
Improving Fine-Grained Irregular
Shared-Memory Benchmarks by Data Reordering�

Y. Charlie Hu, Alan Cox and Willy Zwaenepoel

Department of Computer Science
Rice University

Houston, Texas 77005
�ychu, alc, willy�@cs.rice.edu

Abstract

We demonstrate that data reordering can substantially
improve the performance of fine-grained irregular shared-
memory benchmarks, on both hardware and software
shared-memory systems. In particular, we evaluate two dis-
tinct data reordering techniques that seek to co-locate in
memory objects that are in close proximity in the physical
system modeled by the computation. The effects of these
techniques are increased spatial locality and reduced false
sharing.

We evaluate the effectiveness of the data reordering tech-
niques on a set of five irregular applications from SPLASH-
2 and Chaos. We implement both techniques in a small
library, allowing us to enable them in an application by
adding less than 10 lines of code. Our results on one hard-
ware and two software shared-memory systems show that,
with data reordering during initialization, the performance
of these applications is improved by 12%–99% on the Ori-
gin 2000, 30%–366% on TreadMarks, and 14%–269% on
HLRC.

1. Introduction

Over the last few years we have seen the development of
several benchmark suites for shared-memory parallel sys-
tems [25, 26, 30, 33]. These benchmark suites have proven
to be invaluable research tools, providing a basis for com-
parison between various shared-memory architectures (e.g.,
[13, 25]). Results from these benchmark suites have, how-
ever, also been taken as a measure of the performance that
can be obtained on shared-memory architectures for the
classes of applications that these benchmark programs rep-
resent.

0-7803-9802-5/2000/$10.00 (c) 2000 IEEE.

This paper demonstrates that, for the class of fine-
grained irregular applications, the current set of bench-
mark programs under-estimates the performance of shared-
memory architectures, both hardware and software, and that
major improvements can be obtained by using simple data
reordering techniques. These data reordering techniques re-
locate data in memory in order to improve spatial locality
and reduce false sharing. The techniques apply to a large
class of applications, making it attractive to encapsulate
them in a library, thereby reducing the modifications to the
actual benchmark programs to a few lines of code. Further-
more, they are platform-independent and provide benefits
both on hardware and software shared-memory platforms.
The precise choice of which data reordering technique to
choose for best results depends on some of the characteris-
tics of the application and the platform. Determining these
characteristics is, however, straightforward, and therefore
the programmer can easily make the right choice.

We have incorporated a data reordering library in a num-
ber of fine-grained irregular programs from these standard
benchmark suites. In particular, we have used Barnes-Hut,
FMM, and Water-Spatial from SPLASH-2 [33], and Mol-
dyn and Unstructured from the Chaos benchmark suite [11].
We have evaluated the modified programs on a hard-
ware shared-memory machine (a 16-processor SGI Ori-
gin 2000 [23]) and two software shared-memory systems
(TreadMarks [1] and HLRC [35] on a cluster of 16 Pen-
tium II-based computers). Our results show that data order-
ing during initialization improves the performance of these
applications by 12% – 99% on the Origin 2000, by 30% –
366% under TreadMarks, and by 14% - 269% under HLRC.
These improvements result from better spatial locality and
reduced false sharing, both brought about by data reorder-
ing. These benefits far outweigh the cost of executing the
reordering code.

This paper makes contributions in terms of benchmark-
ing, providing improved benchmarks for shared-memory

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

parallel systems. The new benchmarks and data reordering
library will be made available, and should prove more accu-
rate in predicting the performance of shared-memory archi-
tectures for fine-grained irregular applications. The paper
also makes contributions in the area of optimization tech-
niques for shared-memory parallel programming, showing
that data reordering techniques can be applied with sub-
stantial benefit to fine-grained irregular shared memory pro-
grams, and presenting guidelines for the choice of the ap-
propriate reordering technique.

The rest of this paper is organized as follows. Section 2
describes the class of fine-grained irregular applications that
we are concerned with in this paper and the problems oc-
curring with the standard benchmark programs on shared-
memory architectures. Section 3 describes the data reorder-
ing techniques that we use. Section 4 describes the exper-
imental environment. We present the results of our exper-
iments in Section 5. We discuss related work in Section 6
and conclude in Section 7.

2. Fine-grained Irregular Applications

The applications considered in this paper solve some
computational problemsq in some given physical domains.
The laws of physics cause these applications to have good
locality in physical space: the objects interact mostly with
other objects close to them in physical space. For instance,
the gravitational force quickly decays with the distance, and
approximations using only short-range interactions produce
accurate results. Such applications are typically parallelized
in one of two ways.

The first approach, which we refer to as Category 1, tries
to partition the computation between the processors in an
intelligent way, in particular, in such a way that physically
close objects are handled by the same processor. This ap-
proach reduces the number of interactions between the pro-
cessors, but requires a separate data structure to maintain
the physical proximity relationships, in addition to the ob-
ject array that records the relevant characteristics of each
object. This additional data structure typically consists of a
collection of cells, each one corresponding to a physically
contiguous region, and maintained either in a tree or in a
grid. A tree is used in Barnes-Hut and FMM; a grid is used
in Water-Spatial.

The second approach does not make an attempt at so-
phisticated computation partitioning. Instead, it typically
uses a simple block partitioning of the object array. The
object array entry for a specific object maintains a list
of objects in physical proximity, with which interactions
are computed. This computational structure occurs in the
moldyn and the unstructured benchmarks from the Chaos
benchmark set.

