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Abstract

We describe a parallel implementation of a genetic linkage analysis program
that achieves good speedups� even for analyses on a single pedigree and with a sin�
gle starting recombination fraction vector� Our parallel implementation has been
run on three di�erent platforms	 an Ethernet network of workstations� a higher�
bandwidth Asynchronous Transfer Mode 
ATM� network of workstations� and a
shared�memory multiprocessor� The same program� written in a shared memory pro�
gramming style� is used on all platforms� On the workstation networks� the hardware
does not provide shared memory� so the program executes on a distributed shared
memory system that implements shared memory in software� These three plat�
forms represent di�erent points on the price�performance scale� Ethernet networks
are cheap and omnipresent� ATM networks are an emerging technology that o�ers
higher bandwidth� and shared�memory multiprocessors o�er the best performance
because communication is implemented entirely by hardware� On  processors and
for the longer runs� we achieve speedups between ��� and � on the Ethernet network
and between �� and � on the ATM network� On the shared�memory multiprocessor�
we achieve speedups in the ��� to ��� range for all runs�
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� Introduction

Genetic linkage analysis is a statistical technique that uses family pedigree informa�
tion to map human genes and locate disease genes in the human genome� Several
computer packages have been written for linkage computations and most published
linkage studies use one of these programs ���� ��� ��� ��� ��� ��� ��� ��� ���� As the
ability to collect large family pedigrees with more informative genes has improved�
the magnitude of linkage computations that geneticists want to run has increased�
It is not unusual for these runs to take hours or days� and many of the cases that
geneticists would like to analyze are practically intractable on current computers�
We see two complementary approaches that should be pursued to speed up linkage
computations	 better algorithms and parallel computers�
In this paper we report on a parallel implementation of programs from the LINK�

AGE ���� ��� ��� package� which is a very popular general purpose set of linkage
analysis programs� This paper complements research conducted by two of us to�
gether with R� M� Idury in which we signi�cantly sped up the sequential algorithms
in LINKAGE ����
We focus on parallelizing the computation for a single recombination fraction

vector and for a small number of pedigrees� This approach distinguishes our work
from a previous parallel implementation of LINKMAP from the LINKAGE pack�
age ����� in which likelihood computations on di�erent pedigrees and with di�erent
recombination fraction vectors are distributed on di�erent processors� This distri�
bution is not appropriate for the most CPU�intensive of the LINKAGE programs�
called ILINK� partly because ILINK has only one starting recombination fraction
vector� Furthermore� in many disease�location applications the input contains only
a small number of pedigrees� There has also been a similar parallel implementation
of the MENDEL ���� ��� program ���� In her Master�s thesis� Vaughan parallelizes
LINKMAP for a single recombination fraction vector� but her work focuses on load
balancing issues in a heterogeneous computing environment and in the presence of
other workloads �����
Unlike both previous parallel LINKAGE implementations� we start from the

faster sequential LINKAGE algorithms ��� instead of the algorithms that had pre�
viously been distributed in the LINKAGE package� It is important to investigate
whether the new LINKAGE algorithms are also amenable to parallel implementa�
tion� so that the advantages of better algorithms and parallel computers can be
combined�
Our parallel implementation is written in a shared�memory programming style�

We evaluated our implementation on two di�erent architectures	 a shared�memory
multiprocessor and a network of workstations� On the network of workstations we
used TreadMarks� an experimental distributed shared memory system under devel�
opment at Rice University ���� Distributed shared memory is a software runtime
system that enables processes executing on di�erent workstations to share mem�
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ory� even though the hardware connecting the workstations only provides message
passing� We experimented with two di�erent technologies for connecting the work�
stations	 a standard Ethernet and an ATM 
Asynchronous Transfer Mode� network�
which is rapidly gaining popularity because of its increased bandwidth�
We seek to address three interdisciplinary questions	

�� Is it possible to parallelize linkage computations that have as input only a
small number of pedigrees and a small number of initial parameter vectors�

�� Can the new sequential algorithms ��� be e�ectively parallelized�

�� Can good speedups be achieved for long linkage computations on a network
of workstations� which is much cheaper and more commonly available than a
shared�memory multiprocessor�

This paper is organized as follows� In Section �� we explain the basics of linkage
analysis and the LINKAGE programs� In Section � we give a short outline of the
sequential algorithm for computing the likelihood� In Section �� we describe our
new parallel algorithm� In Section �� we describe the parallel computing systems on
which we tried our implementation� In Section �� we report the performance of our
implementation on some sample data� We conclude with a discussion section�

� Summary of LINKAGE

The fundamental goal in linkage analysis is to compute the probability that a recom�
bination occurs between two genes G� and G�� The closer the genes are� the smaller
the probability will be� A variety of theories connect this probability to the actual
distance between the two genes on the chromosome� Two genes are said to be linked
if the recombination probability between them is less than ��� The recombination
probability is denoted by �� A thorough treatment of genetic linkage analysis is
given in Ott�s monograph ����� We review a few particulars� especially concerning
the LINKAGE programs� that are relevant to our parallel implementation�
The LINKAGE package contains four related programs LODSCORE� ILINK�

LINKMAP� and MLINK� we shall discuss the �rst three� The improved sequential
algorithms in ��� are applicable to all the programs�
The LODSCORE program searches for a maximum likelihood estimate �� of the

recombination probability� The likelihood is computed with respect to the input
pedigree
s�� Given a set of loci� LODSCORE estimates � for each pair of loci� but
LODSCORE does not analyze more than two loci simultaneously�
The notion of recombination can be generalized to more than two loci� Suppose

G�� G�� � � � � Gk are multiple loci occurring in that order� Then we can de�ne a vector

��� ��� � � � � �k���� where �i is the recombination fraction between loci Gi and Gi���
The ILINK program searches for a maximum likelihood estimate of the multilocus
� vector� Both LODSCORE and ILINK start from a single initial estimate of the
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recombination fraction� and use an iterative procedure called GEMINI ��� to �nd
the maximum likelihood estimate ��� Like most iterative procedures� GEMINI can
only guarantee to �nd a local optimum and not a global optimum�
In contrast� LINKMAP takes multiple values of the � vector and computes the

likelihood for each one� The computation of the likelihood for each � and for each
pedigree are essentially independent except for some shared input�output� The
parallel implementation of LINKMAP ���� takes advantage of this observation and
distributes likelihood computations for separate pedigrees and � vectors on di�erent
processors� The main challenge is to balance the load among the di�erent processors�
so that each processor is working most of the time�
Since LODSCORE and ILINK start with only one � vector it is not straight�

forward to do subcomputations for di�erent vectors on di�erent processors� In
applications where the goal is to locate a disease gene it is our experience that the
number of di�erent pedigrees tends to be small and most of the computation time
is spent on just one or two pedigrees� Therefore� we need a parallelization strategy
that distributes the likelihood computation for a single pedigree and a single value
of the � vector�
We focus on ILINK because that is the program where the runs tend to be

longest and thus where parallel speedup is most needed� but our techniques are
applicable to the other programs as well� Almost all the code we modi�ed is shared
by all the LINKAGE programs�

� Review of Sequential Likelihood Algorithm

The basic structure of the likelihood computation as done in LINKAGE is outlined
in the section on Numerical and Computerized Methods in ����� The following
summary describes LINKAGE ��� ���� and its faster version ����
Given a �xed value of �� the outer loop of the likelihood evaluation iterates over

all the pedigrees calculating the likelihood for each one� Within a pedigree� the
program visits each nuclear family and updates the probabilities of each genotype
for each individual� Associated with each individual is an array genarray indexed
by genotype numbers� The entry genarray�j� initially stores the probability that
the individual has the phenotype associated with genotype j given the genotype j

normally this will be � or �� except in cases of variable penetrance�� There may
be several possible phenotypes if the individual�s phenotype is incomplete in the in�
put� After traversing the part of the pedigree including the individual� genarray�j�
stores the probability that the individual has genotype j and its associated pheno�
type� conditioned on the recombination fraction and on the genotypes of relatives
already visited in the traversal�
Each update of a nuclear family updates the probabilities for either one parent

conditioned on the spouse and all children� or updates one child conditioned on both
parents and all the other siblings� In both of these update situations the algorithm
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starts with a double nested loop that iterates over the genotypes of the two parents�
one loop per parent� One of the improvements made in ��� is that in the case where
there is only one child� the bulk of the computation can be transformed into two
disjoint loops� one on each parent� instead of a double nested loop� A separate gene
array is used to accumulate the contributions from each pair of parental genotypes�
The only arithmetic operations done in accumulating gene are additions and multi�
plications of non�negative numbers� and the contributions for each pair of parental
genotypes are added together� At the end of the loop� the new value of genarray�i�
is set to the old value multiplied by gene�i� for all genotypes i� This is� in e�ect�
an application of Bayes� Theorem that converts the original unconditioned value of
genarray�i� into a value that is conditioned on the part of the pedigree that has
already been visited�
It will help to think of the double loop iteration space as a square S whose side

