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Abstract. In this paper, we demonstrate how component-based mid-
dleware can reduce the energy usage of closed-source applications. We
first describe how the Puppeteer system exploits well-defined interfaces
exported by applications to modify their behavior. We then present a
detailed study of the energy usage of Microsoft’s PowerPoint application
and show that adaptive policies can reduce energy expenditure by 49%
in some instances. In addition, we use the results of the study to provide
general advice to developers of applications and middleware that will
enable them to create more energy-efficient software.

1 Introduction

Battery energy is one of the most critical resources for mobile computers. Despite
considerable research effort, no silver bullet for reducing energy usage has yet
been found. Instead, a comprehensive effort is needed—one that addresses all
layers of the system: hardware, operating system, middleware, and applications.

One promising piece of a comprehensive solution is energy-aware adapta-
tion, in which applications modify their behavior to reduce their energy usage
when battery levels are critical. The potential benefits of energy-aware adapta-
tion were first explored in the context of Odyssey [6]. That work showed that
energy-aware applications can often significantly extend the battery lifetimes of
the laptop computers on which they operate by trading fidelity, an application-
specific metric of quality, for reduced energy usage. However, since only mul-
timedia, open-source applications running on the Linux operating system were
studied, it was not clear that this technique would be relevant to the Windows
office applications that users commonly run on laptop computers.

Several important questions follow: Can one show significant energy reduc-
tions for the type of office applications that users most commonly execute on
laptop computers? Is it possible to add energy-awareness to applications for
which source code is unavailable? Is this approach valid for applications execut-
ing on closed-source operating systems (i.e. Windows)?

In this paper, we describe how Puppeteer [2], a component-based middle-
ware system, allows us to add energy-awareness to applications. Puppeteer takes
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Fig. 1. Puppeteer architecture

advantage of well-defined interfaces exported by applications to modify their
behavior without source code modification. We demonstrate the feasibility of
this approach by studying energy saving opportunities for Microsoft’s popular
PowerPoint application. By using Puppeteer to distill multimedia content from
presentations stored on remote servers, we reduce the energy needed to load pre-
sentations by 49%. Further, the benefits of distillation extend to reducing energy
use while the document is being edited and saved.

In addition, we identify several instances where PowerPoint can be made
more energy-efficient. From these specific instances, we present general advice
for developers of applications and middleware that will enable them to create
more energy-efficient software in the future.

In the next section, we provide an overview of Puppeteer. In Section 3, we
describe our energy measurement methodology. Section 4 shows how we can
modify PowerPoint behavior to reduce energy usage when battery levels are
critical. Section 5 discusses opportunities for making PowerPoint and similar
applications more energy-efficient. In Section 6, we speculate on the applicability
of component-based adaptation to applications other than PowerPoint, and in
the remainder of the paper, we discuss related work and conclude.

2 Puppeteer

Puppeteer is a system for extending component-based applications, such as Mi-
crosoft Office or Internet Explorer, to support adaptation in mobile environ-
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Fig. 2. Puppeteer local and remote proxy architectures

ments. It uses the exported APIs of applications and the structured nature of the
documents they manipulate to implement adaptation without changing source
code. It supports subsetting adaptation (where only a portion of the elements
of a document are provided to the application; for instance, the first page), and
versioning adaptation (where a different version of some of the elements is pro-
vided to the application; for instance, a low-resolution version of an image). It
uses the document structure to extract subsets and versions of the document.
Furthermore, Puppeteer uses the exported APIs of the applications to incremen-
tally increase the subset of the document or improve the version of the elements
available to the application. For instance, it uses the APIs to insert additional
pages or higher-resolution images into the application.

Figure 1 shows the four-tier Puppeteer system architecture. It consists of
applications to be adapted, Puppeteer local proxies, the Puppeteer remote proxy,
and the data servers. Applications and data servers are completely unmodified.
Data servers can be arbitrary repositories of data such as Web servers, file servers
or databases. All communication between applications and data servers goes
through the Puppeteer local and remote proxies, which work together to perform
the adaptation. The Puppeteer local proxy manipulates the running application
through a subset of the application’s external programming interface.

Figure 2 shows the architecture of the Puppeteer local and remote proxies. It
consists of application-specific policies, component-specific drivers, type-specific
transcoders and an application-independent kernel. The Puppeteer local proxy
is in charge of executing adaptation policies. The Puppeteer remote proxy is
responsible for parsing documents, exposing their structure, and transcoding
components as requested by the local proxy.

The adaptation process in Puppeteer is divided roughly into three stages:
parsing the document to uncover the structure of the data, fetching selected
components at specific fidelity levels, and updating the application with the
newly fetched data.

