
Puppeteer: Component-based Adaptation for Mobile Computing

Eyal de Lara†, Dan S. Wallach‡, and Willy Zwaenepoel‡

† Department of Electrical and Computer Engineering
‡ Department of Computer Science

Rice University

Abstract

Puppeteer is a system for adapting component-based ap-
plications in mobile environments. Puppeteer takes ad-
vantage of the exported interfaces of these applications
and the structured nature of the documents they manipu-
late to perform adaptation without modifying the appli-
cations. The system is structured in a modular fashion,
allowing easy addition of new applications and adapta-
tion policies.
Our initial prototype focuses on adaptation to limited
bandwidth. It runs on Windows NT, and includes sup-
port for a variety of adaptation policies for Microsoft
PowerPoint and Internet Explorer 5. We demonstrate
that Puppeteer can support complex policies without any
modification to the application and with little overhead.
To the best of our knowledge, previous implementations
of adaptations of this nature have relied on modifying
the application.

1 Introduction

The need for application adaptation in mobile and wire-
less environments is well established [7, 12, 13, 20, 27,
32, 33]. On one hand, mobile environments are char-
acterized by low and unstable resource availability. On
the other hand, mobile users often want to access re-
mote data using the same applications they use on their
desktop machines. Unfortunately, many of these desk-
top applications require a rich and stable resource en-
vironment. They perform poorly when used on mobile
clients, and require adaptation to provide acceptable lev-
els of service. Many approaches to adaptation have been
proposed before, and many taxonomies of adaptation are
possible. We focus here on the types of adaptation poli-
cies as well as on where the adaptation is implemented.
Adaptation policies can be grouped into two types: data
and control. Data adaptations transform the applica-
tion’s data. For instance, they transform the images in a
document into a lower resolution format. Control adap-
tations modify the application’s control flow (i.e., its be-
havior). For instance, a control adaptation could cause

an application that otherwise returns control to the user
only after an entire document is loaded to return control
as soon as the first page is loaded.
Based on where the adaptation is implemented, we rec-
ognize a spectrum of possibilities with two extremes:
system-based [21, 26] and application-based adapta-
tion [14, 15, 18, 34]. With system-based adaptation, the
system performs all adaptation by interposing itself be-
tween the application and the data; no changes are made
to the application. With application-based adaptation,
only the application is changed; the system is unaware
of any adaptation. Application-based adaptation allows
both data and control adaptation, while system-based
adaptation is limited to data adaptation. System-based
adaptation does not require modification of the applica-
tions, and provides centralized control, allowing the sys-
tem to adapt several applications according to a system-
wide policy.
In this paper, we present a novel approach to adapta-
tion we call component-based adaptation. It enables
application-specific control and data adaptation poli-
cies without requiring modifications to the application.
It does so by using the exposed APIs of component-
based applications and the structured nature of the docu-
ments they manipulate to implement application-specific
control adaptation policies. Component-based adapta-
tion attempts to bring together the benefits of system-
based and application-based adaptation, namely to im-
plement application-specific policies without modifying
the applications. Since adaptation is done in the sys-
tem, component-based adaptation retains the advantage
of providing a centralized locus of control for adaptation
of multiple applications.
Component-based adaptation enables policies that adapt
by repeated use of subsetting and versioning. A sub-
setting policy creates a new virtual document consisting
of a subset of the components of the original document
(e.g., the first slide in a presentation). A versioning pol-
icy chooses among the multiple instantiations of a com-
ponent (e.g., instances of an image with different reso-
lution). The adaptation policies use the application’s ex-
posed API to extend the subset or to replace the version

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Client

Puppeteer
Server

Data
Server

Puppeteer
Proxy

Application
Data

Low BW
Link

High BW
Link

DMI

Figure 1: Overall system architecture.

of a component (e.g., load additional slides in a presen-
tation or replace an image with one of higher fidelity).
This iterative improvement is one of the key advantages
of component-based adaptation over system-based adap-
tation.

Another approach that tries to strike a middle ground
between system- and application-based adaptation is
application-aware adaptation [6, 28]. Here, the system
provides some common adaptation facilities, and serves
as a centralized locus of control for the adaptation of
all applications. The applications are modified to imple-
ment control adaptations and to perform calls to an adap-
tation API provided by the system. Component-based
adaptation has similarities to application-aware adapta-
tion in that both approaches delegate common adapta-
tion tasks to the system. The approaches differ, however,
in how control adaptation policies are implemented. In
component-based adaptation, it is the applications that
expose the interfaces, with the system invoking those in-
terfaces to perform adaptation. The precise opposite oc-
curs in application-aware adaptation where the applica-
tions are modified to call on the system’s adaptation API.
Component-based adaptation enables third parties to add
new adaptation policies after the application has been re-
leased, while application-aware adaptation requires the
application designer to foresee all necessary adaptations
at the time the application is written.

Component-based adaptation is by nature restricted
to component-based applications with exported APIs.
While certainly a limitation, we observe that many de-
sirable candidate applications for adaptation are already
component-based, including the Microsoft Office Suite,
Internet Explorer, Netscape Navigator, the KDE Office
Suite, and Star Office. Recognizing the advantages of
component-oriented software construction – indepen-
dent of adaptation – we foresee an increasing number
of applications being developed as components with ex-
ported APIs. Although traditionally associated with the
Windows platform and with COM/DCOM technology,
component-based technologies are becoming more com-
mon in the UNIX world as well, where the push for
component-based technologies is led by the GNOME [1]
and KDE [3] projects. A good example is KOffice [4],
an open source productivity suite with powerful script-
ing capabilities. More recently, StarOffice [5] released
version 5.2 of its popular cross-platform productivity

suite, which implements a sophisticated object model
that allows scripting by third party applications through
a CORBA-based interface.
The more fundamental question about component-based
adaptation is to what extent it can support the adap-
tation mechanisms that a customized application-based
approach can achieve and with what performance. Fur-
thermore, we wish to understand the scalability of
component-based adaptation. Clearly, the system needs
“drivers” for each application it wishes to support. For
the concept to be scalable in terms of the number of ap-
plications it supports, the effort involved in writing an
additional driver must be made small.
To address these questions, we have built a system we
call Puppeteer. This paper describes the design of the
Puppeteer system, its implementation on Windows NT,
and our experience using this implementation to adapt
two applications for low bandwidths, Microsoft Power-
Point (a presentation graphics system, hereafter “Pow-
erPoint”) and Internet Explorer 5 (a Web browser, here-
after “IE”). We demonstrate that Puppeteer can easily
and efficiently support a number of desirable policies.
The rest of this paper is organized as follows. Section 2
presents the design of the Puppeteer system. Section 3
introduces the prototype implementation and the appli-
cations we use to evaluate it. Section 4 describes the
experimental platform. Section 5 describes the docu-
ments we use in our experiments. Section 6 presents our
experimental results. Section 7 discusses related work.
Finally, Section 8 presents our conclusions.

2 Design

Figure 1 shows the four-tier Puppeteer system archi-
tecture. It consists of the application(s) to be adapted,
the Puppeteer client proxy, the Puppeteer server proxy,
and the data server. The application and data server are
completely unmodified. The Puppeteer client proxy and
server proxy work together to perform the adaptation.
The Puppeteer client proxy is in charge of executing
the policies that adapt the applications. The Puppeteer
server proxy is responsible for parsing documents, ex-
posing their structure, and transcoding components as
requested by the client proxy. The Puppeteer server
proxy is assumed to have strong connectivity to the data
server. In the most common scenario, it executes on the
same machine as the data server. Data servers can be
arbitrary repositories of data such as Web servers, file
servers or databases.

2.1 Application Requirements

Puppeteer can adapt an application if it can uncover the
component structure of its documents and if the appli-



Figure 2: Internal Puppeteer architecture.

cation provides an API that enables Puppeteer to view
and modify the data the application operates on. We re-
fer to the latter feature as Data Manipulation Interface
(DMI). Additionally, Puppeteer can benefit greatly from
the ability to track the user’s actions. We demonstrate
next how Puppeteer implements adaptation once these
requirements are met.

2.2 Puppeteer Architecture

The Puppeteer architecture consists of four types of
modules: Kernel, Driver, Transcoder, and Policy (see
Figure 2). The Kernel appears once in both the client and
server Puppeteer proxy. A driver supports adaptation for
a particular component type. A driver for a particular
component type may call on a driver for another compo-
nent type, if a component of the latter type is included
in a component of the former type. At the top of this
driver hierarchy sits the driver for a particular applica-
tion (which itself is a component type). Drivers may ex-
ecute both in the client and the server Puppeteer proxies,
as may Transcoders which implement specific transfor-
mations on component types. Policies specify particular
adaptation strategies and execute in the client Puppeteer
proxy.

2.2.1 Kernel

The Kernel is a component-independent module that im-
plements the Puppeteer protocol. The Kernel runs in
both the client and server proxies and enables the trans-
fer of document components. The Kernel does not have
knowledge about the specifics of the documents being
transmitted. It operates on a format-neutral description
of the documents, which we refer to as the Puppeteer
Intermediate Format (PIF). A PIF consists of a skeleton
of components, each of which has a set of related data
items. The skeleton captures the structure of the data
used by the application. The skeleton has the form of
a tree, with the root being the document, and the chil-
dren being pages, slides or any other elements in the

document. The skeleton is a multi-level data structure as
components in any level can contain sub-components.
The skeleton is component-independent, but compo-
nents in the skeleton are component-specific. Compo-
nent can have component-specific properties (e.g., slide
title, image size) and one or more related data items that
contain the component’s native data.
When adapting a document, the Kernel first commu-
nicates the skeleton between the server and the client
proxy. It then enables application policies to request a
subset of the components and to specify transcoding fil-
ters to apply to the component’s data. To improve perfor-
mance, the Kernel batches requests for multiple compo-
nents into a single message and supports asynchronous
requests.

2.2.2 Drivers

For every component type it adapts, Puppeteer requires
an import and an export driver. To implement complex
policies, a tracking driver is also necessary. The import
drivers parse the documents, extracting their component
structure and converting them from their application-
specific file formats to PIF.
In the common case where the application’s file format
is parsable, either because it is human readable (e.g.,
XML) or there is sufficient documentation to write a
parser, Puppeteer can parse the file(s) directly to uncover
the structure of the data. This results in good perfor-
mance, and enables clients and server to run on different
platforms (e.g., running the Puppeteer client proxy on
Windows NT while running the Puppeteer server proxy
on Linux).
When the application only exposes a DMI, but has an
opaque file format, Puppeteer runs an instance of the ap-
plication on the server, and uses the DMI to uncover the
structure of the data, in some sense using the applica-
tion as a parser. This configuration allows for a high de-
gree of flexibility and makes porting applications to Pup-
peteer more straightforward, since Puppeteer need not
understand the application’s file format. It creates, how-
ever, more overhead on the server proxy, and requires
both the client and server to run the environment of the
application, which in most cases amounts to running the
same operating system on both servers and clients.
Parsing at the server does not work well for documents
that choose what data to fetch and display by executing a
script, or by other dynamic mechanisms. Instead, import
drivers for dynamic content run in the Puppeteer client
proxy, and rely on an intercept mechanism that traces
requests.
Regardless of whether the skeleton is built statically in
the server proxy or dynamically in the client proxy, any
changes to the skeleton are reflected by the Kernel at



both ends to maintain a consistent view of the skeleton.
Export drivers un-parse the PIF and update the applica-
tion using the DMI interfaces exposed by the applica-
tion. A minimal export driver has to support inserting
new components into a running application.
Tracking drivers are necessary for many complex poli-
cies. A tracking driver tracks which components are
being viewed by the user and intercepts load and save
requests. Tracking drivers can be implemented using
polling or event registration mechanisms.