length is the number of genotypes� The point 
i� j� in the square corresponds to the
�rst parent having genotype i and the second having genotype j�
There are two biological facts about the genarrays that are relevant both to

the improved sequential algorithms and to our parallelization strategy� First� the
genarrays tend to be sparse because most of the possible genotypes can be ruled
out based on the observed phenotype data� One way in which sparsity is used in
the improved sequential algorithms is to precompute which rows and columns of
S correspond to possible genotypes of each parent� leaving a much smaller iter�
ation rectangle R� Ignoring procedure boundaries� we can think of the loops in
the sequential likelihood calculation as follows� More indentation indicates deeper
nesting�

For each pedigree
For each nuclear family

For double loop over rows and columns of R
Do updates to genarray

As a result� most of the computation time is spent on probability updates for
individuals whose genarrays are not sparse� Such individuals are referred to as
unknowns because we do not know their phenotype at some of the loci being studied�
The second useful biological fact is that the genotypes can be partitioned into

equivalence classes by a relation we call the isozygote relation ���� Two genotypes
are isozygotes if at each locus they have the same allele
s�� Isozygotes di�er in the
placement of the alleles on each haplotype� i�e�� one isozygote could have A� on the
�rst haplotype and A� on the second� while another has A� on the �rst haplotype
and A� on the second� Among other things� the computations for di�erent isozygous
genotypes are very similar� and some parts of the computation can be performed
once for all genotypes in the same isozygote class�

�



� Parallel Algorithm

In this section we describe our strategy for parallelizing ILINK� The same strategy
can be applied to LODSCORE and LINKMAP� The main theme is that some un�
derstanding of the underlying biology� in particular� the ideas of sparsity and similar
patterns of heterozygosity� are essential to designing a good strategy�
Recall that ILINK takes only one starting � vector and ILINK may have only

one input pedigree� Although two of the data sets we use in the next section have
more than one pedigree� the computation time is dominated by one or two pedigrees�
Therefore� we cannot parallelize by doing di�erent likelihood calculations on di�erent
machines� but must parallelize within the calculation of the likelihood at a speci�c
� and a speci�c pedigree�
The genotype probability updates for di�erent individuals are naturally sequen�

tial because the updated probabilities for the ith individual are dependent on the
updates for all the previous individuals visited� Therefore� we want to parallelize
each individual�s probability update�
We mention as an aside that the strict sequential nature of the updates is speci�c

to the probability update algorithms used in LINKAGE� but only partially inherent
in the original update algorithm of Elston and Stewart ���� Elston and Stewart
proposed an update order that was strictly bottom�up� which would allow some
updates to be done in parallel� Because of space limitations and other practical
implementation concerns� LINKAGE uses an update order with the invariant that
the nuclear families whose updates have been completed always form a contiguous
subtree of the pedigree� If we want to keep this order� then we cannot update the
probabilities in nonadjacent parts of the pedigree in parallel�
The algorithm is parallelized by splitting up the iteration space over the rectangle

R among the available processors� The single gene array used in the sequential
algorithm is replaced by a number of gene arrays� each one local to a particular
processor� Each processor then accumulates in its local gene array its contributions
to the updated genarray� When a processor �nishes computing its contributions�
it waits until all the processors have completed their work� Then one processor
obtains the contributions to gene from each processor� sums them together� and
uses the resulting value of gene to update genarray in the same way as in the
sequential algorithm� Since the contributions for each pair of parental genotypes
are simply added together� they can be accumulated locally by each processor and
summed together at the end� By using a local array to compute the contributions
and summing them at the end� we avoid communication and synchronization at
each update�
In order to achieve good speedups� R needs to be partitioned in a way that

balances the load among the di�erent processors� Di�erent points in R may require
di�erent amounts of computation� For simplicity� suppose that we decide which
processor gets the point 
G�� G�� in R based only on the �rst parent�s genotype�
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leading to the following loop structure	