When the user opens a document, the Puppeteer remote proxy instantiates an
import driver for the appropriate document type. The import driver parses the
document, and extracts its component structure (the skeleton, a tree structure)



and the data associated with the nodes in the tree. Puppeteer then transfers the
document’s skeleton to the Puppeteer local proxy. The policies running on the
local proxy fetch an initial set of elements from within the skeleton at a specified
fidelity. These policies may be static, or may depend on tracking drivers that
detect the occurrence of certain events, such as moving the mouse over an image,
causing the image to be loaded.

Puppeteer uses the export driver for the particular document type to supply
this set of components to the application as though it had the full document at
its highest level of fidelity. The application, believing that it has finished loading
the document, returns control to the user. Meanwhile, Puppeteer knows that
only a fraction of the document has been loaded and will use the application’s
external programming interface to incrementally fetch remaining components or
upgrade their fidelity.

3 Measurement methodology

All measurements were collected in a client-server environment. Microsoft Pow-
erPoint 2000 executes on the client: a 233 MHz Pentium IBM 560X laptop with
96 MB of memory. The server is a 400 MHz Pentium IT desktop with 128 MB of
memory. Both machines run the Windows NT 4.0 operating system. The ma-
chines communicate using a 2Mb/s Lucent WaveLan wireless 802.11 network.

We measured client energy usage with a HP3458a digital multimeter. When
collecting data, we attached the multimeter’s probes in series with the external
power input of the client laptop and removed the client’s battery to eliminate
the effects of charging. We also connected an output pin of the client’s parallel
port to the external trigger input of the multimeter—this allowed the multimeter
and client to coordinate during the taking of measurements.

We created a dynamic library that allows a calling process to precisely indi-
cate the start and end of measurements. The process calls the start_measuring
function which records the current time and toggles the parallel port pin. Once
the pin is toggled, the multimeter samples current levels 1357.5 times per sec-
ond. When the measured event completes, the application calls stop_measuring,
which returns the elapsed time since start_measuring was called.

To calculate total energy usage, we first derive the number of samples, n,
that were taken before stop measuring was called by multiplying the elapsed
measurement time by the sample rate. The mean of the first n samples is the
average current level. Multiplying this value by the measured voltage for the
laptop power supply (which varies by less than 0.25% in the course of an exper-
iment) yields the average power usage. This is multiplied by the elapsed time to
calculate total energy usage.

We assume aggressive power management policies. All measurements were
taken using a disk-spindown threshold of 30 seconds (the minimum allowed by
Windows NT). Unless otherwise noted, the wireless network uses standard 802.11
power management. Audio input and output is disabled. However, the display is



Full-Quality| Distilled
Presentation| Size (MB) (Size (MB)|Ratio
A 15.02 1.67 0.11
B 11.42 0.47 0.04
C 7.26 0.83 0.11
D 3.11 3.11 1.00
E 2.23 1.32 0.59
F 1.72 0.11 0.07
G 1.07 0.36 0.34
H 0.87 0.75 0.86
I 0.20 0.20 1.00
J 0.08 0.08 1.00

Fig. 3. Sizes of sample presentations

not disabled during measurements since PowerPoint is an interactive application;
instead it is reduced to minimum brightness.

An ideal battery can be modeled as a finite store of energy. If an application
expends some amount of energy to perform an activity, the energy supply avail-
able for other activities is reduced by that amount. In reality, batteries never
behave ideally. As power draw increases, the total energy that can be extracted
from the battery decreases. In addition, recovery effects may apply—a reduction
in load for a period of time may result in increased battery capacity [11].

In this paper, we assume the ideal model for battery behavior, but note that
most of the techniques proposed decrease average power usage. Thus, the gains
reported here will be slightly understated.

4 Benefits of adaptation

In this section, we examine whether component-based adaptation can be used to
add energy-awareness to Microsoft PowerPoint. As with many office applications,
PowerPoint enables users to incorporate increasing amounts of rich multimedia
content into their documents—for example, charts, graphs, and images. Since
these objects tend to be quite large, the processor, network, and disk activity
needed to manipulate them accounts for significant energy expenditure. Yet,
when editing a presentation, a user may only need to modify and view a small
subset of these objects. Thus, it may be possible to significantly reduce Power-
Point energy consumption by presenting the user with a distilled version of a
presentation: one which contains only the information that the user is interested
in viewing or editing.

