
Recovery in Distributed Systems

Using Optimistic Message Logging

and Checkpointing

David B� Johnson

Willy Zwaenepoel

Department of Computer Science

Rice University

P�O� Box ����

Houston� Texas ����������

	��
� ������
�

Abstract

Message logging and checkpointing can provide fault tolerance in distributed systems

in which all process communication is through messages� This paper presents a general

model for reasoning about recovery in these systems� Using this model� we prove that

the set of recoverable system states that have occurred during any single execution of the

system forms a lattice� and that therefore� there is always a unique maximum recover�

able system state� which never decreases� Based on this model� we present an algorithm

for determining this maximum recoverable state� and prove its correctness� Our algo�

rithm utilizes all logged messages and checkpoints� and thus always �nds the maximum

recoverable state possible� Previous recovery methods using optimistic message logging

and checkpointing have not considered the existing checkpoints� and thus may not �nd

this maximum state� Furthermore� by utilizing the checkpoints� some messages received

by a process before it was checkpointed may not need to be logged� Using our algorithm

also adds less communication overhead to the system than do previous methods� Our

model and algorithm can be used with any message logging protocol� whether pessi�

mistic or optimistic� but their full generality is only required with optimistic logging

protocols�

This work was supported in part by the National Science Foundation under grants CDA�������� and CCR���������

and by the O	ce of Naval Research under contract ONR N


������K�
��
�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


� Introduction

Message logging and checkpointing can be used to provide fault tolerance in a distributed system in

which all process communication is through messages� Each message received by a process is saved

in a message log on stable storage ���� ��� and the state of each process is occasionally saved as a

checkpoint to stable storage� No coordination is required between the checkpointing of di�erent

processes or between message logging and checkpointing� The execution of each process is assumed

to be deterministic between received messages� and all processes are assumed to execute on fail�stop

processors �����

Typically� these systems use a pessimistic protocol for message logging� Each message is

synchronously logged as it is received� either by blocking the receiver until the message is logged �	�

�
�� or by blocking the receiver if it attempts to send a new message before all received messages

are logged ���� Recovery based on pessimistic message logging is straightforward� A failed process

is reloaded from its most recent checkpoint� and all messages originally received by the process

after this checkpoint was written are replayed to it from the log in the same order in which they

were received before the failure� Using these messages� the process then reexecutes to the state it

had after originally receiving them� Messages sent by the process during this reexecution that are

duplicates of those sent before the failure are ignored�

Other systems� though� use an optimistic message logging protocol �	�� ���� The receiver of

a message is not blocked� and messages are logged asynchronously after receipt� for example by

grouping several messages and writing them to stable storage in a single operation� However� the

current state of a process can only be recovered if all messages received by the process since it was

last checkpointed have been logged� Because other processes may depend on states that cannot

be recovered after a failure� recovery using optimistic message logging is more di
cult than with

pessimistic logging� These dependencies between processes arise through communication in the

system� since any part of the state of a process may be included in a message� When a process

receives a message� the current state of that process then depends on the state of the sender from

which the message was sent�

A process that has received a message from some failed process that was sent from a more recent

state than its latest state that can be recovered becomes an orphan process at the time of the failure�

During recovery� each orphan process must be rolled back to a state before the message that caused

it to become an orphan was received� Rolling back this process may cause other processes to

become orphans� which must also be rolled back during recovery� The domino e�ect ���� ��� is

an uncontrolled propagation of such process rollbacks� and must be avoided to guarantee progress

in the system in spite of failures� Recovery based on optimistic message logging must construct

the �most recent� combination of process states that can be recovered such that no process is an

orphan� Since optimistic logging protocols avoid synchronization delays during message logging�

they can outperform pessimistic logging protocols in the absence of failures� Although the recovery

procedure required with optimistic logging protocols is also more complex than with pessimistic

protocols� it is only used when a failure occurs�

�



This paper presents a general model for reasoning about distributed systems using message

logging and checkpointing to provide fault tolerance� With this model� we prove that the set of

recoverable system states that have occurred during any single execution of the system forms a lat�

tice� and that therefore� there is always a unique maximum recoverable system state� which never

decreases� Based on this model� we present an algorithm for determining this unique maximum

recoverable system state� and prove its correctness� Our algorithm always �nds this maximum

recoverable system state� by utilizing all logged messages and checkpoints� Previous fault�tolerance

methods using optimistic message logging and checkpointing �	�� ��� have not considered the exist�

ing checkpoints� and thus may not �nd this maximum state� Furthermore� by utilizing checkpoints�

some messages received by a process before its checkpoint was recorded may not need to be logged�

The use of our algorithm also adds less communication overhead to the system than do these other

optimistic methods� Our model and algorithm can be used with any message logging protocol�

whether pessimistic or optimistic� but their full generality is only required with optimistic logging

protocols�

Section 	 of this paper presents our model for reasoning about these systems� and Section �

describes our algorithm for �nding the maximum recoverable system state� Using this algorithm

to recover from a failure in the system is discussed in Section 
� Section � relates this work to

other message logging and checkpointing methods� and Section � summarizes the contributions of

this work�

� The Model

This section presents a general model for reasoning about the behavior and correctness of recovery

methods using message logging and checkpointing� The model is based on the dependencies between

the states of processes that result from communication in the system� The state of each process

is represented by its dependencies� and the state of the system is represented by a collection of

process states� The model does not assume the use of any particular message logging protocol�

and applies equally well to systems using either pessimistic or optimistic message logging methods�

All processes are assumed to execute on fail�stop processors ���� connected by a communication

network� but reliable delivery of messages on the network is not required�

��� Process States

The execution of each process is divided into separate intervals by the messages that the process

receives� Each interval� called a state interval of the process� is a deterministic sequence of ex�

ecution� started by the receipt of the next message by the process� The execution of a process

within a single state interval is completely determined by the state of the process at the time that

the message is received and by the contents of the message� A process may send any number of

messages to other processes during any state interval�

Within a process� each state interval of that process is uniquely identi�ed by a sequential state

interval index� which is simply a count of the number of messages received by the process� Processes

may be dynamically created and destroyed� but each process must be identi�ed by a globally unique

	



process identi�er� Logically� these identi�ers are assumed to be in the range � through n for a system

of n processes� The creation of a process is modeled by its receipt of message number �� and process

termination is modeled by its receipt of one �nal message following the sequence of real messages

received by the process� All messages sent by a process are tagged by its current state interval

index�

When a process i receives a message sent by some process j� the state of process i then depends

on the state that process j had at the time that the message was sent� The state of a process

is represented by its current set of dependencies on all other processes� For each process i� these

dependencies are represented by a dependency vector

h��i � h��� ��� ��� � � � � �ni �

where n is the total number of processes in the system� Component j of process i�s dependency

vector� �j � is set to themaximum index of any state interval of process j on which process i currently

depends� If process i has no dependency on any state interval of process j� then �j is set to ��

which is less than all possible state interval indices� Component i of process i�s own dependency

vector is always set to the index of process i�s current state interval� The dependency vector of

a process names only those state intervals on which the process directly depends� resulting from

the receipt of a message sent from that state interval in the sending process� Only the maximum

index of any state interval of each other process on which this process depends is recorded� since

the execution of a process within each state interval is deterministic� and since this state interval

naturally also depends on all previous intervals of the same process�

Processes cooperate to maintain their dependency vectors by tagging all messages sent with

the current state interval index of the sending process� and by remembering in each process the

maximum index tagging any message received from each other process� During any single execution

of the system� the current dependency vector of any process is uniquely determined by the state

interval index of that process� No component of the dependency vector of any process can decrease

through failure�free execution of the system�

��� System States

A system state is a collection of process states� one for each process in the system� These process

states need not all have existed in the system at the same time� A system state is said to have

occurred during some execution of the system if all component process states have each individually

occurred during this execution� A system state is represented by an n� n dependency matrix