2.2.3 Transcoders

Puppeteer makes extensive use of transcoding to per-
form transformations on component data. Transcoders
include the conventional ones, such as compression and
reducing image resolution. A novel transcoding mech-
anism is used to enable loading subsets of components.
Each element of the PIF skeleton has a number of asso-
ciated data items that, among other things, encode in a
component-specific format the relationship between the
component and its children. To load a subset of the chil-
dren of a given node, it is sometimes necessary to modify
the data items associated with the parent node to reflect
the fact that we are only loading some of its children. In
effect, by transcoding the parent node’s data items, we
create a new temporary component that consists only of
a subset of the children of the original component.

2.2.4 Policies

Policies are modules that run on the client proxy and
control the fetching of components. These policies tra-
verse the skeleton, choosing what components to fetch
and with what fidelity.
Puppeteer provides support for two types of policies:
general-purpose policies that are independent of the
component type being adapted (e.g., prefetching) and
component-specific policies that use their knowledge
about the component to drive the adaptation (e.g., fetch
the first page only).
Typical policies choose components and fidelities based
on available bandwidth and user-specified preferences
(e.g., fetch all text first). Other policies track the user
(e.g., fetch the PowerPoint slide that currently has the
user’s focus and prefetch subsequent slides in the pre-
sentation), or react to the way the user moves through
the document (e.g., if the user skips pages, the policy can
drop components it was fetching and focus the available
bandwidth on fetching components that will be visible
to the user).
Regardless of whether the decision to fetch a component
is made by a general-purpose policy or by a component-
specific one, the actual data transfer is performed by the

Kernel, relieving the policy from the intricacies of com-
munication.

2.3 The Adaptation Process

The adaptation process in Puppeteer is divided roughly
into three stages: parsing the document to uncover the
structure of the data, fetching the initially selected com-
ponents at specific fidelity levels and supplying those to
the application, and, if the policy so specifies, updating
the application with newly fetched data.
When the user opens a (static) document, the Kernel on
the Puppeteer server proxy instantiates an import driver
for the appropriate document type. The import driver
parses the document, extracts its skeleton and data, and
generates a PIF. The Kernel then transfers the docu-
ment’s skeleton to the Puppeteer client proxy. The poli-
cies running on the client proxy ask the Kernel to fetch
an initial set of components at a specified fidelity. This
set of components is supplied to the application in re-
turn to its open call. The application, believing that it
has finished loading the document, returns control to the
user.
Meanwhile, Puppeteer knows that only a fraction of the
document has been loaded. The policies in the client
proxy now decide what further components or version
of components to fetch. They instruct the Kernel to do
so, and then the client proxy uses the DMI to feed those
newly fetched components to the application.

3 Prototype

We use PowerPoint and IE as the initial applications
for our prototype. Besides being widely popular, these
two applications comply with the requirements for DMI,
parsable file formats, and tracking mechanism from Sec-
tion 2.1. Furthermore, PowerPoint and IE have radi-
cally different DMIs. By supporting both, we are more
likely to accurately design the interfaces between the
Puppeteer Kernel and the component-specific aspects of
the system. Next, we discuss the design of the drivers,
transcoders, and policies that we have implemented to
adapt these two applications. Table 1 shows the code
line counts for the various modules.

3.1 Drivers

3.1.1 Import Drivers

PowerPoint 2000 supports two native file formats: the
traditional binary format based on OLE archives [22,
23], and a new XML-based format [24]. We choose to
base the PowerPoint import drivers on the XML repre-
sentation because it contains roughly the same informa-



Module Code Lines

Kernel 8600
PPT Import Driver 1114

Export Driver 807
Track Driver 112
Transcoders 392
Policies 287
Total 2712

IE Import Driver 314
Export Driver 347
Track Driver 65
Transcoders 149
Policies 334
Total 1209

Table 1: Code line counts for Kernel, PowerPoint (PPT)
and IE modules .

tion as the binary format, and the human readable na-
ture of XML makes it easier to parse and manipulate the
document. We have implemented import drivers for the
following component types: PowerPoint, Slide, Images,
Sound, Embedded Objects.
For IE, while HTML is straightforward to parse, the in-
troduction of JavaScript in DHTML [16] has allowed for
documents whose structure can change dynamically. For
DHTML, the import driver intercepts URL requests, al-
lowing it to dynamically add new images and compo-
nents to a Web page’s skeleton (see Section 2.2.2). We
have implemented import drivers for the following com-
ponent types: IE, Images.

3.1.2 Export Drivers

PowerPoint and IE DMIs are based on the Component
Object Model (COM) [8] and the Object Linking and
Embedding (OLE) [9] standards. The interfaces they
provide are reasonably well documented [25, 31] and
have traditionally been used to extend the functionality
of third-party applications.
The PowerPoint and IE DMIs provide excellent access
to compose and modify internal data structures. To sup-
port the policies we have implemented for this paper, the
PowerPoint export drivers includes support for opening
and closing presentations, and for inserting slides, im-
ages and embedded objects. The IE export driver in-
cludes support for navigating to a URL and for reloading
individual components of a page.
To update an object in IE, the IE export driver instructs
IE to reload only the URL associated with the object.
PowerPoint supports a cut-and-paste interface to update
a presentation. To paste new components into an active
PowerPoint presentation, active, the PowerPoint export
driver creates a new PowerPoint presentation, helper,
that consists only of the new components. The update

process has two stages. In Stage 1, the driver instructs
PowerPoint to load helper. In Stage 2, for every com-
ponent in helper, the driver copies it to the clipboard,
pastes it into active, and deletes any earlier version of
the same component from active.