For both categories of programs, data reordering, i.e., re-

ordering the locations in memory of the objects in the ob-
ject array, achieves substantial benefits. Although for both
categories the benefits arise from better memory locality,
more detailed inspection reveals that the nature of this im-
provement in spatial locality is different for both categories.
Therefore, different reordering methods achieve the best re-
sults for each category.

2.1. Category 1: Sophisticated Computation Parti-
tion

The first category covers hierarchical N-body algorithms
such as the Barnes-Hut method and the Fast Multipole
Method [16] and grid-based applications such as Water-
Spatial. In these applications, the computation is partitioned
using an additional data structure, such as the tree in hierar-
chical N-body algorithms or the grid in grid-based N-body
algorithms, as opposed to directly partitioned on the object
array. The computation is partitioned to have each processor
work on some subtrees or subgrids corresponding to some
physically contiguous domain. Since objects interact with
physically close objects, each processor updates particles
or mesh points located within and near the boundary of that
physically contiguous domain. The objects are, however,
often initialized and stored in the shared address space in
some random order, and physically adjacent particles are
scattered all through memory.

The combination of random placement in memory and
computation partitioning grouping physically adjacent bod-
ies has two harmful effects. First, the bodies updated by a
particular processor are spread throughout memory, giving
rise to serious false sharing, especially in page-based soft-
ware shared memory systems. False sharing occurs when
two or more processors access different locations in the
same consistency unit, and at least one of these accesses
is a write. It is particularly serious in page-based software
shared memory systems, because the consistency unit, a
page, contains many bodies, but it is also present on hard-
ware shared memory systems where a cache line may con-
tain multiple bodies. Second, in order to update its own ob-
jects, a processor needs to read its (physically) neighboring
objects. These neighboring objects are spread over many
different consistency units, which gives rise to a large num-
ber of access misses. This effect is more pronounced on
systems with a small consistency unit.

We use the Barnes-Hut benchmark to illustrate the prob-
lem on a 4-processor software shared memory system.
Barnes-Hut [29] is an� -body simulation code using the hi-
erarchical Barnes-Hut method [2]. A shared tree data struc-
ture is used to represent the recursively decomposed sub-
domains (cells) of the three-dimensional physical domain
containing all the particles. The other shared data structure
is an array of particles corresponding to the leaves of the

2

P0

P1

P2

P3

Page 0 Page 1 Page 2 Page 3
Particles

Figure 1: Locations of the 168 particles in each of the four
4-kilobyte pages to be updated by the four processors. We
assume particles do not cross page boundary, and a page
contains 42 96-byte particles.

tree. Each iteration is divided into two steps with barrier
synchronization after each.

1. Build tree: a single processor reads all of the particles
and rebuilds the tree.1

2. Force evaluation: the processors first divide up the par-
ticles in parallel through an in-order traversal of the
tree. Specifically, the �th processor assigns itself the
�th subset of contiguous subtrees weighted according
to the workload recorded from the previous iteration.
The force evaluation for each of the particles then in-
volves some partial traversal of the tree. In this step
each processor reads a large portion of the tree.

The input particles are often generated and stored in the
shared particle array in random order, unrelated to their
physical location.

The Barnes-Hut method is typically used in astrophysics
to simulate the evolution of galaxies. Therefore, we fo-
cus on the three-dimensional two-Plummer distribution test
case of the benchmark here. A single Plummer particle dis-
tribution is used to model a single galaxy of stars where the
density of stars grows exponentially in moving towards the
center of the galaxy. This example consists of 168 stars,
each represented by a 96-byte record in the object array, oc-
cupying in total 4 4Kbyte pages. The actual generation of
the coordinates of the particles uses a random number gen-
erator. Figure 1 shows the locations in memory to be up-
dated by each processor during the second iteration: each
processor needs to update locations in several pages.

In another example, we ran the code with 32768 bod-
ies which collectively occupy 384 8Kbyte virtual memory
pages. We then plot the number of processors sharing each
of the 384 pages when running on 2, 4, 8, and 16 proces-
sors, respectively. The plot, shown in Figure 2, shows that
each page is falsely shared by more than half of processors!

1Sequential tree building is commonly used for software shared mem-
ory, although this differs from the original benchmark code, which builds
the tree in parallel.

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350

N
um

be
r

of
 P

ro
ce

ss
or

s
S

ha
rin

g
th

e
pa

ge

Page id

P=16
P=8
P=4
P=2

Figure 2: Number of processors sharing each of the 384
pages for the particle array of Barnes-Hut with 32K parti-
cles on 2, 4, 8, and 16 processors.

2.2. Category 2: Block Computation Partition

The second category covers irregular applications that
simply (block-)partition the object array among the proces-
sors. Examples of this category include short-range N-body
simulation codes that directly operate on the particles, such
as molecules in Moldyn and unstructured, and unstructured
mesh applications typical in computational fluid dynamics,
which directly operate on the mesh points. In the actual
implementation, due to the short-range nature of the ap-
plications, there is often an auxiliary data structure called
the interaction list that is pre-constructed to contain indices
pointing to spatially adjacent data units, and the data refer-
ence of the actual computation is often via this interaction
list.

Similar to applications in Category 1, the data units in
the main data structure are typically initialized in some ran-
dom order that does not preserve the physical locality of
the points they represent in space. With a block partition-
ing of the object array, the processors exhibit good locality
in terms of writing to memory (they just write to elements
in their block), but very poor locality in terms of reading,
because the particle array entries that represent physically
near objects are spread throughout the array. The result is
a large degree of (read-write) false sharing and lots of off-
node accesses.