Puppeteer allows us to load a distilled version of a document when battery
levels are critical. The distilled version initially omits all multimedia content
not on the first or master slide. Placeholders are inserted into the document to



7
—_ ’ = native
< 3000 v @ full
= 7 = distilled
S 7
c A
> A
D 2000 7
2 |7
L A
E /
O 1000 / /
" ALl o
LA el .
A B c D E F G H [ J

This figure shows the energy used to load ten PowerPoint presentations from
a remote server. Native mode loads presentations from an Apache Web server.
Full and distilled modes load presentations from a remote Puppeteer proxy,
with full mode loading the entire presentation and distilled mode loading a
lower-quality version. On average, distilled mode uses 60% of the energy of
native mode. Each bar represents the mean of five trials—90% confidence
intervals are sufficiently small so that they would not be visible on the graph.

Fig. 4. Energy used to load presentations

represent omitted objects. Later, if the user wishes to edit or view a component,
she may click on the placeholder, and Puppeteer will load the component and
dynamically insert it into the document. Thus, when users edit only a subset of
a document, the potential for significant energy savings exists.

In Sections 4.1 and 4.2, we measure the impact of distillation on several ac-
tivities commonly performed in PowerPoint. Then, in Section 4.3 we examine
the impact of background tasks such as spell-checking and the Office Assistant.
Finally, we quantify the energy benefit of modifying autosave frequency in Sec-
tion 4.4.

4.1 Loading presentations

We first examined the potential benefits of loading distilled PowerPoint pre-
sentations. We assume that presentations are stored on a remote server. There
are many reasons to store documents in a remote, centralized location. Multiple
users may wish to collaborate in the production of the document. Also, storage
space on mobile clients may be limited. Finally, remote storage offers protection
against data loss in the event that a mobile computer is damaged or stolen.
We measured the energy used to fetch presentations from the server and
render them on the client. We chose a sample set of documents from a database
of 1900 presentations gathered from the Web as described by de Lara et al. [1].
From the database, we selected ten documents relatively evenly distributed in
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This figure shows the relative energy used to load ten PowerPoint presentations
from a remote server, as described in Figure 4. For each data set, results are
normalized to the amount of energy used to load the document in native mode.

Fig. 5. Normalized energy used to load presentations

size. Figure 3 shows the sizes of these documents, as well as the reductions
achieved by distillation. As might be expected, larger documents tend to have
more multimedia content, although there is considerable variation in the data.
For three documents (D, I and J), distillation does not reduce document size.

For each document, we first measured the energy used by PowerPoint to
load the presentation from a remote Apache Web server (we will refer to this
as “native mode”). We also investigated the cost of loading documents from a
remote NT file system—these results are not shown since the latency and energy
expenditure is significantly greater than when using the Web server.

We then measured the energy used to load each document from a remote
Puppeteer proxy running on the same remote machine. We measured two modes
of operation: “full”, in which the entire document is loaded, and “distilled”, in
which a degraded version of the document is loaded.

Figure 4 shows the total energy used to fetch the documents using native, full,
and distilled modes. In Figure 5 we show the relative impact for each document
by normalizing each value to the energy used by native mode. The energy savings
achieved by distillation vary widely. Loading a distilled version of document A
uses only 13% as much energy as native mode, while distilling document J uses
137% more energy. On average, loading a distilled version of a document uses
60% of the energy of native mode.

Interestingly, full mode sometimes uses less energy to fetch a document than
native mode. This is because fetching a presentation with Puppeteer tends to
use less power than native mode. Thus, even though native mode takes less time
to fetch a document, its total energy usage can sometimes be greater. Without
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This figure shows the amount of energy needed to page through a presentation.
For each data set, the left bar shows energy use when a full-quality presentation
is loaded using native mode, and the right bar shows energy use for a reduced-
quality version of the same presentation. Each bar represents the mean of five
trials—the error bars show 90% confidence intervals.

Fig. 6. Energy used to page through presentations

application source code, it is impossible to know for certain why Puppeteer power
usage is lower than native mode. One possibility is more efficient scheduling of
network transmissions—this issue will be discussed in Section 5.1.

The results in Figures 4 and 5 show that while most documents benefit from
distillation, some suffer an energy penalty. If Puppeteer could predict which
documents will benefit from distillation, it could distill only those documents
and fetch the remaining documents using native mode.

One possible prediction method is to distill only presentations that are larger
than a fixed threshold, since small documents are unlikely to contain significant
multimedia content. Analysis of the documents used in this study suggests that a
reasonable threshold is 0.5 MB. A strategy of distilling only presentations larger
than 0.5MB does not distill documents I and J, and consequently, uses 52% of
the energy of native mode to load the ten documents.

Alternatively, Puppeteer could distill only documents that have a percentage
of multimedia content greater than a threshold. As shown in Figure 3, distillation
does not reduce the size of three documents. If Puppeteer does not distill these
documents, it uses only 51% of the energy of native mode.