D � ����� �

�
���������

�� � �� � �� � � � � ��n

�� � �� � �� � � � � ��n

�� � �� � �� � � � � ��n
���

���
���

� � �
���

�n � �n � �n � � � � �n n

�
���������
�

�



where row i� �i j � � � j � n� is the dependency vector for the state of process i included in this

system state� Since for all i� component i of process i�s dependency vector is always the index of

its current state interval� the diagonal of the dependency matrix� �i i� � � i � n� is always set to

the current state interval index of each process contained in the system state�

Let S be the set of all system states that have occurred during any single execution of some

system� The system history relation� �� is a partial order on the set S� such that one system state

precedes another in this relation if and only if it must have occurred �rst during this execution�

The relation � can be expressed in terms of the state interval index of each process shown in the

dependency matrices representing these system states�

De�nition ��� If A � ����� and B � ����� are system states in S� then

A � B �� � i ��i i � �i i� �

and

A � B �� �A � B� � �A 	� B� �

The system history relation di�ers from Lamport�s happened before relation ���� in that it orders

the system states that result from events rather than the events themselves� and that only state

intervals �started by the receipt of a message� constitute events�

To illustrate this partial order� Figure � shows a system of four communicating processes� The

horizontal lines represent the execution of each process� with time progressing from left to right�

Each arrow between processes represents a message sent from one process to another� and the

number at each arrow gives the index of the state interval started by the receipt of that message�

The last message received by process � is message a� and the last message received by process 
 is

message b� Consider the two possible system states A and B� such that in state A� message a has

Process �

Process �

Process �

Process �

time

�

�

�

�

�

� �

�

a

�

b

Figure � The system history partial order� Neither message a nor
message b must have been received �rst�






been received but message b has not� and in state B� message b has been received but message a

has not� These two system states can be represented by the dependency matrices

A �

�
������
	� � � �

� � � �

� � 	 �

� � � ��

�
������ and B �

�
������
�� � � �

� � � �

� � 	 �

� � 	 ��

�
������ �

System states A and B are incomparable under the system history relation� This is shown by

a comparison of the circled values on the diagonals of these two dependency matrices� In the

execution of the system� neither state A nor state B must have occurred �rst� because neither

message a nor message b must have been received �rst�

��� The System History Lattice

A system state describes the set of messages that have been received by each process� For any two

system states A and B in S� the meet of A and B� written A uB� represents a system state that

has also occurred during this execution of the system� in which each process has received only those

messages that it has received in both A and B� This can be expressed in terms of the dependency

matrices representing these two system states by copying each row from the corresponding row of

one of the two original matrices� depending on which matrix has the smaller entry on its diagonal

in that row�

De�nition ��� If A � ����� and B � ����� are system states in S� the meet of A and

B is A uB � ��� ��� such that

� i

�
�i � �

�
�i � if �i i � �i i

�i� otherwise

�
�

Likewise� for any two system statesA andB in S� the join ofA andB� writtenAtB� represents

a system state that has also occurred during this execution of the system� in which each process

has received only those messages that it has received in either A or B� This can be expressed in

terms of the dependency matrices representing these two system states by copying each row from

the corresponding row of one of the two original matrices� depending on which matrix has the larger

entry on its diagonal in that row�

De�nition ��� If A � ����� and B � ����� are system states in S� the join of A and

B is A tB � ��� ��� such that

� i

�
�i � �

�
�i � if �i i 
 �i i

�i� otherwise

�
�

Continuing the example of Section 	�	 illustrated in Figure �� the meet and join of states A

and B can be represented by the dependency matrices

�



A uB �

�
������
� � � �

� � � �

� � 	 �

� � � �

�
������ and AtB �

�
������
	 � � �

� � � �

� � 	 �

� � 	 �

�
������ �

The following theorem introduces the system history lattice formed by the set of system states

that have occurred during any single execution of some system� ordered by the system history

relation�

Theorem ��� The set S� ordered by the system history relation� forms a lattice� For

any A�B � S� the greatest lower bound of A and B is AuB� and the least upper bound

of A and B is A tB�

Proof Follows directly from the construction of system state meet and join in De�nitions 	�	

and 	���

��� Consistent System States

Because the process states composing a system state need not all have existed at the same time�

some system states may represent an impossible state of the system� A system state is called

consistent if it could have been seen at some instant by an outside observer during the preceding

execution of the system from its initial state� regardless of the relative speeds of the component

processes �
�� After recovery from a failure� the system must be recovered to a consistent system

state� This ensures that the total execution of the system is equivalent to some possible failure�free

execution�

In this model� since all process communication is through messages� and since processes execute

deterministically between received messages� a system state is consistent if no component process

has received a message that has not been sent yet in this system state and that cannot be sent

through the future deterministic execution of the sender� Since process execution is only deter�

ministic within each state interval� this is true only if no process has received a message that will

not be sent before the end of the sender�s current state interval contained in this system state�

Any messages shown by a system state to be sent but not yet received do not cause the system

state to be inconsistent� These messages can be handled by the normal mechanism for reliable

message delivery� if any� used by the underlying system� In particular� suppose such a message m

was received by some process i after the state of process i was observed to form the system stateD�

Then suppose process i sent some message n �such as an acknowledgement of message m�� which

could show the receipt of m� If message n has been received in system state D� state D will be

inconsistent because message n �not message m� is shown to have been received but not yet sent�

If message n has not been received yet in state D� no e�ect of either message can be seen in D�

and D is therefore still consistent�

The de�nition of a consistent system state can be expressed in terms of the dependency matrices

representing system states� If a system state is consistent� then for each process i� no other process j

�



depends on a state interval of process i beyond process i�s current state interval� In the dependency

matrix� for each column i� no element in column i in any row j is larger than the element on the

diagonal of the matrix in column i �and row i�� which is process i�s current state interval index�

De�nition ��� If D � ����� is some system state in S� D is consistent if and only if

� i� j ��j i � �i i� �

For example� consider the system of three processes whose execution is shown in Figure 	�

The state of each process has been observed where the curve intersects the line representing the

execution of that process� and the resulting system state is represented by the dependency matrix