3. Data Reordering

We describe two data reordering methods and how to ap-
ply them to the two categories of irregular applications de-
scribed above. Each method consists of two phases: first, it

3

constructs a sorting key for every object (a particle, a mesh
point, etc.) and sorts the keys to generate the rank; second,
the actual objects are reordered according to the rank. Since
the second step is the same for all reordering methods, we
focus on different ways of generating sorting keys. Figure 3
shows the two types of ordering: space-filling curves (Mor-
ton or Hilbert) and row or column ordering.

3.1 Space-Filling Curves

Morton [27] or Hilbert [17] space-filling curves create a
linear ordering of points in a higher-dimensional space that
preserves the physical adjacency of the points. The Mor-
ton ordering is achieved by constructing keys for sorting
the subdomains by interleaving the bits of the subdomain
coordinates. For Hilbert curves, algorithms based on bit
manipulation [5] and finite-state diagrams [3] exist. An ele-
gant recursive algorithm can be found in [18]. We focus on
Hilbert reordering because it traverses only contiguous sub-
domains and thus potentially results in better data locality
in the reordered data structure.

3.2 Column and Row Ordering

The sorting keys for row or column ordering are gen-
erated by simply concatenating the bits of the z–, y–,
and x–coordinates of data units. For column ordering, z-
coordinates form the least significant bits, and for row or-
dering, x-coordinates form the least significant bits.

3.3 Category 1 Applications

To combat poor spatial locality resulting from the mis-
match between the random data ordering of the main data
structure and the physical locality desired by the computa-
tion partition, we reorder the main data structure once using
some space-filling curve. Going back to the example from
Section 2, the locations of the particles to be updated by
each processor after Hilbert reordering are shown in Fig-
ure 4. Comparing Figure 4 with Figure 1, one can see that
most particles in the same pages will be updated by the same
processors. The effectiveness of this data reordering on re-
ducing false sharing can be dramatic. For example, if we
reorder the particle array in the Barnes-Hut benchmark de-
scribed in Section 2.1 using the Hilbert ordering, the degree
of false sharing on the same 384 pages containing the 32768
particles is drastically reduced, as shown in Figure 5. On 16
processors, the average number of processors sharing a page
is reduced from 9.5 to 3.

3.4 Category 2 Applications

For irregular applications in Category 2, reordering the
main data structure using space-filling curves does not al-

P0

P1

P2

P3

Page 0 Page 1 Page 2 Page 3
Particles

Figure 4: Locations of the 168 particles in each of the four
4-kilobyte pages to be updated by the four processors after
Hilbert reordering.

ways produce the best result. Recall from the discussion
in Section 2 that because of the block partitioning of the
object array, these applications already exhibit good spatial
locality for writes. The goal of reordering here is to im-
prove the spatial locality for reads. To do so, we need to
co-locate physically close particles as before, because that
makes most of the interactions through the interaction list
local. Having done that, however, we also want, for each
processor �, to reduce the number of consistency units con-
taining particles assigned to other processors but on the in-
teraction lists of particles assigned to �.

Intuitively, row or column reordering tends to partition
the 3-D space into slices, whereas space-filling curves tends
to partition the space into cubes (see Figure 6). As a result,
with column reordering, the objects on the partner list of
the objects assigned to processor � tend to be assigned to
fewer processors than with Hilbert reordering. For large
consistency units, as in page-based software shared mem-
ory systems, column ordering produces the best results, be-
cause the objects on the interaction list tend to be on a few
consistency units on these neighboring processors. In con-
trast, with Hilbert reordering, consistency units need to be
fetched from a larger number of processors. For smaller
consistency units, as on hardware shared memory systems,
the larger surface of the slice produced by column reorder-
ing compared to the surface of the cube generated by Hilbert
reordering produces the opposite effect. Here, column re-
ordering spreads out the objects on the interaction list over
more consistency units, and therefore Hilbert reordering
works better.

3.5. Programming Interface

Column (or row) ordering is trivial to generate. The
space-filling curves are more involved to compute, even
though the Hilbert [17] space-filling curves have been
known for over a century, and algorithms based on bit ma-
nipulation [5] have existed for almost three decades. We
therefore implement both reorderings as library functions.
Both functions consists of three steps: generating keys,

4

Column major Row majorMorton Hilbert

Figure 3: Data reordering methods: space-filling curves (Morton and Hilbert) and column or row major ordering.

ranking the keys, and reordering data according to the ranks.
Including all three steps, the Hilbert curve reordering func-
tion is about 100 lines of C code. The data reordering func-
tions provided are sequential, and can be called by a single
processor as often as necessary.

In order to implement data reordering primitives that are
applicable to arbitrary data types, the interface to each func-
tion includes a pointer to the object array, the size of an
object, the number of objects, the dimensionality of the co-
ordinates, and a function for obtaining the �th coordinate of
the �th element. Specifically, the C interfaces to the two
reordering primitives are:

void column_reorder(void *object,
int object_size,
int num_of_objects,
int num_of_dim,
double (*coord)(...));

void hilbert_reorder(void *object,
int object_size,
int num_of_objects,
int num_of_dim,
double (*coord)(...));

The following code segment shows the original data
structure for particles in Barnes-Hut and the added code for
calling the hilbert reordering function.

/* struct definition for a body */
typedef struct {

short type;
real mass;
double pos[3];
...

} body, *bodyptr;

bodyptr bodytab;

/* program provided coord function */
double coord(bodyptr btab, int i, int dim)
{

return btab[i].pos[dim];
}

main()
{

/* serial initialization of particles */
hilbert_reorder(bodytab, sizeof(*bodytab),

num_bodies, 3, coord);
/* parallel executions */

}

4. Experimental Environment

4.1. Platforms

We evaluate the effectiveness of the data reordering tech-
niques presented in this paper on both software distributed
shared memory systems and the newest generation of hard-
ware shared memory machine – the SGI Origin 2000.

4.1.1 SGI Origin 2000

Our hardware shared memory platform is an SGI Origin
2000 [23] with a total of 16 300Mhz MIPS R12000 pro-
cessors, configured as two boxes of 4 nodes each. The two
boxes are connected with a CrayLink. Each node consists of
two processors. Within a node, each processor has separate
32KB first level instruction and data caches, and a unified
8MB of second-level cache and 128 byte block size. The
machine has 10GB of main memory and a 16KB page size.

4.1.2 Software DSMs

We use the TreadMarks system [1] from Rice and a mod-
ified version of TreadMarks that implements Princeton’s
home-based LRC (HLRC) protocol [35]. Both systems are
page-based and use multiple-writer protocols and lazy re-
lease consistency to alleviate the worse effects of false shar-
ing. The two protocols differ in the location where modifi-
cations are kept and in the method by which they get prop-
agated. A detailed comparison between the two protocols
can be found in [10].

Both DSM systems run on a switched, full-duplex
100Mbps Ethernet network of 16 300 MHz Pentium II-
based computers. Each computer has a 512K byte sec-
ondary cache and 256M bytes of memory. All of the com-
puters were running FreeBSD 2.2.6 and communicating

5

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350

N
um

be
r

of
 P

ro
cs

 S
ha

rin
g

th
e

pa
ge

Page id

P=16

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350

N
um

be
r

of
 P

ro
cs

 S
ha

rin
g

th
e

pa
ge

Page id

P=8

Figure 5: Number of processors sharing each of the 384
pages for the particle array of Barnes-Hut with reordering
particles with 32K particles on 8 and 16 processors.

through UDP sockets. On this platform, the round-trip la-
tency for a 1-byte message is 126 microseconds. The time
to acquire a lock varies from 178 to 272 microseconds. The
time for an 16-processor barrier is 643 microseconds. The
time to obtain a diff varies from 313 to 1,544 microseconds,
depending on the size of the diff. The time to obtain a full
page is 1,308 microseconds.

4.2. Applications

We used five irregular applications in this study:
Barnes-Hut with sequential tree building, Fast Multipole
Method, and Water-Spatial from the SPLASH-2 benchmark
suite [33], Moldyn and Unstructured from the Chaos bench-
mark suite [11]. 2

2In their original form, the Chaos benchmarks are message-passing
programs that use the Chaos collective communication library. We ported

P2 P3

P0

Hilbert Row major

P0
P1

P1

P2

P3

Figure 6: Boundary points using the Hilbert ordering are
likely to be in more pages than using row major ordering in
Moldyn.

Application Size/Iter. Sync. Object Size
(bytes)

Barnes-Hut 65536, 6 b 104
Fast Multipole Method 65536, 3 b,l 104
Water-Spatial 32768, 10 b,l 680
Moldyn 32000, 40 b 72
Unstructured mesh.10k, 40 b,l 32

Table 1: Applications, input data sets, synchronization
(l=lock, b=barrier), and data object sizes.

Table 1 summarizes the relevant characteristics of the ap-
plications. For each application, it lists the problem size, the
method of synchronization (locks, barriers, or both) and the
data object sizes.

5. Results

For each combination of platform and application, we
present the results for the original version and for the re-
ordered version. For category 2 applications, we provide
results both for Hilbert and column ordering.

All speedups are computed relative to the single-
processor version of the original benchmark. In comput-
ing the speedup of the reordered versions, we include the
execution of the reordering routine in the overall execution
time.

5.1. Overall results on the SGI Origin 2000

Figure 7 presents the speedups of the various versions
on the SGI Origin 2000. Table 2 presents the total execu-
tion time (excluding data reordering time), the time spent in
the data reordering routine, the number of L2 cache misses,
and the number of TLB misses for both version of all bench-
marks, on a single processor and on all 16 processors.

them to our shared-memory platforms.

6

Barnes FMM Water-Spatial Moldyn Unstructured
0

4

8

12

16
Original

Hilbert

Column

Figure 7: Speedup comparison among random, original, and reordered versions of the applications on Origin 2000 with 16
processors.

Application Version Cost of 1 Processor 16 Processors
Reorder Time L2 Cache TLB Time L2 Cache TLB
(sec.) (sec.) Misses Misses (sec.) Misses Misses

Barnes-Hut original 129.3 457267 50041379 10.4 2284706 50273087
reordered 0.26 117.2 420442 5469307 8.99 1148159 5705782

Fast Multipole Method original 69.3 9177722 21940902 6.44 6615243 22626223
reordered 0.28 63.7 9014517 567241 4.61 3049778 699619

Water-Spatial original 235.8 9754036 198319 15.2 2170170 754381
reordered 0.47 235.9 11493221 370242 15.1 1893316 249131

Moldyn original 33.7 12070308 113206 4.49 6061241 134070
hilbert 0.09 31.9 11542334 116095 3.31 2969676 134301
column 0.03 33.4 11213694 74436 4.04 3923060 108009

Unstructured original 34.7 18186 35745 28.2 55770320 302240
hilbert 0.06 34.1 3697 33432 14.1 26290356 253465
column 0.05 34.7 11636 36037 14.6 28190625 245782

Table 2: Total execution time (excluding reordering time), the execution time of the reordering routine, the number of
L2 cache misses and the number of TLB misses for various versions of the benchmarks on a single processor and on 16
processors of the Origin 2000.