4.2 Editing presentations

We next measured how distillation affects the energy needed to edit a presenta-
tion. While it is intuitive that loading a smaller, distilled version of a document
requires less energy, it is less clear whether distillation also reduces energy use
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This figure shows the amount of energy needed to page through a presentation
a second time. The energy needed to page through each presentation the first
time is also shown for comparison. For each data set, the left two bars show en-
ergy use for a full-quality presentation loaded using native mode, and the right
two bars show energy use for a reduced-quality version. Each bar represents
the mean of five trials—the error bars show 90% confidence intervals.

Fig. 7. Energy used to re-page through presentations

while a document is edited. Although Puppeteer does not yet support reintegra-
tion of changes made to a distilled copy of a document, we are currently adding
this functionality to the system.

Naturally, energy use depends upon the specific activities that a user per-
forms. While a definitive measurement of potential energy savings would require
a detailed analysis of user behavior, we can reasonably estimate such savings by
looking at the energy needed to perform common activities.

One very common activity is paging through the slides in a presentation. We
created a Visual Basic program which simulates this activity by loading the first
slide of a presentation, then sending PageDown keystrokes to PowerPoint until
all remaining slides are displayed. After each keystroke, the program waits for
the new slide to render, then pauses for a second to simulate user think-time.

We measured the energy used to page through both the full-quality and the
distilled version of each document. Figure 6 presents these results for nine of the
ten presentations in our sample set—presentation D is omitted because it con-
tains only a single slide. As shown by the difference in height between each pair
of bars in Figure 6, distilling a document with large amounts of multimedia con-
tent can significantly reduce the energy needed to page through the document.
Energy savings range from 1% to 30%, with an average of 13%.

After PowerPoint displays a slide, it appears to cache data that allows it
to quickly re-render the slide, thereby reducing the energy needed for redisplay.
This effect is shown in Figure 7, which displays the energy used to page through
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This figure shows the amount of energy needed to perform background activ-
ities during text entry. The graph on the left shows energy use when text is
entered without pause, and the graph on the right shows energy use with a
100 ms. pause between characters. Each bar shows the cumulative effect of per-
forming background activities. The leftmost bar in each graph was measured
with no background activities enabled, and the rightmost bar in each graph
was measured with all background activities enabled. Each bar represents the
mean of five trials—the error bars show 90% confidence intervals.

Fig. 8. Energy used by background activities during text entry

each document a second time. For comparison, Figure 7 also shows the energy
needed to page through each document initially. Comparing the heights of corre-
sponding bars shows that subsequent slide renderings use less energy than initial
renderings. Thus, the benefits of distillation are smaller on subsequent traversals:
ranging from negligible to 20% with an average value of 5%.

4.3 Background activities

We next measured the energy used to perform background activities such as
auto-correction and spell-checking. Whenever a user enters text, PowerPoint
may perform background processing to analyze the input and offer advice and
corrections. When battery levels are critical, Puppeteer could disable background
processing to extend battery lifetime.

We measured the effect of auto-correction, spell-checking, style-checking, and
the Office Assistant (Paperclip). We created a Visual Basic program which en-
ters a fixed amount of text on a blank slide. The program sends keystrokes to
PowerPoint, pausing for a specified amount of time between each one.

Figure 8(a) shows the energy used to enter text with no pause; Figure 8(b)
shows energy usage with a 100ms. pause between keystrokes. We first measured



energy usage with no background activities, and then successively enabled auto-
correction, spell-checking, style-checking, and the Office Assistant. Thus, the
difference between any bar in Figure 8 and the bar to its left shows the addi-
tional energy used by a specific background activity. For example, the difference
between the first two bars in each chart shows the effect of auto-correction.

Auto-correction expends negligible energy when entering text—the addi-
tional energy cannot be distinguished from experimental error. Spell-checking
and style-checking incur a small additional cost. With no pause between enter-
ing characters, these options add a 5.0% energy overhead, but with a 100 ms.
pause between characters, the overhead is only 3.3%.

The Office Assistant incurs a more significant energy penalty. With no pause
between typing characters, enabling the Assistant leads to a 9.1% increase in
energy use. With a 100 ms. pause, energy use increases 4.9%. In fact, even when
the user is performing no activity, enabling the Office Assistant still consumes
an additional 300mW., increasing power usage 4.4% on the measured system.
Adaptively disabling the Office Assistant can therefore lead to a small but sig-
nificant extension in battery lifetime.

4.4 Autosave

Autosave frequency is another potential dimension of energy-aware adaptation.
After a document is modified, PowerPoint periodically saves an AutoRecovery
file to disk in order to preserve edits in the event of a system or application crash.
Autosave may be optionally enabled or disabled—if it is enabled, the frequency of
autosave is configurable. Since autosave is performed as a background activity, it
often will have little effect upon perceived application performance. However, the
energy cost is not negligible: the disk must be spun up, and, for large documents,
a considerable amount of data must be written.

