
An Evaluation of
Software�Based Release Consistent Protocols

Pete Keleher

Department of Computer Science
The University of Maryland
College Park� MD �����

Alan L� Cox� Sandhya Dwarkadas� Willy Zwaenepoel

Department of Computer Science
Rice University

Houston� TX �����	�
��

Abstract

This paper presents an evaluation of three software implementations of release
consistency� Release consistent protocols allow data communication to be aggre	
gated� and multiple writers to simultaneously modify a single page� We evalu	
ated an eager invalidate protocol that enforces consistency when synchronization
variables are released� a lazy invalidate protocol that enforces consistency when
synchronization variables are acquired� and a lazy hybrid protocol that selectively
uses update to reduce access misses�

Our evaluation is based on implementations running on DECstation	�������s
connected by an ATM LAN� and an execution	driven simulator that allows us to
vary network parameters� Our results show that the lazy protocols consistently
outperform the eager protocol for all but one application� and that the lazy hybrid
performs the best overall� However� the relative performance of the implementa	
tions is highly dependent on the relative speeds of the network� processor� and
communication software� Lower bandwidths and high per byte software commu	
nication costs favor the lazy invalidate protocol� while high bandwidths and low
per byte costs favor the hybrid� Performance of the eager protocol approaches
that of the lazy protocols only when communication becomes essentially free�

This research was supported in part by the National Science Foundation under Grants CCR���������

CCR��	��

�� CDA��			���� and CDA����

��� by the Texas Advanced Technology Program under Grant

��
�
��� and by a NASA Graduate Fellowship�

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� Introduction

Software distributed shared memory �DSM� ���� enables processes on di�erent machines

to share memory� even though the machines physically do not share memory� DSM is an

appealing approach for parallel programming on networks of workstations� because most

programmers �nd it easier to use than message passing� which requires them to explicitly

partition data and manage communication�

Early DSM systems su�ered from performance problems because they required large

amounts of communication� These early designs implemented the shared memory abstraction

by imitating consistency protocols used by bus	based hardware shared memory multiproces	

sors� The low latencies on these bus	based machines allowed them to implement sequential

consistency �SC� ����� but with the much higher latencies present on networks sequential

consistency causes serious ine�ciencies� Furthermore� given the large consistency units in

DSM �virtual memory pages�� false sharing was a serious problem for many applications�

In order to address the performance problems with earlier DSM systems� relaxed memory

models� such as release consistency �RC� �
�� were introduced into DSM systems ���� With

very little change to the programming model� RC permits several runtime optimizations that

reduce the amount of communication� In particular� it allows the protocol to aggregate the

transmission of shared memory writes until a later synchronization point� Furthermore� it

permits the use of multiple�writer protocols ���� allowing multiple� simultaneous writes by

di�erent processors to the same page� thereby reducing the impact of false sharing�

This paper evaluates three di�erent software implementations of RC on a network of

workstations� an eager invalidate�EI� protocol� a lazy invalidate�LI� protocol� and a lazy

hybrid�LH� protocol� Eager protocols enforce RC when a synchronization variable is released�

Lazy protocols enforce RC when a synchronization variable is acquired� Both EI and LI

invalidate remote copies of modi�ed data� while LH uses a combination of invalidate and

update� We do not consider eager update or pure lazy update protocols� because earlier

work ��� has shown that eager update performs comparably to EI� and lazy update performs

�

substantially worse than LI or LH�

We explore the trade	o�s between these three protocols by measurement and simulation�

EI involves less computational overhead� but for most applications it sends more messages

and data than LI and LH� Comparing the two lazy protocols� LI is more e�cient in terms

of computation and the amount of data moved� but it sends more messages than LH�

Our measurement results were obtained using TreadMarks� an e�cient user	level DSM

system for standard Unix systems� By default� TreadMarks uses LI� but we modi�ed the

implementation to also include the other two protocols� Our hardware is a network of

DECstation	��������s that are connected by a ���	Mbps switch	based ATM LAN� Overall�

the results show that a software DSM has good performance for a variety of programs� LH

achieves speedups of ��� for SOR� ��� for TSP� ��
 for ILINK� ��� for IS� ��� for MIP� ���

for Water� ��� for FFT� and ��� for Barnes	Hut� The performance of LI is comparable� EI

generally performs worse� The di�erences are largest for Barnes	Hut� IS� TSP� and Water�

EI performs better for FFT than either LI or LH�

We then vary the communication overhead and the bandwidth using a parallel� execution	

driven simulator� In order to accurately compare the di�erent protocols� our simulations

include the execution of the actual TreadMarks code� This simulator was validated against

the implementation and was found to be accurate to within ���� With the exception of

FFT� the lazy protocols consistently outperform EI� At low bandwidth� regardless of the

per byte software communication cost� the LI protocol outperforms the others because it

sends less data� LH performs better in cases of relatively static sharing behavior where

runtime predictions of access patterns are possible� especially at a high bandwidth or a low

per byte software communication cost� In this case� the elimination of access miss messages

outweighs the cost of transferring some unused data� the cost of which is decreased at the

higher bandwidths�

The outline of the rest of this paper is as follows� Section � elaborates on the de�nition

of RC and the three protocols� EI� LI� and LH� Section � summarizes some of the implemen	

�

tation aspects� The resulting performance is discussed in Section �� In Section �� we present

a simulation	based analysis of the trade	o�s among the protocols as the ratio of network to

processor speed� as well as the cost of communication are varied� We discuss related work

in Section �� and conclude in Section ��

� Release Consistency Protocols

Release consistency requires less communication than the canonical memory model� sequen	

tial consistency ����� but provides a very similar programming interface� An eager imple	

mentation ��� of release consistency enforces consistency when a synchronization variable is

released� In contrast� lazy implementations of release consistency enforce consistency when

synchronization variables are acquired� Strictly speaking� lazy protocols implement a slight

weaker memory model than EI� However� the di�erence is irrelevant for all of the programs

in this study except TSP� where EI�s memory model is slightly favored� False sharing is

another source of frequent communication in DSM systems� The use of multiple�writer pro	

tocols addresses this problem� Multiple	writer protocols require the creation of di�s� data

structures that record updates to parts of a page�

��� Release Consistency

RC permits a processor to delay making its changes to shared data visible to other processors

until certain synchronization accesses occur� Shared memory accesses are categorized either

as ordinary or synchronization accesses� with the latter category further divided into acquire

and release accesses� In order for an RC protocol to guarantee correctness� all synchronization

must go through system	visible synchronization operations� Acquires and releases roughly

correspond to synchronization operations on a lock� but other synchronization mechanisms

can be implemented on top of this model as well� For instance� arrival at a barrier is

represented as a release� and departure from a barrier as an acquire� Essentially� RC requires

�

ordinary shared memory updates by a processor p to become visible at another processor q�

no later than the time when a subsequent release by p becomes visible at q�

In contrast� in SC memory� the conventional model implemented by most snoopy	cache�

bus	based multiprocessors� modi�cations to shared memory must become visible to other

processors immediately� Programs written for SC memory produce the same results on an

RC memory� provided that �i� all synchronization operations use system	supplied primitives�

and �ii� there is a release	acquire pair between con�icting ordinary accesses to the same

memory location on di�erent processors �
�� In practice� most shared memory programs

require little or no modi�cations to meet these requirements�

Although execution on an RC memory produces the same results as on an SC memory for

the overwhelming majority of the programs� RC can be implemented more e�ciently than

SC� In the latter� the requirement that shared memory updates become visible immediately

implies communication on each write to a shared data item for which other cached copies

exist� No such requirement exists under RC� The propagation of the modi�cations can be

postponed until the next synchronization operation takes e�ect�

��� Multiple�Writer Protocols

To address the problem of false sharing � concurrent accesses to unrelated items in the

same page � all of the protocols described in this paper are multiple�writer protocols� In a

multiple	writer protocol two or more processors can simultaneously modify their local copies

of the same shared page� The concurrent modi�cations are merged at synchronization points�

in accordance with the de�nition of RC�

Modi�cations are summarized as di�s� Figure � shows how di�s are created and applied�

Shared pages are initially write	protected� causing a protection violation to occur when a

page is �rst written� The DSM software makes a copy of the page �a twin�� and removes

the write protection so that further writes to the page can occur without DSM intervention�

Di�erences between the twin and a later copy of the page can then be used to create a di��

�

Write(x)

x:

Create twin

x:

Twin:

x:

Release:

Diff

Encode
Changes

If replicated,
write protect

Make x
writable

Diff

Figure � Di� Creation

a runlength encoded record of the modi�cations made to the page�

��� The Eager Invalidate Protocol

In an eager protocol� modi�cations to shared data are made visible globally at the time

of a release� The EI protocol� in particular� attempts to invalidate remote copies of any

page that has been modi�ed locally� If the remote copy of the page is READ ONLY� then

it is simply invalidated� If it is in a READ WRITE state� the remote site appends a di�

describing its modi�cations to the reply message and then invalidates the page� Di�s received

in the replies from invalidates are applied to the local copy� If an invalidate is received for

a page that is currently being �ushed� each of the processors performing the �ush creates

a di� describing its local modi�cations� These di�s� together with any di�s received from

replies �from processors that are not concurrently �ushing the page�� are then sent to all

�

other processors in the system� More e�cient solutions could be designed for the case of

concurrent �ushes� but this situation arises rarely�

The EI protocol uses an approximate copyset to determine the remote locations to be

invalidated� A copyset is a bitmask indicating which processors have a copy of the page�

Since this local copyset may not be up to date� the acknowledgement to an invalidate message

also contains the remote site�s version of the page�s copyset� If the local site thereby learns

of other processors caching a modi�ed page� additional protocol rounds are used to ensure

that all remote copies are invalidated� In practice� �ushes rarely take more than a single

round�

On an access miss� the faulting processor fetches the entire page from the processor that

last modi�ed the page�

��� The Lazy Invalidate Protocol

With a lazy protocol� the propagation of modi�cations is postponed until the time of the

acquire� At this time� the acquiring processor determines which modi�cations it needs to see

according to the de�nition of RC� The execution of each process is divided into intervals�

each denoted by an interval index� Every time a process executes a release or an acquire�

a new interval begins and the interval index is incremented� Intervals of di�erent processes

are partially ordered ���� �i� intervals on a single processor are totally ordered by program

order� and �ii� an interval on processor p precedes an interval on processor q if the interval

on q begins with the acquire corresponding to the release that concluded the interval on

p� This partial order can be represented concisely by assigning a vector timestamp to each

interval� A vector timestamp contains an entry for each processor� The entry for processor

p in the vector timestamp of interval i of processor p is equal to i� The entry for processor

q �� p denotes the most recent interval of processor q that precedes the current interval of

processor p according to the partial order� A processor computes a new vector timestamp

at an acquire according to the pair	wise maximum of its previous vector timestamp and the

�

releaser�s vector timestamp�

RC requires that before a processor p may continue past an acquire from q� the updates

of all intervals with a smaller vector timestamp than q�s current vector timestamp must be

visible at p� Therefore� at an acquire� p sends its current vector timestamp to the previous

releaser� q� Processor q then piggybacks on the release	acquire message to p� write notices

for all intervals named in q�s current vector timestamp but not in the vector timestamp it

received from p� A write notice is an indication that a page has been modi�ed in a particular

interval� but it does not contain the actual modi�cations� In LI� arrival of a write notice

causes the corresponding page to be invalidated�

Di�s are created when a processor requests the modi�cations to a page� or a write notice

from another processor arrives for a dirty page� In the latter case� it is essential to make a

di� in order to distinguish the modi�cations made by the di�erent processors�

Access to an invalidated page causes an access miss� At this point� the faulting processor

must retrieve and apply to the page all di�s that were created during intervals that precede

the faulting interval in the partial order� The following optimization minimizes the number of

messages necessary to get the di�s� If processor p has modi�ed a page during interval i� then

p must have all the di�s of all intervals �including those from processors other than p� that

have a smaller vector timestamp than i� It therefore su�ces to look at the largest interval of

each processor for which we have a write notice but no di�� Of that subset of the processors�

a message needs to be sent only to those processors for which the vector timestamp of their

most recent interval is not dominated by the vector timestamp of another processor�s most

recent interval�

After the set of necessary di�s and the set of processors to query have been determined�

the faulting processor requests the di�s in parallel� When all necessary di�s have been

received� they are applied in increasing vector timestamp order�

��� The Lazy Hybrid Protocol

LH is a lazy protocol similar to LI� but instead of invalidating the modi�ed pages� it updates

some of the pages at the time of an acquire� LH attempts to exploit temporal locality by

assuming that any page accessed by a processor in the past will probably be accessed by

that processor again in the future� All pages that are known to have been accessed by the

acquiring processor are therefore updated� Thus� for applications with fairly static sharing

patterns� the communication required can be optimized with the help of this protocol�

Each processor uses a copyset to track accesses to pages by other processors� The copyset

is used to determine whether a given di� must be sent to a remote location� However�

we also need to determine the set of di�s to be examined� There are several possibilities

for determining this set� from only those di�s created during the previous interval by the

releasing processor to some notion of every possible di�� We investigated several variations�

but found that the heuristic that works best is to look at every di� pertaining to a write

notice that is sent� For each such write notice� if the releasing processor has the di� and

the acquiring processor is in the local copyset for that page� the di� is appended to the lock

grant message�

Di�s are created as in LI� but di�s also may need to be created when it is decided that

they need to be appended on a lock grant message�

On arrival at a barrier� each processor creates a list describing local write notices that

may not have been seen by other processors� A list for processor pj at processor pi consists

of processor pi�s notion of all local write notices that have not been seen by pj � pi sends

an update message�s� to pj containing all the di�s corresponding to write notices in this

list� Unlike eager �ushes� the barrier updates do not have to be acknowledged because lost

updates will simply result in access misses�

�

��� Protocol Trade�O	s

LI and LH generally require fewer messages than EI� especially for programs that use locks�

The primary advantage of the lazy protocols during lock transfers is that communication

is limited to the two synchronizing processes� A release in an eager system often requires

invalidations to be sent to processes otherwise uninvolved in the synchronization� EI�s inval	

idations can also result in a larger number of remote access misses due to false sharing� Since

LI and LH usually exchange data in the form of di�s� the total amount of data exchanged is

usually less than for EI� because EI moves entire pages in the common case� Comparing LI

and LH� LI experiences more access misses� and therefore sends more messages� LI� however�

sends less data� because LH may send unnecessary data at the time of an acquire�

EI�s invalidations may also increase lock acquisition latency because releases cannot take

place until the invalidations have been sent and acknowledged� Lock transfer in LI and LH�

in contrast� only involves communication between the releasing and the acquiring processor�

LH often appends updates to lock grant messages� and the extra time required to generate

and process this data can slow down the lock acquisition�

EI is substantially less complex than LI and LH� As soon as a release has been completed�

all state concerning the modi�ed page in EI �twin� di�� etc�� can be discarded� There is also

no need to move information transitively� as all information is immediately made globally

visible� Finally� EI creates far fewer di�s than LI� which in turn creates fewer di�s than LH�

The choice between these three protocols thus involves a complex trade	o� between the

number of access misses� the number of messages� the amount of data� the lock acquisition

times� and the protocol overhead� Table � summarizes these trade	o�s�

��

Lock Remote Msgs Data Di�s Protocol
Latency Access Complexity

Misses

Eager	Inv �EI� Low High High High Low Low
Lazy	Inv �LI� Low Medium Medium Low Medium Medium
Lazy	Hyb �LH� Medium Low Low Medium High Medium

Table � Protocol Trade	o�s

� Implementation

��� TreadMarks

The three protocols described in Section � were implemented in the TreadMarks DSM sys	

tem� TreadMarks programs follow a conventional shared memory style� using threads to

express parallelism and locks and barriers to synchronize� TreadMarks is entirely imple	

mented as a C library� using an interface similar to the parmacs macros from Argonne

National Laboratory ���� for thread and synchronization support�

To provide for a fair comparison� the three protocols share as much code as possible� In

particular� the same primitives are used for communication �sockets and SIGIO signals� and

for memory management �mprotect and SIGSEGV signals�� The di� creation mechanism�

and the lock and barrier implementations are identical�

None of the protocols is overly complex to implement� The entire system takes about

���� lines of code� Approximately ���� lines are speci�c to the lazy protocols� and an

additional ��� lines are speci�c to LH� EI is fully implemented in only
�� lines of code� For

a more detailed discussion of the implementation of the three protocols� we refer the reader

to Keleher�s Ph�D� dissertation ����

��

��� Experimental Environment

Our experimental environment consists of
 DECstation	��������s running Ultrix V����

Each machine has a Fore ATM interface connected to a Fore ATM switch� The connection

between the interface boards and the switch operates at ���	Mbps� the switch has an ag	

gregate throughput of ��� Gbps� The interface board does programmed IO into transmit

and receive FIFOs� and requires messages to be assembled and disassembled from ATM cells

by software� Interrupts are raised at the end of a message or a �nearly� full receive FIFO�

All of the machines are also connected by a ��	Mbps Ethernet� Unless otherwise noted� the

performance numbers describe
	processor executions on the ATM LAN using the low	level

adaptation layer protocol AAL���

��� Basic Operation Costs

The minimum round	trip time using send and receive for the smallest possible message is

��� �seconds� Sending a minimal message takes
� �seconds� receiving it takes a further

� �seconds� and the remaining �
� �seconds are divided between wire time� interrupt

processing and resuming the processor that blocked on a receive� Using a signal handler to

receive the message at both processors� the round	trip time increases to ��� �seconds�

The minimum time to remotely acquire a free lock is
�� �seconds if the lock manager

was the last processor to hold the lock� and ���� �seconds otherwise� In both cases� the

reply message from the last processor to hold the lock does not contain any write notices

�or di�s�� The time to acquire a lock increases in proportion to the number of write notices

that must be included in the reply message� The minimum time to perform an
 processor

barrier is ��
� �seconds� A remote access miss� to obtain a ���� byte page from another

processor� takes ���� �seconds�

��

��� Applications

The eight programs used in this study vary considerably in size and complexity� SOR �Succes	

sive Over	Relaxation� and TSP �Traveling Salesman Problem� are small programs� developed

locally� Water and Barnes�Hut come from the Stanford Parallel Applications for Shared

Memory �SPLASH� benchmark suite ����� FFT �Fast Fourier Transform� and IS �Integer

Sort� are taken from the NAS benchmark suite ���� Finally� ILINK �genetic linkage� ��� and

MIP �mixed integer programming� are large programs� each more than ten thousand lines of

code� Parallel versions of both programs were developed locally�

Table � summarizes the applications and their input sets� Syncs per second is the

synchronization rate for an eight processor run under LI�

� Performance Measurements

We �rst compare the speedups of the programs in our application suite for EI� LI� and

LH� We then present a breakdown of the execution times into component costs in order to

distinguish between costs due to the protocol and those due to the underlying operating

system and hardware�

Program Input
Sync� Syncs�
Type Per Second

SOR ���� x ���� �oats barriers ��
TSP �� cities locks ��
Water ��� molecules locks� barriers ���
Barnes ���� bodies barriers �
FFT �� x �� x �� barriers ��
IS N � ���� Bmax � �� locks� barriers ��

ILINK CLP locks �
MIP misc���mps locks ���

Table � Application Suite

��

��� Speedup Comparison

Figure � presents the speedups on
 processors for the eight applications for each of the

three protocols� In all cases� speedup was calculated with reference to the same code run

single	threaded with the TreadMarks library calls removed� Table � shows rate statistics for

the three protocols� We use rate statistics rather than totals in order to make meaningful

comparisons between applications that vary widely in running times� Total Msgs is the

overall rate at which messages are sent� Data is the amount of data sent per second� in

kilobytes� Access Misses is the number of access misses per second that required remote

communication� Finally� Diffs Created is the rate at which di�s were created in the system�

EI LI LH

SOR TSP Water Barnes FFT IS ILINK MIP

S
pe

ed
up

0

1

2

3

4

5

6

7

8

Figure �
	processor Speedups for EI� LI� and LH

��

Run Time
Total Data Access Di�s

Program Prot
�secs�

Msgs �Kbytes Misses Created
�per sec� per sec� �per sec� �per sec�

EI ���� ����� ������ ���� ���
SOR LI ���� ����� ������ ���� ����

LH ���� ����� ������ ��� ����
EI ����� �
��� ����� ��
�� ���

TSP LI ����� ����� ����� �
��� �����
LH ����� ����� ����� ����� �����
EI ���
� �
���� ������ ����� ���

Water LI ����� ������
���� ����� �����
LH ���
� �
����
���� ����� �����
EI ����� ������ ����� ����� �����

Barnes LI ����� ��
��� ����� ����� ����
LH ����� ������ �
��� ����� ����
EI ����� ������ ������ ����� ���

FFT LI �����
���� ������ ����� ��
��
LH ���
�
���� ������ ����� �����
EI ����
���� �
��
 �
��� ���

IS LI ���� ����� �����
��� ����
LH ����
���
 �����
�� ����
EI �����
 ����� ����� ��
�� ����

ILINK LI ������ ��
�� �
��� ����� ����
LH ������ ����� ����� ���� �
��
EI ����� ��
��� ���
�� ����� ���

MIP LI ����� �
��� ���� ��
�� �����
LH ����� �

�
 ����� ����� �����

Table � EI� LI� and LH Rate Statistics

��

����� SOR

Our Successive Over	Relaxation �SOR� uses a simple iterative relaxation algorithm� The

input is a two	dimensional grid� During each iteration� every matrix element is updated

to the average of the four neighboring elements� To avoid overwriting an element before

neighbors use it for their computations� we use a �red	black� approach� wherein every other

element is updated during the �rst half	iteration� and the rest of the elements are updated

during the second half	iteration� The work is parallelized by assigning a contiguous chunk

of rows to each processor� Exchange of data between processors is therefore limited to

those pages containing rows on the edge of the chunks� Barriers are used to synchronize all

processors at the end of each half	iteration�

LI creates ��� fewer di�s than the other protocols because of an advantageous data

layout and the fact that di�s are only created upon request� Under LH� neighboring processes

exchange di�s via updates sent before arriving at a barrier� The primary advantage of the

early updates is that they are unreliable� and so require only a single message� The access

misses that occur in the absence of hybrid updates require at least two messages to handle�

However� the gain in message handling overhead is partially o�set by the cost of creating

more di�s than LI�

LH�s performance is also occasionally reduced by access misses that occur when update

messages are either lost or delayed� The resulting message exchange not only slows down the

processors involved� but also slows down the entire computation at the next barrier because

of load imbalance�

EI requires more messages than the lazy protocols because each processor sends invali	

dates directly to other processors rather than appending them to barrier messages�

����� TSP

The Traveling Salesman Problem uses a branch	and	bound algorithm to �nd the minimum

cost path that starts at a designated city� passes through every other city exactly once� and

��

returns to the original city� Such a path is termed a tour � We assume a fully connected map

of cities� and passage between each pair of cities has an associated weight� The cost of a

tour is the sum of the weights of each leg of the tour� We solve a ��	city tour�

TSP processes synchronize entirely through locks� Like SOR� TSP has a very high compu	

tation to communication ratio� resulting in near	linear speedup� Therefore the lazy protocol�s

reduction in message tra�c does not greatly a�ect overall performance�

The vast majority of messages in TSP are di� request and response messages� some of

which are unnecessary given su�cient semantic information� The data accessed is the set of

tour records used to hold path information while recursing� Tour records are often reused for

di�erent computations� and hence the previous contents are often not needed when a tour

record is retrieved from the tour heap� The DSM system obliviously reconstructs the last

contents of each accessed tour record even if application semantics do not require it�

A second source of overhead in TSP is contention for the centralized tour queue� Each

thread performs a fairly extensive computation before releasing the tour queue� resulting in

an average latency of acquiring the tour lock of over �� milliseconds�

Despite these impediments� both of the lazy protocols achieve near	linear speedups� ap	

proximately ��� better than EI� Two factors cause the disparity between the lazy and eager

protocols� First� EI su�ers approximately one third more access misses because invalidates

are propagated globally at release time� whereas invalidates propagate more slowly under

the lazy protocols� Second� EI transfers nearly eight times as much data because invalidates

always require complete pages to be fetched� while the lazy protocols usually require only a

small number of di�s�

TSP performs only marginally better under LH than under LI� TSP has poor data locality�

and therefore past behavior is not a good indicator of future access patterns� Nevertheless�

LH sends approximately �� fewer messages than LI for the �� city problem� while sending

only slightly more data�

��

����� Water

Water is a molecular dynamics simulation� Each time	step� the intra	 and inter	molecular

forces incident on a molecule are computed� In order to avoid an n�

�
behavior� only molecules

within half the box length of a given molecule are assumed to a�ect the molecule� We

simulated ��� molecules for � steps�

The main shared data structure in Water is a large� one	dimensional array of molecules�

Equal contiguous chunks of the array are assigned to each processor� Each molecule is

represented by a ���	byte data structure that includes data describing the molecule�s dis	

placement� the �rst six derivatives� and computed forces�

Water has far higher communication requirements than the other applications� and under

the lazy protocols almost ��� of this communication is lock requests and responses�

LI performs slightly better than LH because it creates fewer di�s� There is considerable

false sharing because almost seven molecules �t on a single page� Since di�s are created very

late under LI� the frequency of multiple molecule interactions being summarized by a single

di� is higher than with LH�

EI again performs approximately ��� worse than the lazy protocols because of the need

to fetch entire pages on access misses� While incurring a similar number of access misses� EI

moves more than twice as much data�

����� Barnes�Hut

Barnes	Hut simulates the evolution of a system of bodies under the in�uence of gravitational

forces� It is a classical gravitational N	body simulation� in which every body is modeled as

a point mass and exerts forces on all other bodies in the system� If all pairwise forces

are calculated directly� this has a complexity of O�n�� in the number of bodies� which is

impractical for simulating large systems� Barnes	Hut is a hierarchical tree	based method

that reduces the complexity to O�n log n�� The program uses both locks and barriers for

synchronization� We present results for a run using ���� bodies�

�

The performance of this application is poor for all protocols because of the high syn	

chronization rate and degree of false sharing� Nearly �
� of the messages under LI are

di� messages� Not only does the high rate of access misses create overhead directly� but it

contributes to load imbalance at barriers� From one barrier to the next� access misses and

di� requests served vary signi�cantly by process� and the number of access misses taken and

di� requests served by a process correlates highly with the amount of time other processes

have to wait at barriers� Overall� an average barrier takes almost ��� milliseconds for this

application� while a null eight processor barrier takes slightly more than two milliseconds�

The use of LH�s updates reduces the overall number of di�s requested by more than half�

However� Table � shows that LH reduces access misses by only ��� from LI� Many of Barnes�

access misses require more than a single di� in order to bring the page up to date� LH often

eliminates some� but not all� of the di� requests for a given miss� Since misses requiring

a single di� cost only marginally less than misses requiring multiple di�s� LH�s impact on

overall performance is less than might be expected� Nevertheless� it performs ��� better

than LI� and nearly ��� better than EI�

EI�s performance is seemingly an anomaly in that it uses less than half as many messages

as LI and creates �ve times as many di�s� The explanation for this behavior is that our

implementation resorts to updates� occasionally even global updates� to arbitrate multiple

simultaneous invalidations of the same page� This complexity arises from the need to ensure

that at least one valid copy of each page always survives� For Barnes� the result is that the

EI�s arbitration mechanism mimics LH�s update mechanism at least part of the time�

����� FFT

This benchmark numerically solves a partial di�erential equation using forward and inverse

FFT�s� Assuming the input array is a n� � n� � n� array� A� organized in row	major order�

we distribute the array elements along the �rst dimension of A� that is for any i� all elements

of A�i� �� �� are assigned to a single processor� A �	D FFT is �rst performed on the n� � n�

��

n�	point vectors� and then on the n� � n� n�	point vectors and each processor can work on

its part of the array without any communication� Only when a processor is ready to work

on the n� � point vectors in the �rst dimension does it need to get the data from other

processors� This means that only one transpose is needed for each iteration of the �	D FFT�

When N processors are working in parallel� for every transpose each processor needs to

send �N of its data to every other processor and receive �N of its data from each of the

other processors� The array is often �MB or larger� so the time spent doing the transpose is

very large� The program uses only barriers for synchronization� We ran the tests with array

dimensions of ��x��x���

FFT is trivially parallelizable� but gets relatively poor speedup because of the low

O�log n� computation to communication ratio� Processes running FFT communicate more

than twice as much data per second than any other application�

This application illustrates a weakness of the lazy protocols� LI and LH create di�s

describing each modi�cation because every page of data is replicated over the course of

the execution� However� in FFT a page is completely overwritten almost every time it is

touched� Therefore� creating and applying a di� describing a changed page is less e�cient

for this application than merely sending the new page�

Under EI� access misses are handled by merely retrieving a copy of the page from another

process� adding no additional di� creationapplication overhead and not sending any extra

data�

����	 IS

This benchmark ranks an unsorted sequence of N keys� The rank of a key in a sequence is

the index value i that the key would have if the sequence of keys were sorted� All the keys

are integers in the range ��� Bmax� and the method used is counting� or bucket sort� The

amount of computation required for this benchmark is relatively small linear in the size

of the array N � The amount of communication is proportional to the size of the key range�

��

since an array of size Bmax has to be passed around between processors� In the original

benchmark speci�cation� values for N and Bmax are ��� and ��� respectively� Since this

exceeds the amount of memory that we had available� we reduced these parameters to ���

and �� respectively�

During a ranking� processes use a lock to acquire write permission to shared data� How	

ever� some of the shared memory is also read outside the locks� This results in extra in	

validation messages for EI because each time a lock is released� invalidations are performed

globally� even to those processes that only falsely share the modi�ed pages� These extra

messages do not occur under the lazy protocols because invalidations are only carried by

synchronization messages� and the processes that are reading the shared data are doing so

outside of any synchronization�

Table � shows that LH sends more messages than LI� The extra messages are barrier

�ushes that are often useless because many of the di�s communicated by the �ushes have

already been received via lock grant messages�

����
 ILINK

Genetic linkage analysis is a statistical technique that uses family pedigree information to

map human genes and locate disease genes in the human genome�

Our program is a parallel version of ILINK� which is part of the standard LINKAGE

package for carrying out linkage analysis� ILINK searches for a maximum likelihood estimate

of the multi	locus vector of recombination probabilities of several genes ����� Given a �xed

value of the recombination vector� the outer loops of the likelihood evaluation iterate over all

the pedigrees and each nuclear family �consisting of parents and child� within each pedigree

to update the probabilities of each genotype �see ���� for each individual� which is stored in

an array genarray�

A straightforward method of parallelizing this program is to split the iteration space

among the processes and surround each addition with a lock to do it in place� This approach

��

was deemed far too expensive either on a shared memory multiprocessor or on a DSM� Our

version therefore uses a local copy of genarray to temporarily hold updates to the global array�

They are eventuallymerged into the �nal copy after a barrier synchronization� ILINK�s input

consists of data on �� families with autosomal dominant nonsyndromic cleft lip and palate

�CLP��

LH is once again able to reduce the number of remote misses� thereby improving perfor	

mance despite sending more data� The eager protocol does the worst because of the larger

number of messages and data �entire pages are sent instead of di�s��

ILINK achieves less than linear speedup because of a combination of poor load balanc	

ing �this problem is inherent to the algorithm ���� and sections of code that are executed

serially� Consequently� speedups are somewhat lower than one would expect based on the

communication and synchronization rates�

����� MIP

Mixed integer programming �MIP� is a version of linear programming where some or all of

the variables are constrained to have an integer value� or sometimes to just the value � or

�� A wide variety of real	life problems can be expressed as MIP models� e�g�� airline crew

scheduling� network con�guration� and plant design� MIP is hard not only in the standard

technical sense� that is� �NP	hard�� but it is also hard in the practical sense� real models

regularly produce problem instances that cannot currently be solved�

The MIP code we use takes a branch�and�cut approach� The integer problem is �rst

relaxed to a linear programming problem� This will in general lead to a solution in which

some of the integer variables take on non	integer values� The next step is to pick one of

these variables� and branch o� two new linear programming problems� one with the added

constraint that xi � bxic �the down branch� and another with the added constraint that

xi � dxie �the up branch�� Over time� the algorithm generates a tree of such branches� As

soon as a solution is found� this solution establishes a bound on the �nal result� Nodes in

��

the branch tree for which the solution of the LP problem generates a result that is inferior

to this bound need not be explored any further� Additional techniques are used to speed

up the algorithm� such as cutting planes� tighter linear constraints derived from the original

constraints� and plunging� a depth	�rst search down the tree to �nd an integer solution and

establish a bound as quickly as possible�

MIP is a work	queue based program implemented using locks� Hence� this program

performs better on the lazy protocols� which are able to signi�cantly reduce the number of

messages and amount of data communicated� LH performs the best because of its ability

to reduce the number of remote misses without signi�cantly increasing the amount of data

sent across the network�

��� Execution Time Breakdown

We used qpt ��� to break the execution time into several categories� Figure � shows the

breakdown for each of our applications running on
 processors under each of the protocols�

The �Computation� category is the time spent executing application code� �Unix� is the

time spent executing Unix system calls and library code �almost entirely time spent in

Unix communication primitives�� and �TreadMarks� is the time spent executing code in

the TreadMarks library� �Idle Time� consists of several components� primarily time spent

waiting for remote communication to complete and time wasted at barriers due to load

imbalance�

The largest overhead components are the Unix and idle times� With the exception of

ILINK� which has signi�cant load imbalance� idle time is primarily time spent waiting for

communication primitives to be executed by other processes� Hence� for all programs except

ILINK� the sum of Unix and idle times is almost pure communication overhead� TreadMarks

overhead� which includes time spent constructing twins and di�s� as well as applying the di�s�

is much smaller than the communication overhead� We conclude that� for this environment �

the complexity of the protocol matters far less than the number and size of messages required

��

Computation TreadMarks Unix Idle

SO
R

-E
I

SO
R

-L
I

SO
R

-L
H

TS
P-

EI
TS

P-
LI

TS
P-

LH
W

at
er

-E
I

W
at

er
-L

I
W

at
er

-L
H

Ba
rn

es
-E

I
Ba

rn
es

-L
I

Ba
rn

es
-L

H
FF

T-
EI

FF
T-

LI
FF

T-
LH

IS
-E

I
IS

-L
I

IS
-L

H
IL

IN
K-

EI
IL

IN
K-

LI
IL

IN
K-

LH
M

IP
-E

I
M

IP
-L

I
M

IP
-L

H

%
 T

ot
al

 E
xe

cu
tio

n
Ti

m
e

0

20

40

60

80

100

Figure � TreadMarks Execution Time Breakdown

to support the DSM environment�

Figure � shows a breakdown of the Unix overhead� We divide Unix overhead into two

categories� communication and memory management� Communication overhead is the time

spent executing kernel operations to support communication� Memory management over	

head is the time spent executing kernel operations to support the user�level memory man	

agement� primarily page protection changes� In all cases� at least
�� of the kernel execution

time is spent in the communication routines� suggesting that cheap communication is the

primary service a software DSM needs from the operating system� For most of the programs�

the eager protocol has the largest Unix communication overhead�

Figure � shows a breakdown of TreadMarks overhead� We have divided the overhead into

three categories� memory management� consistency� and �other�� �Memory management�

overhead is the time spent by user level routines to detect and capture changes to shared

��

Communication Memory

SO
R

-E
I

SO
R

-L
I

SO
R

-L
H

TS
P-

EI
TS

P-
LI

TS
P-

LH
W

at
er

-E
I

W
at

er
-L

I
W

at
er

-L
H

Ba
rn

es
-E

I
Ba

rn
es

-L
I

Ba
rn

es
-L

H
FF

T-
EI

FF
T-

LI
FF

T-
LH

IS
-E

I
IS

-L
I

IS
-L

H
IL

IN
K-

EI
IL

IN
K-

LI
IL

IN
K-

LH
M

IP
-E

I
M

IP
-L

I
M

IP
-L

H

%
 T

ot
al

 E
xe

cu
tio

n
Ti

m
e

0

5

10

15

20

25

Figure � Unix Overhead Breakdown

pages� This includes twin and di� creation and di� application� �Consistency� is the time

spent propagating and handling consistency information� �Other� consists primarily of time

spent handling communication and synchronization� TreadMarks overhead is dominated by

the memory management operations� The eager protocol has the least protocol overhead for

all of the applications� indicating a trade	o� between communication and protocol overhead�

However� maintaining the rather complex partial ordering between intervals required by the

lazy protocols adds only a small amount to the execution time�

��� Memory Overhead

All software DSMs trade memory for runtime overhead by replicating shared pages� However�

lazy RC protocols also require signi�cant amounts of memory to store di�s and consistency

information� Di�s must be retained until they have been applied to every existing copy

��

Memory Consistency Other

SO
R

-E
I

SO
R

-L
I

SO
R

-L
H

TS
P-

EI
TS

P-
LI

TS
P-

LH
W

at
er

-E
I

W
at

er
-L

I
W

at
er

-L
H

Ba
rn

es
-E

I
Ba

rn
es

-L
I

Ba
rn

es
-L

H
FF

T-
EI

FF
T-

LI
FF

T-
LH

IS
-E

I
IS

-L
I

IS
-L

H
IL

IN
K-

EI
IL

IN
K-

LI
IL

IN
K-

LH
M

IP
-E

I
M

IP
-L

I
M

IP
-L

H

%
 T

ot
al

 E
xe

cu
tio

n
Ti

m
e

0

1

2

3

4

5

Figure � TreadMarks Overhead Breakdown

of the corresponding page� Rather than continuously evaluating this relatively complicated

predicate� our implementations garbage	collect di� and consistency information only when

internal bu�ers reach high	water marks�

Table � presents memory and garbage	collection overheads for the application suite with

each of the lazy protocols� �Shared Size� is the size of the shared memory space� �Twin

Space� is the maximum memory used by twins at all
 processors� and �Di� Rate� is the

rate at which di� storage is consumed� Nodes in our system each allocate approximately ���

MBytes of memory for di� and consistency information storage� �� Time GC� represents

the percent of execution time spent garbage collecting� Since our algorithms update each

modi�ed page rather than ensuring only that a single copy of each page survives� this column

captures the entire e�ect of garbage collection on the computation�

None of the applications spend more than ���� of their time garbage collecting� and most

��

Program
Shared Size Twin Space Di� Rate � Time
�Kbytes� �Kbytes� �Kbytessec� GC

SOR
LI
��� ���� ��� �
LH
��� ���� ���� �

TSP
LI ���� ����
�� �
LH ���� ���

�� �

Water
LI ��
 ��� �
��� �
LH ��
 ��� ����� �

Barnes
LI ��� ���� �

�� ���
LH ��� ���� ����� ���

FFT
LI ���� ���� ������ ���
LH ���� ���� ������ ��

IS
LI ��� �� ���� �
LH ��� �� ����� �

ILINK
LI ����� ��

 ����� ���
LH ����� ��

 ����� ���

MIP
LI ��� ��� ��� �
LH ��� ��� ��� �

Table � Memory Usage and GC Overhead

spend far less� The applications produce di�s at widely varying rates� with FFT creating

enough di�s to completely overwrite its shared address space every three seconds�

EI discards di�s as soon as they are created because updates are performed globally�

rather than locally as in the lazy protocols� �Twin Space� overhead for EI is similar to that

of LI�

� Simulation

Both networking hardware and operating system software a�ect the performance of applica	

tion programs� A limitation of our empirical comparison is that the hardware and operating

system costs are �xed� This section explores the relationship between the di�erent con	

sistency algorithms and protocols as the processor� network and operating system vary in

speed�

��

��� Simulation Methodology

Our primary concern in selecting a simulation methodology was the ability to model accu	

rately the software costs incurred by the di�erent protocols� Therefore� we chose a method

that allowed the execution of the actual protocol code on the simulator�

To meet our objectives� we use vt ���� a pro�ling tool that rewrites executable programs

to incorporate instrumentation code that produces an estimated processor cycle count� To

account for the time spent in the operating system handling page faults or passing messages�

for example� we link the program to a library that intercepts system calls� and adds a

speci�ed number of cycles to the processor�s counter� For message passing system calls�

the library additionally computes the wire time for the message� based on the network

speed and the message size� To arrive at the execution time on multiple processors� the

library piggybacks a processor�s cycle count on its synchronization messages� and adjusts the

synchronizing processors� clocks according to the following rules� For a lock� the processor

acquiring the lock must have a cycle count greater than that when the lock was last released

plus communication latency� and� for a barrier� the processors departing from the barrier

must have cycle counts greater than the highest cycle count among the processors arriving

at the barrier�

In all cases� we simulate a switched LAN similar to an ATM LAN� We account for

contention for each point	to	point link� that is� we simulate the serialization of messages

requiring access to the same link�

To validate the simulator� we compared our model�s simulated speedups to actual speedups

for
 processors on the di�erent applications� In all cases� simulated speedup� the number of

messages� and the total amount of data communicated came to within ��� of the measured

counts�

Again� speedups were calculated with reference to single	threaded executions with Tread	

Marks library calls removed�

�

��� E	ect of Communication Software Speed

The results of Section ��� suggest that reducing the cost of the communication software

should improve performance� The cost has two components� a �xed� per message cost� and

a per byte cost that accounts for the handling of di�erent size messages� Figure � shows the

simulated performance of an ATM network varying the �xed cost software overhead in the

 processor case at a per byte software cost of � cyclesbyte� All the applications presented

have improved speedups with a zero �xed cost per message� The large speedups indicate the

performance potential for the protocols� and the potential gains to be had from hardware

support for message passing�

Low �xed costs favor protocols that send less data over those that send fewer messages�

Therefore� LH� which reduces the number of access misses at the expense of sending slightly

more data� loses ground to the other protocols as the �xed cost drops� EI also gains ground

relative to LI because it sends many small messages at synchronization releases� whereas the

lazy protocols send large messages at access misses� Overall� however� LI performs better

than the other protocols because it sends less data�

Figure � presents the e�ect on speedup of varying the per byte software cost at a �xed

cost of ���� cycles per message� The increase in performance as per byte cost decreases

is not as dramatic as when the per message cost drops because per message costs tend to

dominate overall communication costs� The primary exception is FFT� which sends far more

data than the other programs�

With two exceptions� the relative performance of the protocols changes only slightly� For

Barnes� LI sends several times as many messages as the other protocols because it takes a

large number of access misses� Both of the other protocols eliminatemost of the access misses

through updates� As per byte costs decrease� per message cost becomes more important�

and LI�s performance decreases with respect to the other protocols�

��

0 cyles 5k cycles 10k cycles

S
O

R

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

T
S

P

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

W
at

er

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

B
ar

ne
s

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

F
F

T

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

IS

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

IL
IN

K

0

1

2

3

4

5

6

7

8

0 cyles 5k cycles 10k cycles

M
IP

0

1

2

3

4

5

6

7

8

Figure 	
	Processor Speedup Varying Fixed Message Cost �EI 	 black� LI 	 light
gray� LH 	 dark gray�

��

7 cycles/byte 2 cycles/byte 0 cycles/byte

S
O

R

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

T
S

P

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

W
at

er

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

B
ar

ne
s

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

F
F

T

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

IS

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

IL
IN

K

1

2

3

4

5

6

7

8

7 cycles/byte 2 cycles/byte 0 cycles/byte

M
IP

1

2

3

4

5

6

7

8

Figure

	Processor Speedup Varying Per Byte Cost �EI 	 black� LI 	 light gray�
LH 	 dark gray�

��

��� E	ect of Network Speed

Access to the communicationmedium is a prime candidate for a bottleneck in any distributed

system� Therefore� this section examines the e�ects of bandwidth variation�

Figure
 summarizes changes in speedup for the programs when we vary bandwidth per

link from �� Mbitssec to � Gigabitsec� keeping the per byte software cost at � cyclesbyte

and the per message software cost at ���� cycles� The performance di�erence between the

programs from �� to ��� Mbitssec per link is much larger than the di�erence between

��� Mbitssecs and � Gigabitsec� This is because many of the programs are bandwidth	

limited at �� Mbitssec� but not at the higher speeds� Software overhead dominates at the

higher data rates�

At a bandwidth of �� Mbitssec� LI outperforms the other protocols for nearly all of the

applications because it sends less data than the other protocols� Since EI sends more data

than either of the others� its performance is reduced proportionately�

FFT is an exception to the above generalized results� EI performs the best for FFT

regardless of bandwidth or per message costs� The reason is that EI does not create di�s or

twins at barriers� but instead migrates entire pages� Since pages are completely overwritten

in each phase� the lazy protocols send at least as much data as EI� while still paying the

overhead of creating and applying the di�s�

� Related Work

RC was �rst proposed in the context of the DASH project �
�� In DASH� RC is implemented

in hardware� using an invalidate protocol on a cache line basis� Given the small size of the

cache line� false sharing is less of an issue� and a single	writer protocol is used�

The �rst software implementation of RC was carried out in the Munin systems ���� Munin

also introduced the notion of a multiple	writer protocol to combat false sharing� Munin

allowed a number of protocols to be used� but the primary protocol was an eager update

��

10Mbit 100Mbit 1Gbit

S
O

R

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

T
S

P

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

W
at

er

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

B
ar

ne
s

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

F
F

T

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

IS

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

IL
IN

K

1

2

3

4

5

6

7

8

10Mbit 100Mbit 1Gbit

M
IP

1

2

3

4

5

6

7

8

Figure �
	Processor Speedup Varying Bandwidth �EI 	 black� LI 	 light gray� LH
	 dark gray�

��

implementation of release consistency� Later work ��� has shown that the performance of EI

and eager update are comparable�

Lazy release consistency was introduced in the TreadMarks system ����� The default

protocol in TreadMarks is LI� although Dwarkadas et al� ��� present simulation results for

LH� Our work improves on earlier comparisons of various software implementations of RC by

comparing actual implementations on the same platform� and by using measurements from

these systems to validate simulation results that vary various environment parameters�

An interesting alternative to RC is entry consistency �EC� ���� EC di�ers from RC in

that it requires all shared data to be explicitly associated with some synchronization variable�

On a lock acquisition EC only propagates the shared data associated with that lock� EC�

however� requires the programmer to insert additional synchronization in shared memory

programs to execute correctly on an EC memory� Typically� RC does not require additional

synchronization over SC� Bershad et al� ��� also use a di�erent strategy to implement EC in

the Midway DSM system� Instead of relying on the VM system to detect shared memory

updates� they modify the compiler to update software dirty bits�

	 Conclusions

In this paper� we have assessed the performance trade	o�s between three di�erent imple	

mentations of release consistency 	 an eager invalidate protocol� a lazy invalidate protocol�

and a lazy hybrid protocol�

The protocols each have di�erent strengths� The eager invalidate is less complex� but

sends more messages and su�ers more remote misses� At the cost of somewhat increased

protocol complexity and overhead� the lazy invalidate protocol reduces remote misses and

uses fewer messages� The hybrid protocol reduces remote misses even further� but sends

more data and has the largest lock acquisition latency of any of the protocols�

We implemented each of these protocols in TreadMarks� a distributed shared memory

��

�DSM� system for standard Unix systems� Our hardware is a network of
 DECstation	

��������s that are connected by a ���	Mbps switch	based ATM LAN�

Our evaluation shows that the reduction in communication costs for the lazy protocols

normally outweighs the decreased protocol complexity of EI on our experimental platform�

The primary cause is the high per message and per byte communication cost of Unix software�

which dominates the memory management and consistency overhead for all three protocols

evaluated� No application spent more than �� of its time executing protocol code� and in

most cases much less time was spent� On average� the lazy hybrid protocol performs the

best of the three protocols� On the ���	Mbps ATM LAN� the lazy hybrid achieves speedups

of ��� for SOR� ��� for TSP� ��
 for ILINK� ��� for IS� ��� for MIP� ��� for Water� ��� for

FFT� and ��� for Barnes�

The relative performance of the protocols is dependent on the performance of the network�

processor� and communication software� The gap between EI and the lazy protocols becomes

larger as bandwidth decreases or software overhead increases� The relative performance of

the two lazy protocols is more stable� but LI is favored as per message cost or bandwidth

decreases� and LH is favored when applications are not bandwidth limited and per message

costs increase�

References

��� S� Adve and M� Hill� Weak ordering� A new de�nition� In Proceedings of the ��th

Annual International Symposium on Computer Architecture� pages � ��� May �����

��� D� Bailey� J� Barton� T� Lasinski� and H� Simon� The NAS parallel benchmarks� Tech	

nical Report TR RNR	��	���� NASA Ames� August �����

��� T� Ball and J� Larus� Optimally pro�ling and tracing programs� In POPL��� pages

�� ��� January �����

��

��� B�N� Bershad� M�J� Zekauskas� and W�A� Sawdon� The Midway distributed shared mem	

ory system� In Proceedings of the ��	 CompCon Conference� pages ��
 ���� February

�����

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Implementation and performance of

Munin� In Proceedings of the �	th ACM Symposium on Operating Systems Principles�

pages ��� ���� October �����

��� S� Dwarkadas� P� Keleher� A�L� Cox� and W� Zwaenepoel� Evaluation of release con	

sistent software distributed shared memory on emerging network technology� In Pro�

ceedings of the �
th Annual International Symposium on Computer Architecture� pages

��� ���� May �����

��� S� Dwarkadas� A�A� Sch!a�er� R�W� Cottingham Jr�� A�L� Cox� P� Keleher� and

W� Zwaenepoel� Parallelization of general linkage analysis problems� Human Hered�

ity� ������ ���� �����

�
� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy�

Memory consistency and event ordering in scalable shared	memory multiprocessors� In

Proceedings of the ��th Annual International Symposium on Computer Architecture�

pages �� ��� May �����

��� P� Keleher� Distributed Shared Memory Using Lazy Release Consistency� PhD thesis�

Rice University� December �����

���� P� Keleher� A� L� Cox� and W� Zwaenepoel� Lazy release consistency for software

distributed shared memory� In Proceedings of the ��th Annual International Symposium

on Computer Architecture� pages �� ��� May �����

���� L� Lamport� How to make a multiprocessor computer that correctly executes multipro	

cess programs� IEEE Transactions on Computers� C	�
������� ���� September �����

��

���� G�M� Lathrop� J�M� Lalouel� C� Julier� and J� Ott� Strategies for multilocus linkage

analysis in humans� Proceedings of National Academy of Science�
������ ����� June

��
��

���� K� Li and P� Hudak� Memory coherence in shared virtual memory systems� ACM

Transactions on Computer Systems� �������� ���� November ��
��

���� E� L� Lusk and R� A� Overbeek et al� Portable Programs for Parallel Processors� Holt�

Rinehart and Winston� Inc� ��
��

���� J�P� Singh� W�	D� Weber� and A� Gupta� SPLASH� Stanford parallel applications for

shared	memory� Technical Report CSL	TR	��	���� Stanford University� April �����

Pete Keleher received the B�S�� M�S�� and Ph�D� degrees from Rice University in ��
��

����� and ����� respectively� He is currently on the faculty at the University of Maryland�

College Park� His research interests include parallel and distributed systems� computer

networks and architecture� and parallel languages� e�mail� keleher"cs�umd�edu�

Alan Cox received the B�S� degree from Carnegie Mellon University in ��
� and the

M�S� and Ph�D� degrees from the University of Rochester in ��

 and ����� respectively�

He is currently on the faculty at Rice University� His research interests include parallel

and distributed systems� distributed garbage collection� and multi	computer architectures�

e�mail� alc"cs�rice�edu

Sandhya Dwarkadas received the B�Tech� degree from the Indian Institute of Technol	

ogy� Madras� India� in ��
�� and the M�S� and Ph�D� degrees from Rice University in ��
�

and ����� She is currently a research scientist at Rice University� Her research interests in	

clude parallel and distributed systems� parallel computer architecture� parallel computation�

simulation methodology� and performance evaluation� e�mail� sandhya"cs�rice�edu

Willy Zwaenepoel received the B�S� degree from the University of Gent� Belgium� in

����� and the M�S� and Ph�D� degrees from Stanford University in ��
� and ��
�� Since ��
��

��

he has been on the faculty at Rice University� His research interests are in distributed oper	

ating systems and in parallel computation� While at Stanford� he worked on the �rst version

of the V kernel� including work on group communication and remote �le access performance�

At Rice� he has worked on fault tolerance� protocol performance� optimistic computations�

distributed shared memory� and nonvolatile memory� e�mail� willy"cs�rice�edu

�

