
Quantifying the Performance Di�erences

Between PVM and TreadMarks

Honghui Lu

Department of Electrical and Computer Engineering
Sandhya Dwarkadas� Alan L� Cox� and Willy Zwaenepoel

Department of Computer Science
Rice University
���� S� Main St�

Houston� TX �����	�
��
e	mail
 fhhl� sandhya� alc� willyg�cs�rice�edu

Tel
 ����� �
�	����

Abstract

We compare two systems for parallel programming on networks of workstations� Parallel Virtual

Machine �PVM�� a message passing system� and TreadMarks� a software distributed shared memory

�DSM� system� We present results for eight applications that were implemented using both systems�

The programs are Water and Barnes�Hut from the SPLASH benchmark suite� 	�D FFT� Integer

Sort �IS� and Embarrassingly Parallel �EP� from the NAS benchmarks� ILINK� a widely used

genetic linkage analysis program� and Successive Over�Relaxation �SOR� and Traveling Salesman

�TSP�� Two di
erent input data sets were used for �ve of the applications� We use two execution

environments� The �rst is an �

Mbps ATM network with eight Sparc��� model �� workstations�

the second is an eight processor IBM SP���

The di
erences in speedup between TreadMarks and PVM are dependent on the application�

and� only to much a lesser extent� on the platform and the data set used� In particular� the

TreadMarks speedup for six of the eight applications is within �
� of that achieved with PVM�

For one application� the di
erence in speedup is between �
� and 	��� and for one application�

the di
erence is around 
���

More important than the actual di
erences in speedups� we investigate the causes behind these

di
erences� The cost of sending and receiving messages on current networks of workstations is very

high� and previous work has identi�ed communication costs as the primary source of overhead in

software DSM implementations� The observed performance di
erences between PVM and Tread�

Marks are therefore primarily a result of di
erences in the amount of communication between the

This research was supported in part by NSF NYI Award CCR��������� NSF CISE postdoctoral fellowship Award

CDA��	
���	� NSF Grants CCR��

�	�	 and BIR�������	� and by the Texas Advanced Technology Program under

Grant ��	����

�

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


two systems� We identi�ed four factors that contribute to the larger amount of communication in

TreadMarks� �� extra messages due to the separation of synchronization and data transfer� �� extra

messages to handle access misses caused by the use of an invalidate protocol� 	� false sharing� and

�� di� accumulation for migratory data�

We have quanti�ed the e
ect of the last three factors by measuring the performance gain when

each is eliminated� Because the separation of synchronization and data transfer is a fundamental

characteristic of the shared memory model� there is no way to measure its contribution to per�

formance without completely deviating from the shared memory model� Of the three remaining

factors� TreadMarks� inability to send data belonging to di
erent pages in a single message is the

most important� The e
ect of false sharing is quite limited� Reducing di
 accumulation bene�ts

migratory data only when the di
s completely overlap� When these performance impediments are

removed� all of the TreadMarks programs perform within �
� of PVM� and for six out of eight

experiments� TreadMarks is less than 
� slower than PVM�

�



� Introduction

Parallel computing on networks of workstations has gained signi�cant attention in recent years�

Because workstation clusters use �o
 the shelf� products� they are cheaper than supercomputers�

Furthermore� high�speed general�purpose networks and very powerful workstation processors are

narrowing the performance gap between workstation clusters and supercomputers�

Processors in workstation clusters do not share physical memory� so all interprocessor com�

munication must be performed by sending messages over the network� Currently� the prevailing

programming model for parallel computing on this platform is message passing� using libraries such

as PVM ���� TCGMSG ���� and Express ��
�� A message passing standard MPI ���� has also been

developed� With the message passing paradigm� the distributed nature of the memory system is

fully exposed to the application programmer� The programmer needs to keep in mind where the

data is� decide when to communicate with other processors� whom to communicate with� and what

to communicate� making it hard to program in message passing� especially for applications with

complex data structures�

Software distributed shared memory �DSM� systems �e�g�� �	�� �� ��� ���� provide a shared mem�

ory abstraction on top of the native message passing facilities� An application can be written as

if it were executing on a shared memory multiprocessor� accessing shared data with ordinary read

and write operations� The chore of message passing is left to the underlying DSM system� While it

is easier to program this way� DSM systems tend to generate more communication and therefore be

less e�cient than message passing systems� Under the message passing paradigm� communication

is handled entirely by the programmer� who has complete knowledge of the program�s data usage

pattern� In contrast� the DSM system has little knowledge of the application program� and there�

fore must be conservative in determining what to communicate� Since sending messages between

workstations is expensive� this extra communication can hurt performance�

Much work has been done in the past decade to improve the performance of DSM systems� In

this paper� we compare a state�of�the�art DSM system� TreadMarks ����� with the most commonly

used message passing system� PVM ���� Our goals are to assess the di
erences in programmabil�

ity and performance between DSM and message passing systems and to precisely determine the

remaining causes of the lower performance of DSM systems�

We ported eight parallel programs to both TreadMarks and PVM� Water and Barnes�Hut from

the SPLASH benchmark suite ����� 	�D FFT� Integer Sort �IS�� and Embarrassingly Parallel �EP�

from the NAS benchmarks ���� ILINK� a widely used genetic linkage analysis program ���� and

Successive Over�Relaxation �SOR�� and Traveling Salesman Problem �TSP�� Two di
erent input

sets were used for �ve of the applications� We ran these programs on eight Sparc��� model ��

workstations� connected by a �

Mbits per second ATM network� and on an eight processor IBM

SP���

In terms of programmability we observe the following di
erences between message passing

and shared memory in these applications� The main di�culty with message passing arises from

	



programs with irregular array accesses �ILINK� or extensive use of pointers �Barnes�Hut�� Message

passing requires a cumbersome and error�prone recoding of these accesses� The same di�culty

arises with programs with regular but complicated array accesses �Water and 	�D FFT�� Unlike

ILINK and Barnes�Hut� however� a compiler might alleviate much of the burden in these programs�

For programs with task queues �TSP�� the �natural� approach with message passing appears to

involve writing two programs� a master and a slave� where the shared memory program is naturally

symmetric� The remaining three programs� EP� SOR� and IS� are su�ciently simple that there is

not much di
erence in programmability between message passing and shared memory�

Performance di
erences between PVM and TreadMarks depend on the application� and to

a much smaller extent� on the platform and the data set size� at least for the applications and

environments considered in this paper� On both platforms� IS performs signi�cantly worse on

TreadMarks that on PVM� showing a speedup of only half of that of PVM� On the SPARC�ATM

network� the speedups of EP� ILINK� SOR� Water� Barnes�Hut� and 	�D FFT are within �
� of

PVM� with TSP lagging by about 	��� On the IBM SP��� 	�D FFT and TSP trade places� with

TSP now performing within �
� and 	�D FFT lagging 	��� The relative di
erences for the other

applications remain the same as on the SPARC�ATM platform�

Communication costs have been identi�ed as the primary source of overhead in software DSM

implementations� In an earlier study of the performance of TreadMarks ��
�� execution times

were broken down into various components� Memory management and consistency overhead were

shown to account for 	� or less of execution time for all applications� In contrast� the percentage

of time spent in communication�related operations� either execution time for sending and receiving

messages or idle time waiting for some remote operation to complete� accounted for 
 to 

� of

the overall execution time� depending on the application�

In explaining the performance di
erences between PVM and TreadMarks� we therefore focus on

di
erences in the amount of communication between the two systems� More messages and more data

are sent in TreadMarks� as a result of �� extra messages due to the separation of synchronization

and data transfer� �� extra messages to handle access misses caused by the use of an invalidate

protocol� 	� false sharing� and �� di� accumulation for migratory data�

This paper extends the results presented by Lu et al� ����� and quanti�es the e
ect of the last

three factors by measuring the performance gain when each factor is eliminated� Because the sep�

aration of synchronization and data transfer is a fundamental characteristic of the shared memory

model� there is no way to assess its contribution to performance without completely deviating from

the shared memory model�

The results show that the largest contribution to the di
erence in performance between Tread�

Marks and PVM comes from PVM�s ability to use a single message to move a large amount of

data� while TreadMarks pages in data one page at a time� By modifying TreadMarks to transfer

more than one page at a time the number of messages is reduced substantially� with an attendant

improvement in performance� The elimination of false sharing� by careful layout and access of

data structures� also reduces message count and data size� but not to the same extent as allowing

�



TreadMarks to move amounts of data larger than a page� Finally� di
 squashing addresses the

di
 accumulation problem by combining overlapping di
s in one� reducing message size� It only

helps in Integer Sort� where the communication�computation ratio is high� and the di
s overlap

completely�

After making these modi�cations to the TreadMarks programs� all of them perform within �
�

of PVM� and for six out of nine experiments� TreadMarks is less than 
� slower than PVM�

The rest of this paper is organized as follows� In Section � we introduce the user interfaces and

implementations of PVM and TreadMarks� Section 	 explains our methodology to quantify the

contribution of each factor causing extra communication in TreadMarks� Section � gives an overview

of the experimental results� Section 
 discusses the performance of the di
erent applications�

Section � discusses related work� Section � concludes the paper�

� PVM Versus TreadMarks

��� PVM

PVM ���� standing for Parallel Virtual Machine� is a message passing system originally developed

at Oak Ridge National Laboratory�

With PVM� the user data must be packed before being dispatched� The pack either copies user

data into a send bu
er� or keeps pointers to user data� The received message is �rst stored in a

receive bu
er� and must be unpacked into the application data structure� The application program

calls di
erent routines to pack or unpack data with di
erent types� All these routines have the

same syntax� which speci�es the beginning of the user data structure� the total number of data

items to be packed or unpacked� and the stride� The unpack calls should match the corresponding

pack calls in type and number of items�

PVM provides the user with nonblocking sends� including primitives to send a message to a

single destination� to multicast to multiple destinations� or to broadcast to all destinations� The

send dispatches the contents of the send bu
er to its destination and returns immediately�

Both blocking and nonblocking receives are provided by PVM� A receive provides a receive bu
er

for an incoming message� The blocking receive waits until an expected message has arrived� At

that time� it returns a pointer to the receive bu
er� The nonblocking receive returns immediately�

If the expected message is present� it returns the pointer to the receive bu
er� as with the blocking

receive� Otherwise� the nonblocking receive returns a null pointer� Nonblocking receive can be

called multiple times to check for the presence of the same message� while performing other work

between calls� When there is no more useful work to do� the blocking receive can be called for the

same message�

��� TreadMarks

TreadMarks ���� is a software DSM system built at Rice University� It is an e�cient user�level

DSM system that runs on commonly available Unix systems� We use TreadMarks version ����� in






our experiments�

����� TreadMarks Interface

TreadMarks provides primitives similar to those used in hardware shared memory machines� Appli�

cation processes synchronize via two primitives� barriers andmutex locks� The routine Tmk barrier�i�

stalls the calling process until all processes in the system have arrived at the same barrier� Bar�

rier indices i are integers in a certain range� Locks are used to control access to critical sec�

tions� The routine Tmk lock acquire�i� acquires a lock for the calling processor� and the routine

Tmk lock release�i� releases it� No processor can acquire a lock if another processor is holding

it� The integer i is a lock index assigned by the programmer� Shared memory must be allocated

dynamically by calling Tmk malloc or Tmk sbrk� They have the same syntax as conventional mem�

ory allocation calls� With TreadMarks� it is imperative to use explicit synchronization� as data is

moved from processor to processor only in response to synchronization calls �see Section �������

����� TreadMarks Implementation

TreadMarks uses a lazy invalidate ���� version of release consistency �RC� ���� and a multiple�writer

protocol ��� to reduce the amount of communication involved in implementing the shared memory

abstraction� The virtual memory hardware is used to detect accesses to shared memory�

RC is a relaxed memory consistency model� In RC� ordinary shared memory accesses are

distinguished from synchronization accesses� with the latter category divided into acquire and

release accesses� RC requires ordinary shared memory updates by a processor p to become visible

to another processor q only when a subsequent release by p becomes visible to q via some chain

of synchronization events� In practice� this model allows a processor to bu
er multiple writes

to shared data in its local memory until a synchronization point is reached� In TreadMarks�

Tmk lock acquire�i� is modeled as an acquire� and Tmk lock release�i� is modeled as a release�

Tmk barrier�i� is modeled as a release followed by an acquire� where each processor performs a

release at barrier arrival� and an acquire at barrier departure�

With the multiple�writer protocol� two or more processors can simultaneously modify their own

copy of a shared page� Their modi�cations are merged at the next synchronization operation in

accordance with the de�nition of RC� thereby reducing the e
ect of false sharing� The merge is

accomplished through the use of di�s� A di
 is a runlength encoding of the modi�cations made to

a page� generated by comparing the page to a copy saved prior to the modi�cations�

TreadMarks implements a lazy invalidate version of RC ����� A lazy implementation delays

the propagation of consistency information until the time of an acquire� Furthermore� the releaser

noti�es the acquirer of which pages have been modi�ed� causing the acquirer to invalidate its local

copies of these pages� A processor incurs a page fault on the �rst access to an invalidated page�

and gets di
s for that page from previous releasers�

To implement lazy RC� the execution of each processor is divided into intervals� A new interval

�



begins every time a processor synchronizes� Intervals on di
erent processors are partially ordered�

�i� intervals on a single processor are totally ordered by program order� �ii� an interval on processor

p precedes an interval on processor q if the interval of q begins with the acquire corresponding to the

release that concluded the interval of p� and �iii� an interval precedes another interval by transitive

closure� This partial order is known as hb� ���� Vector timestamps are used to represent the partial

order�

When a processor executes an acquire� it sends its current timestamp in the acquire message�

The previous releaser then piggybacks on its response the set of write notices that have timestamps

greater than the timestamp in the acquire message� These write notices describe the shared memory

modi�cations that precede the acquire according to the partial order� The acquiring processor then

invalidates the pages for which there are incoming write notices�

On an access fault� a page is brought up�to�date by fetching all the missing di
s and applying

them to the page in increasing timestamp order� All write notices without corresponding di
s are

examined� It is usually unnecessary to send di
 requests to all the processors who have modi�ed

the page� because if a processor has modi�ed a page during an interval� then it must have all the

di
s of all intervals that precede it� including those from other processors� TreadMarks then sends

di
 requests to the subset of processors for which their most recent interval is not preceded by the

most recent interval of another processor�

Each lock has a statically assigned manager� The manager records which processor has most

recently requested the lock� All lock acquire requests are directed to the manager� and� if neces�

sary� forwarded to the processor that last requested the lock� A lock release does not cause any

communication� Barriers have a centralized manager� The number of messages sent in a barrier is

�� �n� ��� where n is the number of processors�

��� Di�erences in Performance Between PVM and TreadMarks

There are several reasons why TreadMarks is slower than PVM� In PVM� data communication and

synchronization are integrated together� The send and receive operations not only exchange data�

but also regulate the progress of the processors� In TreadMarks� synchronization is through locks

and barriers� which do not communicate data�

PVM also bene�ts from the ability to aggregate scattered data in a single message� an access

pattern that would result in several miss messages in TreadMarks� invalidate protocol� Each access

miss in TreadMarks is triggered by a page fault� and a di
 request and response are sent in order

to propagate the modi�cations�

Although the multiple�writer protocol eliminates the �ping�pong� e
ect that occurs with simul�

taneous writes to the same page� false sharing still a
ects the performance of TreadMarks� While

multiple processors may write to disjoint parts of the same page without interfering with each

other� if a processor reads the data written by one of the writers after a synchronization point� di


requests are sent to all of the writers� causing extra messages and data to be sent�

In the current implementation of TreadMarks� di� accumulation occurs for migratory data�

�



Migratory data is shared sequentially by a set of processors �	� ���� Each processor has exclusive

read and write access for a time� Accesses to migratory data are protected by locks in TreadMarks�

Each time a processor accesses migratory data� it must see all the preceding modi�cations� In

TreadMarks� this is implemented by fetching all di
s created by processors who have modi�ed the

data since the current processor�s last access� In case the di
s overlap� this implementation causes

more data to be sent than just fetching the most recent di
� Although all the overlapping di
s can

be obtained from one processor� di
 accumulation still results in more messages when the sum of

the di
 sizes exceeds the maximum size of a UDP message� Since the maximum UDP message size

is ��Kbytes� extra messages due to di
 accumulation are not a serious problem�

In addition to di
ering amounts of communication� TreadMarks also incurs the cost for detect�

ing and recording modi�cations to shared memory� This cost includes the overhead of memory

protection operations� page faults as a result of memory protection violations� twinning and di�ng�

and the maintenance of timestamps and write notices� Earlier work ��
� has demonstrated that

in current networking environments this cost is relatively small compared to the communication

overhead� We therefore concentrate on the di
erences in communication� and refer the reader to

our earlier paper ��
� for a detailed account of consistency overhead�

� Methodology

We tried to quantify how much each of the aforementioned factors contributed to TreadMarks�

performance� Three of them are assessed � lack of bulk transfer� false sharing� and di
 accumulation�

Because the separation of synchronization and data transfer is a fundamental characteristic of the

shared memory model� there is no way to assess its e
ect on performance without completely

deviating from the shared memory model� The contribution of each factor is measured by the

performance gain when the factor is eliminated� When several factors contribute signi�cantly to

an application�s performance� we also measured the aggregate e
ect of eliminating all of them

simultaneously�

The e
ect of bulk transfer is achieved by de�ning the TreadMarks page size to be a multiple of

the hardware page size� By increasing the TreadMarks page size� on each page fault� a larger block

of shared memory is updated� avoiding separate di
 requests for each hardware page in this block�

For each application� we use the page size which results in the best result� In general� a larger

page size may increase the degree of false sharing� Fortunately� for the applications used in this

study that bene�t from bulk data transfer� the page size could be increased without introducing

additional false sharing�

To reduce false sharing� we modi�ed the shared data layout and the data access pattern of the

applications in a way that does not signi�cantly alter program behavior� For applications with

static data partitioning� we padded each processor�s data to page boundaries� eliminating all false

sharing� For applications such as TSP� Barnes�Hut and ILINK� which have dynamic access patterns�

it is impossible to completely eliminate false sharing without changing the program�s behavior� In

�



these cases� we relied on knowledge of the program�s access patterns to modify the data layout in

such a way to substantially reduce false sharing�

Di
 squashing addresses the di� accumulation problem� Except where false sharing occurs�

di
s are created in a lazy fashion� A di
 is not created for a modi�ed page until some processor

requests that di
 to update its copy of the page� If this request also asks for older di
s� our di


squashing procedure compares each of the older di
s to the new di
� and the parts covered by the

new di
 are truncated�

We are not proposing that programmers hand�tune their TreadMarks programs using these

methods� We are using them here solely to indicate the contributions of various sources of com�

munication overhead� We believe� however� that some of the overheads that were identi�ed can

be addressed automatically using new run�time techniques or via compiler support �see Sections �

and ���

� Overview of Experimental Results

��� Experimental Testbed

We use two experimental platforms for measurements� The �rst platform is an ��node cluster

of Sparc��� model �� workstations� each with 	� megabytes of main memory� connected by a

�

Mbps ATM switch� On this platform� TreadMarks user processes communicate with each other

using UDP� In PVM� processes set up direct TCP connections with each other� Since all the

machines are identical� data conversion to and from external data representation is disabled� Both

UDP and TCP are built on top of IP� with UDP being connectionless and TCP being connection

oriented� TCP is a reliable protocol while UDP does not ensure reliable delivery� TreadMarks uses

light�weight� operation�speci�c� user�level protocols on top of UDP to ensure reliable delivery�

Our second experimental environment is an ��processor IBM SP�� running AIX version 	���
�

Each processor is a thin node with �� KBytes of data cache and ��� Mbytes of main memory�

Interprocessor communication is accomplished over IBM�s high�performance two�level cross�bar

switch� On this platform� TreadMarks is implemented on top of the MPL reliable message passing

layer� and we use PVMe� a version of PVM optimized for the IBM SP�� and also implemented on

top of MPL�

We chose these platforms for the following reason� The SPARC�ATM platform is typical of the

current generation of �networks of workstations� that use traditional network interfaces� Access to

the network interface is through the operating system� The SP�� is meant to represent the next

generation� in which the application may directly access the network interface� thereby signi�cantly

reducing the communication overhead� Some basic characteristics of both platforms are given in

Table ��

�



SPARC�ATM IBM SP��
�msec��

TreadMarks ��processor barrier ���
 ����
��processor lock ���� ��	

	�processor lock ���� ��
�
Empty di
 page fault ���� ����
Full page di
 page fault ���� ����
Memory protection ���� �ave�� ����
Signal delivery ���� ��	�

PVM�PVMe Empty message round trip ��	� ��	�
Max bandwidth without copying ��� MB�sec� ���� MB�sec�
Max bandwidth with copying ��� MB�sec� ���� MB�sec�

Table � Characteristics of the Experimental Platforms

��� Applications

We ported eight parallel programs to both TreadMarks and PVM� Water and Barnes�Hut from

the SPLASH benchmark suite ����� 	�D FFT� IS� and EP from the NAS benchmarks ���� ILINK� a

widely used genetic linkage analysis program ���� and SOR� and TSP�

The execution times for the sequential programs� without any calls to PVM or TreadMarks�

are shown in Table �� This table also shows the problem sizes used for each application� On the

IBM SP�� we were able to run some applications with larger data sizes� Main memory limitations

prevented us from running larger data sets on the SPARC�ATM network�

��� Speedups

Table 	 shows the ��processor speedups of PVM and TreadMarks on both platforms� The speedup

is computed relative to the sequential program execution times on each platform given in Table ��

Table 	 also shows the relative performance of TreadMarks compared to PVM� Table � shows total

memory usage in both systems for all of the applications and data sizes�

As can be seen in Table 	� performance di
erences between PVM and TreadMarks depend on

the application� and to a much smaller extent� on the platform and the data set size� at least

for the applications and environments considered in this paper� On both platforms� IS performs

signi�cantly worse on TreadMarks that on PVM� showing a speedup of only half of that of PVM�

On the SPARC�ATM network� the speedups of EP� ILINK� SOR� Water� Barnes�Hut� and 	�D

FFT are with �
� of PVM� with TSP lagging by about 	��� On the IBM SP��� 	�D FFT and

TSP trade places� with TSP now performing within �
� and 	�D FFT lagging 	��� The relative

di
erences for the other applications remain the same as on the SPARC�ATM platform� For all

but IS� memory requirements for TreadMarks exceed those of PVM by �
� to ���� For IS� the

di
erence is ���� because of the high amount of twin and di
 space required�

��



Program Problem Size Time �sec��
SPARC�ATM IBM SP��

EP ��� ���� ��		

ILINK CLP �	�� �
	

SOR ����� ����� 
� iterations ��
 	�
����� ����� ��� iterations ���

Water����� ���� molecules� 
 iterations ��� ��	
���� molecules� 
 iterations �	��

TSP �� cities ��� ���
�� cities ���

Barnes�Hut ��	�� bodies ��� ���
	���� bodies ���

	�D FFT ��� ��� ��� � iterations 
� �

���� ���� ��� � iterations ��

IS N � ���� Bmax � �
��� � iterations �� �

Table � Data Set Sizes and Sequential Execution Time of Applications

Program SPARC�ATM IBM SP��

PVM TreadMarks PVM TreadMarks

EP ���� ���� ������ ���� ���� ������

ILINK 
��	 
��� ����� 
��� 
��	 �����

SOR �����x����� ��
	 ���� ����� ��
� ���� ��	��
�����x����� ���� ��	� ��	��

Water ������ ��
� ��	
 ����� ���� ���
 ��
��
������ ���� ���� �����

TSP ���� ���� 
�
� ����� ���� ���� �����
���� ���� ���� ������

Barnes�Hut ���	��� ���� ���� ����� ���� 
��� ��
��
�	����� ���� 
��
 ��	��

	�D FFT ���x��x��� 
��� ���� ����� 
��� 	��	 �����
����x���x��� ���� 	�
� �����

IS �����
� ���� ���� ����� ��
� ���� �
	��

Table � ��Processor Speedups and Relative Performance under PVM and TreadMarks

��



Program PVM TreadMarks

EP ���� �
��

ILINK �
�� 	
��

SOR �����x����� 	
�� 
���
�����x����� ���� ����

Water ������ ���� ���

������ ���
 	���

TSP ���� ���� ����
���� ���� �
��

Barnes�Hut ���	��� ���	 	
��
�	����� �	�� ����

	�D FFT ���x��x��� 	
�� ����
����x���x��� ���� �����

IS �����
� ���
 
	��

Table � ��Processor Memory Usage under PVM and TreadMarks �megabytes�

The similarity between the results on the two platforms results from a combination of some of

the characteristics on each platform� On one hand� lower latency and higher bandwidth on the

IBM SP�� switch causes the extra communication in TreadMarks to have a relatively smaller e
ect

on performance� On the other hand� the longer interrupt latency and the higher cost of memory

management operations puts TreadMarks at a disadvantage on this architecture� Only for TSP

and 	�D FFT does the PVM vs� TreadMarks tradeo
 change noticeably between platforms� For

TSP� this change appears to be largely accidental� resulting from the non�deterministic nature of

the search algorithm in the program� For 	�D FFT� the superior �oating point performance on the

IBM SP�� results in a much lower sequential execution time �see Table ��� As a result� the extra

communication in TreadMarks has� relatively speaking� a larger e
ect on the IBM SP��� causing a

lower speedup�

��� Factors Contributing to TreadMarks Performance

For the SPARC�ATM platform� we quantify the e
ect of removing the various performance im�

pediments from TreadMarks� Table 
 presents speedups� and Tables � and � provide �gures for

the number of messages and the amount of data exchanged� which will be used in explaining the

speedup numbers �see Section 
�� In the PVM versions� we counted the number of user�level mes�

sages and the amount of user data sent in each run� In TreadMarks� we counted the total number

of messages� and the total amount of data communicated� Figures for the IBM SP�� platform are

qualitatively the same and are not included�

With the exception of IS� most of the di
erences in speedup and in communication require�

ments between TreadMarks and PVM are a result of PVM�s ability to aggregate large amounts

��



TreadMarks TreadMarks TreadMarks
Program PVM TreadMarks Bulk Transfer No FS Di
 Squash

EP ���� ���� ������ � � � � � �

ILINK 
��	 
��� ����� 
�
� ����� � � 
��� �����

SOR ��
	 ���� ����� ��
	 ������ � � � �

Water����� ��
� ��	
 ����� � � ��	� ����� ��	� �����

TSP ���� 
�
� ����� � � ���� ����� 
�
� �����

Barnes�Hut ���� ���� ����� 
��� ������ ��
� ����� � �

	�D FFT 
��� ���� ����� ���� ����� � � � �

IS ���� ���� ����� � � � � ���� �����

Table � ��Processor Speedups for PVM� TreadMarks� and Various Modi�cations of
TreadMarks on the SPARC�ATM platform

TreadMarks TreadMarks TreadMarks
Program PVM TreadMarks Bulk Transfer No FS Di
 Squash

EP � �� � � �

ILINK ���
 �

��� �
��	 � �

���

SOR ���� ��	� ���� � �

Water����� ��� ��		 � ���
 ����

TSP �	�� ����� � ����	 �����

Barnes�Hut ��� ����	� ����� ����� �

	�D FFT ���� �		�� 	��� � �

IS ���� ���� � � ���


Table � ��Processor Message Totals for PVM� TreadMarks� and Various Modi�cations
of TreadMarks on the SPARC�ATM platform

TreadMarks TreadMarks TreadMarks
Program PVM TreadMarks Bulk Transfer No FS Di
 Squash

EP ��	 �	 � � �

ILINK ��
�	 ����		 ������ � ��
�	�

SOR ����� ��� ��� � �

Water����� ���	 ����� � ����� �����

TSP 	� 	��
 � 		�� ���


Barnes�Hut 
�

� 
���� 
	��� 	���� �

	�D FFT �
��� �
��	 �
�
� � �

IS ��
�
 
���� � � ��	��

Table � ��Processor Data Totals for PVM� TreadMarks� and Various Modi�cations of
TreadMarks on the SPARC�ATM platform �Kilobytes�

�	



of data in a single message� Doing the equivalent thereof in TreadMarks leads to substantial per�

formance improvements for four applications �ILINK� SOR� Barnes�Hut� and 	�D FFT�� For IS�

di
 accumulation is the main performance impediment in TreadMarks� as can be seen from the

improvements resulting from di
 squashing� For the other applications in which di
 accumula�

tion occurs� the high computational overhead of di
 squashing causes performance to be adversely

a
ected� Finally� avoiding false sharing has only a limited e
ect�

� Discussion of Performance of Individual Applications

In this section we discuss the implementation of the applications in terms of PVM and TreadMarks�

We identify the applications for which there is a substantial di
erence in programmability� and we

point out the reasons for the di
erence� In terms of performance� we again focus on the performance

of the applications on the SPARC�ATM platform� as the results for the IBM SP�� are qualitatively

the same�

��� EP

The Embarrassingly Parallel program comes from the NAS benchmark suite ���� EP generates

pairs of Gaussian random deviates and tabulates the number of pairs in successive square annuli�

In the parallel version� the only communication is summing up a ten�integer list at the end of the

program� In TreadMarks� updates to the shared list are protected by a lock� In PVM� processor �

receives the lists from each processor and sums them up�

In our test� we solved the class A problem in the NAS benchmarks� in which ��� pairs of random

numbers are generated� The sequential program runs for ���� seconds� Both TreadMarks and PVM

achieve a speedup of ���� using � processors� because compared to the overall execution time� the

communication overhead is negligible�

��� Red�Black SOR

Red�Black Successive Over�Relaxation �SOR� is a method of solving partial di
erential equations�

In the parallel version� the program divides the red and the black array into roughly equal size bands

of rows� assigning each band to a di
erent processor� Communication occurs across the boundary

rows between bands� In the TreadMarks version� the arrays are allocated in shared memory� and

processors synchronize using barriers� With PVM� each processor explicitly sends the boundary

rows to its neighbors�

We ran red�black SOR on a ��������� matrix of �oating point numbers for 
� iterations� With

this problem size each shared red or black row occupies two pages� The �rst iteration is excluded

from measurement to eliminate di
erences due to the fact that data is initialized in a distributed

manner in the PVM version� while in TreadMarks it is done at the master process� In our test the

edge elements are initialized to �� and all the other elements to ��

��



The sequential program runs for ��
 seconds� At � processors� the TreadMarks version and

the PVM version achieve speedups of ���� and ��
	� respectively� The TreadMarks speedup is

��� that of PVM� TreadMarks and PVM performance are relatively close� because of the low

communication rate in SOR� and the use of lazy release consistency in TreadMarks� Although each

processor repeatedly writes to the boundary pages between two barriers� di
s of the boundary pages

are sent only once after each barrier� in response to di
 requests from neighbors� The number of

messages is � times higher in TreadMarks than in PVM� For n processors� PVM sends �� �n� ��

messages at the end of each iteration� In each red or black phase� TreadMarks sends � � �n � ��

messages to implement the barrier and ���n��� messages to page in the di
s for the boundary rows

�Each boundary row requires two di
s� one for each page�� As a result of di�ng in TreadMarks�

much less data is sent by TreadMarks than by PVM because most of the pages remain zero�

SOR exempli�es two of the performance drawbacks of TreadMarks relative to PVM� separation

of synchronization and data transfer and multiple di
 requests due to the invalidate protocol�

To measure the e
ect of multiple di
 requests for each row� we increase TreadMarks page size

to ���� bytes� so that only one di
 request and reply are sent in paging in the red or black elements

in a row� This reduces the number of messages sent in TreadMarks by ���� from ��	� to �����

and TreadMarks only sends � times more messages than PVM� Consequently� the performance gap

between TreadMarks and PVM shrinks from �� to zero� and both of them have a speedup of ��
	�

��� Integer Sort

Integer Sort �IS� ��� from the NAS benchmarks requires ranking an unsorted sequence of keys

using bucket sort� The parallel version of IS divides up the keys among the processors� First�

each processor counts its own keys� and writes the result in a private array of buckets� Next�

the processors compute the global array of buckets by adding the corresponding elements in each

private array of buckets� Finally� all processors rank their keys according to the global array of

buckets� To obtain good parallelism� the bucket array is divided equally into n blocks� where n is

the number of processes� The global buckets are computed in n steps� In each step� a processor

works on one of the blocks� and moves on to another one in the next step�

In the TreadMarks version� there is a shared array of buckets� and each processor also has a

private array of buckets� There are n locks� protecting modi�cations to each of the n blocks of

the global bucket array� In step i of the n steps calculating the sum� processor pid acquires lock

�pid i� mod n and works on the corresponding block� A barrier synchronizes all processors after

the updates� Each processor then reads the �nal result in the shared array of buckets and ranks its

keys� In the PVM version� each processor has a bucket array in private memory� Processors add

their counting results to the blocks of the bucket array in the same order as in TreadMarks� At the

end of each step i� a processor sends the result to the next processor in line� After the �nal step�

the last processor modifying the block broadcasts the result to all others�

We sorted ��� keys ranging from � to ��� for � iterations� We did not try the ��� keys speci�ed

in the NAS benchmarks� because it does not �t into a single machine�s memory� The sequential

�




execution time for IS is �� seconds� The � processor speedups for PVM and TreadMarks are ���

and ���� respectively�

TreadMarks sends ���
 messages� about � times more than PVM� The extra messages are

mostly due to separate synchronization messages and di
 requests� The shared bucket array in

IS contains ��� integers� spread over 	� pages� and each block is � pages� Therefore� each time a

processor adds to a block of the shared bucket� TreadMarks sends � di
 requests and responses�

while PVM handles the transmission of the block with a single message exchange�

The extra data in TreadMarks comes from di� accumulation� A processor completely overwrites

previous values in the array each time it acquires a lock to modify the shared array of buckets�

Because of di
 accumulation� all the preceding di
s are sent when a lock is acquired� even though

�for IS� they completely overlap each other� The same phenomenon occurs after the barrier� when

every processor reads the �nal values in the shared bucket� At this time� each processor gets all the

di
s made by the processors who modi�ed the shared bucket array after it during this iteration�

Assuming the array size is b and the number of processors is n� in PVM� the amount of data sent

in each iteration is �� �n� ��� b� while the amount of data sent in TreadMarks is n� �n� ��� b�

Di
 accumulation is the most important factor� Without di
 accumulation� the data sent in

TreadMarks is reduced by ��	� from 
� megabytes to �� megabytes� only �� more than PVM� As

a result� TreadMarks� speedup increases from ���� to ����� which is ��� of PVM�

Since the performance of IS is bounded by the communication bandwidth� the contribution of

multiple di
 requests cannot be measured with the presence of di
 accumulation� By using the

���kilobyte page size in addition to di
 squashing� the number of di
 requests and replies is reduced

by 	��� and message total is reduced to 
��	� ��� of the original TreadMarks� The e
ect is that

the ��processor speedup increases to 	�	�� �
� of PVM� �This result does not appear in Table 	

because it can not be measured separately��

��� TSP

TSP solves the traveling salesman problem using a branch and bound algorithm� The major data

structures are a pool of partially evaluated tours� a priority queue containing pointers to tours in

the pool� a stack of pointers to unused tour elements in the pool� and the current shortest path� The

evaluation of a partial tour is composed mainly of two procedures� get tour and recursive solve�

The subroutine get tour removes the most promising path from the priority queue� If the path

contains more than a threshold number of cities� get tour returns this path� Otherwise� it extends

the path by one node� puts the promising paths generated by the extension back on the priority

queue� and calls itself recursively� The subroutine get tour returns either when the most promising

path is longer than a threshold� or when lower bound of the most promising path from the priority

queue is longer than current best tour� The procedure recursive solve takes the path returned

by get tour� and tries all permutations of the remaining nodes recursively� It updates the shortest

tour if a complete tour is found that is shorter than the current best tour�

In the TreadMarks version� all the major data structures are shared� The subroutine get tour

��



is guarded by a lock to guarantee exclusive access to the tour pool� the priority queue� and the tour

stack� Updates to the shortest path are also protected by a lock� The PVM version uses a master�

slave arrangement� With n processors� there are n slave processes and � master process� In other

words� one processor runs both the master and one slave process� while the remaining processors

run only a slave process� The master keeps all the major data structures in its private memory� It

executes get tour and keeps track of the optimal solution� The slaves execute recursive solve�

and send messages to the master either to request solvable tours� or to update the shortest path�

We solved a ���city problem� with a recursive solve threshold of ��� The sequential program

runs for ��� seconds� At � processors� TreadMarks obtains a speedup of 
�
�� which is ��� of the

speedup of ���� obtained by PVM� At � processors� TreadMarks sends �� times more messages and

�� times more data than PVM�

The performance gap comes from the di
erence in programming styles� In the PVM version of

TSP� only the tours directly solvable by recursive solve and the minimum tour are exchanged

between the slaves and the master� These message exchanges take only � messages� In contrast� in

TreadMarks� all the major data structures migrate among the processors� In get tour� it takes at

least 	 page faults to obtain the tour pool� the priority queue� and the tour stack�

False sharing a
ects TreadMarks when a processor writes to a tour just popped from the tour

stack� A �����byte page can hold up to �� tours� If some tours are allocated by other processors�

a process brings in di
s even though it does not access other tours in the page�

Because of di
 accumulation� a processor can get up to �n� �� di
s on each page fault� where

n is the number of processors in the system� Due to the random access pattern on the tour pool

and the priority queue� the di
s are not completely overlapping�

Furthermore� there is some contention for the lock protecting get tour� On average� at �

processors� each process spends � out of �� seconds waiting at lock acquires�

We eliminate false sharing on the tour pools by keeping separate tour pools for each processor�

and allowing each processor to write only to tours in its own tour pool� The result shows that

	�� of the messages are attributed to false sharing� In the absence of false sharing� TreadMarks

performance improves from 
�
� to ����� which is ��� of PVM�

Di
 accumulation accounts for ��� of the data sent in TreadMarks� or 	�� kilobytes� but it

contributes little to TreadMarks performance� With the high speed networks we use� message size

is a secondary factor in deciding communication cost compared with number of messages�

��� Water

Water from the SPLASH ���� benchmark suite is a molecular dynamics simulation� The main

data structure in Water is a one�dimensional array of records� in which each record represents

a molecule� It contains the molecule�s center of mass� and for each of the atoms� the computed

forces� the displacements and their �rst six derivatives� During each time step� both intra� and

inter�molecular potentials are computed� To avoid computing all n��� pairwise interactions among

molecules� a spherical cuto
 range is applied�

��



The parallel algorithm statically divides the array of molecules into equal contiguous chunks�

assigning each chunk to a processor� The bulk of the interprocessor communication happens dur�

ing the force computation phase� Each processor computes and updates the intermolecular force

between each of its molecules and each of n�� molecules following it in the array in wrap�around

fashion�

In the TreadMarks version� the Water program from the original SPLASH suite is tuned to get

better performance� Only the center of mass� the displacements and the forces on the molecules are

allocated in shared memory� while the other variables in the molecule record are allocated in private

memory� A lock is associated with each processor� In addition� each processor maintains a private

copy of the forces� During the force computation phase� changes to the forces are accumulated

locally in order to reduce communication� The shared forces are updated after all processors have

�nished this phase� If a processor i has updated its private copy of the forces of molecules belonging

to processor j� it acquires lock j and adds all its contributions to the forces of molecules owned by

processor j� In the PVM version� processors exchange displacements before the force computation�

No communication occurs until all the pairwise intermolecular forces have been computed� at which

time processors communicate their locally accumulated modi�cations to the forces�

We used a data set of ���� molecules� and ran for 
 time steps� The sequential program runs

for ��� seconds� For this problem size� this application has a high computation to communication

ratio� At � processors� despite the fact that TreadMarks sends �� times more messages and ��	

times more data than PVM� TreadMarks and PVM achieve speedups of ��	
 and ��
�� respectively�

The performance di
erence is mainly caused by synchronization� In PVM� two user�level mes�

sages are sent for each pair of processors that interact with each other� one message to read the

displacements� and the other message to write the forces� In TreadMarks� extra messages are sent

for synchronization and for di
 requests to read the displacements or to write the shared forces�

After the barrier that terminates the phase in which the shared forces are updated� a processor may

fault again when reading the �nal force values of its own molecules� if it was not the last processor

to update those values�

As a result of false sharing� a processor may bring in updates for molecules it does not access�

and may communicate with more than one processor if the page containing the molecules is updated

by two di
erent processors� False sharing also causes the TreadMarks version to send unnecessary

data� However� because of the large data size� there is little false sharing�

Another cause of the additional data sent in TreadMarks is di� accumulation� Assuming there

are n processors� where n is even� the force value of molecules belonging to a processor are modi�ed

by n�� � processors� each protected by a lock� On average� each processor gets n�� di
s� Because

of the cuto
 range� the di
s are not completely overlapping�

To eliminate false sharing� each processor allocates its own part of the shared force and dis�

placement arrays in shared memory� Each allocation is padded to an integral of page size� False

sharing only constitutes �� of the messages sent in TreadMarks� and has little e
ect on TreadMarks�

performance�

��



Although di
 accumulation is responsible for ��� of the total data sent under TreadMarks� the

performance is hardly a
ected because of the high computation to communication ratio�

��	 Barnes�Hut

Barnes�Hut from the SPLASH ���� benchmark suite is an N�body simulation using the hierarchical

Barnes�Hut Method� A tree�structured hierarchical representation of physical space is used� Each

leaf of the tree represents a body� and each internal node of the tree represents a �cell�� a collection

of bodies in close physical proximity� The major data structures are two arrays� one representing

the bodies and the other representing the cells� The sequential algorithm loops over the bodies�

and for each body traverses the tree to compute the forces acting on it�

In the parallel code� there are four major phases in each time step�

�� MakeTree � Construct the Barnes�Hut tree�

�� Get my bodies� Partition the bodies among the processors�

	� Force Computation� Compute the forces on my own bodies�

�� Update� Update the positions and the velocities of my bodies�

Phase � is executed sequentially� because running in parallel slows down the execution� In phase

�� dynamic load balance is achieved by using the cost�zone method� in which each processor walks

down the Barnes�Hut tree and collects a set of logically consecutive leaves� Most of the computation

time is spent in phase 	�

In the TreadMarks version� the array of bodies is shared� and the cells are private� In MakeTree�

each processor reads all the shared values in bodies and builds internal nodes of the tree in its

private memory� There are barriers after the MakeTree� force computation� and update phases�

No synchronization is necessary during the force computation phase� The barrier at the end of the

force computation phase ensures that all processors have �nished reading the positions of all other

processors� In the PVM version� every processor broadcasts its bodies at the end of each iteration�

so that each processor obtains all the bodies and creates a complete tree in phase �� No other

communication is required�

We ran Barnes�Hut with ��	�� bodies for � timesteps� The last 
 iterations are timed in order

to exclude any cold start e
ects� The sequential program runs for ��� seconds� At � processors�

PVM and TreadMarks achieve speedups of ���� and ���� respectively� The low computation to

communication ratio and the need for �ne�grained communication ���� contribute to the poor

speedups on both TreadMarks and PVM� TreadMarks sends 
�	 times more messages than PVM

at � processors� This is the result of both false sharing and multiple di
 requests� Although the

set of bodies owned by a processor are adjacent in the Barnes�Hut tree� they are not adjacent in

memory� This results in false sharing that causes each page fault to send di
 requests to all �

processors� Moreover� since the body array spans 	�� pages� it takes a processor 	�� page faults

and corresponding requests and replies to obtain it�

��



We increase the TreadMarks page size to ��Kbytes� the maximum currently allowed� to reduce

the number of di
 requests� Because every page is shared by all � processors� using a larger page size

does not worsen the false sharing� The message count drops by ��� as a result� and TreadMarks

speedup is improved from ���� to 
���� ��� faster than the speedup of ���� obtained by PVM� This

anomaly occurs because TreadMarks uses UDP� while PVM uses TCP� which has higher overhead�

We reduce false sharing by reorganizing the bodies in memory� After all the processors have

found their own bodies in the �rst iteration� the bodies are copied so that all the bodies belonging

to the same processor are adjacent in body array� Because the position of bodies changes very

slowly� the set of bodies owned by a processor remains almost the same over the next 
 iterations�

With reduced false sharing� TreadMarks sends ��� less messages and ��� less data at � processors�

TreadMarks speedup is increased to ��
�� only �� slower than PVM�

��
 ��D FFT

	�D FFT� from the NAS ��� benchmark suite� numerically solves a partial di
erential equation using

three dimensional forward and inverse FFT�s� Assume the input array A is n��n��n�� organized

in row�major order� The 	�D FFT �rst performs a n��point ��D FFT on each of the n��n� complex

vectors� Then it performs a n��point ��D FFT on each of the n� � n� vectors� Next� the resulting

array is transposed into an n� � n� � n� complex array B and an n��point ��D FFT is applied to

each of the n� � n� complex vectors�

We distribute the computation on the array elements along the �rst dimension of A� so that

for any i� all elements of the complex matrix Ai�j�k� � � j � n�� � � k � n� are assigned to a single

processor� No communication is needed in the �rst two phases� because each of the n��point FFTs

or the n��point FFTs is computed by a single processor� The processors communicate with each

other at the transpose� because each processor accesses a di
erent set of elements afterwards� In the

TreadMarks version� a barrier is called before the transpose� In the PVM version� messages are sent

explicitly� To send these messages� we must �gure out where each part of the A array goes to� and

where each part of the B array needs to come from� These index calculations on a 	�dimensional

array are much more error�prone than simply swapping the indices� as in TreadMarks� making the

PVM version harder to write�

The results are obtained by running on a �������� array of double precision complex numbers

for � iterations� excluding the time for distributing the initial values at the beginning of program�

This matrix size is ��	� of that speci�ed in the class A problem in the NAS benchmarks� We scaled

down the problem in order to enable the program to execute on one machine without paging�

The sequential execution time is 
� seconds� A speedup of ���� is obtained by TreadMarks at �

processors� which is ��� of the speedup of 
��� obtained by PVM� Because of release consistency and

the absence of false sharing� TreadMarks sends almost the same amount of data as PVM� However�

because of the page�based invalidate protocol� ��	 times more messages are sent in TreadMarks

than in PVM�

To reduce multiple di
 requests� we increase TreadMarks page size to ���� bytes� which is the

��



largest page size that does not incur false sharing� The number of messages sent in TreadMarks

drops to twice that in PVM� Consequently� TreadMarks� speedup increases from ���� to ����� less

than �� lower than the speedup of 
��� obtained in PVM�

��� ILINK

ILINK ��� ��� is a widely used genetic linkage analysis program that locates speci�c disease genes

on chromosomes� The input to ILINK consists of several family trees� The program traverses

the family trees and visits each nuclear family� The main data structure in ILINK is a pool of

genarrays� A genarray contains the probability of each genotype for an individual� Since the

genarray is sparse� an index array of pointers to non�zero values in the genarray is associated with

each one of them� A bank of genarrays large enough to accommodate the biggest nuclear family

is allocated at the beginning of execution� and the same bank is reused for each nuclear family�

When the computation moves to a new nuclear family� the pool of genarrays is reinitialized for each

person in the current family� The computation either updates a parent�s genarray conditioned on

the spouse and all children� or updates one child conditioned on both parents and all the other

siblings�

We use the parallel algorithm described in Dwarkadas et al� ���� Updates to each individual�s

genarray are parallelized� A master processor assigns the non�zero elements in the parent�s genarray

to all processors in a round robin fashion� After each processor has worked on its share of non�zero

values and updated the genarray accordingly� the master processor sums up the contributions of

each of the processors�

In the TreadMarks version� the bank of genarrays is shared among the processors� and barriers

are used for synchronization� In the PVM version� each processor has a local copy of each genarray�

and messages are passed explicitly between the master and the slaves at the beginning and the

end of each nuclear family update� Since the genarray is sparse� only the non�zero elements are

sent� The di�ng mechanism in TreadMarks automatically achieves the same e
ect� Since only

the non�zero elements are modi�ed during each nuclear family update� the di
s transmitted to the

master only contain the non�zero elements�

We used the CLP data set ����� with an allele product � � �� � � �� The sequential program

runs for ���	 seconds� At � processors� TreadMarks achieves a speedup of 
�
�� which is �	� of

the 
��� obtained by PVM� A high computation�to�communication ratio leads to good speedups

and also explains the fact that PVM and TreadMarks are close in performance� However� we were

able to identify three reasons for the lower performance of TreadMarks� First� while both versions

send only the non�zero elements� PVM performs this transmission in a single message� TreadMarks

sends out a di
 request and a response for each page in the genarray� For the CLP data set� the size

of the genarray is about �� pages� Second� false sharing occurs in TreadMarks because the non�zero

values in the parents� genarrays are assigned to processors in a round robin fashion� In PVM� when

the parents� genarrays are distributed� each processor gets only its part of the genarray� but in

TreadMarks� a processor gets all the non�zero elements in the page� including those belonging to

��



other processors� The third and �nal reason for the di
erence in performance is di� accumulation�

The bank of genarrays is re�initialized at the beginning of the computation for each nuclear family�

Although the processors need only the newly initialized data� TreadMarks also sends di
s created

during previous computations�

The TreadMarks page size is increased to �� kilobytes to reduce di
 requests� This reduces

��� of the messages� and increased TreadMarks speedup from 
��� to 
�
�� which is ��� of PVM�

Because of the high computation to communication ratio and the fact that only ��� of the data sent

in TreadMarks are attributed to di
 accumulation� di
 accumulation has little a
ect on TreadMarks�

It is hard to measure the e
ect of false sharing because of the dynamic access pattern� and because

a processor accesses completely di
erent data each time�

��� Summary

��	�� Programmability

From our experience with PVM and TreadMarks� we conclude that it is easier to achieve correctness

and e�ciency using TreadMarks� Although there is little di
erence in programmability for simple

programs� such as EP� SOR and IS� for programs with complicated communication patterns� such as

Water� 	�D FFT� Barnes�Hut� ILINK and TSP� it takes more e
ort to write a correct and e�cient

message passing program�

In the TreadMarks version of Water� a single call to a lock and a barrier synchronize the updates

to the shared force array� Another call to the barrier after updating the displacements makes sure

that all processors will receive the new displacement values in the next iteration� In the PVM

version� however� instead of inserting a synchronization call� the programmer needs to compute

the source and destination of each piece of data� copy the data to and from the message bu
er�

and issue send and receive calls� While the TreadMarks code has ���� lines� another ��� lines are

required in the PVM code�

For 	�D FFT� the array transpose in TreadMarks consists of simple operations to switch indices�

and a call to the barrier before the transpose� In the PVM version� one must envision how data is

moved in a 	�D transpose� and generate communication calls accordingly� The PVM version has

��� more lines than the TreadMarks version� Moreover� the index calculations on a 	�D array are

more error�prone than simply swapping the indices� as in TreadMarks�

In PVM version of Barnes�Hut� we let each processor to broadcast call its nodes� This simple

algorithm works �ne with a small number of processors� but would have serious problems when

scaled to a larger cluster� However� writing the message passing code that exactly selects which

nodes are going to be accessed by what processor would be quite involved� In TreadMarks� instead�

a barrier call causes processors to page in those nodes they access�

In ILINK� by adding a barrier between di
erent phases of the computation� TreadMarks au�

tomatically transmits the non�zero elements in the genarray� In the PVM version� if we take

the simple approach of sending all values� including the zeroes� the resulting performance becomes

��



worse than that obtained by TreadMarks� Exactly picking out the non�zero values adds signi��

cantly to the complexity of the PVM code� The TreadMarks version has ����� lines� The PVM

version has an additional �	� lines� including the code to pick out the non�zero genarray elements�

For TSP� because TreadMarks provides a shared memory interface� we can write a simple ����

line program in which all the processes are equivalent� In the PVM version� two di
erent programs

are written for the master and the slave processes� which increases the code size by half� to ��
	

lines�

��	�� Performance

Our results show that because of the use of release consistency and the multiple�writer protocol�

TreadMarks performs comparably with PVM on a variety of problems in the experimental environ�

ment examined� For six out of the eight experiments� TreadMarks performed within �
� of PVM�

For the remaining four experiments� TreadMarks lags behind PVM for 	�� and ��� for TSP and

IS� respectively�

After eliminating three of the prime factors that slow down TreadMarks� all of the TreadMarks

programs perform within �
� of PVM� and for six out of eight experiments� TreadMarks is less

than 
� slower than PVM� Of the three factors we experimented with� the e
ect of multiple di


requests is the most signi�cant� Four out of eight experiments bene�ts from bulk transfer� with two

of them gaining over ���� This can be attributed to the large data size and coarse granularity of

these applications� Three of the applications perform better with the elimination of false sharing�

but all of the improvements are less than ���� Di
 squashing only reduces the data totals� which

is a second order e
ect in TreadMarks overheads� As a result� it is pro�table only for IS� where

di
s completely overlap�

� Related Work

Our study distinguishes itself from most related work by being� with the exception of Carter

et al� ���� the �rst study to compare message passing to software distributed shared memory�

implemented on top of message passing� We are thus evaluating the cost of layering shared memory

in software on top of message passing� in contrast to the studies that evaluate message passing and

shared memory as two architectural models implemented in hardware� In contrast to the work

on Munin ���� we use lazy rather than eager release consistency� It has been demonstrated that

lazy release consistency leads to lower communication requirements and better performance ��
��

Furthermore� our study is done on common Unix platforms and using a well�known message passing

system�

Among the architectural studies comparing message passing and shared memory� we cite two

recent articles� namely Chandra et al� �
� and Klaiber and Levy ����� Both of these are simulation

studies� while our results are derived from measurements of an implementation� Chandra et al� �
�

compares four applications� running either with a user�space message passing or with a full�map

�	



invalidate shared memory coherence protocol� All other simulation parameters� such processor and

network characteristics and number of processors� are kept the same� For three of their applications�

shared memory has the same performance as message passing� For these applications� the software

overhead of the message passing layers compensates for the extra communication in the shared

memory programs� For their fourth application� extra communication causes shared memory to

perform about 
�� worse than message passing�

Klaiber and Levy ���� compare the communication requirements of data�parallel programs on

message passing and shared memory machines� We focus instead on execution times� and use the

communication requirements as a means to explain the di
erences in execution times� Also� their

data�parallel programs are compiled by two di
erent compilers� one for message passing and one

for shared memory� The results may therefore be in�uenced by di
erences in the quality of the

code generated by the two compilers�

Having recognized the advantages and drawbacks of shared memory and message passing� sev�

eral groups have recently proposed machine designs that integrate both architectural models ����

��� ���� Various compiler techniques can also be used to remedy some of the de�ciencies of shared

memory recognized in this study� For instance� Eggers and Jeremiassen ��	� discuss compiler trans�

formations to reduce the e
ect of false sharing� and Dwarkadas et al� ��� evaluate compiler support

for communication aggregation� merging data and synchronization� and reduction of coherence

overhead�

Finally� there have a variety of papers comparing implementations of individual applications in

shared memory and message passing� including� e�g�� hierarchical N�body simulation ���� and VLSI

cell routing ��	��

	 Conclusions

This paper presents two contributions� First� our results show that� on a large variety of programs�

the performance of a well optimized DSM system is comparable to that of a message passing system�

Especially for problems of non�trivial size� such as ILINK and Water� TreadMarks performs within

�
� of PVM� In terms of programmability� our experience indicates that it is easier to program

using TreadMarks than using PVM� Although there is little di
erence in programmability for

simple programs� for programs with complicated communication patterns� such as Water� 	�D

FFT� Barnes�Hut� ILINK and TSP� a lot of e
ort is required to determine what data to send and

whom to send the data to� Especially for programs with complicated or irregular array accesses or

with data structures accessed through pointers� the message passing paradigm is harder to use and

more error�prone�

Second� we observe four main causes for the lower performance of TreadMarks compared to

PVM� namely �� extra messages due to the separation of synchronization and data transfer� ��

extra messages to handle access misses caused by the invalidate protocol� 	� false sharing� and ��

di
 accumulation for migratory data�

��



Without deviating from shared memory model� we designed some experiments to measure the

performance contribution each of the last three factors� The results show that the e
ect of the extra

messages to handle access misses is the most signi�cant� Four out of eight of the applications bene�t

from the elimination of this factor� with two of them gaining over ���� This can be attributed to

the large data size and coarse granularity of these applications� The elimination of false sharing

improves TreadMarks performance for three of the experiments� but all of the improvements are

less than ���� Eliminating the di
 accumulation only reduces the data totals� which is a second

order e
ect in TreadMarks overheads� As a result� it is pro�table only for IS� where di
s completely

overlap� Without the three factors that slow down TreadMarks� all of the TreadMarks programs

perform within �
� of PVM� and for six out of eight experiments� TreadMarks is less than �
�

slower than PVM�

References

��� S� Adve and M� Hill� Weak ordering� A new de�nition� In Proceedings of the ��th Annual

International Symposium on Computer Architecture� pages ����� May �����

��� D� Bailey� J� Barton� T� Lasinski� and H� Simon� The NAS parallel benchmarks� Technical

Report ��	��	� NASA� July ���	�

�	� J�K� Bennett� J�B� Carter� and W� Zwaenepoel� Adaptive software cache management for

distributed shared memory architectures� In Proceedings of the ��th Annual International

Symposium on Computer Architecture� pages ��
��	�� May �����

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Techniques for reducing consistency�related

information in distributed shared memory systems� ACM Transactions on Computer Systems�

�	�	����
���	� August ���
�

�
� S� Chandra� J�R� Larus� and A� Rogers� Where is time spent in message�passing and shared�

memory programs! In Proceedings of the �th Symposium on Architectural Support for Pro�

gramming Languages and Operating Systems� pages ����	� October �����

��� R� W� Cottingham Jr�� R� M� Idury� and A� A� Sch"a
er� Faster sequential genetic linkage

computations� American Journal of Human Genetics� 
	��
����	� ���	�

��� S� Dwarkadas� A�L� Cox� and W� Zwaenepoel� An integrated compile�time�run�time software

distributed shared memory system� In Proceedings of the �th Symposium on Architectural

Support for Programming Languages and Operating Systems� ����� To appear�

��� S� Dwarkadas� A�A� Sch"a
er� R�W� Cottingham Jr�� A�L� Cox� P� Keleher� and W� Zwaenepoel�

Parallelization of general linkage analysis problems� Human Heredity� ����������� �����

��� G�A� Geist and V�S� Sunderam� Network�based concurrent computing on the PVM system�

Concurrency� Practice and Experience� pages ��	�	��� June �����

�




���� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory

consistency and event ordering in scalable shared�memory multiprocessors� In Proceedings of

the ��th Annual International Symposium on Computer Architecture� pages �
���� May �����

���� R�J� Harrison� Portable tools and applications for parallel computers� In International Journal

of Quantum Chemistry� volume ��� pages ������	� February �����

���� J� T� Hecht� Y� Wang� B� Connor� S� H� Blanton� and S� P� Daiger� Non�syndromic cleft lip

and palate� No evidence of linkage to hla or factor �	a� American Journal of Human Genetics�


����	����		� ���	�

��	� T�E� Jeremiassen and S� Eggers� Reducing false sharing on shared memory multiprocessors

through compile time data transformations� In Proceedings of the �th ACM Symposium on the

Principles and Practice of Parallel Programming� July ���
�

���� P� Keleher� A� L� Cox� and W� Zwaenepoel� Lazy release consistency for software distributed

shared memory� In Proceedings of the �	th Annual International Symposium on Computer

Architecture� pages �	���� May �����

��
� P� Keleher� A�L� Cox� S� Dwarkadas� and W� Zwaenepoel� An evaluation of software�based re�

lease consistent protocols� Journal of Parallel and Distributed Computing� ����������� October

���
�

���� P� Keleher� S� Dwarkadas� A�L� Cox� and W� Zwaenepoel� Treadmarks� Distributed shared

memory on standard workstations and operating systems� In Proceedings of the �		
 Winter

Usenix Conference� pages ��
��	�� January �����

���� A�C Klaiber and H�M� Levy� A comparison of message passing and shared memory architec�

tures for data parallel languages� In Proceedings of the ��th Annual International Symposium

on Computer Architecture� pages ������� April �����

���� D� Kranz� K� Johnson� A� Agarwal� J� Kubiatowicz� and B� Lim� Integrating message�passing

and shared�memory� Early experience� In Proceedings of the �		� Conference on the Principles

and Practice of Parallel Programming� pages 
���	� May ���	�

���� J� Kuskin and D� Ofelt et al� The Stanford FLASH multiprocessor� In Proceedings of the ��th

Annual International Symposium on Computer Architecture� pages 	���	�	� April �����

���� G� M� Lathrop� J� M� Lalouel� C� Julier� and J� Ott� Strategies for multilocus linkage analysis

in humans� Proceedings of National Academy of Science
 USA� ���	��	�	���� June �����

���� K� Li and P� Hudak� Memory coherence in shared virtual memory systems� ACM Transactions

on Computer Systems� �����	���	
�� November �����

��



���� H� Lu� S� Dwarkadas� A�L� Cox� and W� Zwaenepoel� Message passing versus distributed

shared memory on networks of workstations� In Proceedings SuperComputing �	�� December

���
�

��	� M� Martonosi and A� Gupta� Tradeo
s in message passing and shared memory implementations

of a standard cell router� In �	�	 International Conference on Parallel Processing� pages ������

August �����

���� Message Passing Interface Forum� MPI� A message�passing interface standard� version ����

May �����

��
� Parasoft Corporation� Pasadena� CA� Express user�s guide� version 	���
� �����

���� Steven K� Reinhardt� James R� Larus� and David A� Wood� Tempest and Typhoon� User�level

shared memory� In Proceedings of the ��th Annual International Symposium on Computer

Architecture� pages 	�
�		�� April �����

���� J�P� Singh� J�L� Hennessy� and A� Gupta� Implications of hierarchical n�body methods for

multiprocessor architectures� ACM Transactions on Computer Systems� �	������������ May

���
�

���� J�P� Singh� W��D� Weber� and A� Gupta� SPLASH� Stanford parallel applications for shared�

memory� Computer Architecture News� ����������� March �����

���� W��D� Weber and A� Gupta� Analysis of cache invalidation patterns in multiprocessors� In

Proceedings of the �rd Symposium on Architectural Support for Programming Languages and

Operating Systems� pages ��	��
�� April �����

�	�� M�J� Zekauskas� W�A� Sawdon� and B�N� Bershad� Software write detection for distributed

shared memory� In Proceedings of the First USENIX Symposium on Operating System Design

and Implementation� pages ������� November �����

��


