we are not
limited by the Memory Channel space available and we can
scale to any database size.

Table 8 presents the throughput variation of the Active
backup version when increasing the database size. We see
a graceful degradation in performance (by 13% and 22%
respectively with a 1 Gbyte database). This is mainly due
to the reduced locality of the database writes which results
in more cache misses.

Database sizes
Benchmark 10 MB 100 MB 1GB
Debit-credit 322102 301604 280646
Order-entry 76726 69496 59989

Table 8. Throughput for Active Backup
(in transactions per second) for Increasing
Database Sizes

8 Using a Multiprocessor Primary

Parallel processing can increase the transaction through-
put by the server. For throughput increases by a small fac-
tor, on the order of 2 to 4, such parallel processing can most
economically/easily be done on commodity shared mem-
ory multiprocessors by a comparable number of processors.
If the transaction streams are independent, or at least rel-
atively independent, throughput increases should be near-
linear. Synchronization between the different streams on
an SMP is relatively inexpensive, and memory bandwidth
appears to be sufficient to sustain multiple streams. When
operating in a primary-backup configuration, this increase

in throughput, however, puts increased stress on the SAN
between the primary and the backup. We would therefore
expect the use of an SMP as a primary to favor those solu-
tions that reduce bandwidth usage to the backup.

To validate this hypothesis, we carried out the following
experiment. We used a 4-processor SMP as the primary,
and executed a primary transaction server on each proces-
sor. The data accessed by the stream fed to different servers
has no overlap, so the servers can proceed without synchro-
nization, thus maximizing the possible transaction rates and
exposing to the fullest extent possible any bottlenecks in the
SAN.

The results are shown in Figure 2 for the Debit-Credit
benchmark and in Figure 3 for the Order-Entry benchmark.
We see that the Active logging version, shows a nearly lin-
ear increase in the aggregate throughput, while all the other
versions do not scale well. The better scalability of the log-
ging versions compared to the mirroring versions is again
due to the fact that their accesses to I/O space memory show
more locality with better opportunities for coalescing into
larger I/O writes. This results in fewer transactions on the
I/O bus and fewer Memory Channel packets sent, hence,
lower communication overheads even when the total data
communicated is higher.

The two benchmarks modify data mostly in small size
chunks in random locations of the database with a large
fraction of writes in 4-byte chunks (especially in Debit-
Credit). With 32-byte packets, the process-to-process ef-
fective bandwidth of the system is 80 Mbytes/sec, while
for 4-byte packets, the effective bandwidth is only about
14 Mbytes/sec (Figure 1). The Active logging version sends
32-byte packets, and thus takes advantage of the full 80
Mbytes/sec bandwidth and does not become bandwidth lim-
ited for either benchmark. The Passive logging version pro-
duces mixed packets (32-byte packets for the undo data and
small packets for the modified data). Furthermore it sends
more total data than the Active logging and becomes band-
width limited at 2 processors. The two mirroring proto-
cols do not benefit at all from data aggregation between
consecutive writes and see an effective bandwidth below
20 Mbytes/sec with practically no increase in aggregate
throughput with more processors.

9 Related Work

Clusters have been the focus of much research and sev-
eral commercial products are available. Older commercial
systems, such as Tandem [1] and Stratus [9], use custom-
designed hardware. More recent efforts, such as Microsoft
Cluster Service [12] and Compaq’s TruCluster [13], use
commodity parts.

Zhou et al. [15] address the more general problem of
transparent process primary-backup systems, using check-



Benchmark Version Modified Data Undo Data Meta-data Total Data
Debit-Credit Best Passive (Version 3) 140.8 323.2 141.4 605.4

Active 140.8 0 141.4 282.2
Order-Entry Best Passive (Version 3) 38.9 199.8 14.5 253.2

Active 38.9 0 24.7 63.6

Table 7. Data transferred to Active Backup vs. Passive Backup (in MB)

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1 2 3 4

T
P

S

Number of processors

Active
Pass. Ver. 3
Pass. Ver. 2
Pass. Ver. 1

Figure 2. Transaction Throughput Using an
SMP as the Primary (Debit-Credit Bench
mark, in transactions per second)

pointing and rollback, while our work focuses exclusively
on transaction processing. They do, however, use the Vista
transaction processing system as an example application
of their system. Their reported results were measured on
a Shrimp network [6] connecting 66Mhz Pentiums. They
came to the conclusion that transparent write through, with
some optimizations, leads to acceptable performance in
their environment. By virtue of doing solely transaction
processing, our straightforward Vista implementation (Ver-
sion 0) implements essentially the same optimizations, but
performance remains disappointing. We attribute the dif-
ference in outcome to their use of a much slower processor
(66Mhz Pentium vs. 600Mhz Alpha), while the networks
are comparable in bandwidth. Shrimp also snoops on the
memory bus, and therefore does not require double writing,
which may be another factor affecting the results.

Papathanasiou and Markatos [7] study the use of remote
memory to backup transaction processing. Although they
do not use Vista, their standalone implementation appears
similar, and the primary-backup implementation uses write
through of the data structures of the primary. Their imple-
mentation uses 133Mhz Pentium processors running Win-
dows NT and connected by a SCI ring network. They also
use the Vista benchmarks to measure the performance of

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4
T

P
S

Number of processors

Active
Pass. Ver. 3
Pass. Ver. 2
Pass. Ver. 1

Figure 3. Transaction Throughput Using an
SMP as the Primary (Order-Entry Benchm ark,
in transactions per second)

their system. Their results are difficult to calibrate because
they only provide primary-backup performance results, and
no indication of standalone performance.

We use the same API as RVM [8] does to implement
recoverable virtual memory, but the RVM system is based
on disk logging. All disk-based systems, even optimized
to write to a sequential log on disk, are ultimately limited
by disk bandwidth. Vista used the RVM API to imple-
ment transactions based on reliable memory [5], thereby
considerably improving its performance, but data avail-
ability is reduced because all data remains in memory.
Our system overcomes Vista’s main limitation, limited data
availability, in an efficient way. Similar limitations exist
in other systems based on reliable memory, e.g. Wu and
Zwaenepoel [14].

10 Conclusions

Primary-backup services are essential in clusters at-
tempting to provide high-availability data services. In this
paper we have focused on transaction processing systems.
We started from a standalone high-performance transaction
processing system, Vista, that relies on reliable memory to
achieve high transaction throughput. Although Vista would



seem a prime candidate for conversion to a primary-backup
system using the write through capabilities of modern sys-
tem area networks, we found that such an implementation
leads to transaction throughput much below that of a stan-
dalone server. Significant restructuring of the server was
needed to achieve good performance. In particular, versions
of the server that use logging optimized for locality in lo-
cal and I/O space memory access were found to offer much
better primary-backup performance than the original Vista
system (by up to 710%) or systems that use mirroring (by
up to 160%). Moreover, this result was found to be true not
only for primary-backup configurations, but also for stan-
dalone servers. The primary-backup configuration with the
best locality had both the best throughput and scaled well to
small shared-memory multiprocessors.

Acknowledgments

This work was supported in part by NSF Grants CCR-
9457770 and MIP-9521386 and by the Texas TATP pro-
gram under Grant TATP-003604-0009-1997. We would
also like to thank the anonymous reviewers for their com-
ments, and Sandhya Dwarkadas, Robert Stets and Umit
Rencuzogullari for their help and advice during our work
on this paper.

References

[1] J. F. Bartlett. A Non Stop kernel. In Proceedings of
the 8th ACM Symposium on Operating Systems Prin-
ciples, pages 22–29, Dec. 1981.

[2] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Raja-
mani, and D. Lowell. The Rio file cache: Surviv-
ing operating system crashes. In Proceedings of the
7th Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 74–
83, Oct. 1996.

[3] Compaq, Intel and Microsoft Corporations. Virtual
interface architecture specification, Version 1.0, Dec.
1997.

[4] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, 1992.

[5] D. Lowell and P. Chen. Free transactions with Rio
Vista. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, Oct. 1997.

[6] M. Blumrich et al. Design choices in the SHRIMP sys-
tem: An empirical study. In Proceedings of the 25th
Annual International Symposium on Computer Archi-
tecture, 1998.

[7] A. Papathanasiou and E. Markatos. Lightweight trans-
actions on networks of workstations. In Proceedings
of the 18th International Conference on Distributed
Computing Systems, 1998.

[8] M. Satyanarayanan, H. Mashburn, P. Kumar, and
J. Kistler. Lightweight recoverable virtual memory.
In Proceedings of the 14th ACM Symposium on Oper-
ating Systems Principles, pages 146–160, Dec. 1993.

[9] D. Siewiorek and R. Swarz. Reliable Computer Sys-
tem Design and Evaluation. Digital Press, 1992.

[10] Transaction Processing Performance Council. TPC
benchmark B standard specification, Aug. 1990.

[11] Transaction Processing Performance Council. TPC
benchmark C standard specification, revision 3.2,
Aug. 1996.

[12] W. Vogels and et al. The design and architecture of the
microsoft cluster service. In Proceedings of the 1998
Fault Tolerant Computing Symposium, 1998.

[13] W.M. Cardoza et al. Design of the TruCluster mul-
ticomputer system for the digital unix environment.
Digital Equipment Corporation Technical Systems
Journal, 8(1), may 1996.

[14] M. Wu and W. Zwaenepoel. eNVy: A non-volatile
main memory storage system. In Proceedings of the
6th Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 86–
97, Oct. 1994.

[15] Y. Zhou, P. Chen, and K. Li. Fast cluster failover using
virtual memory-mapped communication. In Proceed-
ings of the 1999 International Conference on Super-
computing, June 1999.