Since periodic autosaves over the wireless network would be prohibitively
slow, we assume that documents are stored on local disk. We created a Visual
Basic program which loads a PowerPoint document, makes a small modification
(adds one slide), and then observes power usage for several minutes, during which
no further modifications are made. To avoid spurious measurement of initial
activity associated with loading and modifying the presentation, the program
waits ten minutes after making the modification before measuring power use.

Figure 9 shows power usage for three autosave frequencies. For each pre-
sentation, the first bar shows power usage when the full-quality version of the
document is modified and a one minute autosave frequency is specified. The next
bar shows the effect of specifying a five minute autosave frequency. The final bar
shows the effect of disabling autosave—this represents the minimum power drain
that can be achieved by modifying the autosave parameters.

As can be seen by the difference between the first two bars of each data
set, changing the autosave frequency from 1 minute to 5 minutes reduces power
usage from 5% to 12%, with an average reduction of 8%. The maximum possible
benefit is realized when autosave is disabled. As shown by the difference between
the first and last bars in each data set, this reduces power usage from 7% to 18%
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This figure shows how the frequency of PowerPoint autosave affects power
usage. The three bars in each data set show power use with a 1 minute autosave
frequency, with a 5 minute autosave frequency, and with autosave disabled.
Each bar represents the mean of five trials—the error bars show 90% confidence
intervals.

Fig. 9. Effect of autosave options on application power usage

with an average reduction of 11%. Thus, depending upon the user’s willingness
to hazard data loss in the event of crashes, autosave frequency is a potentially
useful dimension of energy-aware adaptation.

5 Energy-efficiency

As shown in the previous section, there are many opportunities to conserve
energy usage by modifying PowerPoint behavior. However, these opportunities
require one to sacrifice some dimension of application-specific quality in order to
extend battery lifetime. Thus, before employing adaptive strategies, one should
ensure that the application is as energy-efficient as possible, i.e. that it consumes
the minimum amount of energy needed to perform its function.

Increasing software energy-efficiency extends battery lifetime without degrad-
ing application quality. Further, it increases the effectiveness of energy-aware
adaptation, since the relative savings achieved by adaptive strategies will be
greater if the fixed cost of executing the application is lower.

During our study, we discovered several areas in which PowerPoint could
be more energy-efficient. In this section, we show that with component-based
adaptation, Puppeteer can often increase PowerPoint’s energy-efficiency without
source code modification. Further, while we observed these areas in the context
of a single application, we believe that the principles behind them are general
enough so that they can be applied by most software developers. From these
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This figure shows how network parameters influence the time needed to load
applications from a remote server. The first bar in each data set shows the
time needed when a document is loaded from Apache using default network
settings. The second bar shows the time needed when the document is loaded
from a remote Puppeteer proxy. The third bar shows time to load the docu-
ment from Apache with 64 KB socket buffer and TCP receive window sizes.
The final bar shows time to load the document from Apache with network
power management disabled. Each bar represents the mean of five trials—
90% confidence intervals are sufficiently small that they would not be visible
on the graph.

Fig. 10. Effect of power management on time needed to load presentations

specific observations, we formulate some general principles that can be used to
make applications and middleware more energy-eflicient.

5.1 Transparent power management

Layering of functionality is a well-known software engineering principle. It re-
duces software complexity by allowing developers to implement and modify each
layer without needing to know details about other layers. However, layered imple-
mentations sometimes exhibit suboptimal performance because opaque layering
precludes optimizations that span multiple layers.

Hardware power management is often implemented using a layered approach.
Each device (network, disk, CPU, etc.) individually implements power manage-
ment algorithms without considering application or other system activity. Typ-
ically, such algorithms use fixed timeouts—for example, hard disks enter power
saving states after periods of inactivity, and wireless network clients periodi-
cally disable their receivers. On the other hand, applications normally do not
consider power management when scheduling their activities. In our study of
PowerPoint behavior, we have found two instances where this layered approach
leads to unnecessary energy expenditure and suboptimal performance.
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This figure shows how network parameters influence the energy needed to
load applications from a remote server. The scenarios used to generate the
bars in each data set are identical to those described in Figure 10. Each bar
represents the mean of five trials—90% confidence intervals are sufficiently
small that they would not be visible on the graph.

Fig. 11. Effect of power management on energy needed to load presentations

Transparency in network power management Figures 10 and 11 show
the normalized time and energy needed to load PowerPoint documents from a
remote server. The first bar of each data set shows results for the most naive
method—loading the presentation from Apache employing the default network
settings, including those for power management. For comparison, the second bar
in each data set, shows results when Puppeteer loads the presentation.