3.1.3 Tracking Drivers

PowerPoint’s event notification mechanism is primi-
tive and encompasses just a handful of large-granularity
events like opening or closing of documents, making it
inadequate for tracking the behavior of the user. The
PowerPoint tracking driver relies, instead, on polling the
DMI to determine the slide currently being displayed.
The IE tracking driver uses IE’s rich event mechanism
that allows third-party applications to register call-back
functions for a wide range of events. The driver uses this
interface to detect when the user types a URL, presses
the back or forward buttons, clicks on a link, or moves
the mouse over an image. The former events are used
to instruct the Kernel to open a new HTML document,
while the latter is used by policies to drive image fetch-
ing and fidelity refinement (e.g., refine the image cur-
rently pointed by the mouse).

3.2 Transcoders

The above policies use the following transcoders:

1 Slide selector. Creates a virtual presentation con-
sisting of specific slides.

2 OLE selector. Creates a new file that contains only
a subset of selected embedded OLE objects (Power-
Point stores embedded OLE objects in single file).

3 Progressive JPEG. Converts GIF and JPEG im-
ages into Progressive JPEG and back to JPEG.

4 GZIP compressor. Compresses and uncompresses
text and binary data using gzip.

3.3 Policies

This section presents some sample adaptation policies
that illustrate the power of component-based adapta-
tion. These policies would be difficult to implement in
system-based adaptation, because they affect not only
the data used by the application, but also its control flow.
Such adaptation policies have, to the best of our knowl-
edge, only been implemented by modifying the appli-
cation. In Puppeteer, however, they are implemented by
using the external APIs. As will be demonstrated in Sec-
tion 6 these policies also result in significant benefit un-
der limited bandwidth conditions.

1 PowerPoint: First slide. Fetch only the compo-
nents of the first slide at their highest fidelity, and



return control to the user. Fetch the rest of the pre-
sentation in the background.

2 PowerPoint: Prefetch text. Fetch all slides, but
leave out any images and embedded objects. Moni-
tor the user and fetch images and embedded objects
of the slide that has the focus.

3 IE: Incremental rendering. Convert all GIF and
JPEG images in a HTML page into Progressive
JPEG. Load only the first 1/7 of the image, be-
fore returning control to user. Refetch with pro-
gressively higher fidelity the image pointed by the
mouse.

3.4 Adding New Functionality

To adapt a new application with Puppeteer we need to
implement drivers, policies, and transcoders for each
new component type that is not currently supported by
Puppeteer. For example, to enable MS Word we need
to add drivers for the Word component type, but we
can reuse the drivers and transcoders for the image and
embedded object component types that we have imple-
mented for PowerPoint (see Table 1).
While the effort in adding new applications and new
policies is limited by the modular design of Puppeteer,
the lack of standard DMIs, event models, and file for-
mats requires new drivers to be written. Designing such
standard interfaces is part of our ongoing research.

4 Experimental Environment

Our experimental platform consists of two Pentium III
500 MHz machines running Windows NT 4.0 that com-
municate via a third PC running the DummyNet network
simulator [30]. This setup allows us to control the band-
width between client and server to emulate various net-
work technologies. For each application, we use three
different bandwidths: one at which the application is
network-bound, one at which it is CPU-bound, and one
in-between.
All our experiments access data stored on an Apache 1.3
Web server. For the experiments where we measure the
latency of loading the documents using the native appli-
cation, Apache is the only process running on the server.
For the Puppeteer experiments, the Apache server and
Puppeteer server proxy run on the same machine.

5 Data Sets

We select the set of PowerPoint documents used in our
experiments from a collection of Microsoft Office doc-
uments that we characterized earlier [11]. The full

collection includes 2,167 documents downloaded from
334 Web sites with sizes ranging from 20 KB to 21 MB.
We obtain our HTML documents by re-executing the
traces of Web client accesses collected and characterized
by Cunha et al. [10]. These traces include accesses from
two user groups made during a period of 7 months from
November 1994 through May 1995. These traces have
46,830 unique URLs corresponding to 3,026 Web sites.
For every URL that we are able to access (many pages
had either disappeared or were corrupted), we down-
load the HTML file and any images referenced by them.
We do not download any documents linked from these
pages. In this manner we acquire 3,796 HTML files and
15,329 images, comprising 89 MB of data downloaded
from 1,009 sites. Documents range in size from a few
bytes to 773 KB, including images.
Because these data sets are so large, transmitting them
at low bandwidth takes prohibitively long. We there-
fore run our experiments on just 92 PowerPoint docu-
ments and 182 HTML documents. For those subsets,
the longest experiment requires 138 minutes for Pow-
erPoint, and 55 minutes for HTML. For completeness,
however, we run one test over the full sets of both doc-
ument types over a high-bandwidth network, verifying
that our selected documents and the full document sets
produce similar results.
For our PowerPoint experiments, we select 92 docu-
ments by sorting all documents larger that 32 KB into
buckets with sizes increasing by powers of 2. We
then randomly select 10 documents from each bucket.
The largest bucket, consisting of documents with sizes
greater than 16 MB has only 2 documents. Thus, our
experimental set has 9�10�2� 92 members.
For our IE experiments, we select 182 HTML docu-
ments from the downloaded set by sorting all documents
larger than 4 KB into buckets with sizes increasing by
powers of 2. We then randomly select 25 documents
from each bucket. The largest bucket, consisting of doc-
uments with sizes greater than 512 KB has only 7 docu-
ments. Thus, our experimental set has 7�25�7� 182
members.

