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Abstract

We compare two systems for parallel programming on networks of workstations: Parallel Virtual
Machine (PVM), a message passing system, and TreadMarks, a software distributed shared memory
(DSM) system. We present results for eight applications that were implemented using both systems.

The programs are Water and Barnes-Hut from the SPLASH benchmark suite; 3-D FFT, Integer
Sort (IS) and Embarrassingly Parallel (EP) from the NAS benchmarks; ILINK, a widely used
genetic linkage analysis program; and Successive Over-Relaxation (SOR) and Traveling Salesman
(TSP). Two different input data sets were used for five of the applications. We use two execution
environments. The first is an 155Mbps ATM network with eight Sparc-20 model 61 workstations;
the second is an eight processor IBM SP/2.

The differences in speedup between TreadMarks and PVM are dependent on the application,
and, only to much a lesser extent, on the platform and the data set used. In particular, the
TreadMarks speedup for six of the eight applications is within 15% of that achieved with PV M.
For one application, the difference in speedup is between 15% and 30%, and for one application,
the difference is around 50%.

More important than the actual differences in speedups, we investigate the causes behind these
differences. The cost of sending and receiving messages on current networks of workstations is very
high, and previous work has identified communication costs as the primary source of overhead in
software DSM implementations. The observed performance differences between PVM and Tread-

Marks are therefore primarily a result of differences in the amount of communication between the
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two systems. We identified four factors that contribute to the larger amount of communication in
TreadMarks: 1) extra messages due to the separation of synchronization and data transfer, 2) extra
messages to handle access misses caused by the use of an invalidate protocol, 3) false sharing, and
4) diff accumulation for migratory data.

We have quantified the effect of the last three factors by measuring the performance gain when
each is eliminated. Because the separation of synchronization and data transfer is a fundamental
characteristic of the shared memory model, there is no way to measure its contribution to per-
formance without completely deviating from the shared memory model. Of the three remaining
factors, TreadMarks’ inability to send data belonging to different pages in a single message is the
most important. The effect of false sharing is quite limited. Reducing diff accumulation benefits
migratory data only when the diffs completely overlap. When these performance impediments are
removed, all of the TreadMarks programs perform within 25% of PVM, and for six out of eight
experiments, TreadMarks is less than 5% slower than PVM.



1 Introduction

Parallel computing on networks of workstations has gained significant attention in recent years.
Because workstation clusters use “off the shelf” products, they are cheaper than supercomputers.
Furthermore, high-speed general-purpose networks and very powerful workstation processors are
narrowing the performance gap between workstation clusters and supercomputers.

Processors in workstation clusters do not share physical memory, so all interprocessor com-
munication must be performed by sending messages over the network. Currently, the prevailing
programming model for parallel computing on this platform is message passing, using libraries such
as PVM [9], TCGMSG [11] and Express [25]. A message passing standard MPI [24] has also been
developed. With the message passing paradigm, the distributed nature of the memory system is
fully exposed to the application programmer. The programmer needs to keep in mind where the
data is, decide when to communicate with other processors, whom to communicate with, and what
to communicate, making it hard to program in message passing, especially for applications with
complex data structures.

Software distributed shared memory (DSM) systems (e.g., [30, 4, 16, 21]) provide a shared mem-
ory abstraction on top of the native message passing facilities. An application can be written as
if it were executing on a shared memory multiprocessor, accessing shared data with ordinary read
and write operations. The chore of message passing is left to the underlying DSM system. While it
is easier to program this way, DSM systems tend to generate more communication and therefore be
less efficient than message passing systems. Under the message passing paradigm, communication
is handled entirely by the programmer, who has complete knowledge of the program’s data usage
pattern. In contrast, the DSM system has little knowledge of the application program, and there-
fore must be conservative in determining what to communicate. Since sending messages between
workstations is expensive, this extra communication can hurt performance.

Much work has been done in the past decade to improve the performance of DSM systems. In
this paper, we compare a state-of-the-art DSM system, TreadMarks [16], with the most commonly
used message passing system, PVM [9]. Our goals are to assess the differences in programmabil-
ity and performance between DSM and message passing systems and to precisely determine the
remaining causes of the lower performance of DSM systems.

We ported eight parallel programs to both TreadMarks and PVM: Water and Barnes-Hut from
the SPLASH benchmark suite [28]; 3-D FFT, Integer Sort (IS), and Embarrassingly Parallel (EP)
from the NAS benchmarks [2]; ILINK, a widely used genetic linkage analysis program [8]; and
Successive Over-Relaxation (SOR), and Traveling Salesman Problem (TSP). Two different input
sets were used for five of the applications. We ran these programs on eight Sparc-20 model 61
workstations, connected by a 155Mbits per second ATM network, and on an eight processor IBM
SP/2.

In terms of programmability we observe the following differences between message passing

and shared memory in these applications. The main difficulty with message passing arises from



programs with irregular array accesses (ILINK) or extensive use of pointers (Barnes-Hut). Message
passing requires a cumbersome and error-prone recoding of these accesses. The same difficulty
arises with programs with regular but complicated array accesses (Water and 3-D FFT). Unlike
ILINK and Barnes-Hut, however, a compiler might alleviate much of the burden in these programs.
For programs with task queues (TSP), the “natural” approach with message passing appears to
involve writing two programs, a master and a slave, where the shared memory program is naturally
symmetric. The remaining three programs, EP, SOR, and IS, are sufficiently simple that there is
not much difference in programmability between message passing and shared memory.

Performance differences between PVM and TreadMarks depend on the application, and to
a much smaller extent, on the platform and the data set size, at least for the applications and
environments considered in this paper. On both platforms, IS performs significantly worse on
TreadMarks that on PVM, showing a speedup of only half of that of PVM. On the SPARC/ATM
network, the speedups of EP, ILINK, SOR, Water, Barnes-Hut, and 3-D FFT are within 15% of
PVM, with TSP lagging by about 30%. On the IBM SP/2, 3-D FFT and TSP trade places, with
TSP now performing within 15% and 3-D FFT lagging 30%. The relative differences for the other
applications remain the same as on the SPARC/ATM platform.

Communication costs have been identified as the primary source of overhead in software DSM
implementations. In an earlier study of the performance of TreadMarks [15], execution times
were broken down into various components. Memory management and consistency overhead were
shown to account for 3% or less of execution time for all applications. In contrast, the percentage
of time spent in communication-related operations, either execution time for sending and receiving
messages or idle time waiting for some remote operation to complete, accounted for 5 to 55% of
the overall execution time, depending on the application.

In explaining the performance differences between PVM and TreadMarks, we therefore focus on
differences in the amount of communication between the two systems. More messages and more data
are sent in TreadMarks, as a result of 1) extra messages due to the separation of synchronization
and data transfer, 2) extra messages to handle access misses caused by the use of an invalidate
protocol, 3) false sharing, and 4) diff accumulation for migratory data.

This paper extends the results presented by Lu et al. [22], and quantifies the effect of the last
three factors by measuring the performance gain when each factor is eliminated. Because the sep-
aration of synchronization and data transfer is a fundamental characteristic of the shared memory
model, there is no way to assess its contribution to performance without completely deviating from
the shared memory model.