D � ��� �� �

�
���

� 
� �

� 	� �

� 	 �

�
��� �

This system state is not consistent� since process � has received a message �to begin state interval ��

from process 	� which was sent beyond the end of process 	�s current state interval� This message

has not been sent yet by process 	 and cannot be sent by process 	 through its future deterministic

execution� In terms of the dependency matrix shown above� since �� � is greater than �� �� the

system state represented by this matrix is not consistent�

Let the set C � S be the set of consistent system states that have occurred during any single

execution of some system� That is�

C � fD � S jD is consistent g �

Theorem ��� The set C� ordered by the system history relation� forms a sublattice

of the system history lattice�

Proof Let A � ����� and B � ����� be system states in C� By De�nition 	�
� since A � C and

B � C� �j i � �i i and �j i � �i i� for all i and j� It su
ces to show that AuB � C and AtB � C�

Process �

Process �

Process �

time

�

�

�

� �

�

�

� �

Figure � An inconsistent system state�

�



Let A uB � ������ By De�nition 	�	� and because A and B both occurred during the same

execution of the system and no element in the dependency vector of any process can decrease

through execution of the process� then �j i � min��j i� �j i�� for all i and j� Thus� �j i � �j i and

�j i � �j i� for all i and j� Since A � C and B � C� �j i � �j i � �i i and �j i � �j i � �i i� Thus�

�j i � min��i i� �i i�� and �j i � �i i� for all i and j� Therefore� A uB � C�

Let A tB � ������ By De�nition 	��� �j i � �j i or �j i � �j i� and �i i � max��i i� �i i�� for all i

and j� Since A � C and B � C� �j i � �i i for all i and j as well� Therefore� AtB � C�

��� Message Logging and Checkpointing

As the system executes� messages are recorded on stable storage in a message log� A message is

called logged if and only if its data and the index of the state interval that it started in the process

that received it are both recorded on stable storage� Logged messages remain on stable storage

until no longer needed for recovery from any possible future failure of the system �Section 	����

The predicate logged�i� �� is true if and only if the message that started state interval � of process i

is logged�

When a process is created� its initial state is saved on stable storage as a checkpoint �in state

interval ��� Each process is also independently checkpointed at times during its execution� Each

checkpoint remains on stable storage until no longer needed for recovery from any possible future

failure of the system �Section 	���� For every state interval � of each process� there must then be

some checkpoint of that process on stable storage with a state interval index no larger than ��

De�nition ��� The e�ective checkpoint for a state interval � of some process i is the

checkpoint on stable storage for process i with the largest state interval index � such

that � � ��

A state interval of a process is called stable if and only if it can be recreated on demand from

information currently on stable storage� This is true if and only if all received messages that started

state intervals in the process after its state interval recorded in the e�ective checkpoint are logged�

The predicate stable�i� �� is true if and only if state interval � of process i is stable�

De�nition ��� State interval � of process i is stable if and only if

� �� ����� � logged�i� �� � �

where � is the index of the state interval of process i recorded in the e�ective checkpoint

for state interval ��

Any stable process state interval � can be recreated by restoring the process from the e�ective

checkpoint �with state interval index �� and replaying to it the sequence of logged messages to

begin state intervals ��� through �� in ascending order�

The checkpointing of a process need not be coordinated with the logging of messages received

by that process� In particular� a process may be checkpointed at any time� and the state interval

�



recorded in that checkpoint is then stable� regardless of whether or not all previous messages re�

ceived by that process have been logged� Thus� if a state interval � of some process i is stable and

its e�ective checkpoint records its state interval �� then all state intervals � of process i� � � � � ��

must be stable� but some state intervals � � � of process i may not be stable�

Each checkpoint of a process includes the complete current dependency vector of the process�

Each logged message only contains the state interval index of the sending process at the time that

the message was sent �tagging the message�� but the complete dependency vector for any stable

state interval of any process is always known� since all messages that started state intervals after

the e�ective checkpoint must be logged�

��� Recoverable System States

A system state is called recoverable if and only if all component process states are stable and the

resulting system state is consistent� That is� to recover the state of the system� it must be possible

to recreate the states of the component processes� and for this system state to be meaningful� it

must be possible to have occurred through failure�free execution of the system from its initial state�

De�nition ��� If D � ��� �� is some system state in S� D is recoverable if and only if

D � C � � i � stable�i� �i i� � �

Let the set R � S be the set of recoverable system states that have occurred during any single

execution of some system� That is�

R � fD � S jD is recoverable g �

Since only consistent system states can be recoverable� R � C � S�

Theorem ��� The set R� ordered by the system history relation� forms a sublattice

of the system history lattice�

Proof For any A�B � R� A uB � C and A t B � C� by Theorem 	�	� Since the state interval

of each process in A and B is stable� all process state intervals in A uB and A tB are stable as

well� Thus� AuB � R and A tB � R� and R forms a sublattice�

��� The Current Recovery State

During recovery� the state of the system is restored to the �most recent� recoverable state that is

possible from the information available� in order to minimize the amount of reexecution necessary

to complete the recovery� The system history lattice corresponds to this notion of time� and the

following theorem establishes the existence of a single maximum recoverable system state under

this ordering�

Theorem ��� There is always a unique maximum recoverable system state in S�

�



Proof The unique maximum in S is simply

F
D�R

D �

which must be unique since R forms a sublattice of the system history lattice�

De�nition ��	 At any time� the current recovery state of the system is the state to

which the system will be restored if any failure occurs in the system at that time�

In this model� the current recovery state of the system is always the unique maximum system state

that is currently recoverable�

Lemma ��� During any single execution of the system� the current recovery state

never decreases�

Proof Let R � �	��� be the current recovery state of the system at some time� Dependencies

can only be added to state R by the receipt of a new message� which would cause the receiving

process to begin a new state interval� resulting in a new system state� Thus� system state R itself

must remain consistent� Since logged messages and checkpoints are not removed until no longer

needed� state interval 	i i for each process i must remain stable until no longer needed� Thus system

state R itself must remain recoverable� Since the set R forms a lattice� any new current recovery

state established after state R must be greater than R�

As discussed in Section �� the domino e�ect ���� ��� is an uncontrolled propagation of rollbacks

necessary to recover the system state following a failure� In this model� an occurrence of the domino

e�ect would take the form of a propagation of dependencies that prevent the current recovery state

from advancing� The following lemma establishes a su
cient condition for preventing the domino

e�ect�

Lemma ��� If all messages received by each process are eventually logged� there is

no possibility of the domino e�ect in the system�

Proof Let R � �	��� be the current recovery state of the system at some time� For all state

intervals � of each process k� � 
 	k k� if all messages are eventually logged� state interval � of

process k will eventually become stable� by De�nition 	��� By Lemma 	��� the current recovery

state never decreases� and thus� by De�nition 	��� new system states R�� R � R�� must eventually

become recoverable and become the new current recovery state� The domino e�ect is thus avoided�

since the current recovery state eventually increases�

��� The Outside World

During execution� processes may interact with the outside world� which consists of everything out�

side the system itself� Examples of interactions with the outside world include receiving input from