7

On 16 processors, compared with the original versions
of the benchmarks, all benchmarks except Water-Spatial
achieve benefits from reordering, ranging from 12.4% for
Barnes-Hut to 99% for Unstructured.

Data reordering improves the performance even on a
single processor of the Origin. Specifically, the execution
times of the reordered versions are between 1.6% to 8.3%
lower than those of the original versions for four out of
the five benchmarks. For these four benchmarks, the im-
provement comes either from significant reductions in TLB
misses, e.g., a factor of 9.15 for Barnes-Hut and a factor
of 38.7 for FMM, or from a reduction in L2 cache misses,
e.g., 4.6% for Moldyn (using Hilbert reordering) and a fac-
tor of 4.9 for Unstructured (using Hilbert reordering). For
Water-Spatial, there is no improvement in execution time
since the object (molecule) size, 680 bytes, is much larger
than the L2 cache line size. In fact, there is a slight increase
in the L2 cache misses and TLB misses. This is because
on a single processor, the traversal on the 3-D grids degen-
erates to column ordering, which conforms well with the
initial molecular ordering from initialization.

Table 2 shows that for the four benchmarks which show
improvement as a result of reordering, the additional im-
provements for 16 processors on top of those already seen
on a single processor, come mainly from reduced L2 cache
misses. Specifically, the reduction in L2 cache misses
ranges between a factor of 2.0 for Barnes-Hut and a factor
of 2.2 for FMM. Data reordering makes little difference for
Water-Spatial. Since the data object size in Water-Spatial is
much larger than the L2 cache line size, there is little false
sharing regardless of how the data is ordered.

5.2. Overall results on software DSMs

Figures 8 and 9 show the speedup comparison among the
various versions of each benchmark under TreadMarks and
HLRC on 16 processors. Table 3 presents sequential exe-
cution time, parallel execution time (excluding reordering),
execution time of the reordering routine, number of mes-
sages, and amount of data on 16 processors for the various
versions of the benchmarks on TreadMarks and HLRC.

On TreadMarks, the reordered versions of the bench-
marks achieved from 30% to 366% better speedups than the
original versions. On HLRC, the reordered versions of the
benchmarks achieved from 14% to 269% better speedups
than the original versions. In both cases, Moldyn benefited
the least and FMM the most.

The improvements in the reordered versions of the
benchmarks come from reduced false sharing, which results
in dramatic reductions in both the amount of data transmit-
ted and the number of messages. On TreadMarks, compared
with the original versions, the reordered versions of the
benchmarks send from 2.0 (Moldyn) to 3.7 (FMM) times

less data, and from 1.4 (Unstructured) to 12.3 (Barnes-Hut)
times fewer messages.

On HLRC, compared to the original versions, the re-
ordered versions of the benchmarks send from 1.2 (Mol-
dyn) to 5.0 (FMM) times less data, and from 1.4 (Moldyn
and Unstructured) to 3.5 (FMM) times fewer messages.

The reason reduced false sharing results in a larger per-
formance improvement in TreadMarks than in HLRC is be-
cause compared to in HLRC, TreadMarks sends many more
messages (though with the same amount of total data) for
the same degree of false sharing. The detailed explanation
for this can be found in [10].

5.3. Detailed Discussions

5.3.1 Category 1 Applications

Barnes-Hut simulates the evolution of a system of particles
under the influence of gravitational forces, as described in
detail in Section 2.1. It is modified from the SPLASH-2
Barnes-Hut benchmark by changing the parallel tree build-
ing step into a sequential tree building phase. The code
implements a hierarchical (also called tree-based) N-body
algorithm. Reads and writes are to individual particles and
thus occur with very fine granularity. The high degree of
false sharing comes from the mismatch between the ran-
dom ordering of particles in the shared particle array and the
spatial locality among particles accessed by each processor.
The mismatch is largely removed by a Hilbert reordering
of the particles in the particle array which to a large extent
brings particles updated by the same processor to the same
pages.

Fast Multiple Method from SPLASH-2, like Barnes-
Hut, also simulates the evolution of a system of particles
under the influence of gravitational forces. However, it sim-
ulates interactions in two-dimensions and uses a different
hierarchical n-body algorithm called the adaptive Fast Mul-
tipole Method [16]. It has the same major data structures as
Barnes-Hut. Namely, it has particles and tree cells, but dif-
fers from Barnes-Hut in that the tree is not traversed once
per particle. There is only a single upward traversal fol-
lowed by a single downward traversal which together com-
pute interactions between the cells and propagate their ef-
fects down to each leaf cell. The effect on each leaf cell is
then applied to the particles inside that cell.

The false sharing in FMM is similar in nature to that in
Barnes-Hut. On one hand, computation (i.e. the tree) is par-
titioned using some space-filling curve and has good spatial
locality in the tree cells, which are created independently
by the processors and stored in some per-processor (though
shared) arrays. On the other hand, the particles are gener-
ated and stored in random order in the shared array without
any locality between particles adjacent in space. This cre-
ates false sharing at the various stages of FMM that access

8

Barnes FMM Water-Spatial Moldyn Unstructured
0

2

4

6

8

10

12
Original

Reordered

Figure 8: Speedup comparison among the various versions of the benchmarks on TreadMarks on 16 processors.