6 Experimental Results

The fundamental question that we want to answer in
this section is how much overhead we pay for doing the
adaptation outside of the application, as opposed to by
modifying the application. To answer this question in a
definitive way, we would need to modify the original ap-
plications to add the adaptation behavior that we achieve
with Puppeteer, and compare the resulting performance
to the performance of the applications running with Pup-
peteer. This is not possible, since we do not have ac-
cess to the source code of the applications. Instead, we



present some experiments to measure the various factors
contributing to the Puppeteer overhead.
This overhead consists of two elements: a one-time ini-
tial cost and a continuing cost. The one-time initial cost
consists of the CPU time to parse the document to ex-
tract its PIF and the network time to transmit the skele-
ton and some additional control information. Continuing
costs come from the overhead of the various DMI com-
mands used to control the application. We assume that
other costs, such as network transmission, transcoding,
and rendering of application data are similar for both im-
plementations.
The remainder of this section is organized as follows.
First, we measure the one-time initial adaptation costs of
Puppeteer. Second, we measure the continuing adapta-
tion costs. Finally, we present several examples of poli-
cies that significantly reduce user-perceived latency.

6.1 Initial Adaptation Costs

To determine the one-time initial costs, we compare the
latency of loading PowerPoint and HTML documents in
their entirety using the native application (PPT.native,
IE.native) and the application with Puppeteer support
(PPT.full, IE.full). In the latter configuration, Puppeteer
loads the document’s skeleton and all its components at
their highest fidelity. This policy represents the worst
possible case as it incurs the overhead of parsing the
document to obtain the PIF but does not benefit from
any adaptation.
Figures 3 and 4 show the percentage overhead of
PPT.full and IE.full over PPT.native and IE.native for
a variety of document sizes and bandwidths. Over-
all, the Puppeteer overhead for PowerPoint documents
varies from 2% for large documents over 384 Kb/sec
to 57% for small documents over 10 Mb/sec, and for
HTML documents from 4.7% for large documents over
56 Kb/sec. to 305% for small document over 10 Mb/sec.
These results show that, for large documents transmit-
ted over medium to slow speed networks, where adapta-
tion would normally be used, the initial adaptation costs
of Puppeteer are small compared to the total document
loading time.
Figure 5 plots the data breakdown for PowerPoint and
HTML documents. We divide the data into application
data and Puppeteer overhead, which we further decom-
pose into data transmitted to fetch the skeleton (skele-
ton) and data transmitted to request components (con-
trol). This data confirms the results of Figures 3 and 4.
The Puppeteer data overhead becomes less significant as
document size increases. The data overhead varies for
PowerPoint documents from 2.9% on large documents
to 34% on small documents, and for HTML documents
from 1.3% on large documents to 25% on small docu-

0

10

20

30

40

50

60

512 1024 2048 4096 8192 16384

Document Size (KB)

O
ve

rh
ea

d 
(%

)

10 Mb/sec
1.6 Mb/sec
384 Kb/sec

Figure 3: Percentage overhead of PPT.full over PPT.native for
various document sizes and bandwidths.

0

50

100

150

200

250

300

350

32 64 128 256 512

Document Size (KB)

O
ve

rh
ea

d 
(%

)

10 Mb/sec
384 Kb/sec
56 Kb/sec

Figure 4: Percentage overhead of IE.full over IE.native for
various document sizes and bandwidths.

0%

20%

40%

60%

80%

100%

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4 4 8 16 32 64 12
8

25
6

51
2

PPT IE

Document Size (KB)

N
et

w
or

k 
U

sa
ge

skeleton control application

Figure 5: Data breakdowns for loading PowerPoint and
HTML documents.



Cost (ms / component)
Single Additional

Operation Avg Stdev Avg Stdev

Slide (PPT) Stage 1 746 723 417 492
Stage 2 148 96 113 99

Image (IE) Synthetic N/A N/A 29 9
DMI 33 19 32 12

Table 2: Continuing adaptation costs for PowerPoint (PPT)
slides and IE images. The table shows the cost of execut-
ing OLE calls that append PowerPoint slides or upgrade the
fidelity of IE images

ments.

6.2 Continuing Adaptation Costs

The continuing costs of adapting using the DMI are
clearly dependent on the application and the policy. Our
purpose is not to give a comprehensive analysis of DMI-
related adaptation costs, but to show that they are small
compared to the network and rendering times inherent
in the application. We perform two experiments: load-
ing and pasting newly fetched slides into a PowerPoint
presentation, and replacing all the images of an HTML
page with higher fidelity versions. To prevent network
effects from affecting our measurements we make sure
that the data is present locally at the client before we
load it into the application.
We determine the PowerPoint DMI overhead by mea-
suring the time that the PowerPoint export driver spends
loading the new slides, Stage 1, and cutting and pasting,
Stage 2, as described in section 3.1.2. We expect that
an in-application approach to adaptation would have to
perform Stage 1, but would not need to perform Stage 2.
For IE, we determine the DMI overhead for upgrading
the images in two different ways: DMI, which uses the
DMI to update the images; and Synthetic, which approx-
imates an in-application adaptation approach. Synthetic
measures the time to load and render previously gener-
ated pages that already contain the high fidelity images.
Synthetic is not a perfect imitation of in-application
adaptation, because it requires IE to re-load and parse
the HTML portion of the page, which an in-application
approach could dispense with. We avoid this problem by
using only pages where the HTML content is very small
(less than 5% of total page size), so that HTML parsing
and rendering costs are minimal.
Table 2 shows the results of these experiments. For each
policy, it shows the cost of updating a single component
(i.e., one slide or one image) and the additional cost in-
curred by every extra component that is updated simulta-
neously. For PowerPoint, the table shows the time spent
in Stage 1 and Stage 2. For IE, the table shows the times

for the DMI and Synthetic implementations.
The PowerPoint results show that the time spent cutting
and pasting, Stage 2, is small compared to the time spent
loading slides, Stage 1, which an in-application also has
to carry out. Moreover, the time spent updating the ap-
plication (Stage 1 + Stage 2) is small compared to the
network time. For example, the average network time to
load a slide over the 384 Kb/sec network is 2994 mil-
liseconds, with a standard deviation of 3943 millisec-
onds, while the average time for updating the application
with a single slide is 994 milliseconds, with a standard
deviation of 819 milliseconds.
The IE results show that the DMI implementation comes
within 10% of Synthetic. Moreover, the image update
times are small compared to the average network time.
For instance, the average time to load an image over a
56 Kb/sec network is 565 milliseconds with a standard
deviation of 635 milliseconds, compared to updating the
application which takes on average 33 milliseconds with
a standard deviation of 19 milliseconds.
The above results suggest that the cost of using DMI
calls for adaptation is small, and that most of the time
that it takes to add or upgrade a component is spent
transferring the data over the network and loading it into
the application. These two factors are expected to be
similar whether we implement adaptation outside or in-
side the application.