Initially, we were greatly surprised that Puppeteer often takes significantly
less time and energy to fetch a presentation than when the document is fetched
directly from Apache. Puppeteer uses up to 33% less time and 48% less energy
than native mode. Since Puppeteer parses the presentation on the server and
reconstructs it on the client, the time and energy needed to fetch a document with
Puppeteer should be greater. Although this discrepancy puzzled us initially, we
now believe that the answer lies in the interaction of network power management
and the communication patterns used by the two methods.

To save energy, the wireless network client disables its receiver when no
incoming packets are waiting at the network base station. While the receiver
is disabled, incoming packets are queued. Every 100ms., the client restarts its
receiver and checks if new packets have arrived. Since the wireless network used
in this study has a 2Mb/s nominal bandwidth, up to 25 KB of data may be
queued at the base station while the receiver is disabled. This has the effect of
giving the wireless network a high bandwidth * delay product.

Native mode uses a single HTTP /1.1 connection to fetch data from the server,
while Puppeteer fetches data using four simultaneous connections. Since the de-



fault Windows and Apache settings specify 8 KB socket buffer and TCP window
sizes, a single TCP connection cannot fully utilize the wireless network. However,
Puppeteer uses four simultaneous connections—this artifact of its implementa-
tion allows it to achieve far better network utilization.

The third bar in each data set shows the effect of increasing the socket buffer
and TCP window sizes to 64 KB. This compensates for the high bandwidthxdelay
product of the wireless network—native mode now fetches presentations, on
average, 26% faster and uses 26% less energy than with the 8 KB defaults. Given
these results, we chose to use the 64 KB sizes as the default for measurements
presented in this paper (i.e., for native mode in Section 4.1).

However, adjusting these parameters does not fully compensate for the effect
of power management. The last bar in each data set shows results when network
power management is disabled. Loading a document without power management
uses 22% less time and 18% less energy than when using power management and
64 KB buffers. The remaining performance and energy penalty may be caused
by a variety of factors, including TCP ack compression.

These results show the potential benefit of transparent power management.
The most naive approach to loading documents incurs a significant time and
energy penalty. This penalty can be reduced if the power management layer
exposes details about power management strategies. Puppeteer, acting as a proxy
for PowerPoint, could then take corrective action by increasing socket buffer and
TCP window sizes, or by opening multiple network connections for data transfer.
An even more promising approach is for applications and middleware to expose
details about their behavior to the power management layer. If Puppeteer were
to indicate large data transfers, network power management could be disabled
for the duration of the transfer. The benefit of such an approach is shown by the
difference between the first and last bars in each data set in Figures 10 and 11.

Transparency in disk power management Transparency can also improve
disk power management. To illustrate this, we specified an autosave frequency
of one minute and modified a presentation as described in Section 4.4. Figure 12
shows resulting power drain over time. For clarity, we show only a portion of our
measurements, ranging from 700 to 900 seconds after the modification.

The variation in power drain can be attributed to the interaction of Power-
Point autosave and disk power management. At approximately 700 seconds, a
large power spike is caused by PowerPoint’s writing of the AutoRecovery file and
the resulting spin-up of the hard drive. After the write completes, the disk spins
for 30 seconds—power usage remains relatively steady since the application is
idle. Windows then spins down the hard drive, and power usage remains steady
at a lower rate for 30 seconds. At approximately 775 seconds, the pattern repeats,
since one minute has passed since PowerPoint last wrote the AutoRecovery file.

At first glance, disk power management appears effective since the energy
saved by spinning down the disk for 30 seconds is greater than the excess energy
caused by transitions. However, with additional knowledge about application
behavior, the power management layer could do even better.
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This figure shows how PowerPoint power usage varies over time with a specified
autosave frequency of one minute. To generate the measurements, a document
was loaded into PowerPoint and modified. The x-axis gives the amount of time
that has passed since the modification was performed.

Fig. 12. PowerPoint power usage with 1 minute autosave

The OS saves energy by spinning down the hard drive if the disk remains in
a low-power state long enough to counterbalance the energy cost of power-state
transitions. Timeout-based power management policies [3,4,9,15] are based on
the observation that disk accesses are often closely correlated together in time.
Immediately after an access is observed, it is likely that another access will be
seen soon. Spinning down the disk is undesirable, since the next access will likely
occur before the break-even point for energy savings. However, as time passes
without an access, the likelihood of another access happening soon decreases.
Eventually, the estimated energy impact of spinning down the disk becomes
favorable, and the OS transitions the hard drive to a low-power state.