Barnes FMM Water-Spatial Moldyn Unstructured
0

2

4

6

8

10

12
Original

Reordered

Figure 9: Speedup comparison among the various versions of the benchmarks on HLRC on 16 processors.

particles. Our solution is to reorder particles in the particle
array using the Hilbert ordering. Table 4 shows that the im-
provement in the reordered version compared with the ran-
dom or original versions is seen at various steps that access
the particles.

Version Original Reordered
Build tree 6.78 0.76
Build List 2.51 2.53
Partition 0.40 0.57
Tree traversal 13.3 1.60
Inter particle 25.1 6.70
Intra particle 1.59 0.07
Other 8.16 0.38
Total 61.8 13.3

Table 4: Breakdown of time (in seconds) for the three ver-
sions of FMM in TreadMarks.

Water-Spatial from SPLASH-2 is a short-range N-body
simulation code that evaluates forces and potentials in a
system of water molecules over time. It imposes a uni-

form 3-D grid of cells on the problem domain. The use
of grids to chain spatially adjacent molecules together al-
lows a processor to only look at neighboring cells in order to
find all molecules that are within the cutoff radius from the
molecules in each cell owned by that processor. Molecules
can move between neighboring cells at each iteration. The
false sharing is caused by the mismatch between the ran-
dom ordering of molecules in the shared address space and
the locality-aware 3-D partition of the 3-D grids. Reorder-
ing the molecules using the Hilbert ordering greatly reduces
the false sharing.

5.3.2 Category 2 Applications

Moldyn is a molecular dynamics simulation ported
from the Chaos benchmark suite. Its computational
structure resembles the non-bonded force calculation in
CHARMM [4]. Non-bonded forces are long-range interac-
tions existing between each pair of molecules. CHARMM
approximates the non-bonded calculation by ignoring all
pairs which are beyond a certain cutoff radius. The cutoff

9

Application Version Seq. Cost of TreadMarks HLRC
Time Reorder Time Data Messages Time Data Messages
(seq.) (sec). (sec.) (Mbytes) (sec.) (Mbytes)

Barnes-Hut original 334.6 58.0 605.0 3132940 46.8 864.8 401864
reordered 0.57 37.4 268.6 254304 33.0 324.6 142682

Fast Multipole Method original 54.1 60.2 548.5 2693104 25.0 808.3 586870
(16K for HLRC, 11.5 sec.) reordered 0.68 13.2 149.2 360485 6.77 161.0 167519

Water-Spatial original 780.0 106.0 1310. 1261510 168.5 2397. 1018155
reordered 0.97 70.5 636.5 428450 117.0 1125. 411725

Moldyn original 99.1 24.2 708.9 435872 23.3 682.0 343755
column 0.13 15.8 347.6 244526 20.5 588.9 241431
hilbert 0.24 44.4 939.6 1350624 57.8 1637. 817931

Unstructured original 182.0 148.6 3608. 2749052 136.0 3582. 2637236
column 0.12 71.8 1487. 1955688 79.6 2008. 1924864
hilbert 0.16 84.6 1426. 2019822 102.6 2288. 2063634

Table 3: Sequential execution time, and parallel execution time (excluding reordering), execution time of the reordering
routine, number of messages, and amount of data on 16 processors for the various versions of the benchmarks on TreadMarks
and HLRC.

approximation is achieved by maintaining an interaction list
of all the pairs within the cutoff distance, and iterating over
this list during each time step. The interaction list is used as
an indirection array to identify interacting partners. Since
molecules change their spatial location every iteration, the
interaction list is periodically updated. Moldyn belongs to
Category 2 since molecules are stored in a 1-D array and
computation is partitioned by simply dividing the molecule
array evenly among the processors. The short-range interac-
tion requires each processor to read and write any molecules
adjacent to the molecules that it owns. Since molecule re-
ordering is not restricted by any computation partitioning as
in Category 1 applications, the task of reducing false shar-
ing boils down to reducing the number of pages containing
such “neighboring” molecules. The solution is to reorder
the molecules. On software DSMs, due to the large (page)
coherence units, reordering molecules using column order-
ing is almost a factor of 3 times better in TreadMarks and
HLRC than using Hilbert ordering. On an Origin 2000, due
to the much smaller (cache line) coherence units, Hilbert
reordering results in 22% better speedup than column re-
ordering.

Unstructured from the Chaos benchmark suite is a sim-
plified version of a computational fluid dynamics (CFD) ap-
plication. It employs the finite element method, which de-
composes a physical structure into an unstructured mesh.
The mesh is represented by nodes, edges that connect two
nodes, and faces that connect three or four nodes. The
mesh is static, so its edge and face connectivities do not
change. Since an unstructured mesh is essentially a decom-
position of the physical domain, the edges and faces follow
the physical adjacency of nodes. In other words, edges or
faces only connect physically adjacent nodes. The compu-

tation contains a series of loops that update nodes by iterat-
ing over nodes, or perform interactions between connected
nodes by iterating over the edges. In our shared memory
version of this benchmark, the iterations on the nodes or
edges are partitioned among processors. Thus the applica-
tion falls into Category 2. To reduce the number of edges
whose nodes belong to different processors, we reorder the
nodes using column ordering or Hilbert ordering. Consis-
tent with Moldyn, on software DSMs, column reordering
outperforms Hilbert reordering and improves the speedup
of the benchmark by a factor of 2.1 on TreadMarks and a
factor of 1.7 on HLRC, compared to the original versions.
On the Origin 2000, Hilbert reordering outperforms column
reordering and improves the speedup of the original version
by a factor of 2.0.