6.3 Some Adaptation Policies

We conclude this section by presenting the results, as
the end user would perceive them, of some of the Pup-
peteer adaptation policies we have implemented so far
(see Section 3.3). These results also provide some in-
dication of the circumstances under which these adapta-
tions are profitable.

6.3.1 PowerPoint: Fetch First Slide and Text

In this experiment we measure the latency for a Power-
Point adaptation policy that loads only the first slide and
the titles of all other slides of a PowerPoint presentation
before it returns control to the user, and afterwards loads
the remaining slides in the background. We also present
results for an adaptation policy that, in addition, fetches
all of the text in the PowerPoint document before return-
ing control. With these adaptations, user-perceived la-
tency is much reduced compared to the application pol-
icy of loading the entire document before returning con-
trol to the user.
The results of these experiments appear, under the la-
bels PPT.slide and PPT.slide+text, respectively, in Fig-
ures 6, 7, and 8 for 384 Kb/sec, 1.6 Mb/sec, and
10 Mb/sec network links. Figure 9 shows the data trans-



0

100

200

300

400

500

600

700

0 5000 10000 15000 20000 25000

Document Size (KB)

La
te

nc
y 

(s
ec

)

PPT.native

PPT.slide

PPT.slide+text

Figure 6: Load latency for PowerPoint documents at
384 Kb/sec. Shown are latencies for native PowerPoint
(PPT.native), and Puppeteer runs for loading just the compo-
nents of the first slide (PPT.slide), and loading, in addition, the
text of all slides (PPT.slide+text).

0

50

100

150

200

250

300

0 5000 10000 15000 20000 25000

Document Size (KB)

La
te

nc
y 

(s
ec

)

PPT.native

PPT.slide

PPT.slide+text

Figure 7: Load latency for PowerPoint documents at 1.6
Mb/sec.

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000

Document Size (KB)

La
te

nc
y 

(s
ec

)

PPT.native

PPT.slide

PPT.slide+text

Figure 8: Load latency for PowerPoint documents at 10
Mb/sec.

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000

Document Size (KB)

S
iz

e 
to

 R
et

ur
n 

C
on

tr
ol

 (
K

B
)

PPT.native

PPT.slide

PPT.slide+text

Figure 9: Data transfered to load PowerPoint docu-
ments.

fered in each of the three scenarios. For each docu-
ment, the figures contain three vertically aligned points
representing the latency or data measurements in three
system configurations: native PowerPoint (PPT.native),
Puppeteer loading only the components of the first slide
and the titles of all other slides (PPT.slide), and Pup-
peteer loading in addition the text for all remaining
slides (PPT.slide+text).
We expect that reduced network traffic would improve
latency with the slower 384 Kb/sec and 1.6 Mb/sec net-
works. The savings over the 10 Mb/sec network come
as a surprise. While Puppeteer achieves most of its sav-
ings on the 384 Kb/sec and 1.6 Mb/sec networks by re-
ducing network traffic, the transmission times over the
10 Mb/sec are too small to account for the savings. The
savings result, instead, from reducing the parsing and
rendering time.
On average, PPT.slide achieves latency reductions of
86%, 78%, and 62% for documents larger than 1 MB
on 384 Kb/sec, 1.6 Mb/sec, and 10 Mb/sec networks, re-
spectively. The data in Figure 9 also shows that, for large
documents, it is possible to return control to the user af-
ter loading just a small fraction of the total document’s
data (about 4.5% for documents larger than 3 MB).
When comparing the data points of PPT.slide+text to
PPT.slide, we see that the latency has moved up only
slightly. The latency is still significantly lower than
for PPT.native, achieving savings of, on average, 75%,
72%, and 54% for documents larger than 1 MB over
384 Kb/sec, 1.6 Mb/sec, and 10 Mb/sec networks, re-
spectively. Moreover, the increase in the amount of data
transfered, especially for documents larger than 4 MB,
is small, amounting to only an extra 6.4% above the
data sent for the first slide. These results are consis-
tent with our earlier findings [11] that text accounts for



0

20

40

60

80

100

120

140

0 200 400 600 800

Document Size (KB)

La
te

nc
y 

(s
ec

)

IE.native

IE.imagtrans

IE.fulltrans

Figure 10: Load latency for HTML documents at 56 Kb/sec.
Shown are latencies for native IE (IE.native), and Puppeteer
runs that load only the first 1�7 bytes of transcoded images
(IE.imagtrans), load transcoded images and text (IE.fulltrans).

0

5

10

15

20

25

0 200 400 600 800

Document Size (KB)

La
te

nc
y 

(s
ec

)

IE.native

IE.imagtrans

IE.fulltrans

Figure 11: Load latency for HTML documents at 384 Kb/sec.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800

Document Size (KB)

La
te

nc
y 

(s
ec

)

IE.native

IE.imagtrans

Figure 12: Load latency for HTML documents at 10 Mb/sec.

0

100

200

300

400

500

600

700

800

0 200 400 600 800

Document Size (KB)

S
iz

e 
to

 R
et

ur
n 

C
on

tr
ol

 (
K

B
)

IE.native

IE.imagtrans

IE.fulltrans

Figure 13: Data transfered to load HTML documents.

only a small fraction of the total data in large Power-
Point documents. These results suggest that text should
be fetched in almost all situations and that the lazy fetch-
ing of components is more appropriate for the larger im-
age and OLE embedded objects that appear in the docu-
ments.
Finally, an interesting characteristic of the figures is the
large variation in user-perceived latency at high network
speeds versus the alignment of data points into straight
lines as the network speed decreases. The high vari-
ability at high network speeds results from the experi-
ment being CPU-bound. Under these conditions, user-
perceived latency is mostly dependent on the time that
it takes PowerPoint to parse and render the presentation.
For PowerPoint, this time is not only dependent on the
size of the presentation, but is also a function of the num-
ber of components (such as slides, images, or embedded
objects) in the presentation.

6.3.2 IE: JPEG Compression

In this experiment we explore the use of lossy JPEG
compression and progressive JPEG technology to reduce
user-perceived latency for HTML pages. Our goal is to
reduce the time required to display a page by lowering
the fidelity of some of the page’s elements.
Our prototype converts, at run time, GIF and JPEG im-
ages embedded in an HTML document into progressive
JPEG format1 using the PBMPlus [29] and Independent
JPEG Group [2] libraries. We then transfer only the first
1�7th of the resulting image’s bytes. In the client we
convert the low-fidelity progressive JPEG back into nor-
mal JPEG format and supply it to the browser as though

1A useful property of a progressive image format, such as progres-
sive JPEG, is that any prefix of the file for an image results in a com-
plete, albeit lower quality, rendering of the image. As the prefix in-
creases in length and approaches the full image file, the image quality
approaches its maximum.



it comprised the image at its highest fidelity. Finally, the
prototype only transcodes images that are greater than
a user-specified size threshold. The results reported in
this paper reflect a threshold size of 8 KB, below which
it becomes cheaper to simply transmit an image rather
than run the transcoder.
Figures 10, 11, and 12 show the latency for loading
the HTML documents over 56 Kb/sec, 384 Kb/sec, and
10 Mb/sec networks. Figure 13 shows the data trans-
fered to load the documents. The figures show laten-
cies for native IE (IE.native), and for Puppeteer runs
that load only the first 1�7 bytes of transcoded images
(IE.imagtrans), and load transcoded images and gzip-
compressed text (IE.fulltrans).
IE.imagtrans shows that on 10 Mb/sec networks,
transcoding is always detrimental to performance. In
contrast, on 56 KB/sec and 384 KB/sec networks, Pup-
peteer achieves an average reduction in latency for
documents larger than 128 KB of 59% and 35% for
56 KB/sec and 384 KB/sec, respectively. A closer ex-
amination reveals that roughly 2�3 of the documents see
some latency reduction. The remaining 1�3 of the doc-
uments, those seeing little improvement from transcod-
ing, are composed mostly of HTML text and have lit-
tle or no image content. To reduce the latency of these
documents we add gzip text compression to the proto-
type. The IE.fulltrans run shows that with image and
text transcoding, Puppeteer achieves average reductions
in latency for all documents larger than 128 KB, at
56 KB/sec and 384 KB/sec, of 76% and 50%, respec-
tively.
Overall transcoding time takes between 11.5% to less
than 1% of execution time. Moreover, since Puppeteer
overlaps image transcoding with data transmission, the
overall effect on execution time diminishes as network
speed decreases.
As with PowerPoint, we notice in the figures for IE
that for low bandwidths the data points tend to fall in
a straight line, while for higher bandwidths the data
points become more dispersed. The reason is the same
as for PowerPoint: At high bandwidths the experiment
becomes CPU-bound and governed by the time it takes
IE to parse and render the page. For IE, parsing and ren-
dering time depends on the content types in the HTML
document.

7 Related Work

Much work has gone into supporting mobile clients [21]
and into creating programming models that incorpo-
rate adaptation into the design of the application [17].
The project that most closely relates to Puppeteer is
Odyssey [28], which splits the responsibility for adap-

tation between the application and the system. Pup-
peteer takes a similar approach, pushing common adap-
tation tasks into the system infrastructure and leaving the
application-specific aspect of adaptation to application
drivers. The main difference between the two systems
lays in Puppeteer’s use of existing run-time interfaces
to adapt existing applications, whereas Odyssey requires
applications to be modified to work with it.
Visual Proxies [34], an offspring of Odyssey, imple-
ments application-specific adaptation policies without
modifying the application by using interposition be-
tween the X-server and the application. While this tech-
nique enables many adaptations that are possible with
Puppeteer, it requires much more complicated applica-
tion drivers.
The Dynamic Documents [19] system uses instrumenta-
tion of the Mosaic Web browser by Tcl scripts to set the
policies for individual HTML documents. While Pup-
peteer uses the external interfaces provided by the appli-
cation, Dynamic Documents uses an internal script in-
terpreter in the browser.

8 Conclusions

We presented the design and measured the effective-
ness of Puppeteer, a system for adapting component-
based applications in mobile environments. Puppeteer
implements adaptation by using the exposed APIs of
component-based applications, enabling application-
specific adaptation policies without requiring modifica-
tions to the application.
We described the architecture of Puppeteer and its im-
plementation. The architecture allows for the mod-
ular addition of new applications, component types,
transcoders, and policies. We demonstrated that com-
plex policies, that traditionally require significant appli-
cation modifications, can be implemented easily and ef-
ficiently in Puppeteer.
Puppeteer’s reliance on application specific drivers to
provide tailored adaptation raises the question of port-
ing new application to the system. In our experience,
the most time consuming part of porting an application
is building the import driver that builds a PIF of the doc-
ument by parsing the application specific file format.
Once we had the necessary import and export drivers
(the export drivers where considerably easier to imple-
ment), implementing policies proved surprisingly sim-
ple. In fact, most policies required less than a 50 lines of
code.
With respect to standard file formats, the current trend
towards XML-based formats has good promise. The
only requirement is that components and their dependen-
cies be made explicit. While we found the effort required



to build export drivers to be modest, we are developing
a set of standard APIs suitable for adaptation, including
facilities for data manipulation and event registration.

References

[1] GNOME. http://www.gnome.org.
[2] Independent JPEG Group. http://www.ijg.org/.
[3] KDE. http://www.kde.org.
[4] KOffice. http://koffice.kde.org.
[5] StarOffice. http://www.stardivision.com.
[6] D. Andersen, D. Basal, D. Curtis, S. Srinivasan, and

H. Balakrishnan. System support for bandwidth man-
agement and content adaptation in Internet applications.
In Proceedings of the 4th Symposium on Operating Sys-
tems Design and Implementation, San Diego, CA, Octu-
ber 2000.

[7] Rajive Bagrodia, Wesley W. Chu, Leonard Kleinrock,
and Gerald Popek. Vision, issues, and architecture for
nomadic computing. IEEE Personal Communications,
2(6):14–27, December 1995.

[8] Kraig Brockschmidt. Inside OLE. Microsoft Press, 1995.
[9] David Chappell. Understanding ActiveX and OLE. Mi-

crosoft Press, 1996.
[10] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella.

Characteristics of WWW client-based traces. Technical
Report TR-95-010, Boston University, April 1995.

[11] Eyal de Lara, Dan S. Wallach, and Willy Zwaenepoel.
Opportunities for bandwidth adaptation in Microsoft Of-
fice documents. In Proceedings of the Fourth USENIX
Windows Symposium, Seattle, Washington, August 2000.

[12] Dan Duchamp. Issues in wireless mobile computing. In
Proceedings of Third Workshop on Workstation Operat-
ing Systems, pages 1–7, Key Biscayne, Florida, April
1992.

[13] G H. Forman and J Zahorjan. The challenges of mobile
computing. IEEE Computer, pages 38–47, April 1994.

[14] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir.
Adapting to network and client variability via on-demand
dynamic distillation. Sigplan Notices, 31(9):160–170,
September 1996.

[15] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer.
Adapting to network and client variation using infrastruc-
tural proxies: Lessons and perspectives. IEEE Personal
Communications, 5(4):10–19, August 1998.

[16] D. Gardner. Beginner’s guide to DHTML.
http://wsabstract.com/howto/dhtmlguide.shtml.

[17] Anthony D. Joseph, Alan F. deLespinasse, Joshua A.
Tauber, David K. Gifford, and M. Frans Kaashoek.
Rover: a toolkit for mobile information access. In Pro-
ceedings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP ’95), pages 156–171, Copper
Mountain Resort, Colorado, December 1995.

[18] Anthony D. Joseph, Joshua A. Tauber, and M. Frans
Kaashoek. Building reliable mobile-aware applications
using the Rover toolkit. In Proceedings of the 2nd ACM
International Conference on Mobile Computing and Net-

working (MobiCom ’96), Rye, New York, November
1996.

[19] M. Frans Kaashoek, Tom Pinckney, and Joshua A.
Tauber. Dynamic documents: mobile wireless access
to the WWW. In Proceedings of the Workshop on Mo-
bile Computing Systems and Applications (WMCSA ’94),
pages 179–184, Santa Cruz, California, December 1994.
IEEE Computer Society.

[20] Randy H. Katz. Adaptation and mobility in wireless
information systems. IEEE Personal Communications,
1(1):6–17, 1994.

[21] James J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. ACM Transactions on
Computer Systems, 10(1):3–25, February 1992.

[22] Microsoft Corporation, Redmond, Washington. Mi-
crosoft Office 97 Drawing File Format, 1997. MSDN
Online, http://msdn.microsoft.com.

[23] Microsoft Corporation, Redmond, Washington. Mi-
crosoft PowerPoint File Format, 1997. MSDN Online,
http://msdn.microsoft.com.

[24] Microsoft Corporation, Redmond, Washington. Mi-
crosoft Office 2000 and HTML, 1999. MSDN Online,
http://msdn.microsoft.com.

[25] Microsoft Press. Microsoft Office 2000 / Visual Basic
Programmer’s Guide, 1999.

[26] Lily B. Mummert, Maria R. Ebling, and M. Satya-
narayanan. Exploiting weak connectivity for mobile file
access. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, Copper Mountain Resort,
Colorado, December 1995.

[27] B. Noble and M. Satyanarayanan. A research status re-
port on adaptation for mobile data access. In SIGMOD
Record, volume 24, December 1995.

[28] Brian D. Noble, M. Satyanarayanan, Dushyanth
Narayanan, James Eric Tilton, Jason Flinn, and Kevin R.
Walker. Agile application-aware adaptation for mobil-
ity. Operating Systems Review (ACM), 51(5):276–287,
December 1997.

[29] Jeff Poskanzer. PBMPLUS.
http://www.acme.com/software/pbmplus.

[30] L. Rizzo. DummyNet: a simple approach to the evalua-
tion of network protocols. ACM Computer Communica-
tion Review, January 1997.

[31] Scott Roberts. Programming Microsoft Internet Explorer
5. Microsoft Press, 1999.

[32] M. Satyanarayanan. Hot topics: Mobile computing.
IEEE Computer, 26(9):81–82, September 1993.

[33] M. Satyanarayanan. Fundamental challenges in mobile
computing. In Fifteenth ACM Symposium on Principles
of Distributed Computing, Philadelphia, Pennsylvania,
May 1996.

[34] M. Satyanarayanan, J. Flinn, and K. R. Walker. Visual
proxy: Exploiting OS customizations without applica-
tion source code. Operating Systems Review, 33(3), July
1999.