In Figure 12, the disk power management layer could benefit if Puppeteer
were to specify that autosave occurs at regular intervals and is uncorrelated
with other activity. If Puppeteer indicates when autosave is occurring, the power
management algorithm could omit these disk accesses from its prediction algo-
rithm (since they are uncorrelated with other accesses). In Figure 12, the disk
would spin down immediately after autosave completes, saving 19.2 Joules per
autosave. This represents a significant 4% relative reduction in energy use. Poten-
tially, the power management layer could also use such knowledge to anticipate
future behavior—for example, it might forego spinning down the disk when it
anticipates that an autosave will occur in the near future.

5.2 Minimizing low-priority activities

Complex applications such as PowerPoint often perform background activities
using low-priority threads. Examples include animation effects that lead to more
pleasing user interfaces and data reorganizations that optimize future perfor-
mance. When a computer operates on wall-power, such activities are scheduled
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This figure shows how PowerPoint power usage varies after loading a document
and performing no other activity. The x-axis gives the amount of time that
has passed since the document was loaded.

Fig. 13. PowerPoint power usage after loading a presentation

whenever system resources such as the CPU are not needed by higher priority
tasks—use of these resources is essentially free if they are uncontended.

However, when a computer operates on battery power, background compu-
tation is no longer free because it expends the finite supply of energy. Thus,
developers should reevaluate these activities and only perform them if the po-
tential benefit is greater than the cost of reduced battery lifetime.

Our study of PowerPoint revealed two instances in which low-priority tasks
account for significant energy usage. The first is animation of the Office Assistant
as discussed in Section 4.3. Even when the user is performing no activity, enabling
the Assistant increases energy usage 4.4%, most likely due to animation of the
Assistant’s graphic image. When Puppeteer detects that the client is operating
on battery power, it could adaptively disable the Office Assistant to save power.

Such animation effects are not restricted to PowerPoint. Web browsers, for
instance, usually have a number of graphic devices to indicate activity while
Web data is being fetched. While such animation can create more pleasing user
experiences, application developers should carefully consider energy costs when
designing interfaces. It may be more advisable to curtail unnecessary animation
if a computer is operating on battery power.

The second instance of background energy consumption is more complex.
After PowerPoint loads a document, we observe a variable amount of background
energy consumption. Because this activity is extremely correlated with loading
a presentation, we attribute it to application activity or OS activity performed
on behalf of the application. Without source code, we cannot confirm the precise
nature of the activity, but we believe it is caused by PowerPoint creating a backup
of the presentation on disk. However, the duration of the activity is longer than
one might expect (about 4 minutes to create a 15 MB file)—this may be due to
inefficiency or the desire to prevent interference with foreground activity.

This activity has minimal impact on performance, probably because it is as a
low-priority task. However, as shown in Figure 13, the energy costs can be sub-



stantial. We generated this data by loading a presentation and then performing
no further activities. The impact of the initial background activity is shown by
increased power usage during the first 300 seconds. For the document shown in
Figure 13, the activity increases PowerPoint energy usage by 383 Joules. Average
power use during the first five minutes increases by over 20%.

Since the energy costs are substantial, it is unlikely that they can be amor-
tized across future activity if PowerPoint does not execute for a long period
of time. When on battery power, it may therefore be advisable to forego these
activities. Alternatively, one could perform them in a more efficient manner,
perhaps by assigning them a higher priority so they would complete faster. This
would save energy by allowing the disk to spend more time in low-power states.

There is a strong correlation between presentation size and the magnitude of
the initial energy cost. Thus, when Puppeteer distills a document before loading
it, as discussed in Section 4, it reduces the impact of initial background activity.
For large documents, loading a distilled version reduces initial energy costs 63%.

5.3 Event-based programming

Periodic activities are common in application and system software. Such activ-
ities include polling for event completion and updates of disk files to preserve
modifications in the event of a future crash. The performance impact of peri-
odic activities is often minimal. However, the energy impact can be considerably
larger. FEach time an activity is performed, it consumes energy. In addition, hard-
ware components such as the CPU, network, and disk must be transitioned from
low-power states to perform the activity, wasting further energy.

Where possible, a better alternative is to replace periodic activities with
event-based implementations. For example, instead of using a polling loop to
check for event completion, one can have the event execution trigger a callback
function. Such changes, while quite simple, can dramatically reduce energy use.

Our examination of PowerPoint shows that periodic autosave is a significant
energy expenditure. Consider Figure 12 as a motivating example. Three large
power spikes at 700, 775, and 850 seconds represent energy used to save the
AutoRecovery file. Unfortunately, this activity is performed periodically, even
though the presentation is not modified during this time period. A more energy-
efficient implementation could use an event-driven model where disk updates are
performed only after a fixed amount of data has been modified. Although this im-
plementation artifact is best addressed in the application, Puppeteer can fix this
problem without modifying application source. When Puppeteer detects that no
activity has occurred for a period greater than the current autosave frequency,
it can disable autosave until it detects further activity. In Figure 12, this would
completely eliminate the power spikes without sacrificing data consistency.