6. Related Work

In message passing programs, the data is explicitly parti-
tioned and then allocated in the (disjoint) address spaces of
the corresponding processes. Whereas, our data reordering
techniques achieve an implicit partitioning of the data. Both
are a means to the same end: a reduction in the amount of
communication.

There have been both compile-time and run-time
schemes to reduce false sharing in shared memory pro-
gramming. Compile-time techniques use loop transforma-
tion [15] or data structure padding [19]. These techniques
are limited by the analysis that the compiler can perform.
No such limitations exist for the library-based data reorder-
ing that we use. Run-time techniques mainly use small
consistency units or consistency units adapted to the data
structures used in the computation [28, 34]. These systems

10

lose the aggregation effect of large consistency units, which
our system maintains while still considerably reducing false
sharing.

Jiang et al. [22, 21, 20] have studied how to re-structure
some of the SPLASH-2 benchmarks for software DSM
on networks of uniprocessors and multiprocessors, and on
large hardware DSMs. Their restructuring techniques fall
into three categories: padding and alignment, data structure
changes, and algorithmic changes. Padding and alignment
cause only limited fragmentation on hardware shared mem-
ory machines, but for page-based software shared memory,
where a page can be 100 times larger than a data object, the
fragmentation cost quickly becomes prohibitive. Their data
structure changes consist mainly of changing 2-D arrays
into 4-D arrays to block data elements in dense matrix com-
putations. While similar in its goals to our data reordering,
the applications that benefit from it are different. The algo-
rithmic changes are by nature application-specific and re-
quire extensive knowledge about the applications. Our data
reordering techniques are less intrusive in terms of source
code modifications and require less knowledge of the appli-
cation. We intend to study whether some of their proposed
optimizations can be combined with data reordering for ad-
ditional performance improvement.

Data locality has long been recognized as one of the most
significant performance issues for modern uniprocessor ar-
chitectures. There has been a large body of research on loop
transformations for dense matrix codes, e.g. [14, 32, 7, 31].
Recently, several works have focused on array and pointer-
based data structures in irregular applications. Ding and
Kennedy [12] and Mellor-Crummey et al. [24] looked at
irregular applications which perform irregular accesses of
array elements via interaction (indirection) arrays. Such ap-
plications fall into our Category 2. The basic idea in Ding
and Kennedy [12] is to examine the contents of indirection
array and generate a new ordering for the array elements
based on the access affinity implied by the indirection array.
They then reorder data in memory and adjust the contents
of the indirection arrays. The technique does not require the
geometric coordinates of the physical quantities that array
elements are modeling. Like our work, Mellor-Crummey
et al. [24] use of space-filling curves to reorder data and/or
computation, but they focus on the uniprocessor memory
hierarchy.

There have been several semi-automatic data placement
approaches to improving cache performance on uniproces-
sors for heap objects. Calder et al. proposed cache con-
scious data placement [6]. They use profile information
to find temporal locality between data objects, and reorder
them in memory accordingly. Chilimbi et al. improve the
performance of trees by clustering parent and child nodes
in memory [9]. They developed a tree optimization routine
to adjust the memory layout of a tree for improved local-

ity for a given traversal, and a memory allocator that allo-
cates memory close to a user specified heap location. They
also proposed two techniques, structure splitting and field
reordering, that improve temporal locality by changing the
internal organization of fields of a data structure [8]. These
optimizations are targeted at applications with data struc-
tures larger than a cache block.

7. Conclusions

This paper has demonstrated that data reordering can
achieve substantial improvements in the performance of
fine-grained irregular applications on shared memory sys-
tems. These data reordering techniques attempt to co-locate
in memory the data that represents physically close ob-
jects. The result is improved spatial locality and reduced
false sharing. Hilbert reordering is appropriate for hardware
shared memory machines and for applications with sophis-
ticated computation partitioning on page-based software
shared memory systems. Column reordering works bet-
ter for block-partitioned computations on software shared
memory systems. We have provided a library which imple-
ments both reordering methods, and we have demonstrated
that it can be used with very little modification to the bench-
mark programs. These libraries are also independent of
the specific platform used. The revised programs should
serve as better benchmarks for this class of applications on
shared-memory machines.

Acknowledgement

We thank Doug Moore for contributing a highly opti-
mized Hilbert ordering code.

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared
memory computing on networks of workstations. IEEE
Computer, 29(2):18–28, Feb. 1996.

[2] J. Barnes and P. Hut. A hierarchical ��� ����� force cal-
culation algorithm. Nature, 324:446–449, 1986.

[3] T. Bially. Space–filling curves: Their generation and their
application to bandwidth reduction. IEEE Trans. Inform.
Theory, IT-15:658 – 664, November 1969.

[4] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swami-
nathan, and M. Karplus. Charmm: A program for macro-
molecular energy, minimization, and dynamics calculations.
Journal of Computational Chemistry, 4:187, 1983.

[5] A. R. Butz. Convergence with Hilbert’s space filling curve.
J. of Computer and System Sciences, 3:128 – 146, May 1969.

11

[6] B. Calder, C. Krintz, S. John, and T. Austin. Cache con-
scious data placement. In Proceedings of the 8th Symposium
on Architectural Support for Programming Languages and
Operating Systems, Oct. 1998.

[7] S. Carr, K. McKinley, and C.-W. Tseng. Compiler optimiza-
tions for improving data locality. In Proceedings of the 6th
Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 1994.

[8] T. Chilimbi, B. Davidson, and J. Larus. Cache-conscious
structure definition. In Proceedings of the ACM SIGPLAN
99 Conference on Programming Language Design and Im-
plementation, May 1999.

[9] T. Chilimbi, M. Hill, and J. Larus. Cache-conscious struc-
ture layout. In Proceedings of the ACM SIGPLAN 99 Con-
ference on Programming Language Design and Implementa-
tion, May 1999.

[10] A. L. Cox, E. de Lara, C. Hu, and W. Zwaenepoel. A per-
formance comparison of homeless and home-based lazy re-
lease consistency protocols in software shared memory. In
Proceedings of the Fifth International Symposium on High-
Performance Computer Architecture, pages 279–283, Jan.
1999.

[11] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communi-
cation optimizations for irregular scientific computations on
distributed memory architectures. Journal of Parallel and
Distributed Computing, 22(3):462–479, Sept. 1994.

[12] C. Ding and K. Kennedy. Improving cache performance
of dynamic applications with computation computation and
data layout transformations. In Proceedings of the ACM
SIGPLAN 99 Conference on Programming Language Design
and Implementation, May 1999.

[13] S. Dwarkadas, K. Gharachorloo, L. Kontothanassis, D. J.
Scales, M. L. Scott, and R. Stets. Comparative evalua-
tion of fine- and coarse-grain approaches for software dis-
tributed shared memory. In Proceedings of the Fifth Interna-
tional Symposium on High-Performance Computer Architec-
ture, pages 260–269, Jan. 1999.

[14] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache
and local memory management by global program trans-
formation. Journal of Parallel and Distributed Computing,
5:587–616, Jan. 1988.

[15] E. Granston and H. Wijshoff. Managing pages in shared vir-
tual memory systems: Getting the compiler into the game. In
Proceedings of the 1993 ACM International Conference on
Supercomputing, July 1993.

[16] L. Greengard. The Rapid Evaluation of Potential Fileds in
Particle Systems. MIT Press, 1988.

[17] D. Hilbert. Über die stetige Abbildung einer Linie auf
Flächenstück. Math. Ann., pages 459–460, 1891.

[18] Y. C. Hu and S. L. Johnsson. Data parallel performance op-
timizations using array aliasing. In M. Heath, A. Ranade,
and R. Schreiber, editors, Algorithms for Parallel Process-
ing, pages 213–245. IMA Volumes in Mathematics and its
Applications, Volume 105, Springer–Verlag, 1999.

[19] T. Jeremiassen and S. Eggers. Reducing false sharing on
shared memory multiprocessors through compile time data
transformations. In Proceedings of the 5th Symposium on
the Principles and Practice of Parallel Programming, July
1995.

[20] D. Jiang, H. Shan, and J. Singh. Application restructuring
and performance portability on shared virtual memory and
hardware-coherent multiprocessors. In Proceedings of the
6th Symposium on the Principles and Practice of Parallel
Programming, June 1997.

[21] D. Jiang and J. Singh. Scalability of home-based shared vir-
tual memory on clusters of SMPs. In Proceedings of the 1999
International Conference on Supercomputing, May 1999.

[22] D. Jiang and J. Singh. Scaling application performance on
a cache-coherent multiprocessor. In Proceedings of the 26th
International Symposium on Computer Architectures, May
1999.

[23] J. Laudon and D. Lenoski. The SGI origin: a CCNUMA
highly scalable server. In Proceedings of the 24th Interna-
tional Symposium on Computer Architectures, June 1997.

[24] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improv-
ing memory hierarchy performance for irregular applica-
tions. In Proceedings of the 1999 International Conference
on Supercomputing, June 1999.

[25] S. Mukherjee, S. Sharma, M. Hill, J. Larus, A. Rogers, and
J. Saltz. Efficient support for irregular applications on dis-
tributed memory machines. In Proceedings of the 5th Sym-
posium on the Principles and Practice of Parallel Program-
ming, July 1995.

[26] D. O’Hallaron, J. Shewchuk, and T. Gross. Architectural
implications of a family of irregular applications. In Pro-
ceedings of the Fourth International Symposium on High-
Performance Computer Architecture, Jan. 1998.

[27] H. Samet. Design and Analysis of Spatial Data Structures.
Addison–Wesley, 1990.

[28] D. Scales, K. Gharachorloo, and C. Thekkath. Shasta: A low
overhead software-only approach for supporting fine-grain
shared memory. In Proceedings of the 7th Symposium on
Architectural Support for Programming Languages and Op-
erating Systems, Oct. 1996.

[29] J. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
parallel applications for shared-memory. Technical Report
CSL-TR-91-469, Stanford University, Apr. 1991.

[30] J. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
parallel applications for shared-memory. Computer Archi-
tecture News, 20(1):2–12, Mar. 1992.

[31] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. In Proceedings of the ACM SIGPLAN 99
Conference on Programming Language Design and Imple-
mentation, May 1999.

[32] M. E. Wolfe and M. S. Lam. A data locality optimizing al-
gorithm. In Proceedings of the ACM SIGPLAN 91 Confer-
ence on Programming Language Design and Implementa-
tion, June 1991.

12

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and method-
ological considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, June 1995.

[34] M. Zekauskas, W. Sawdon, and B. Bershad. Software write
detection for distributed shared memory. In Proceedings of
the First USENIX Symposium on Operating System Design
and Implementation, pages 87–100, Nov. 1994.

[35] Y. Zhou, L. Iftode, and K. Li. Performance evaluation
of two home-based lazy release consistency protocols for
shared virtual memory systems. In Proceedings of the Sec-
ond USENIX Symposium on Operating System Design and
Implementation, pages 75–88, nov 1996.

13