For each pedigree
For each nuclear family

Split up rows of R into p sets
For each processor

Do updates to gene for assigned rows
Synchronize processors to sum update together

We use a fact relating the computation time to the underlying biology in order to
distribute the points in R among the processors with a good load balance� If G� and
G�
� have the same pattern of heterozygosity and G� and G

�
� have the same pattern of

heterozygosity� then the sequence of arithmetic operations for the update at 
G�� G��
is similar to that for 
G�

�� G
�
��� Therefore� we distribute the genotypes among the

processors� so that for each heterozygosity pattern� the possible genotypes with that
pattern are distributed evenly among the processors� For reasons unrelated to our
parallel implementation� the genotypes are already ordered so that all the genotypes
with the same heterozygosity pattern are consecutive�
Suppose that H�� H�� � � � are the possible genotypes of the �rst parent� To bal�

ance the load we assign the genotypes to processors in a round�robin or striped
fashion	 H� goes to processor �� H� to processor ��� � �� Hp to processor p� Hp�� to
processor �� Hp�� to processor �� � � �� H�p to processor p and so on� If the num�
ber of possible genotypes is large� then most of the consecutive sets of p items will
have the same heterozygosity pattern� resulting in good load balancing� When there
is a double loop� we do a striped assignment for the parent corresponding to the
outer loop and the rows in R� within each row� all the genotype pairs in that row
corresponding to di�erent columns get assigned to the same processor� When we
have two separate loops in the one�child case� we get two one�dimensional iteration
spaces� and we do a striped assignment for each parent separately�
There are a few points in the computation where all the processors must syn�

chronize and share their data� One is at the distribution of points in R or the
one�dimensional spaces to all the processors� and another occurs just before we sum
the contributions to gene from each processor� In the case where we are updating
a parent based on its spouse and children� there is one more synchronization point
needed so that an intermediate table can be propagated to all processors� This ta�
ble stores for each haplotype� the probability that the second parent 
the one in the
inner loop� passes that haplotype on to a child� This table was introduced in ��� to
speed up the sequential computation�
We applied the idea of sparsity one more time to further improve performance�

Recall from the section discussing the sequential algorithm that most of the running
time in the likelihood calculation is spent on those nuclear families where at least
one parent�s genarray is not sparse� This means that R will have a large area�
We found that when R is su�ciently small� it is actually detrimental to perform
the updates in parallel because of the overhead involved in data distribution and





synchronization� Therefore� for the runs on a network of workstations we de�ned a
threshold for the size of R� if R is smaller than the threshold� we do the update for
that nuclear family using only one processor� For the experiments we report later�
we set the threshold to be the sum of the two sides of R � ��� for the one�child
case� or the product of the two sides of R � ���� for the many�child case� We did
not experiment extensively with di�erent thresholds� There were a small number
of nuclear families where the size of R was at or near the threshold� In almost all
cases the size of R is much smaller or much larger than the threshold� Thus minor
variations in the threshold do not result in noticeable changes in performance� When
running on a shared�memory multiprocessor� the cost of synchronization is minimal�
and hence the threshold was set to ��

� Methods

We evaluated parallel ILINK on two di�erent types of parallel computers	 a network
multicomputer and a shared�memory multiprocessor� A network multicomputer is
simply a cluster of ordinary workstations connected by a general�purpose local area
network� such as ATM� Ethernet� or FDDI 
which stands for Fiber Distributed
Data Interface and is a ��� Megabit�s local area network in which the stations are
connected in the form of a ring�� In contrast� a shared�memory multiprocessor is
a single machine containing several processors that are connected by a specially�
designed bus or dedicated network�
These two types of parallel computers present di�erent tradeo�s between cost

and performance� On one hand� network multicomputers are cheaper� In fact� in
many laboratories� the required hardware for a network multicomputer is already
present� On the other hand� shared�memory multiprocessors are faster� because they
implement communication and synchronization entirely by hardware� On worksta�
tions� a large software overhead is associated with sending and receiving messages
over the network� For parallel computations where the individual processors commu�
nicate with each other frequently� shared�memory multiprocessors typically achieve
better performance� The advent of faster general�purpose networks is� however�
narrowing the performance gap between workstation networks and shared�memory
multiprocessors�
Besides di�erences in cost and performance� shared�memory multiprocessors and

workstations also typically present di�erent communications interfaces� In a net�
work multicomputer� processors communicate by passing messages with send and
receive operations� A shared�memory multiprocessor supports communication by
reading and writing shared memory� Fundamentally� neither mechanism is more
powerful than the other� Either mechanism can be used to simulate the other
through software� However� most sequential programs� including ILINK� are more
easily parallelized in terms of shared memory� To use message passing� the program�
mer must write additional code to copy data into and out of message bu�ers and
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perform send and receive operations�
Motivated by the di�culty of writing message passing programs� we have devel�

oped a software distributed shared memory 
DSM� system for network multicom�
puters called TreadMarks ���� In essence� TreadMarks provides a shared memory
abstraction to the programmer� and implements this abstraction e�ciently using
the underlying message passing system �� ��� Thus the programmer writes the pro�
gram as if it were intended for a shared�memory multiprocessor� but the TreadMarks
system enables the program to run on a network multicomputer�
At the present time� TreadMarks is still under development� We expect it to be

ready for distribution some time in ����� TreadMarks will be made available at low
cost to universities and nonpro�t institutions� At that time� we intend to distribute
the parallel LINKAGE code that runs on top of TreadMarks�
The network multicomputer used to perform our evaluation of parallel ILINK

consists of  DECstation��������� workstations� each with �� Mbytes of memory�
running the Ultrix version ��� operating system� All of the workstations are con�
nected to an Ethernet and a high�speed ATM network� TreadMarks can utilize
either the Ethernet or the ATM network� The interface for Ethernet is a standard
component of the workstation� The interface for ATM is a Fore Systems TCA����
network adapter card supporting communication at ��� Megabit�s�
The shared�memory multiprocessor used to perform our evaluation of parallel

ILINK is a Silicon Graphics Iris �D��� with �� Mbytes of memory running the
IRIX Release ����� System V operating system� This machine has  processors that
communicate via a dedicated bus�
An important aspect of our evaluation is that the DECstation��������� and

the SGI Iris �D��� use the same type of processor running at the same speed� In
addition� we used the same compiler� gcc ����� with �O �ag for optimization� on both
machines� The only signi�cant di�erence between the two parallel computers is the
method for implementing shared memory	 dedicated hardware versus software on
message�passing hardware�

� Results

We present speedups for parallel LINKAGE with several input data sets� Unipro�
cessor execution times are given as well so that execution time di�erences may be
inferred� We use two di�erent network types � the commonly available Ethernet net�
works and the emerging ATM networks� The performance obtained on a network
of workstations is then compared to the performance on a shared�memory machine
with identical processor power�
We use two disease data sets from ��� and a new data set	

� RP��	 data on a large family� UCLA�RP��� with autosomal dominant retini�
tis pigmentosa 
RP�� from the laboratory of Dr� Stephen P� Daiger at the
University of Texas Health Science Center at Houston� This pedigree has �
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generations with �� individuals containing � marriage loops ���� There are �
individuals that are unknown at some loci� As shown in ���� this pedigree had
to be split into three pieces because computation on the whole family together
was prohibitively long� RP���� denotes the analysis with the family split in
three pieces�

� BAD	 data on a portion of the Old Order Amish pedigree ��� 
OOA ����� with
bipolar a�ective disorder 
BAD� from the laboratory of Drs� David R� Cox and
Richard M� Myers at the University of California at San Francisco� This pedi�
gree spans � generations with �� individuals and contains � marriage loop ����
Data is available for three loci� the disease locus 
number �� and two others�
�� individuals are unknown at locus � and those same �� plus � more are
unknown at locus ��

� CLP	 Data on �� families with autosomal dominant nonsyndromic cleft lip and
palate 
CLP� from the laboratory of Dr� Jacqueline T� Hecht at the University
of Texas Health Science Center at Houston� Diagrams of the families are shown
in ���� Subsequent to that paper data was collected on � more individuals aug�
menting � of the families� The families include ��� individuals in all� We list
for each family� the identifying number given in ���� the number of individuals�
the number of generations� and the number of individuals that are unknown at
at least one of the loci we used	 �
���������� 
���������� 
���������� 
����������

���������� 
��������� 
��������� 
������������ 
������������� 
������������

����������� 
������������� The computation time is dominated by pedigrees
���� and ���� because of the larger size and the unknowns� although pedigree
���� has a marriage loop�

The loci chosen for the RP���� data set have an allele product of ������ Those
for the BAD and CLP data sets have allele products of �� �� �� and �� �� �� ��
respectively� In all cases� the ��allele locus is the disease locus� and these runs
represent real runs one might want to execute in locating the disease gene�
In addition� we also compare the program on di�erent sets of loci from the same

pedigree set� In particular� we use three di�erent sets of loci from the RP���� data
set� with allele products ������ �������� and ������ This comparison shows how
the running time changes as the allele product changes� but other factors stay the
same� This is motivated by a common usage pattern for the LINKAGE programs�
Once a set of pedigree information is collected� it is common for geneticists to do
many linkage analysis runs on it� changing the set of loci each time�
The speedup �gures are based on one�processor execution times for the faster

version of ILINK used in the tests for ���� but run on a DECstation������ Table �
presents the uniprocessor execution times on the DECstation����� workstations�
All execution times are reported in seconds� In all the speedup graphs 
Figures �
to �� the horizontal axis represents the number of processors and the vertical axis
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Figure �	 Speedup on an Ethernet Network � Di�erent pedigrees

represents the speedup� The parallel version described here 
with the code reorga�
nization for load balancing and extra TreadMarks code� ran in approximately the
same time on one processor as the sequential version of the code� The di�erence
in running time was always a few seconds compared to the thousands of seconds
of total execution time� Thus the use of TreadMarks code does not slow down the
execution for one processor�
Figure � shows speedups for a run from each of the three data sets described on

an Ethernet network� In Figure � we plot the speedups obtained on an Ethernet
network using the three di�erent sets of loci from the RP���� data set�
Figures � and � present speedups using an ATM network in place of the Ethernet

network with the same runs as in the previous �gures� While the performance of
the program on an Ethernet network is reasonable� better speedups are obtained
with the ATM network� The faster network removes part of the communication
bottleneck� closing the gap in performance between di�erent data sets and loci�
To determine the di�erence between the performance obtained using a network

of workstations and the performance that is possible on a hardware shared�memory
system� we present results for the same program running on an SGI shared�memory
multiprocessor� Figures � and � show that the speedups achieved are slightly better
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Figure �	 Speedup on an Ethernet Network � RP���� pedigree� di�erent loci
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Figure �	 Speedup on an ATM Network � Di�erent pedigrees
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Figure �	 Speedup on an ATM Network � RP���� pedigree� di�erent loci

RP���� RP���� RP���� BAD CLP
�x�x� �x�x�x� �x�x� �x�x� �x�x�x�

��� ��� �� ��� ���

Table �	 Uniprocessor Execution Times in Seconds on an SGI Multiprocessor

than those obtained using the ATM network for the larger problems� On the smaller
problems� the SGI machine does much better� The SGI uniprocessor execution times
are presented in Table ��
Two factors contribute to the less than perfect speedup observed in the experi�

ments	 load imbalance and � on TreadMarks � communication overhead�
Perfect load balancing cannot be achieved because of imperfect knowledge of the

combined genotypes possible for the two parents� While our load balancing strategy
takes advantage of the sparsity of each parent�s genarray� it may be the case that
a pair of genotypes 
i� j� is not simultaneously possible� although i is possible for
the �rst parent and j is possible for the second parent� An alternative strategy
would be to determine the possible combinations on the master processor before
distributing the work� The increase in sequential computation would� however�
outweigh the bene�ts of better load balancing� Load imbalance as a result of the
unequal assignment of possible genotype pairs is present to some degree in all the
data sets�
The problem of deciding whether a pair of parental genotypes 
i� j� is compatible

with the children is di�erent from the problem of genotype elimination as addressed
in ���� or in the unknown preprocessor program that is part of LINKAGE� The
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distinction can best be illustrated with a trivial one�locus� two�allele� one�child ex�
ample� Let the parents be p and q and the child be r� Suppose that for each of p
and q the possible genotypes are f�j�� �j�g and that r�s genotype is known to be �j��
From this information it can be inferred that it is not simultaneously possible that
both p and q have genotype �j�� but it is possible that either one has genotype �j��
while the other has genotype �j�� Such a situation is detected within the likelihood
calculation itself and not by any genotype elimination algorithm� Genotype elimi�
nation algorithms only eliminate genotypes that an individual cannot have� they do
not eliminate combinations of genotypes that collections of individuals cannot have
simultaneously� It would require too much storage to precompute the set of pos�
sible genotype combinations for all nuclear families� even for moderate�size ��locus
problems�
Communication overhead adds to the decline in speedup on TreadMarks� The