��



a human user and writing information on the user�s display terminal� All interactions with the

outside world are modeled as messages either received from the outside world or sent to the outside

world� Messages from the outside world received by a process must be logged in the same way as

other messages received by a process�

Messages sent to the outside world� though� cannot be treated in the same way as those sent to

other processes within the system� since messages to the outside world may cause irreversible side

e�ects� To guarantee that the state of the outside world is consistent with the state of the system

restored during recovery� any message sent to the outside world must be delayed until it is known

that the state interval from which it was sent will never be rolled back� It can then be committed

by releasing it to the outside world� The following lemma establishes when it is safe to commit a

message sent to the outside world�

Lemma ��� If the current recovery state of the system is R � �	���� then any message

sent by a process i from a state interval � � 	i i may be committed�

Proof Follows directly from Lemma 	�� and De�nition 	���

��	 Garbage Collection

During operation of the system� checkpoints and logged messages must remain on stable storage

until they are no longer needed for any possible future recovery of the system� They may be removed

from stable storage only whenever doing so will not interfere with the ability of the system to recover

as needed� The following two lemmas establish when this can be done safely�

Lemma ��� Let R � �	��� be the current recovery state� For each process i� if �i

is the state interval index of the e�ective checkpoint for state interval 	i i of process i�

then any checkpoint of process i with state interval index � � �i cannot be needed for

any future recovery of the system and may be removed from stable storage�

Proof Follows directly from Lemma 	�� and De�nitions 	�� and 	���

Lemma ��� Let R � �	��� be the current recovery state� For each process i� if �i

is the state interval index of the e�ective checkpoint for state interval 	i i of process i�

then any message that begins a state interval � � �i in process i cannot be needed for

any future recovery of the system and may be removed from stable storage�

Proof Follows directly from Lemma 	�� and De�nitions 	�� and 	���

� The Recovery State Algorithm

Theorem 	�
 shows that in any system using message logging and checkpointing to provide fault

tolerance� there is always a unique maximum recoverable system state� This maximum state is the

��



current recovery state� which is the state to which the system will be restored following a failure� At

any time� the current recovery state could be found by an exhaustive search� over all combinations

of currently stable process state intervals� for the maximum consistent combination� but such a

search would be too expensive in practice� Our recovery state algorithm �nds the current recovery

state more e
ciently�

The recovery state algorithm is invoked once for each process state interval that becomes sta�

ble� either because a new checkpoint has recorded the process in that state interval� or because

all messages received since the e�ective checkpoint for that interval are now logged� It uses the

dependency vectors of these stable process state intervals to form new dependency matrices that

represent consistent system states� which are therefore also recoverable� It is a centralized algo�

rithm� using this information collected from the execution of the system� Since all process state

intervals considered by the algorithm are stable� all information used by the algorithm has been

recorded on stable storage� The algorithm is therefore restartable and can handle any number of

concurrent process failures� including a total failure� The algorithm is incremental in that it uses

the existing known maximum recoverable system state and advances it when possible based on the

fact that a new process state interval has become stable�

For each new state interval � of some process k that becomes stable� the algorithm determines

if a new current recovery state exists� It �rst attempts to �nd some new recoverable system state

in which the state of process k has advanced to state interval �� If no such system state exists� the

current recovery state of the system has not changed� The algorithm records the index of this state

interval and its process identi�er on one or more lists to be checked again later� If a new recoverable

system state is found� the algorithm searches for other greater recoverable system states� using the

appropriate lists� The new current recovery state is the maximum recoverable system state found

in this search�

��� Finding a New Recoverable System State

The heart of the recovery state algorithm is the procedure FIND REC� Given any recoverable

system stateR � �	��� and some stable state interval � of some process k with � 
 	k k � FIND REC

attempts to �nd a new recoverable system state in which the state of process k is advanced at least

to state interval �� It does this by also including any stable state intervals from other processes

that are necessary to make the new system state consistent� applying the de�nition of a consistent

system state in De�nition 	�
� The procedure succeeds if such a consistent system state can be

composed from the set of process state intervals that are currently stable� Since the state of process

k has advanced� the new recoverable system state found must be greater than stateR in the system

history lattice�

Input to the procedure FIND REC consists of the dependency matrix of some recoverable

system state R � �	���� the process identi�er k and state interval index � 
 	k k of a stable state

interval of process k� and the dependency vector for each stable process state interval � of each

process x such that � 
 	xx� Conceptually� FIND REC performs the following steps�

�	



�� Make a new dependency matrix D � ��� �� from matrix R� with row k replaced by the depen�

dency vector for state interval � of process k�

	� Loop on step 	 while D is not consistent� That is� loop while there exists some i and j for

which �j i 
 �i i� This shows that state interval �j j of process j depends on state interval �j i

of process i� which is greater than process i�s current state interval �i i in D�

Find the minimum index � of any stable state interval of process i such that � 
 �j i�

�a� If no such state interval � exists� exit the algorithm and return false�

�b� Otherwise� replace row i of D with the dependency vector for this state interval � of

process i�

�� The system state represented byD is now consistent and is composed entirely of stable process

state intervals� It is thus recoverable and greater than R� Return true�

An e
cient implementation of procedure FIND REC is shown in Figure �� This implementa�

tion operates on a vector RV� rather than on the full dependency matrix representing the system

state� For all i� RV �i� contains the diagonal element from row i of the corresponding dependency

matrix� When FIND REC is called� each RV �i� contains the state interval index of process i in the

given recoverable system state� The dependency vector of each stable state interval � of process x

is represented by the vector DV �
x� As each row of the matrix is replaced in the outline above� the

corresponding single element of RV is changed in FIND REC� Also� the maximum element from

each column of the matrix is maintained in the vector MAX� such that for all i� MAX �i� contains

the maximum element in column i of the corresponding matrix�

function FIND REC �RV� k� ��

RV �k�
 ��
for i
 � to n do MAX �i�
 max�RV �i�� DV �

k �i���

while � i such that MAX �i� 
 RV �i� do
�
 minimum index such that

� 
 MAX �i� � stable�i� ���
if no such state interval � exists then return false�
RV �i�
 ��
for j 
 � to n do MAX �j�
 max�MAX �j�� DV �

i �j���

return true�

Figure � Procedure to �nd a new recoverable state�

��



Lemma ��� If function FIND REC is called with a known recoverable system state

R � �	��� and state interval � of process k such that � 
 	k k � FIND REC returns

true if there exists some recoverable system state R� � �	�� ��� such that R � R� and

	�k k 
 �� and returns false otherwise� If FIND REC returns true� then on return�

RV �i� � 	�i i� for all i�

Proof The predicate of the while loop determines whether the dependency matrix corresponding

to RV and MAX is consistent� by De�nition 	�
� When the condition becomes false and the loop

terminates� the matrix must be consistent because� in each column i� no element is larger than

the element on the diagonal in that column� Thus� if FIND REC returns true� the system state

returned in RV must be consistent� This system state must also be recoverable� since its initial

component process state intervals are stable and only stable process state intervals are used to

replace its entries during the execution of FIND REC�

The following loop invariant is maintained by function FIND REC at the top of the while loop

on each iteration�

If a recoverable system state R� � �	���� exists such that R � R� and 	�i i 
 RV �i�� for
all i� then 	�i i 
 MAX �i��

The invariant must hold initially because any consistent state must have RV �i� 
 MAX �i�� for

all i� and any state R� found such that 	�i i 
 RV �i� must then have 	�i i 
 RV �i� 
 MAX �i�� On

each subsequent iteration of the loop� the invariant is maintained by choosing the smallest index