The results show that the largest contribution to the difference in performance between Tread-
Marks and PVM comes from PVM’s ability to use a single message to move a large amount of
data, while TreadMarks pages in data one page at a time. By modifying TreadMarks to transfer
more than one page at a time the number of messages is reduced substantially, with an attendant
improvement in performance. The elimination of false sharing, by careful layout and access of

data structures, also reduces message count and data size, but not to the same extent as allowing



TreadMarks to move amounts of data larger than a page. Finally, diff squashing addresses the
diff accumulation problem by combining overlapping diffs in one, reducing message size. It only
helps in Integer Sort, where the communication/computation ratio is high, and the diffs overlap
completely.

After making these modifications to the TreadMarks programs, all of them perform within 25%
of PVM, and for six out of nine experiments, TreadMarks is less than 5% slower than PVM.

The rest of this paper is organized as follows. In Section 2 we introduce the user interfaces and
implementations of PVM and TreadMarks. Section 3 explains our methodology to quantify the
contribution of each factor causing extra communication in TreadMarks. Section 4 gives an overview
of the experimental results. Section 5 discusses the performance of the different applications.

Section 6 discusses related work. Section 7 concludes the paper.

2 PVM Versus TreadMarks
2.1 PVM

PVM [9], standing for Parallel Virtual Machine, is a message passing system originally developed
at Oak Ridge National Laboratory.

With PVM, the user data must be packed before being dispatched. The pack either copies user
data into a send buffer, or keeps pointers to user data. The received message is first stored in a
receive buffer, and must be unpacked into the application data structure. The application program
calls different routines to pack or unpack data with different types. All these routines have the
same syntax, which specifies the beginning of the user data structure, the total number of data
items to be packed or unpacked, and the stride. The unpack calls should match the corresponding
pack calls in type and number of items.

PVM provides the user with nonblocking sends, including primitives to send a message to a
single destination, to multicast to multiple destinations, or to broadcast to all destinations. The
send dispatches the contents of the send buffer to its destination and returns immediately.

Both blocking and nonblocking receives are provided by PVM. A receive provides a receive buffer
for an incoming message. The blocking receive waits until an expected message has arrived. At
that time, it returns a pointer to the receive buffer. The nonblocking receive returns immediately.
If the expected message is present, it returns the pointer to the receive buffer, as with the blocking
receive. Otherwise, the nonblocking receive returns a null pointer. Nonblocking receive can be
called multiple times to check for the presence of the same message, while performing other work
between calls. When there is no more useful work to do, the blocking receive can be called for the

Same message.

2.2 TreadMarks

TreadMarks [16] is a software DSM system built at Rice University. It is an efficient user-level

DSM system that runs on commonly available Unix systems. We use TreadMarks version 1.0.1 in



our experiments.

2.2.1 TreadMarks Interface

TreadMarks provides primitives similar to those used in hardware shared memory machines. Appli-
cation processes synchronize via two primitives: barriers and mutexlocks. The routine Tmk _barrier(i)
stalls the calling process until all processes in the system have arrived at the same barrier. Bar-
rier indices 1 are integers in a certain range. Locks are used to control access to critical sec-
tions. The routine Tmk_lock_acquire(i) acquires a lock for the calling processor, and the routine
Tmk lock release(i) releases it. No processor can acquire a lock if another processor is holding
it. The integer i is a lock index assigned by the programmer. Shared memory must be allocated
dynamically by calling Tmk malloc or Tmk_sbrk. They have the same syntax as conventional mem-
ory allocation calls. With TreadMarks, it is imperative to use explicit synchronization, as data is

moved from processor to processor only in response to synchronization calls (see Section 2.2.2).

2.2.2 TreadMarks Implementation

TreadMarks uses a lazy invalidate [16] version of release consistency (RC) [10] and a multiple-writer
protocol [4] to reduce the amount of communication involved in implementing the shared memory
abstraction. The virtual memory hardware is used to detect accesses to shared memory.

RC is a relaxed memory consistency model. In RC, ordinary shared memory accesses are
distinguished from synchronization accesses, with the latter category divided into acquire and
release accesses. RC requires ordinary shared memory updates by a processor p to become visible
to another processor ¢ only when a subsequent release by p becomes visible to ¢ via some chain
of synchronization events. In practice, this model allows a processor to buffer multiple writes
to shared data in its local memory until a synchronization point is reached. In TreadMarks,
Tmk lock_acquire(i) is modeled as an acquire, and Tmk_lock release(i) is modeled as a release.
Tmk _barrier(i) is modeled as a release followed by an acquire, where each processor performs a
release at barrier arrival, and an acquire at barrier departure.

With the multiple-writer protocol, two or more processors can simultaneously modify their own
copy of a shared page. Their modifications are merged at the next synchronization operation in
accordance with the definition of RC, thereby reducing the effect of false sharing. The merge is
accomplished through the use of diffs. A diff is a runlength encoding of the modifications made to
a page, generated by comparing the page to a copy saved prior to the modifications.

TreadMarks implements a lazy invalidate version of RC [14]. A lazy implementation delays
the propagation of consistency information until the time of an acquire. Furthermore, the releaser
notifies the acquirer of which pages have been modified, causing the acquirer to invalidate its local
copies of these pages. A processor incurs a page fault on the first access to an invalidated page,
and gets diffs for that page from previous releasers.

To implement lazy RC, the execution of each processor is divided into intervals. A new interval



begins every time a processor synchronizes. Intervals on different processors are partially ordered:
(i) intervals on a single processor are totally ordered by program order, (ii) an interval on processor
p precedes an interval on processor ¢ if the interval of ¢ begins with the acquire corresponding to the
release that concluded the interval of p, and (iii) an interval precedes another interval by transitive
closure. This partial order is known as hbI [1]. Vector timestamps are used to represent the partial
order.

When a processor executes an acquire, it sends its current timestamp in the acquire message.
The previous releaser then piggybacks on its response the set of write notices that have timestamps
greater than the timestamp in the acquire message. These write notices describe the shared memory
modifications that precede the acquire according to the partial order. The acquiring processor then
invalidates the pages for which there are incoming write notices.

On an access fault, a page is brought up-to-date by fetching all the missing diffs and applying
them to the page in increasing timestamp order. All write notices without corresponding diffs are
examined. It is usually unnecessary to send diff requests to all the processors who have modified
the page, because if a processor has modified a page during an interval, then it must have all the
diffs of all intervals that precede it, including those from other processors. TreadMarks then sends
diff requests to the subset of processors for which their most recent interval is not preceded by the
most recent interval of another processor.

Each lock has a statically assigned manager. The manager records which processor has most
recently requested the lock. All lock acquire requests are directed to the manager, and, if neces-
sary, forwarded to the processor that last requested the lock. A lock release does not cause any
communication. Barriers have a centralized manager. The number of messages sent in a barrier is

2 x (n — 1), where n is the number of processors.

2.3 Differences in Performance Between PVM and TreadMarks

There are several reasons why TreadMarks is slower than PVM. In PVM, data communication and
synchronization are integrated together. The send and receive operations not only exchange data,
but also regulate the progress of the processors. In Tread Marks, synchronization is through locks
and barriers, which do not communicate data.

PVM also benefits from the ability to aggregate scattered data in a single message, an access
pattern that would result in several miss messages in TreadMarks’ invalidate protocol. Each access
miss in TreadMarks is triggered by a page fault, and a diff request and response are sent in order
to propagate the modifications.