e�ect of communication overhead on the speedup depends on the input pedigree and
the loci for which the � vector is being estimated� As the number of possible alleles
increases� the length of the computation increases with little change in the amount
of data communicated� resulting in improved speedups� The run with � loci takes
much longer because it takes many more likelihood estimates to converge� but the
time per likelihood estimate is comparable to the large ��locus run�
In addition� the presence of loops in the pedigreee can further increase the com�

munication rate� One example is BAD� Much of BAD�s complexity comes from the
presence of the loop in the pedigree rather than a high allele product� The way that
LINKAGE handles loops in the pedigree is that the input format designates one
individual to be the loop breaker� For each evaluation of the likelihood estimate�
LINKAGE does a separate traversal of the pedigree for each genotype that the loop
breaker individual may have� Thus� one evaluation of the likelihood estimate may
include many pedigree traversals� In each traversal each nuclear family update is
parallelized as before� resulting in many small pieces of work and large communica�
tion overhead� For more details on how LINKAGE handles loops see pages �������
of �����
As discussed in the section describing the parallel algorithm� when the size of

the reduced iteration rectangle R drops below a threshold� the TreadMarks version
performs the computation sequentially to avoid high communication overheads� Al�
though this method reduces communication� it leads to further load imbalance in
the TreadMarks version� This contributes to our algorithm�s poor performance on
BAD� This explanation is supported by the imbalance in synchronization wait times
between the master processor that performs the sequential computation and all the
other processors 
a ratio of � to ��� on average in wait times at  processors on
the ATM network�� However� performing all the computation in parallel only re�
sults in worse speedup because of the small amount of computation relative to the
communication overhead�
For each of the runs and data sets on the ATM network� Table � provides the
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� Procs RP���� RP���� RP���� BAD CLP
�x�x� �x�x�x� �x�x� �x�x� �x�x�x�

� msgs�sec �� �� �� ��� ��
 waittime ��� ��� ��� ���� ���

� msgs�sec ��� ��� �� ��� �
 waittime ���� ���� ��� ���� ��

 msgs�sec ���� ���� ���� ��� ���
 waittime ���� ���� ���� ���� ����

Table �	 Overhead Statistics on an ATM Network

average number of messages per second 
msgs�sec�� and the percentage of total run�
ning time that each processor on average spends waiting at synchronization points

�waittime�� The number of messages per second and the percentage wait time
increase with increasing number of processors� explaining the decreasing slope of
the speedup curves�
The data in Table � also allows us to derive a quantitative estimate of the

relative contributions of load imbalance and communication overhead to the decline
in speedup on both the SGI and the ATM network� The formula

speedup ! � 
�� waittime�����

estimates the speedup if load imbalance were the only limiting factor and communi�
cation overhead were negligible� Focusing on the results with  processors� Table �
shows that this predicted speedup matches very well with the observed speedup on
the SGI for all data and input sets� In order to estimate the e�ect of communication
overhead on the speedup� we assume that the reduction in speedup is linear in terms
of the number of messages per second� or

speedup ! � 
�� waittime������ F�msgs�sec

where F is determined by a least squares �t� Again� the match between the predicted
speedups and the speedups observed on the ATM is remarkable 
see Table ��� These
derivations� although approximate� con�rm our basic conclusions	 Speedup on the
SGI is limited by load imbalance� while speedup on the ATM network is limited by
a combination of load imbalance and communication overhead�
The experiments show that our parallel algorithm does a reasonable job of bal�

ancing the load between processors� and can achieve good speedups on runs that have
a large computation�to�communication ratio� While some speedup can be obtained
using the Ethernet� performance closer to that of a shared�memory multiprocessor
is possible using an ATM network on large runs� For small runs� such as BAD� it is
not clear that a parallel implementation of any sort is of much bene�t�
ATM networks are gaining popularity because they are suitable for use in both

high�performance local�area and wide�area networks� Our experiments show that
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�x�x� �x�x�x� �x�x� �x�x� �x�x�x�

Estimated speedup ���� ���� ���� ���� ����
Observed speedup ���� ���� ���� ���� ����

Table �	 Estimated and Observed Speedup on SGI	  Processors

RP���� RP���� RP���� BAD CLP
�x�x� �x�x�x� �x�x� �x�x� �x�x�x�

Estimated speedup ���� ���� ���� ���� ���
Observed speedup ���� ��� ��� ���� ����

Table �	 Estimated and Observed Speedup on ATM Network	  Processors

for linkage analysis� the performance of a shared�memory multiprocessor can be
obtained at a fraction of the cost� without compromising the convenient shared
memory abstraction presented to the programmer�
To be a little more quantitative about price�performance� in the Fall of �����

the cost ratio was approximately �	�	� comparing  DECstations connected by Eth�
ernet�  DECstations connected by ATM� and the SGI �D���� respectively� with
prices falling for the ATM network and the shared�memory multiprocessor� Aver�
aged over all data and input sets� the speedups achieved on  processors are ���
for the Ethernet� ��� for the ATM network� and ��� for the SGI� Although such
comparisons need to be taken with a grain of salt� the Ethernet currently o�ers the
best price�performance ratio� while the SGI o�ers the best performance�

� Discussion

The structure of general pedigree linkage computations using the likelihood method
does not lend itself very well to vector processing or �ne grain parallel processing�
A coarse�grain parallel machine� where a large memory is provided with each pro�
cessor� is more suitable for programs such as LINKAGE� We have shown that using
TreadMarks� a new distributed shared memory system� has resulted in signi�cant
performance improvement on all types of genetic linkage analysis problems� This
includes problems involving a small number of pedigrees� Large single pedigrees fre�
quently are the basis of disease studies and require some of the longest computation
times� Performance results for this type of problem are speci�cally covered in the
previous section�
Genetic linkage analysis is computationally intensive� With the recent growth

in the number and informativeness of genetic markers� computation times have in�
creased dramatically� Our research into ways to reduce computation time previously
led to improvements in the sequential algorithms� Here� we demonstrate a general
purpose method for processing the LINKAGE programs in parallel on a network
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of workstations that further reduces computation time as the number of available
processors grows�
We presented a parallelization strategy that works even for single pedigrees and

single starting vectors� Our strategy makes good use of the underlying biological
theory and focuses on getting good speedup for long runs� Nevertheless� we are ex�
ploring some modi�cations of our strategy in the hopes of further improving parallel
performance� We give three examples�
When ILINK estimates the partial derivatives of the likelihood function in mul�

tilocus analysis� a separate likelihood evaluation is done for each dimension of the �
vector� These evaluations could be done in parallel�
The pedigree traversal and nuclear family updates are very similar for each choice

of �� Therefore� it might make sense to measure the time of a given distribution of
work among the processors at one function evaluation and use the timing results to
better distribute the work on the next function evaluation�
The �nal idea in our parallelization strategy was to do a threshold test on the

size of the iteration space R� Based on the result of the test we either used all
processors or only one processor to do that update� One might consider a variety
of options for how many processors to use 
e�g�� �� �� �� or more� depending on the
size of R�
As shown above� the parallel implementation provides a reasonable speedup for

the number of available processors� Speedups improve as the size of the computation
involved increases� Because the two methods of speed improvement� algorithmic
and now parallel processing are implemented in completely independent ways� the
speedups compound� Combining the two sources of speedup� we can consistently
get improvements by a factor of at least �� on long runs comparing the original
ILINK from LINKAGE ��� running on � processor against the new ILINK running
on  processors with TreadMarks� On some runs we get a combined speedup of over
����
As TreadMarks becomes a mature software package we intend to organize large

numbers of workstations on our local network for processing long linkage analyses�
Because most workstations have a large amount of free cycles available� especially
at night and on weekends� we would make use of these for linkage problems� If our
local e�orts are successful� we may wish to expand the network more broadly for
very large problems and organize a linkage analysis consortium over Internet�
This e�ort con�rmed our experience that a synthesis of the biology and computer

science knowledge relevant to the problem is necessary to make linkage analysis soft�
ware run much faster� We concur with the authors of ���� that to parallelize the
LINKAGE programs e�ectively� the programmer must put explicit parallel instruc�
tions in the programs using knowledge of the underlying genetic application domain�
Automatic parallelization tools and blind reliance on massive hardware installations
are no substitute for human reasoning about the genetics and the algorithms�
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