� 
 MAX �i� such that state interval � of process i is stable� For the matrix to be consistent� �

must not be less than MAX �i�� By choosing the minimum such �� all components of DV �
i are

also minimized because no component of the dependency vector can decrease through execution

of the process� Thus� after replacing row i of the matrix with DV �
i � the components of MAX are

minimized� and for any recoverable �consistent� state R� that exists� the condition 	�i i 
 MAX �i�

must still hold for all i�

If no such state interval � 
 MAX �i� of process i is currently stable� then no recoverable system

state R� can exist� since any such R� must have 	�i i 
 MAX �i�� This is exactly the condition under

which the procedure FIND REC returns false�

Suppose state interval � of process k depends on state interval � of process i� then procedure

FIND REC searches for the minimum � 
 � that is the index of a state interval of process i that

is currently stable� For the set of process state intervals that are currently stable� the dependency

on state interval � of process i has been transferred to state interval � of process i �including the

case of � � ��� and state interval � of process k is said to currently have a transferred dependency

on state interval � of process i�

De�nition ��� A state interval � of some process k� with dependency vector h��i�

has a transferred dependency on a state interval � of process i if and only if�

��� � 
 �i�

�	� state interval � of process i is stable� and

��� there does not exist another stable state interval � of process i such that � 
 � 
 �i�

�




The transitive closure of the transferred dependency relation from state interval � of process k

describes the set of process state intervals that may be used in any iteration of the while loop

of procedure FIND REC� when invoked for this state interval� Although only a subset of these

state intervals will actually be used� the exact subset used in any execution depends on the order

in which the while loop �nds the next i that satis�es the predicate�

��� The Complete Algorithm

Using function FIND REC� the complete recovery state algorithm can now be stated� The algo�

rithm� shown in Figure 
� uses a vector CRS to record the state interval index of each process in

the current recovery state of the system� When a process is created� its entry in CRS is initialized

to �� When some state interval � of some process k becomes stable� if this state interval is in

advance of the old current recovery state in CRS� the algorithm checks if a new current recovery

state exists� During the execution� the vector NEWCRS is used to store the maximum known

recoverable system state� which is copied back to CRS at the completion of the algorithm�

When invoked� the algorithm calls FIND REC with the old current recovery state and the

identi�cation of the new stable process state interval� The old current recovery state is the maxi�

mum known recoverable system state� and the new stable state interval is interval � of process k�

If FIND REC returns false� then no greater recoverable system state exists in which the state of

process k has advanced at least to state interval �� Thus� the current recovery state of the system

has not changed� as shown by the following two lemmas�

Lemma ��� When state interval � of process k becomes stable� if the current recovery

state changes from R � �	��� to R
� � �	����� R � R�� then 	�k k � ��

Proof By contradiction� Suppose the new current recovery state R� has 	�k k 	� �� Because only

one state interval has become stable since R was the current recovery state� and because process k

in the new current recovery state R� is not in state interval �� then all process state intervals in R�

must have been stable before state interval � of process k became stable� Thus� system state R�

must have been recoverable before state interval � of process k became stable� Since R � R�� then

R� must have been the current recovery state before state interval � of process k became stable�

contradicting the assumption that R was the original current recovery state� Thus� if the current

recovery state has changed� then 	�k k � ��

Lemma ��� When state interval � of process k becomes stable� if the initial call to

FIND REC by the recovery state algorithm returns false� then the current recovery

state of the system has not changed�

Proof By Lemma ��	� if the current recovery state changes from R � �	��� to R� � �	�� ��

when state interval � of process k becomes stable� then 	�k k � �� However� a false return from

FIND REC indicates that no recoverable system state R� exists with 	�k k 
 �� such that R � R��

Therefore� the current recovery state cannot have changed�

��



if � � CRS �k� then exit�

NEWCRS 
 CRS �

if �FIND REC �NEWCRS� k� �� then
for i
 � to n do if i 	� k then

� 
 DV �
k �i��

if � 
 CRS �i� then DEFER
�
i 
 DEFER

�
i � f �k� �� g�

exit�

WORK 
 DEFER�
k �

� 
 � � ��
while �stable�k� �� do

WORK 
WORK � DEFER
�
k � � 
 � � ��

while WORK 	� 	� do

remove some �x� �� from WORK �
if � 
 NEWCRS �x� then

RV 
 NEWCRS �
if FIND REC �RV� x� �� then NEWCRS 
 RV �

if � � NEWCRS �x� then

WORK 
WORK � DEFER�
x�

� 
 � � ��
while �stable�x� �� do

WORK 
WORK � DEFER�
x� � 
 � � ��

CRS 
 NEWCRS �

Figure � The recovery state algorithm� invoked when state
interval � of process k becomes stable�

��



Associated with each state interval � of each process i that is in advance of the known current

recovery state is a set DEFER�
i � which records the identi�cation of any stable process state intervals

that depend on state interval � of process i� That is� if the current recovery state of the system is

R � �	���� then for all i and � such that � 
 	i i� DEFER
�
i records the set of stable process state

intervals that have � in component i of their dependency vector� All DEFER sets are initialized to

the empty set when the corresponding process is created� If FIND REC returns false when some

new process state interval becomes stable� that state interval is entered in at least one DEFER set�

The algorithm uses these sets to limit its search space for the new current recovery state�

If the initial call to FIND REC by the recovery state algorithm returns true� a new greater

recoverable system state has been found� Additional calls to FIND REC are used to search for any

other recoverable system states that exist that are greater than the one returned by the last call to

FIND REC� The new current recovery state of the system is the state returned by the last call to

FIND REC that returned true� The algorithm uses a result of the following lemma to limit the

number of calls to FIND REC required�

Lemma ��� Let R � �	��� be the existing current recovery state of the system� and

then let state interval � of process k become stable� For any stable state interval � of

any process x such that � 
 	xx� no recoverable system state R� � �	�� �� exists with

	�xx 
 � if state interval � of process x does not depend on state interval � of process k

by the transitive closure of the transferred dependency relation�

Proof Since state interval � of process x is in advance of the old current recovery state� it could not

be made part of any recoverable system state R� before state interval � of process k became stable�

If it does not depend on state interval � of process k by the transitive closure of the transferred

dependency relation� then the fact that state interval � has become stable cannot a�ect this�

Let � be the maximum index of any state interval of process k that state interval � of process x

is related to by this transitive closure� Clearly� any new recoverable system state R� 	� R that now

exists with 	�x x 
 � must have 	�k k 
 �� by De�nitions ��� and 	�
� and since no component of

any dependency vector decreases through execution of the process� If � 
 �� then system state R�

was recoverable before state interval � became stable� contradicting the assumption that � 
 	k k�

Likewise� if � � �� then R� cannot exist now if it did not exist before state interval � of process k

became stable� since state interval � must have been stable before state interval � became stable�

Since both cases lead to a contradiction� no such recoverable system state R� can now exist without

this dependency through the transitive closure�

The while loop of the recovery state algorithm uses the DEFER sets to traverse the transitive

closure of the transferred dependency relation backward from state interval � of process k� Each

state interval � of some process x visited on this traversal depends on state interval � of process k

by this transitive closure� That is� either state interval � of process x has a transferred dependency

on state interval � of process k� or it has a transferred dependency on some other process state

interval that depends on interval � of process k by this transitive closure� The traversal uses the

set WORK to record those process state intervals from which the traversal must still be performed�

��



When WORK has been emptied� the new current recovery state has been found and is copied back

to CRS�

During this traversal� any dependency along which no more true results from FIND REC can

be obtained is not traversed further� If the state interval � of process x that is being considered is

in advance of the maximum known recoverable system state� FIND REC is called to search for a

new greater recoverable system state in which process x has advanced at least to state interval ��

If no such recoverable system state exists� the traversal from this state interval is not continued�

since FIND REC will return false for all other state intervals that depend on state interval � of

process x by this transitive closure�

Lemma ��� If state interval � of process i depends on state interval � of process x

by the transitive closure of the transferred dependency relation� and if no recoverable

system state R � �	��� exists with 	xx 
 �� then no recoverable system state R� � �	�� ��

exists with 	�i i 
 ��

Proof This follows directly from the de�nition of a transferred dependency in De�nition ����

Either state interval � of process i has a transferred dependency on state interval � of process x� or

it has a transferred dependency on some other process state interval that depends on state interval �

of process x by this transitive closure� By this dependency� any such recoverable system state R�

that exists must also have 	�xx 
 �� but no such recoverable system state exists since R does not

exist� Therefore� R� cannot exist�

Theorem ��� If the recovery state algorithm is executed each time any state inter�

val � of any process k becomes stable� it will complete each time with CRS �i� � 	�i i� for

all i� where R� � �	�� �� is the new current recovery state of the system�

Proof The theorem holds before the system begins execution since CRS �i� is initialized to � when

each process i is created� Likewise� if any new process i is created during execution of the system�

it is correctly added to the current recovery state by setting CRS �i� � ��

When some state interval � of some process k becomes stable� if the initial call to FIND REC

returns false� the current recovery state remains unchanged� by Lemma ���� In this case� the

recovery state algorithm correctly leaves CRS unchanged�

If this call to FIND REC returns true instead� the current recovery state has advanced as a

result of this new state interval becoming stable� Let R � �	��� be the old current recovery state

before state interval � of process k became stable� and let D � ����� be the system state returned

by this call to FIND REC� Then R � D� by Lemma ���� Although the system state D may be

less than the new current recovery state R�� D � R� because the set of recoverable system states

forms a lattice�

Thewhile loop of the recovery state algorithm �nds the new current recovery state by searching

forward in the lattice of recoverable system states� without backtracking� This search is performed

by traversing backward through the transitive closure of the transferred dependency relation� using

the information in the DEFER sets� For each state interval � of each process x examined by this

��



loop� if no recoverable system state exists in which the state of process x has advanced at least to

state interval �� the traversal from this state interval is not continued� By Lemmas ��
 and ���� this

loop considers all stable process state intervals for which a new recoverable system state can exist�

Thus� at the completion of this loop� the traversal has been completed� and the last recoverable

system state found must be new current recovery state� The algorithm �nally copies this state from

NEWCRS to CRS�

��� An Example

Figure � shows the execution of a system of three processes� Each process has been checkpointed in

its state interval �� but no other checkpoints have been written� Also� a total of four messages have

been received in the system� but no messages have been logged yet� Thus� only state interval � for

each process is stable� and the current recovery state of the system is composed of state interval �

of each process� In the recovery state algorithm� CRS � h�� �� �i� and all DEFER sets are empty�

If message a from process 	 to process � now becomes logged� state interval � of process �

becomes stable� and has a dependency vector of h�� ���i� The recovery state algorithm is executed

and calls FIND REC with � � � and k � � for state interval � of process �� FIND REC sets

RV to h�� �� �i and MAX to h�� �� �i� Since MAX �	� 
 RV �	�� a stable state interval � 
 � of

process 	 is needed to make a consistent system state� However� no such state interval of process 	

is currently stable� and FIND REC therefore returns false� The recovery state algorithm changes

DEFER�

�
to f ��� �� g and exits� leaving CRS unchanged at h�� �� �i�

Next� if process 	 is checkpointed in state interval 	� this state interval becomes stable� Its

dependency vector is h�� 	� �i� The recovery state algorithm calls FIND REC� which sets RV to

h�� 	� �i and MAX to h�� 	� �i� Since no state interval � 
 � of process � is stable� FIND REC

returns false� The recovery state algorithm sets DEFER�

�
to f �	� 	� g and exits� leaving CRS

unchanged again�

Finally� if message b from process 	 to process � becomes logged� state interval � of process �

becomes stable� and has a dependency vector of h�� �� �i� The recovery state algorithm calls

FIND REC� which sets RV to h�� �� �i and MAX to h�� �� �i� Since MAX �	� 
 RV �	�� a stable

Process �

Process �

Process �

�

�

�

�

a

� �

�

b

Figure � An example system execution�

��



state interval � 
 � of process 	 is required� State interval 	 of process 	 is the minimum such

stable state interval� Using its dependency vector� RV and MAX are updated� yielding the value

h�� 	� �i for both� This system state is consistent� and FIND REC returns true� The maximum

known recoverable system state in NEWCRS has then been increased to h�� 	� �i�

The WORK set is initialized to DEFER�

�
� f �	� 	� g� and the while loop of the algorithm

begins� When state interval 	 of process 	 is checked� it is not in advance of NEWCRS� so the

call to FIND REC is skipped� The sets DEFER�

�
and DEFER�

�
are added to WORK� making

WORK � f ��� �� g� State interval � of process � is then checked by the while loop� Procedure

FIND REC is called� which sets both RV and MAX to h�� 	� �i� and therefore returns true� The

maximum known recoverable system state in NEWCRS is updated by this call to h�� 	� �i� The

set DEFER�

�
is added to WORK� but since DEFER�

�
� 	�� this leaves WORK empty� The while

loop then terminates� and the value left in NEWCRS � h�� 	� �i is copied back to CRS� The system

state represented by this value of CRS is the new current recovery state of the system�

This example illustrates a unique feature of our recovery state algorithm� Our algorithm uses

both logged messages and checkpoints in its search for the maximum recoverable system state�

Although only two of the four messages received during this execution of the system have been

logged� the current recovery state has advanced due to the checkpoint of process 	� In fact� the two

remaining unlogged messages need never be logged� since the current recovery state has advanced

beyond their receipt�

� Failure Recovery

The recovery state algorithm can be used in recovering from any number of process failures in

the system� including a total failure of all processes� Before beginning recovery� the state of any

surviving processes and any surviving messages that have been received but not yet logged may be

used to further advance the current recovery state� This surviving information is volatile and has

not been included in the computation of the current recovery state� since the current recovery state

re�ects only information that has been recorded on stable storage� Thus� the state of each process

that did not fail must be written to stable storage as an additional checkpoint of that process� and

all received messages that remain after the failure that have not yet been logged must be logged on

stable storage� After the recovery state algorithm has been executed for each process state interval

that becomes stable as a result of this� the current recovery state will be the maximum possible

recoverable system state including this additional information that survived the failure�

To restore the state of the system to the current recovery state� the states of all failed processes

must be restored� and any orphan processes must also be rolled back� Each failed process is restored

by restarting it from the e�ective checkpoint for its state interval in the current recovery state� and

then replaying to it from the log any messages received since that checkpoint was recorded� Using

these logged messages� the recovering process deterministically reexecutes to restore its state to the

state interval for this process in the current recovery state� Any other process currently executing in

a state interval beyond the state interval of that process in the current recovery state is an orphan�

To complete recovery� each orphan process is forced to fail and is restored to its state interval in

	�



the current recovery state in the same way as other failed processes� If additional processes fail

during this recovery� the recovery may be restarted� since all information used is recorded on stable

storage�

� Related Work

��� Optimistic Message Logging Methods

Two other methods to support fault tolerance using optimistic message logging and checkpoint�

ing have been published in the literature� Our work has been partially motivated by Strom and

Yemini�s Optimistic Recovery �	��� and recently Sistla and Welch have proposed a new optimistic

message logging method ����� based in part on some aspects of both Strom and Yemini�s system

and our work� Our system is unique among these in that it always �nds the maximum recoverable

system state� Although these other systems occasionally checkpoint processes as our system does�

they do not consider the existing checkpoints in �nding the current recovery state� Our algorithm

includes both checkpoints and logged messages in this search� and thus may �nd recoverable system

states that these other algorithms do not� Also� these other systems assume reliable delivery of

messages on the network� using a channel between each pair of processes that does not lose or re�

order messages� Thus� in their de�nitions of a consistent system state� Strom and Yemini require all

messages sent to have been received� and Sistla and Welch require the sequence of messages received

on each channel to be a pre�x of those sent on it� Since our model does not assume reliable delivery�

it can be applied to common real distributed systems that do not guarantee reliable delivery� such

as those based on an Ethernet network� If needed� reliable delivery can also be incorporated into

our model simply by assuming an acknowledgement message immediately following each message

receipt�

In Strom and Yemini�s Optimistic Recovery �	��� each message sent is tagged with a transitive

dependency vector� which has size proportional to the number of processes� Also� each process is

required to locally maintain its knowledge of the message logging progress of each other process in a

log vector� which is either periodically broadcast by each process or appended to each message sent�

Our system tags each message only with the current state interval index of the sender� Information

equivalent to the log vector is maintained by the recovery state algorithm� but uses no additional

communication beyond that already required to log each message� Although communication of the

transitive dependency vector and the log vector allows control of recovery to be less centralized�

and may result in faster commitment of output to the outside world� this additional communication

may add signi�cantly to the failure�free overhead of the system� Optimistic Recovery also includes

an incarnation number as part of each state interval index to identify the number of times that

the process has rolled back� This preserves the uniqueness of state interval indices across recoveries

and allows recovery of di�erent processes to proceed without synchronization� With our model�

processes must synchronize during recovery to be noti�ed of the reuse of the indices of any rolled

back state intervals�

Sistla and Welch have proposed two alternative recovery algorithms based on optimistic message

logging ����� One algorithm tags each message sent with a transitive dependency vector as in Strom

	�



and Yemini�s system� whereas the other algorithm tags each message only with the sender�s current

state interval index as in our system� To �nd the current recovery state� each process sends informa�

tion about its message logging progress to all other processes� after which their second algorithm

also exchanges additional messages� essentially to distribute the complete transitive dependency

information� Each process then locally performs the same computation to �nd the current recovery

state� This results in O�n�� messages for the �rst algorithm� and O�n�� messages for the second�

where n is the number of processes in the system� In contrast� our algorithm requires no addi�

tional communication beyond that necessary to log each message on stable storage� Again� this

additional communication in their system allows control of recovery to be less centralized than

in ours� However� the current recovery state must be frequently determined� so that output to

the outside world to be committed quickly� Therefore� the increased communication in Sistla and

Welch�s algorithms may add substantial failure�free overhead to the system�

��� Pessimistic Message Logging Methods

Our system is more general than that required when using a pessimistic message logging protocol�

but our model can still be applied� and our recovery state algorithm correctly �nds the maximum

recoverable system state� A simpler algorithm� though� can be used to �nd the current recovery

state when using a pessimistic logging protocol� The current recovery state is always composed of

the most recent stable state interval of each process in the system� since the protocol prevents the

system from entering any state in which the system state composed in this way is not consistent�

In the protocols used by the TARGON��	 system ���� its predecessor Auros �	�� and the Publishing

mechanism ��
�� the receiver of a message is blocked until the message is logged� and therefore� each

state interval is stable before the process begins execution in that state interval� In the sender�based

message logging protocol ���� each process is instead blocked if attempts to send a new message

when any messages it has received are not yet logged� This prevents any process from receiving

a message sent from a state interval of the sender that is not yet stable� and thus ensures that

this system state is consistent� Optimistic message logging removes the need for synchronization

between execution and message logging� and thus optimistic methods should outperform pessimistic

methods when failures are infrequent�

��� Other Methods

The general approach used by these message logging and checkpointing methods has been called

the state machine approach ����� which assumes that program execution for each input is determin�

istic and is based only on the program state at the time of the input and on the input itself� This

approach is also used by the Time Warp system ���� through its Virtual Time method ���� using

message logging and checkpointing� However� Virtual Time is designed to support the synchroniza�

tion required by particular distributed applications such as discrete event simulation� rather than

to provide general�purpose process fault tolerance�

Checkpointing has also been used without message logging to provide fault tolerance in dis�

tributed systems �
� ��� A global checkpoint� composed of an independent checkpoint for each

		



process in the system� is recorded such that this set of checkpoints forms a consistent system state�

The system can therefore be recovered by restoring each process to its state in any global check�

point� This removes the need to log all messages received in the system� but to commit output

to the outside world� global checkpointing must be performed frequently� which may substantially

degrade the failure�free performance of the system� Also� process execution may be blocked during

checkpointing in order to guarantee the recording of a consistent system state ���� Message log�

ging removes any need for synchronization during checkpointing� and allows checkpointing to be

performed less frequently without sacri�cing the ability to commit output to the outside world�

Di�erent forms of logging and checkpointing have also been used to support recovery in systems

based on atomic transactions ��	� ��� 	�� ��� Logging on stable storage is used to record state

changes of modi�ed objects during the execution of a transaction� Typically� the entire state of each

object is recorded� although logical logging ��� records only the names of operations performed and

their parameters� such that they can be reexecuted during recovery� much the same as reexecuting

processes based on logged messages� Logging may proceed asynchronously during the execution of

the transaction� but must be forced to stable storage before the transaction can commit� This is

similar to the operation of optimistic message logging and the requirement that the system state

must be recoverable before output may be committed to the outside world� Before the transaction

can commit� additional synchronous logging is also required to ensure the atomicity of the commit

protocol� which is not necessary with message logging and checkpointing methods� However� this

extra logging can be reduced through the use of special commit protocols� such as the Presumed