Although the multiple-writer protocol eliminates the “ping-pong” effect that occurs with simul-
taneous writes to the same page, false sharing still affects the performance of TreadMarks. While
multiple processors may write to disjoint parts of the same page without interfering with each
other, if a processor reads the data written by one of the writers after a synchronization point, diff
requests are sent to all of the writers, causing extra messages and data to be sent.

In the current implementation of TreadMarks, diff accumulation occurs for migratory data.



Migratory data is shared sequentially by a set of processors [3, 29]. Each processor has exclusive
read and write access for a time. Accesses to migratory data are protected by locks in TreadMarks.
Each time a processor accesses migratory data, it must see all the preceding modifications. In
TreadMarks, this is implemented by fetching all diffs created by processors who have modified the
data since the current processor’s last access. In case the diffs overlap, this implementation causes
more data to be sent than just fetching the most recent diff. Although all the overlapping diffs can
be obtained from one processor, diff accumulation still results in more messages when the sum of
the diff sizes exceeds the maximum size of a UDP message. Since the maximum UDP message size
is 64Kbytes, extra messages due to diff accumulation are not a serious problem.

In addition to differing amounts of communication, TreadMarks also incurs the cost for detect-
ing and recording modifications to shared memory. This cost includes the overhead of memory
protection operations, page faults as a result of memory protection violations, twinning and diffing,
and the maintenance of timestamps and write notices. Earlier work [15] has demonstrated that
in current networking environments this cost is relatively small compared to the communication
overhead. We therefore concentrate on the differences in communication, and refer the reader to

our earlier paper [15] for a detailed account of consistency overhead.

3 Methodology

We tried to quantify how much each of the aforementioned factors contributed to TreadMarks’
performance. Three of them are assessed — lack of bulk transfer, false sharing, and diff accumulation.
Because the separation of synchronization and data transfer is a fundamental characteristic of the
shared memory model, there is no way to assess its effect on performance without completely
deviating from the shared memory model. The contribution of each factor is measured by the
performance gain when the factor is eliminated. When several factors contribute significantly to
an application’s performance, we also measured the aggregate effect of eliminating all of them
simultaneously.

The effect of bulk transfer is achieved by defining the TreadMarks page size to be a multiple of
the hardware page size. By increasing the TreadMarks page size, on each page fault, a larger block
of shared memory is updated, avoiding separate diff requests for each hardware page in this block.
For each application, we use the page size which results in the best result. In general, a larger
page size may increase the degree of false sharing. Fortunately, for the applications used in this
study that benefit from bulk data transfer, the page size could be increased without introducing
additional false sharing.

To reduce false sharing, we modified the shared data layout and the data access pattern of the
applications in a way that does not significantly alter program behavior. For applications with
static data partitioning, we padded each processor’s data to page boundaries, eliminating all false
sharing. For applications such as TSP, Barnes-Hut and ILINK, which have dynamic access patterns,

it is impossible to completely eliminate false sharing without changing the program’s behavior. In



these cases, we relied on knowledge of the program’s access patterns to modify the data layout in
such a way to substantially reduce false sharing.

Diff squashing addresses the diff accumulation problem. Except where false sharing occurs,
diffs are created in a lazy fashion. A diff is not created for a modified page until some processor
requests that diff to update its copy of the page. If this request also asks for older diffs, our diff
squashing procedure compares each of the older diffs to the new diff, and the parts covered by the
new diff are truncated.

We are not proposing that programmers hand-tune their TreadMarks programs using these
methods. We are using them here solely to indicate the contributions of various sources of com-
munication overhead. We believe, however, that some of the overheads that were identified can
be addressed automatically using new run-time techniques or via compiler support (see Sections 6

and 7).

4 Overview of Experimental Results
4.1 Experimental Testbed

We use two experimental platforms for measurements. The first platform is an 8-node cluster
of Sparc-20 model 61 workstations, each with 32 megabytes of main memory, connected by a
155Mbps ATM switch. On this platform, TreadMarks user processes communicate with each other
using UDP. In PVM, processes set up direct TCP connections with each other. Since all the
machines are identical, data conversion to and from external data representation is disabled. Both
UDP and TCP are built on top of IP, with UDP being connectionless and TCP being connection
oriented. TCP is a reliable protocol while UDP does not ensure reliable delivery. TreadMarks uses
light-weight, operation-specific, user-level protocols on top of UDP to ensure reliable delivery.

Our second experimental environment is an 8-processor IBM SP/2 running AIX version 3.2.5.
Each processor is a thin node with 64 KBytes of data cache and 128 Mbytes of main memory.
Interprocessor communication is accomplished over IBM’s high-performance two-level cross-bar
switch. On this platform, TreadMarks is implemented on top of the MPL reliable message passing
layer, and we use PVMe, a version of PVM optimized for the IBM SP/2 and also implemented on
top of MPL.

We chose these platforms for the following reason. The SPARC/ATM platform is typical of the
current generation of “networks of workstations” that use traditional network interfaces. Access to
the network interface is through the operating system. The SP/2 is meant to represent the next
generation, in which the application may directly access the network interface, thereby significantly
reducing the communication overhead. Some basic characteristics of both platforms are given in
Table 1.



SPARC/ATM | IBM SP/2
(msec.)

TreadMarks | 8-processor barrier 2.85 0.82
2-processor lock 1.14 0.35

3-processor lock 1.47 0.52

Empty diff page fault 1.47 1.28

Full page diff page fault 2.84 2.11

Memory protection 0.04 (ave.) 0.14

Signal delivery 0.06 0.39

PVM/PVMe | Empty message round trip 1.31 0.38
Max bandwidth without copying 8.6 MB/sec. | 29.4 MB/sec.

Max bandwidth with copying 7.2 MB/sec. | 21.0 MB/sec.

Table 1 Characteristics of the Experimental Platforms

4.2 Applications

We ported eight parallel programs to both TreadMarks and PVM: Water and Barnes-Hut from
the SPLASH benchmark suite [28]; 3-D FFT, IS, and EP from the NAS benchmarks [2]; ILINK, a
widely used genetic linkage analysis program [8]; and SOR, and TSP.

The execution times for the sequential programs, without any calls to PVM or TreadMarks,
are shown in Table 2. This table also shows the problem sizes used for each application. On the
IBM SP/2 we were able to run some applications with larger data sizes. Main memory limitations

prevented us from running larger data sets on the SPARC/ATM network.

4.3 Speedups

Table 3 shows the 8-processor speedups of PVM and TreadMarks on both platforms. The speedup
is computed relative to the sequential program execution times on each platform given in Table 2.
Table 3 also shows the relative performance of Tread Marks compared to PVM. Table 4 shows total
memory usage in both systems for all of the applications and data sizes.

As can be seen in Table 3, performance differences between PVM and TreadMarks depend on
the application, and to a much smaller extent, on the platform and the data set size, at least
for the applications and environments considered in this paper. On both platforms, IS performs
significantly worse on TreadMarks that on PVM, showing a speedup of only half of that of PVM.
On the SPARC/ATM network, the speedups of EP, ILINK, SOR, Water, Barnes-Hut, and 3-D
FFT are with 15% of PVM, with TSP lagging by about 30%. On the IBM SP/2, 3-D FFT and
TSP trade places, with TSP now performing within 15% and 3-D FFT lagging 30%. The relative
differences for the other applications remain the same as on the SPARC/ATM platform. For all
but IS, memory requirements for TreadMarks exceed those of PVM by 25% to 40%. TFor IS, the

difference is 70%), because of the high amount of twin and diff space required.
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Program Problem Size Time (sec.)

SPARC/ATM | IBM SP/2

EP 228 2021 1733
ILINK CLP 1364 653
SOR 1024 x 4096, 50 iterations 125 39
2048 x 6144, 100 iterations 118

Water-1728 | 1728 molecules, 5 iterations 622 413
4096 molecules, 5 iterations 2344

TSP 19 cities 109 109
24 cities 170

Barnes-Hut | 16384 bodies 122 107
32768 bodies 242

3-D FFT 64 X 64 x 64, 6 iterations 51 15
128 x 128 x 64, 6 iterations 62

IS N =22' B, = 2", 9 iterations 12 7

Table 2 Data Set Sizes and Sequential Execution Time of Applications

Program SPARC/ATM IBM SP/2

PVM | TreadMarks || PVM | TreadMarks

EP 7.99 | 7.99 (100%) 8.00 | 8.00 (100%)
ILINK 5.83 | 5.01 (86%) 571 | 523  (92%)
SOR (1024x4096) 7.53 | 7.28 (97%) 7.56 | 6.24  (83%)
(2048x6144) 7.64 | 631 (83%)

Water (1728) 7.59 | 7.35  (97%) 8.07 | 7.65  (95%)
(4096) 8.07 | 7.98  (99%)

TSP (19) 7.94 | 5.51  (69%) 748 | 7.21  (96%)
(24) 6.88 | 7.27 (106%)

Barnes-Hut  (16384) 4.64 | 4.01  (86%) || 6.19 | 5.87  (95%)
(32768) 6.40 | 5.95  (93%)

3-D FFT (64x64x64) 512 | 4.72  (92%) 520 | 3.73  (72%)
(128x128x64) 488 | 3.54  (72%)

1S (21-15) 4.00 | 1.70  (42%) 458 | 242 (53%)

Table 3 8-Processor Speedups and Relative Performance under PVM and TreadMarks
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Program PVM | TreadMarks

EP 18.8 25.6
ILINK 25.9 35.1
SOR (1024x4096) 35.2 58.4
(2048x6144) 68.1 92.1

Water (1728) 19.9 29.5
(4096) 21.5 32.9

TSP (19) 19.6 26.8
(24) 20.1 25.8

Barnes-Hut (16384) 21.3 35.6
(32768) 23.8 41.6

3-D FFT (64x64x64) 35.1 49.1
(128x128x64) | 98.2 142.7

IS (21-15) 16.5 53.7

Table 4 8-Processor Memory Usage under PVM and TreadMarks (megabytes)

The similarity between the results on the two platforms results from a combination of some of
the characteristics on each platform. On one hand, lower latency and higher bandwidth on the
IBM SP/2 switch causes the extra communication in TreadMarks to have a relatively smaller effect
on performance. On the other hand, the longer interrupt latency and the higher cost of memory
management operations puts TreadMarks at a disadvantage on this architecture. Only for TSP
and 3-D FFT does the PVM vs. TreadMarks tradeoff change noticeably between platforms. For
TSP, this change appears to be largely accidental, resulting from the non-deterministic nature of
the search algorithm in the program. For 3-D FFT, the superior floating point performance on the
IBM SP/2 results in a much lower sequential execution time (see Table 2). As a result, the extra
communication in TreadMarks has, relatively speaking, a larger effect on the IBM SP/2, causing a

lower speedup.

4.4 Factors Contributing to TreadMarks Performance

For the SPARC/ATM platform, we quantify the effect of removing the various performance im-
pediments from TreadMarks. Table 5 presents speedups, and Tables 6 and 7 provide figures for
the number of messages and the amount of data exchanged, which will be used in explaining the
speedup numbers (see Section 5). In the PVM versions, we counted the number of user-level mes-
sages and the amount of user data sent in each run. In TreadMarks, we counted the total number
of messages, and the total amount of data communicated. Figures for the IBM SP/2 platform are
qualitatively the same and are not included.

With the exception of IS, most of the differences in speedup and in communication require-

ments between TreadMarks and PVM are a result of PVM’s ability to aggregate large amounts

12



TreadMarks | TreadMarks | TreadMarks

Program | PVM | TreadMarks | Bulk Transfer No FS Diff Squash
EP 7.99 | 7.99 (100%) - - - - - -
ILINK 5.83 | 5.01  (8%) | 5.59  (96%) - —~15.00 (86%)
SOR 7.53 1 7.28 (97%) | 7.53  (100%) - - - -
Water-1728 | 7.59 | 7.35  (97%) - — 737 (97%) | 7.36  (97%)
TSP 7.94 | 5.51  (69%) - —16.08 (76%) | 5.50 (69%)
Barnes-Hut | 4.64 | 4.01  (86%) | 5.28 (114%) | 4.56 (98%) - -
3-D FFT 512 | 4.72  (92%) | 4.99  (98%) - - - -
IS 4.00 | 1.70  (42%) - - - 2.88 (72%)

Table 5 8-Processor Speedups for PVM, TreadMarks, and Various Modifications of
TreadMarks on the SPARC/ATM platform

TreadMarks | TreadMarks | TreadMarks

Program | PVM | TreadMarks | Bulk Transfer No FS Diff Squash
EP 7 69 - - -
ILINK 6615 255001 85063 - 255074
SOR 1400 7034 4220 - -
Water-1728 620 9033 - 8275 9011
TSP 1384 18169 - 12793 18122
Barnes-Hut 280 144038 41104 41444 -
3-D FFT 1610 13349 3180 - -
IS 1008 9996 - - 9975

Table 6 8-Processor Message Totals for PVM, TreadMarks, and Various Modifications

of TreadMarks on the SPARC/ATM platform

TreadMarks | TreadMarks | TreadMarks

Program | PVM | TreadMarks | Bulk Transfer No FS Diff Squash
EP 0.3 43 - - -
ILINK 47583 119933 116808 - 105136
SOR 11474 619 462 - -
Water-1728 | 9123 21194 - 19298 11199
TSP 37 3025 - 3390 2685
Barnes-Hut | 50551 54968 53721 39170 -
3-D FFT 25690 25973 25956 - -
IS 16515 51842 - - 17374

Table 7 8-Processor Data Totals for PVM, TreadMarks, and Various Modifications of
TreadMarks on the SPARC/ATM platform (Kilobytes)
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of data in a single message. Doing the equivalent thereof in TreadMarks leads to substantial per-
formance improvements for four applications (ILINK, SOR, Barnes-Hut, and 3-D FFT). For IS,
diff accumulation is the main performance impediment in TreadMarks, as can be seen from the
improvements resulting from diff squashing. For the other applications in which diff accumula-
tion occurs, the high computational overhead of diff squashing causes performance to be adversely

affected. Finally, avoiding false sharing has only a limited effect.

5 Discussion of Performance of Individual Applications

In this section we discuss the implementation of the applications in terms of PVM and TreadMarks.
We identify the applications for which there is a substantial difference in programmability, and we
point out the reasons for the difference. In terms of performance, we again focus on the performance
of the applications on the SPARC/ATM platform, as the results for the IBM SP/2 are qualitatively

the same.

5.1 EP

The Embarrassingly Parallel program comes from the NAS benchmark suite [2]. EP generates
pairs of Gaussian random deviates and tabulates the number of pairs in successive square annuli.
In the parallel version, the only communication is summing up a ten-integer list at the end of the
program. In TreadMarks, updates to the shared list are protected by a lock. In PVM, processor 0
receives the lists from each processor and sums them up.

In our test, we solved the class A problem in the NAS benchmarks, in which 228 pairs of random
numbers are generated. The sequential program runs for 2021 seconds. Both TreadMarks and PVM
achieve a speedup of 7.99 using 8 processors, because compared to the overall execution time, the

communication overhead is negligible.

5.2 Red-Black SOR

Red-Black Successive Over-Relaxation (SOR) is a method of solving partial differential equations.
In the parallel version, the program divides the red and the black array into roughly equal size bands
of rows, assigning each band to a different processor. Communication occurs across the boundary
rows between bands. In the TreadMarks version, the arrays are allocated in shared memory, and
processors synchronize using barriers. With PVM, each processor explicitly sends the boundary
rows to its neighbors.

We ran red-black SOR on a 1024 x 4096 matrix of floating point numbers for 51 iterations. With
this problem size each shared red or black row occupies two pages. The first iteration is excluded
from measurement to eliminate differences due to the fact that data is initialized in a distributed
manner in the PVM version, while in TreadMarks it is done at the master process. In our test the

edge elements are initialized to 1, and all the other elements to 0.
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The sequential program runs for 125 seconds. At 8 processors, the TreadMarks version and
the PVM version achieve speedups of 7.28 and 7.53, respectively. The TreadMarks speedup is
97% that of PVM. TreadMarks and PVM performance are relatively close, because of the low
communication rate in SOR, and the use of lazy release consistency in TreadMarks. Although each
processor repeatedly writes to the boundary pages between two barriers, diffs of the boundary pages
are sent only once after each barrier, in response to diff requests from neighbors. The number of
messages is 4 times higher in TreadMarks than in PVM. For n processors, PVM sends 2 x (n — 1)
messages at the end of each iteration. In each red or black phase, TreadMarks sends 2 x (n — 1)
messages to implement the barrier and 8 x (n—1) messages to page in the diffs for the boundary rows
(Each boundary row requires two diffs, one for each page). As a result of diffing in TreadMarks,
much less data is sent by TreadMarks than by PVM because most of the pages remain zero.

SOR exemplifies two of the performance drawbacks of TreadMarks relative to PVM: separation
of synchronization and data transfer and multiple diff requests due to the invalidate protocol.

To measure the effect of multiple diff requests for each row, we increase TreadMarks page size
to 8192 bytes, so that only one diff request and reply are sent in paging in the red or black elements
in a row. This reduces the number of messages sent in TreadMarks by 40%, from 7034 to 4220,
and TreadMarks only sends 2 times more messages than PVM. Consequently, the performance gap
between TreadMarks and PVM shrinks from 4% to zero, and both of them have a speedup of 7.53.

5.3 Integer Sort

Integer Sort (IS) [2] from the NAS benchmarks requires ranking an unsorted sequence of keys
using bucket sort. The parallel version of IS divides up the keys among the processors. First,
each processor counts its own keys, and writes the result in a private array of buckets. Next,
the processors compute the global array of buckets by adding the corresponding elements in each
private array of buckets. Finally, all processors rank their keys according to the global array of
buckets. To obtain good parallelism, the bucket array is divided equally into n blocks, where n is
the number of processes. The global buckets are computed in n steps. In each step, a processor
works on one of the blocks, and moves on to another one in the next step.

In the TreadMarks version, there is a shared array of buckets, and each processor also has a
private array of buckets. There are n locks, protecting modifications to each of the n blocks of
the global bucket array. In step ¢ of the n steps calculating the sum, processor pid acquires lock
(pid 4+ i) mod n and works on the corresponding block. A barrier synchronizes all processors after
the updates. Fach processor then reads the final result in the shared array of buckets and ranks its
keys. In the PVM version, each processor has a bucket array in private memory. Processors add
their counting results to the blocks of the bucket array in the same order as in TreadMarks. At the
end of each step ¢, a processor sends the result to the next processor in line. After the final step,
the last processor modifying the block broadcasts the result to all others.

We sorted 22! keys ranging from 0 to 2!° for 9 iterations. We did not try the 22° keys specified

in the NAS benchmarks, because it does not fit into a single machine’s memory. The sequential
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execution time for IS is 12 seconds. The 8 processor speedups for PVM and TreadMarks are 4.0
and 1.7, respectively.

TreadMarks sends 9975 messages, about 9 times more than PVM. The extra messages are
mostly due to separate synchronization messages and diff requests. The shared bucket array in
IS contains 2'° integers, spread over 32 pages, and each block is 4 pages. Therefore, each time a
processor adds to a block of the shared bucket, TreadMarks sends 4 diff requests and responses,
while PVM handles the transmission of the block with a single message exchange.

The extra data in TreadMarks comes from diff accumulation. A processor completely overwrites
previous values in the array each time it acquires a lock to modify the shared array of buckets.
Because of diff accumulation, all the preceding diffs are sent when a lock is acquired, even though
(for IS) they completely overlap each other. The same phenomenon occurs after the barrier, when
every processor reads the final values in the shared bucket. At this time, each processor gets all the
diffs made by the processors who modified the shared bucket array after it during this iteration.
Assuming the array size is b and the number of processors is n, in PVM, the amount of data sent
in each iteration is 2 X (n — 1) X b, while the amount of data sent in TreadMarks is n x (n — 1) x b.

Diff accumulation is the most important factor. Without diff accumulation, the data sent in
TreadMarks is reduced by 2/3, from 50 megabytes to 16 megabytes, only 7% more than PVM. As
a result, TreadMarks’ speedup increases from 1.70 to 2.88, which is 72% of PVM.

Since the performance of IS is bounded by the communication bandwidth, the contribution of
multiple diff requests cannot be measured with the presence of diff accumulation. By using the
16-kilobyte page size in addition to diff squashing, the number of diff requests and replies is reduced
by 3/4, and message total is reduced to 5943, 60% of the original TreadMarks. The effect is that
the 8-processor speedup increases to 3.38, 85% of PVM. (This result does not appear in Table 3

because it can not be measured separately.)

5.4 TSP

TSP solves the traveling salesman problem using a branch and bound algorithm. The major data
structures are a pool of partially evaluated tours, a priority queue containing pointers to tours in
the pool, a stack of pointers to unused tour elements in the pool, and the current shortest path. The
evaluation of a partial tour is composed mainly of two procedures, get_tour and recursive_solve.
The subroutine get_tour removes the most promising path from the priority queue. If the path
contains more than a threshold number of cities, get_tour returns this path. Otherwise, it extends
the path by one node, puts the promising paths generated by the extension back on the priority
queue, and calls itself recursively. The subroutine get_tour returns either when the most promising
path is longer than a threshold, or when lower bound of the most promising path from the priority
queue is longer than current best tour. The procedure recursive_solve takes the path returned
by get_tour, and tries all permutations of the remaining nodes recursively. It updates the shortest
tour if a complete tour is found that is shorter than the current best tour.

In the TreadMarks version, all the major data structures are shared. The subroutine get_tour
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is guarded by a lock to guarantee exclusive access to the tour pool, the priority queue, and the tour
stack. Updates to the shortest path are also protected by a lock. The PVM version uses a master-
slave arrangement. With n processors, there are n slave processes and 1 master process. In other
words, one processor runs both the master and one slave process, while the remaining processors
run only a slave process. The master keeps all the major data structures in its private memory. It
executes get_tour and keeps track of the optimal solution. The slaves execute recursive_solve,
and send messages to the master either to request solvable tours, or to update the shortest path.

We solved a 19-city problem, with a recursive_solve threshold of 12. The sequential program
runs for 109 seconds. At 8 processors, TreadMarks obtains a speedup of 5.51, which is 69% of the
speedup of 7.94 obtained by PVM. At 8 processors, TreadMarks sends 12 times more messages and
80 times more data than PVM.

The performance gap comes from the difference in programming styles. In the PVM version of
TSP, only the tours directly solvable by recursive _solve and the minimum tour are exchanged
between the slaves and the master. These message exchanges take only 2 messages. In contrast, in
TreadMarks, all the major data structures migrate among the processors. In get_tour, it takes at
least 3 page faults to obtain the tour pool, the priority queue, and the tour stack.

False sharing affects TreadMarks when a processor writes to a tour just popped from the tour
stack. A 4096-byte page can hold up to 27 tours. If some tours are allocated by other processors,
a process brings in diffs even though it does not access other tours in the page.

Because of diff accumulation, a processor can get up to (n — 1) diffs on each page fault, where
n is the number of processors in the system. Due to the random access pattern on the tour pool
and the priority queue, the diffs are not completely overlapping,

Furthermore, there is some contention for the lock protecting get_tour. On average, at 8
processors, each process spends 2 out of 20 seconds waiting at lock acquires.

We eliminate false sharing on the tour pools by keeping separate tour pools for each processor,
and allowing each processor to write only to tours in its own tour pool. The result shows that
30% of the messages are attributed to false sharing. In the absence of false sharing, TreadMarks
performance improves from 5.51 to 6.08, which is 76% of PV M.

Diff accumulation accounts for 11% of the data sent in TreadMarks, or 340 kilobytes, but it
contributes little to TreadMarks performance. With the high speed networks we use, message size

is a secondary factor in deciding communication cost compared with number of messages.

5.5 Water

Water from the SPLASH [28] benchmark suite is a molecular dynamics simulation. The main
data structure in Water is a one-dimensional array of records, in which each record represents
a molecule. It contains the molecule’s center of mass, and for each of the atoms, the computed
forces, the displacements and their first six derivatives. During each time step, both intra- and
inter-molecular potentials are computed. To avoid computing all n?/2 pairwise interactions among

molecules, a spherical cutoff range is applied.
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The parallel algorithm statically divides the array of molecules into equal contiguous chunks,
assigning each chunk to a processor. The bulk of the interprocessor communication happens dur-
ing the force computation phase. Each processor computes and updates the intermolecular force
between each of its molecules and each of n/2 molecules following it in the array in wrap-around
fashion.

In the TreadMarks version, the Water program from the original SPLASH suite is tuned to get
better performance. Only the center of mass, the displacements and the forces on the molecules are
allocated in shared memory, while the other variables in the molecule record are allocated in private
memory. A lock is associated with each processor. In addition, each processor maintains a private
copy of the forces. During the force computation phase, changes to the forces are accumulated
locally in order to reduce communication. The shared forces are updated after all processors have
finished this phase. If a processor 7 has updated its private copy of the forces of molecules belonging
to processor j, it acquires lock j and adds all its contributions to the forces of molecules owned by
processor j. In the PVM version, processors exchange displacements before the force computation.
No communication occurs until all the pairwise intermolecular forces have been computed, at which
time processors communicate their locally accumulated modifications to the forces.

We used a data set of 1728 molecules, and ran for 5 time steps. The sequential program runs
for 622 seconds. For this problem size, this application has a high computation to communication
ratio. At 8 processors, despite the fact that TreadMarks sends 14 times more messages and 1.3
times more data than PVM, TreadMarks and PVM achieve speedups of 7.35 and 7.59, respectively.

The performance difference is mainly caused by synchronization. In PVM, two user-level mes-
sages are sent for each pair of processors that interact with each other, one message to read the
displacements, and the other message to write the forces. In TreadMarks, extra messages are sent
for synchronization and for diff requests to read the displacements or to write the shared forces.
After the barrier that terminates the phase in which the shared forces are updated, a processor may
fault again when reading the final force values of its own molecules, if it was not the last processor
to update those values,

As a result of false sharing, a processor may bring in updates for molecules it does not access,
and may communicate with more than one processor if the page containing the molecules is updated
by two different processors. False sharing also causes the TreadMarks version to send unnecessary
data. However, because of the large data size, there is little false sharing.

Another cause of the additional data sent in TreadMarks is diff accumulation. Assuming there
are n processors, where n is even, the force value of molecules belonging to a processor are modified
by n/2+ 1 processors, each protected by a lock. On average, each processor gets n/2 diffs. Because
of the cutoff range, the diffs are not completely overlapping.

To eliminate false sharing, each processor allocates its own part of the shared force and dis-
placement arrays in shared memory. Fach allocation is padded to an integral of page size. False
sharing only constitutes 8% of the messages sent in TreadMarks, and has little effect on TreadMarks’

performance.
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Although diff accumulation is responsible for 47% of the total data sent under TreadMarks, the

performance is hardly affected because of the high computation to communication ratio.

5.6 Barnes-Hut

Barnes-Hut from the SPLASH [28] benchmark suite is an N-body simulation using the hierarchical
Barnes-Hut Method. A tree-structured hierarchical representation of physical space is used. Each
leaf of the tree represents a body, and each internal node of the tree represents a “cell”, a collection
of bodies in close physical proximity. The major data structures are two arrays, one representing
the bodies and the other representing the cells. The sequential algorithm loops over the bodies,
and for each body traverses the tree to compute the forces acting on it.

In the parallel code, there are four major phases in each time step.

1. MakeTree : Construct the Barnes-Hut tree.
2. Get_my_bodies: Partition the bodies among the processors.
3. Force Computation: Compute the forces on my own bodies.

4. Update: Update the positions and the velocities of my bodies.

Phase 1 is executed sequentially, because running in parallel slows down the execution. In phase
2, dynamic load balance is achieved by using the cost-zone method, in which each processor walks
down the Barnes-Hut tree and collects a set of logically consecutive leaves. Most of the computation
time is spent in phase 3.

In the TreadMarks version, the array of bodies is shared, and the cells are private. In MakeTree,
each processor reads all the shared values in bodies and builds internal nodes of the tree in its
private memory. There are barriers after the MakeTree, force computation, and update phases.
No synchronization is necessary during the force computation phase. The barrier at the end of the
force computation phase ensures that all processors have finished reading the positions of all other
processors. In the PVM version, every processor broadcasts its bodies at the end of each iteration,
so that each processor obtains all the bodies and creates a complete tree in phase 1. No other
communication is required.

We ran Barnes-Hut with 16384 bodies for 6 timesteps. The last 5 iterations are timed in order
to exclude any cold start effects. The sequential program runs for 122 seconds. At 8 processors,
PVM and TreadMarks achieve speedups of 4.64 and 4.01 respectively. The low computation to
communication ratio and the need for fine-grained communication [27] contribute to the poor
speedups on both TreadMarks and PVM. TreadMarks sends 513 times more messages than PVM
at 8 processors. This is the result of both false sharing and multiple diff requests. Although the
set of bodies owned by a processor are adjacent in the Barnes-Hut tree, they are not adjacent in
memory. This results in false sharing that causes each page fault to send diff requests to all 8
processors. Moreover, since the body array spans 368 pages, it takes a processor 368 page faults

and corresponding requests and replies to obtain it.
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We increase the TreadMarks page size to 16Kbytes, the maximum currently allowed, to reduce
the number of diff requests. Because every page is shared by all 8 processors, using a larger page size
does not worsen the false sharing. The message count drops by 71% as a result, and TreadMarks
speedup is improved from 4.01 to 5.28, 14% faster than the speedup of 4.64 obtained by PVM. This
anomaly occurs because TreadMarks uses UDP, while PVM uses TCP, which has higher overhead.

We reduce false sharing by reorganizing the bodies in memory. After all the processors have
found their own bodies in the first iteration, the bodies are copied so that all the bodies belonging
to the same processor are adjacent in body array. Because the position of bodies changes very
slowly, the set of bodies owned by a processor remains almost the same over the next 5 iterations.
With reduced false sharing, TreadMarks sends 71% less messages and 29% less data at 8 processors.
TreadMarks speedup is increased to 4.56, only 2% slower than PVM.

5.7 3-D FFT

3-D FFT, from the NAS [2] benchmark suite, numerically solves a partial differential equation using
three dimensional forward and inverse FFT’s. Assume the input array A is nq X ny X ns, organized
in row-major order. The 3-D FFT first performs a nz-point 1-D FFT on each of the ny X ny complex
vectors. Then it performs a ny-point 1-D FFT on each of the ny X ns vectors. Next, the resulting
array is transposed into an ny X nz X ny complex array B and an ni-point 1-D FFT is applied to
each of the ny X n3 complex vectors.

We distribute the computation on the array elements along the first dimension of A, so that
for any 1, all elements of the complex matrix A;; 1, 0 <7 < ng,0 <k < n3 are assigned to a single
processor. No communication is needed in the first two phases, because each of the ns-point FFTs
or the ny-point FF'Ts is computed by a single processor. The processors communicate with each
other at the transpose, because each processor accesses a different set of elements afterwards. In the
TreadMarks version, a barrier is called before the transpose. In the PVM version, messages are sent
explicitly. To send these messages, we must figure out where each part of the A array goes to, and
where each part of the B array needs to come from. These index calculations on a 3-dimensional
array are much more error-prone than simply swapping the indices, as in TreadMarks, making the
PVM version harder to write.

The results are obtained by running on a 64 X 64 x 64 array of double precision complex numbers
for 6 iterations, excluding the time for distributing the initial values at the beginning of program.
This matrix size is 1/32 of that specified in the class A problem in the NAS benchmarks. We scaled
down the problem in order to enable the program to execute on one machine without paging.
The sequential execution time is 51 seconds. A speedup of 4.72 is obtained by TreadMarks at 8
processors, which is 92% of the speedup of 5.12 obtained by PVM. Because of release consistency and
the absence of false sharing, TreadMarks sends almost the same amount of data as PVM. However,
because of the page-based invalidate protocol, 7.3 times more messages are sent in TreadMarks
than in PVM.

To reduce multiple diff requests, we increase TreadMarks page size to 8192 bytes, which is the

20



largest page size that does not incur false sharing. The number of messages sent in TreadMarks
drops to twice that in PVM. Consequently, Tread Marks’ speedup increases from 4.72 to 4.99, less
than 2% lower than the speedup of 5.12 obtained in PVM.

5.8 ILINK

ILINK [6,20] is a widely used genetic linkage analysis program that locates specific disease genes
on chromosomes. The input to ILINK consists of several family trees. The program traverses
the family trees and visits each nuclear family. The main data structure in ILINK is a pool of
genarrays. A genarray contains the probability of each genotype for an individual. Since the
genarray is sparse, an index array of pointers to non-zero values in the genarray is associated with
each one of them. A bank of genarrays large enough to accommodate the biggest nuclear family
is allocated at the beginning of execution, and the same bank is reused for each nuclear family.
When the computation moves to a new nuclear family, the pool of genarrays is reinitialized for each
person in the current family. The computation either updates a parent’s genarray conditioned on
the spouse and all children, or updates one child conditioned on both parents and all the other
siblings.

We use the parallel algorithm described in Dwarkadas et al. [8]. Updates to each individual’s
genarray are parallelized. A master processor assigns the non-zero elements in the parent’s genarray
to all processors in a round robin fashion. After each processor has worked on its share of non-zero
values and updated the genarray accordingly, the master processor sums up the contributions of
each of the processors.

In the TreadMarks version, the bank of genarrays is shared among the processors, and barriers
are used for synchronization. In the PVM version, each processor has a local copy of each genarray,
and messages are passed explicitly between the master and the slaves at the beginning and the
end of each nuclear family update. Since the genarray is sparse, only the non-zero elements are
sent. The diffing mechanism in TreadMarks automatically achieves the same effect. Since only
the non-zero elements are modified during each nuclear family update, the diffs transmitted to the
master only contain the non-zero elements.

We used the CLP data set [12], with an allele product 2 x 4 x 4 x 4. The sequential program
runs for 1473 seconds. At 8 processors, TreadMarks achieves a speedup of 5.57, which is 93% of
the 5.99 obtained by PVM. A high computation-to-communication ratio leads to good speedups
and also explains the fact that PVM and TreadMarks are close in performance. However, we were
able to identify three reasons for the lower performance of TreadMarks. First, while both versions
send only the non-zero elements, PVM performs this transmission in a single message. TreadMarks
sends out a diff request and a response for each page in the genarray. For the CLP data set, the size
of the genarray is about 16 pages. Second, false sharing occurs in TreadMarks because the non-zero
values in the parents’ genarrays are assigned to processors in a round robin fashion. In PVM, when
the parents’ genarrays are distributed, each processor gets only its part of the genarray, but in

TreadMarks, a processor gets all the non-zero elements in the page, including those belonging to

21



other processors. The third and final reason for the difference in performance is diff accumulation.
The bank of genarrays is re-initialized at the beginning of the computation for each nuclear family.
Although the processors need only the newly initialized data, TreadMarks also sends diffs created
during previous computations.

The TreadMarks page size is increased to 16 kilobytes to reduce diff requests. This reduces
67% of the messages, and increased TreadMarks speedup from 5.01 to 5.59, which is 96% of PV M.
Because of the high computation to communication ratio and the fact that only 12% of the data sent
in TreadMarks are attributed to diff accumulation, diff accumulation has little affect on TreadMarks.
It is hard to measure the effect of false sharing because of the dynamic access pattern, and because

a processor accesses completely different data each time.

5.9 Summary
5.9.1 Programmability

From our experience with PVM and TreadMarks, we conclude that it is easier to achieve correctness
and efficiency using TreadMarks. Although there is little difference in programmability for simple
programs, such as EP, SOR and IS, for programs with complicated communication patterns, such as
Water, 3-D FFT, Barnes-Hut, ILINK and TSP, it takes more effort to write a correct and efficient
message passing program.

In the TreadMarks version of Water, a single call to a lock and a barrier synchronize the updates
to the shared force array. Another call to the barrier after updating the displacements makes sure
that all processors will receive the new displacement values in the next iteration. In the PVM
version, however, instead of inserting a synchronization call, the programmer needs to compute
the source and destination of each piece of data, copy the data to and from the message buffer,
and issue send and receive calls. While the TreadMarks code has 1842 lines, another 440 lines are
required in the PVM code.

For 3-D FFT, the array transpose in Tread Marks consists of simple operations to switch indices,
and a call to the barrier before the transpose. In the PVM version, one must envision how data is
moved in a 3-D transpose, and generate communication calls accordingly. The PVM version has
160 more lines than the TreadMarks version. Moreover, the index calculations on a 3-D array are
more error-prone than simply swapping the indices, as in Tread Marks.

In PVM version of Barnes-Hut, we let each processor to broadcast call its nodes. This simple
algorithm works fine with a small number of processors, but would have serious problems when
scaled to a larger cluster. However, writing the message passing code that exactly selects which
nodes are going to be accessed by what processor would be quite involved. In TreadMarks, instead,
a barrier call causes processors to page in those nodes they access.

In ILINK, by adding a barrier between different phases of the computation, Tread Marks au-
tomatically transmits the non-zero elements in the genarray. In the PVM version, if we take

the simple approach of sending all values, including the zeroes, the resulting performance becomes
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worse than that obtained by TreadMarks. kExactly picking out the non-zero values adds signifi-
cantly to the complexity of the PVM code. The TreadMarks version has 10902 lines. The PVM
version has an additional 432 lines, including the code to pick out the non-zero genarray elements.

For TSP, because TreadMarks provides a shared memory interface, we can write a simple 811-
line program in which all the processes are equivalent. In the PVM version, two different programs
are written for the master and the slave processes, which increases the code size by half, to 1253

lines.

5.9.2 Performance

Our results show that because of the use of release consistency and the multiple-writer protocol,
TreadMarks performs comparably with PVM on a variety of problems in the experimental environ-
ment examined. For six out of the eight experiments, TreadMarks performed within 15% of PVM.
For the remaining four experiments, TreadMarks lags behind PVM for 31% and 68% for TSP and
IS, respectively.

After eliminating three of the prime factors that slow down TreadMarks, all of the TreadMarks
programs perform within 25% of PVM, and for six out of eight experiments, TreadMarks is less
than 5% slower than PVM. Of the three factors we experimented with, the effect of multiple diff
requests is the most significant. Four out of eight experiments benefits from bulk transfer, with two
of them gaining over 10%. This can be attributed to the large data size and coarse granularity of
these applications. Three of the applications perform better with the elimination of false sharing,
but all of the improvements are less than 10%. Diff squashing only reduces the data totals, which
is a second order effect in TreadMarks overheads. As a result, it is profitable only for IS, where

diffs completely overlap.

6 Related Work

Our study distinguishes itself from most related work by being, with the exception of Carter
et al. [4], the first study to compare message passing to software distributed shared memory,
implemented on top of message passing. We are thus evaluating the cost of layering shared memory
in software on top of message passing, in contrast to the studies that evaluate message passing and
shared memory as two architectural models implemented in hardware. In contrast to the work
on Munin [4], we use lazy rather than eager release consistency. It has been demonstrated that
lazy release consistency leads to lower communication requirements and better performance [15].
Furthermore, our study is done on common Unix platforms and using a well-known message passing
system.

Among the architectural studies comparing message passing and shared memory, we cite two
recent articles, namely Chandra et al. [5] and Klaiber and Levy [17]. Both of these are simulation
studies, while our results are derived from measurements of an implementation. Chandra et al. [5]

compares four applications, running either with a user-space message passing or with a full-map

23



invalidate shared memory coherence protocol. All other simulation parameters, such processor and
network characteristics and number of processors, are kept the same. For three of their applications,
shared memory has the same performance as message passing. For these applications, the software
overhead of the message passing layers compensates for the extra communication in the shared
memory programs. For their fourth application, extra communication causes shared memory to
perform about 50% worse than message passing.

Klaiber and Levy [17] compare the communication requirements of data-parallel programs on
message passing and shared memory machines. We focus instead on execution times, and use the
communication requirements as a means to explain the differences in execution times. Also, their
data-parallel programs are compiled by two different compilers, one for message passing and one
for shared memory. The results may therefore be influenced by differences in the quality of the
code generated by the two compilers.

Having recognized the advantages and drawbacks of shared memory and message passing, sev-
eral groups have recently proposed machine designs that integrate both architectural models [18,
19, 26]. Various compiler techniques can also be used to remedy some of the deficiencies of shared
memory recognized in this study. For instance, Eggers and Jeremiassen [13] discuss compiler trans-
formations to reduce the effect of false sharing, and Dwarkadas et al. [7] evaluate compiler support
for communication aggregation, merging data and synchronization, and reduction of coherence
overhead.

Finally, there have a variety of papers comparing implementations of individual applications in
shared memory and message passing, including, e.g., hierarchical N-body simulation [27] and VLSI

cell routing [23].

7 Conclusions

This paper presents two contributions. First, our results show that, on a large variety of programs,
the performance of a well optimized DSM system is comparable to that of a message passing system.
Especially for problems of non-trivial size, such as ILINK and Water, TreadMarks performs within
15% of PVM. In terms of programmability, our experience indicates that it is easier to program
using TreadMarks than using PVM. Although there is little difference in programmability for
simple programs, for programs with complicated communication patterns, such as Water, 3-D
FFT, Barnes-Hut, ILINK and TSP, a lot of effort is required to determine what data to send and
whom to send the data to. Especially for programs with complicated or irregular array accesses or
with data structures accessed through pointers, the message passing paradigm is harder to use and
more error-prone.

Second, we observe four main causes for the lower performance of TreadMarks compared to
PVM, namely 1) extra messages due to the separation of synchronization and data transfer, 2)
extra messages to handle access misses caused by the invalidate protocol, 3) false sharing, and 4)

diff accumulation for migratory data.
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Without deviating from shared memory model, we designed some experiments to measure the
performance contribution each of the last three factors. The results show that the effect of the extra
messages to handle access misses is the most significant. Four out of eight of the applications benefit
from the elimination of this factor, with two of them gaining over 10%. This can be attributed to
the large data size and coarse granularity of these applications. The elimination of false sharing
improves TreadMarks performance for three of the experiments, but all of the improvements are
less than 10%. Eliminating the diff accumulation only reduces the data totals, which is a second
order effect in TreadMarks overheads. As a result, it is profitable only for IS, where diffs completely
overlap. Without the three factors that slow down TreadMarks, all of the TreadMarks programs
perform within 25% of PVM, and for six out of eight experiments, TreadMarks is less than 15%
slower than PVM.
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