6 Discussion

The previous results show that we can significantly reduce PowerPoint energy
usage by modifying application behavior. The key to realizing these benefits



is Puppeteer’s component-based adaptation strategy, which modifies behavior
without access to source code. However, we will be able to generalize these
results to other, closed-source applications only if component-based adaptation
proves to be widely applicable. Thus, it is useful to examine what characteristics
of PowerPoint make it a good candidate for component-based adaptation, and
to see if these characteristics exist in other applications.

PowerPoint has two main characteristics that allow Puppeteer to modify
its behavior. It has a well-defined data format that lets Puppeteer parse the
content of presentations. It also has an external API that allows Puppeteer
to trigger application events, for example, redisplay of a slide. The API also
notifies Puppeteer of external events such as change of focus. On the other
hand, PowerPoint has no explicit interfaces for power management or degrading
document quality. This is encouraging since it indicates that an application need
not explicitly support energy-awareness to realize its benefits. If its interface is
sufficiently rich, energy-awareness may be implemented entirely by proxy.

Based on these observations, what other applications are likely candidates
for component-based adaptation? The remaining applications in Microsoft’s Of-
fice suite are obvious candidates, as they have data formats and APIs similar
to PowerPoint’s. Web browsers such as Netscape Navigator are also good can-
didates. HTML is a well-defined data format, and Netscape’s remote interface
allows external applications to manipulate its behavior [8]. Database applications
may also benefit, since they have standard interfaces for manipulating data such
as ODBC and SQL. Thus, for many common applications, a component-based
approach is likely to prove useful in implementing energy-aware adaptation.

When rich external APIs are unavailable, other approaches may suffice. For
example the Visual Proxy [13] takes advantage of the structured nature of inter-
actions between applications and window managers to extend the functionality
of a Web browser and a word processor. Such approaches are less convenient
than component-based adaptation, but, with some sweat, can extend the range
of applicability of proxy-based solutions.

7 Related work

We believe this study is the first to explore how one can reduce the energy usage
of office applications. We extend the concept of energy-aware adaptation first
introduced in Odyssey [6] to support applications and operating systems where
source code is unavailable.

The concept of using distillation to reduce mobile client resource use has
been previously explored by Fox et al. [7]. They show that dynamic distillation
of data can allow mobile computers to adapt to poor-bandwidth environments.

Several recent research efforts have advocated cooperation between applica-
tions and the operating system in managing energy resources. The MilliWatt
project [5,14] is developing a power-based API that allows a partnership be-
tween applications and the system in setting energy use policy. Neugebauer and
McAuley [12] show how the Nemesis operating system can be extended to pro-



vide applications with detailed information about energy usage. Lu et al. [10]
propose the development of user-level power managers which could potentially
incorporate feedback from applications into power management decisions. Our
study of PowerPoint behavior provides further motivation for these projects by
demonstrating that significant energy savings could be achieved with transparent
power management.

8 Conclusion

We began this paper by asking several questions: Can one show significant energy
reductions for the type of office applications that users most commonly execute
on laptop computers? Is it possible to add energy-awareness to applications for
which source code is unavailable? Is this approach valid for applications executing
on closed-source operating systems (i.e. Windows)?

As the results of Section 4 show, the answer to all these questions is “yes”.
Puppeteer’s component-based adaptation approach allows us to modify Power-
Point behavior without access to application or operating system source code.
By distilling presentations and excluding multimedia data, we can reduce the en-
ergy needed to load presentations from a remote server by up to 49%. Distillation
also leads to significant energy savings when editing and saving presentations.
Finally, we showed how modifications such as disabling the Office Assistant and
lowering autosave frequency can lead to further reductions in energy use.

Our study also revealed several instances where PowerPoint energy-efficiency
could be improved. From these specific instances, we extracted general advice for
developers who wish to make their applications and middleware more energy-
efficient. We showed that transparent power management can lead to reduced
energy usage by allowing applications and power management systems to incor-
porate knowledge of each other’s activities. We then showed that applications
can significantly reduce energy usage by minimizing low-priority activities and
by replacing periodic models of application behavior with event-driven models.

This study has found several powerful tools that allow developers to decrease
the energy usage of PowerPoint and similar applications. We believe the next
logical step for this work is the development of system support for energy-aware
adaptation and transparent power management in closed-source environments
such as Windows. Such support will make it easier for software developers to
achieve the energy reductions we have discussed. We then hope to expand sys-
tem support beyond the single application we have studied to handle multiple,
concurrently executing applications.
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