Commit and Presumed Abort protocols ��	��

To recover a transaction using this logging� however� the entire transaction must be reexecuted�

which may lengthen recovery times� and may prevent the recovery of transactions whose running

times exceed the mean time between failures in the system� Smaller transactions may be used to

avoid these problems� but this increases the amount of logging and the frequency of stable stor�

age synchronization� The QuickSilver system ��� addresses these problems by allowing individual

transactions to be checkpointed during their execution� This avoids the need to entirely reexecute

a transaction during recovery� but this transaction checkpoint must record a consistent state of all

processes involved in the transaction� much the same as a global checkpoint in checkpointing sys�

tems without message logging� Recording this consistent transaction checkpoint may signi�cantly

delay the execution of the transaction� due to the synchronization needed to record a consistent

state�

� Conclusion

Optimistic message logging allows messages to be logged asynchronously� without blocking process

execution� This improves failure�free performance of the system over pessimistic message logging

methods� but requires a more complex recovery procedure� Optimistic message logging methods

thus constitute a bene�cial performance tradeo� in environments where failures are infrequent and

failure�free performance is of primary concern�

	�



The recovery state algorithm and recovery procedure presented in this paper improve on earlier

work with fault�tolerance using optimistic message logging by Strom and Yemini �	�� and by Sistla

and Welch ����� Although their methods allow less centralized control of recovery� and may allow

output to the outside world to be committed earlier� they add signi�cantly more communication to

the system� Also� although these two systems checkpoint processes as in our system� they do not

consider these existing checkpoints in determining the current recovery state of the system� Our

algorithm considers both checkpoints and logged messages� and thus may �nd recoverable system

states that these other systems do not �nd� We have proven� based on our model of Section 	�

that our algorithm always �nds the maximum possible recoverable system state� Furthermore� by

utilizing these checkpointed states� some messages received by a process before it was checkpointed

may not need to be logged� as demonstrated by the example in Section ����

This work uni�es existing approaches to fault tolerance using message logging and checkpointing

published in the literature� including those using pessimistic message logging �	� �
� �� �� and those

using optimistic methods �	�� ���� By using this model to reason about these types of fault�tolerance

methods� properties of them that are independent of the message logging protocol used can be

deduced and proven� We have shown that the set of system states that have occurred during any

single execution of a system forms a lattice� with the sets of consistent and recoverable system

states as sublattices� There is thus always a unique maximum recoverable system state�

Acknowledgements

We would like to thank Rick Bubenik� John Carter� Matthias Felleisen� Jerry Fowler� Pete Keleher�

and Alejandro Scha�er for many helpful discussions on this material and for their comments on

earlier drafts of this paper� The comments of the referees also helped to improve the clarity of the

presentation�

References

��� Philip A� Bernstein� Vassos Hadzilacos� and Nathan Goodman� Concurrency Control and

Recovery in Database Systems� Addison�Wesley� Reading� Massachusetts� �����

�	� Anita Borg� Jim Baumbach� and Sam Glazer� A message system supporting fault tolerance�

In Proceedings of the Ninth ACM Symposium on Operating Systems Principles� pages ������

ACM� October �����

��� Anita Borg� Wolfgang Blau� Wolfgang Graetsch� Ferdinand Herrmann� and Wolfgang Oberle�

Fault tolerance under UNIX� ACM Transactions on Computer Systems� �������	
� February

�����

�
� K� Mani Chandy and Leslie Lamport� Distributed snapshots� Determining global states of

distributed systems� ACM Transactions on Computer Systems� ����������� February �����

	




��� Roger Haskin� Yoni Malachi� Wayne Sawdon� and Gregory Chan� Recovery management in

QuickSilver� ACM Transactions on Computer Systems� ������	����� February �����

��� David Je�erson� Brian Beckman� Fred Wieland� Leo Blume� Mike DiLoreto� Phil Hontalas�

Pierre Laroche� Kathy Sturdevant� Jack Tupman� Van Warren� John Wedel� Herb Younger� and

Steve Bellenot� Distributed simulation and the Time Warp operating system� In Proceedings of

the Eleventh ACM Symposium on Operating Systems Principles� pages ������ ACM� November

�����

��� David R� Je�erson� Virtual time� ACM Transactions on Programming Languages and Systems�

�����
�
�
	�� July �����

��� David B� Johnson and Willy Zwaenepoel� Sender�based message logging� In The Seventeenth

Annual International Symposium on Fault�Tolerant Computing� Digest of Papers� pages �
����

IEEE Computer Society� June �����

��� Richard Koo and Sam Toueg� Checkpointing and rollback�recovery for distributed systems�

IEEE Transactions on Software Engineering� SE�������	����� January �����

���� Leslie Lamport� Time� clocks� and the ordering of events in a distributed system�

Communications of the ACM� 	������������� July �����

���� Butler W� Lampson and Howard E� Sturgis� Crash recovery in a distributed data storage

system� Technical report� Xerox Palo Alto Research Center� Palo Alto� California� April �����

��	� C� Mohan� B� Lindsay� and R� Obermarck� Transaction management in the R� distributed

database management system� ACM Transactions on Database Systems� ���
����������

December �����

���� Brian M� Oki� Barbara H� Liskov� and Robert W� Schei�er� Reliable object storage to support

atomic actions� In Proceedings of the Tenth ACM Symposium on Operating Systems Principles�

pages �
������ ACM� December �����

��
� Michael L� Powell and David L� Presotto� Publishing� A reliable broadcast communication

mechanism� In Proceedings of the Ninth ACM Symposium on Operating Systems Principles�

pages �������� ACM� October �����

���� Brian Randell� System structure for software fault tolerance� IEEE Transactions on Software

Engineering� SE���	��		��	�	� June �����

���� David L� Russell� State restoration in systems of communicating processes� IEEE Transactions

on Software Engineering� SE���	��������
� March �����

���� Richard D� Schlichting and Fred B� Schneider� Fail�stop processors� An approach to design�

ing fault�tolerant distributed computing systems� ACM Transactions on Computer Systems�

�����			�	��� August �����

	�



���� Fred B� Schneider� The state machine approach� A tutorial� Technical Report TR �������

Cornell University� Ithaca� New York� June ����� To appear in Proceedings of a Workshop

on Fault�Tolerant Distributed Computing� Lecture Notes in Computer Science series� Springer�

Verlag� New York�

���� A� Prasad Sistla and Jennifer L� Welch� E
cient distributed recovery using message logging�

In Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing�

ACM� August ����� To appear�

�	�� Alfred Z� Spector� Distributed transaction processing and the Camelot system� In Yakup

Paker� Jean�Pierre Banatre� and M�uslim Bozyi�git� editors� Distributed Operating Systems�

Theory and Practice� volume 	� of NATO Advanced Science Institute Series F� Computer and

Systems Sciences� pages �������� Springer�Verlag� Berlin� ����� Also available as Technical

Report CMU�CS�������� Department of Computer Science� Carnegie�Mellon University�

Pittsburgh� Pennsylvania� January �����

�	�� Robert E� Strom and Shaula Yemini� Optimistic recovery in distributed systems� ACM

Transactions on Computer Systems� �����	�
�		�� August �����

	�


