
Adaptive Protocols for Software Distributed Shared Memory

Cristiana Amzay� Alan L� Coxy� Sandhya Dwarkadasz�

Li�Jie Jiny� Karthick Rajamani�� and Willy Zwaenepoely

y Department of Computer Science� Rice University
z Department of Computer Science� University of Rochester

� Department of Electrical and Computer Engineering� Rice University

Abstract

We demonstrate the bene�ts of software shared mem�
ory protocols that adapt at run�time to the memory access
patterns observed in the applications� This adaptation is
automatic � no user annotations are required � and does
not rely on compiler support or special hardware� We in�
vestigate adaptation between single� and multiple�writer
protocols� dynamic aggregation of pages into a larger trans�
fer unit� and adaptation between invalidate and update�
Our results indicate that adaptation between single� and
multiple�writer and dynamic page aggregation are clearly
bene�cial� The results for the adaptation between invali�
date and update are less compelling� showing at best gains
similar to the dynamic aggregation adaptation and at worst
serious performance deterioration�

I� Introduction

Many di�erent protocols have been proposed for im�
plementing a software shared memory abstraction on dis�
tributed memory hardware� The relative performance of
these protocols is application�dependent� the memory ac�
cess patterns of the application determine which protocols
exhibit good performance� It is therefore appealing to build
a system with multiple protocols� and let the system choose
between the di�erent protocols based on the access patterns
it observes in the application� In this paper we present
the design of such an adaptive software distributed shared
memory system and evaluate its performance�
Speci�cally� this paper focuses on protocols that im�

plement the lazy release consistency 	LRC
 memory
model ���� We furthermore assume that shared mem�
ory accesses are detected using virtual memory protection�
This paper explores the bene�ts of LRC protocols that
adapt to the memory access patterns of the applications�
by comparing their performance to non�adaptive versions
of the protocols� In particular� we investigate�
�� adaptation between single� and multiple�writer proto�
cols� including adaptation to migratory access patterns�
�� dynamic aggregation of pages into larger transfer units�
and
�� adaptation between invalidate and update protocols�
The adaptations considered in this paper are triggered au�

tomatically� the run�time system detects certain access pat�
terns and switches between protocols accordingly� This au�
tomated adaptation distinguishes our work from so called
multi�protocol software shared memory implementations
	e�g� ���
� in which the user has to annotate the program

to select the appropriate protocol� In our experience� re�
moving the need for annotation leads to much improved
usability�
The adaptive protocols were implemented in Tread�

Marks ���� Our experimental platform is a switched
���Mbps Ethernet consisting of eight �Mhz Pentium
Pro machines running FreeBSD� We use eight applications
to demonstrate the performance of the adaptive proto�
cols� �D�FFT� CG� MG and IS from the NAS benchmark
suite ���� Water and Barnes�Hut from the SPLASH bench�
mark suite ����� Gauss from the TreadMarks distribution�
and ILINK from the FASTLINK package ����� The results
indicate that�

�� Adaptation between single� and multiple�writer and dy�
namic aggregation perform well� in some cases showing sub�
stantial performance improvement� and never decreasing
performance�
�� Adaptation between invalidate and update is less suc�
cessful� with performance improvements that match dy�
namic aggregation in some cases and substantial perfor�
mance losses in others�

The outline of the rest of this paper is as follows�
Section II presents the necessary background information
about LRC� Section III presents the possible protocol
choices for implementing LRC� and the policies and mech�
anisms by which the adaptive protocols choose between
their alternatives� Section IV describes the experimental
environment� Section V describes the applications used�
Section VI presents the results of the performance com�
parison� Section VII discusses related work� Section VIII
presents our conclusions�

II� Programming Model

We assume an explicitly parallel programming model�
with primitives for process creation and destruction� syn�
chronization� and shared memory allocation and dealloca�
tion� Synchronization primitives include mutual exclusion
locks and barriers� Shared memory is accessed through
load and store instructions� The memory consistency

model presented to the user is release consistency 	RC
�
a relaxed memory model �����
In RC� ordinary shared memory accesses are distin�

guished from synchronization accesses� with the latter cat�
egory subdivided into acquire and release accesses� Lock
synchronization maps onto acquires and releases in the ob�
vious way� a lock operation corresponds to an acquire�
and an unlock corresponds to a release� With barriers� a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


�

barrier arrival corresponds to a release� whereas a barrier
departure corresponds to an acquire� Roughly speaking�
RC requires that� before a release by a processor p becomes
visible to another processor q� all ordinary shared memory
modi�cations by processor p become visible to processor
q� The Lazy Release Consistency 	LRC
 algorithm ����
one of the possible RC implementations� delays the prop�
agation of shared memory modi�cations by processor p to
processor q until q executes an acquire corresponding to a
release by p�
Programs without data races� i�e�� programs with suf�

�cient synchronization such that any pair of con�icting
memory accesses is separated by a release�acquire pair� pro�
duce the same results on an RC or an LRC memory system
as on a conventional sequentially�consistent memory sys�
tem ����� Performance� however� can be much improved by
the use of RC or LRC� especially for software implementa�
tions of shared memory� because the messages propagating
the shared memory modi�cations can be delayed and coa�
lesced with the synchronization messages� leading to a sub�
stantial reduction in communication ���� ���� In addition
to being data�race�free� all synchronization in the program
must be done through the primitives supplied by the run�
time system� so that it can take the required consistency
actions at synchronization points�
We assume that the shared memory is implemented as

a global virtual memory segment� shared by all processors�
The virtual memory protection hardware is used to detect
access to individual pages� Some of these accesses may
cause page faults� which then trigger protocol operations
as described in the next section�

III� Protocols

A� Single� vs� Multiple�Writer Protocols

A�� The Basic Protocols and Their Tradeo�s

In a single�writer protocol� there is a single writable copy
of a page at any given time ����� The processor currently
holding the writable copy of a page is called the owner of
that page� Several read�only copies of the page may co�
exist with the writable owner copy� According to the de��
nition of RC� a read�only copy may be temporarily incon�
sistent with the writable copy� but it must be brought up�
to�date when the processor on which it resides synchronizes
with the owner� Assume� for instance� that an invalidate
protocol is used and synchronization is by means of a bar�
rier� If the owner has modi�ed a particular page� it creates
an owner write notice for that page� containing its proces�
sor id and a version number� The barrier protocol causes
the owner write notice to be transmitted to the processors
which have read�only copies of the page� and these proces�
sors then invalidate their copies� On a subsequent access
miss� they retrieve the page from the owner� The owner
write�protects his copy during the �rst retrieval� Before a
processor may write on a page� it must obtain ownership
from the current owner� The owner is located by means of
the write notice with the highest version number� possibly
by forwarding if ownership has changed since this write no�

tice was received� Once ownership is obtained� the page�s
version number is incremented by one�

In contrast� in a multiple�writer protocol� there may be
several writable copies of a page on di�erent processors ����
Each processor with a writable copy records its own mod�
i�cations to the page by a technique called twinning and

di�ng� Pages are initially write�protected so that the �rst
write access to a page causes a protection violation� At this
point� the system makes a copy of the page� the twin� and
unprotects the original page� To detect what modi�cations
have been made to a page� the current copy is compared
word�by�word to the twin� and a record of the modi�ca�
tions� the di�� is constructed� Continuing the above ex�
ample� when an invalidate protocol is used and synchro�
nization is by means of barriers� each processor that has
modi�ed a page constructs a write notice for that page�
which is forwarded by the barrier protocol to all processors
with copies of that page�� A processor might receive several
write notices for a single page� These write notices cause
the page to be invalidated� On an access miss� the di�s
corresponding to these write notices have to be retrieved
and applied to the processor�s current copy of the page�

The tradeo� between single� and multiple�writer proto�
cols is dependent on the access pattern to the page� and
a�ects both execution time and memory overhead� If mul�
tiple processors write concurrently to di�erent parts of a
page 	write�write false sharing
� then multiple�writer pro�
tocols achieve better performance� because they do not in�
cur the cost of transferring the page over the network to
the next writer� Even if there is only a single writer� it may
be advantageous to use twinning and di�ng� This scenario
occurs when the writer modi�es only a small portion of the
page� The multiple�writer protocol transmits only those
modi�cations� while a single�writer protocol transmits the
entire page�

If� however� only a single processor writes to a page at
any given time� and this processor modi�es a large part
of the page� then the single�writer protocol avoids the cost
of twinning� di�ng� and di� application� without much in�
crease in communication� More importantly� it avoids a
pitfall of the multiple�writer protocol� called di� accumu�

lation ����� a scenario in which a number of partially or
completely overlapping di�s are transmitted� signi�cantly
increasing the amount of communication� While it is possi�
ble to modify the multiple�writer protocol to eliminate the
overlap� there is a high computational cost to pruning use�
less data from older di�s each time a new di� is created� It
is more e�cient to manage the page in single�writer mode�

Finally� while the memory overhead for the single�writer
protocol is negligible� the multiple�writer protocol has to
allocate memory for the twins and the di�s� This extra
overhead may cause an application to page to disk with a
multiple�writer protocol� while running in memory with a

�The information in the write notices of the multiple�writer protocol
is more complicated than the version number present in the owner
write notices of the single�writer protocol� In particular� it contains a
vector timestamp that allows the write notice to be partially ordered
w�r�t� write notices from other processors�



�

single�writer protocol�

A�� Adapting between Single� and Multiple�Writers

In the adaptive protocol used in this paper� all pages
start out in multiple�writer mode� A page may switch to
single�writer mode by one of two events�

�� A processor receives a di� request for a page� and it has
modi�ed the entire page� In this case� the page is clearly
single�writer� and there is no reduction in communication
by sending a di��
�� A processor sends out di� requests for a page� it re�
ceives no concurrent di�s� and the sum of the sizes of the
di�s received is bigger than the page size� This is indica�
tive of the di� accumulation phenomenon discussed earlier�
Since there are no concurrent di�s� there is no write�write
false sharing� Looking ahead to the time where a di�erent
processor requests the di�s for this page� keeping the page
in multiple�writer mode would cause more data to be sent
than a page� It is therefore more e�cient to put the page
in single�writer mode�

A page may switch back to multiple�writer mode at
the onset of write�write false sharing� which is detected
by the ownership refusal protocol� a modi�cation to the
single�writer protocol for locating and transferring owner�
ship ���� On a release 	an unlock or a barrier arrival
� a
processor communicates both its owner write notices and
its multiple�writer write notices� On a write fault to a page
in single�writer mode� a processor requests ownership� as
in the single�writer protocol� The owner is located� using
the owner write notice with the highest version number�
This version number is included in the ownership request
message� If the recipient of the message is no longer the
owner� or if the version number has changed� write�write
false sharing has been detected� the ownership request is re�
fused� and the page is put into multiple�writer mode� Oth�
erwise� ownership is granted� the old owner write protects
its copy of the page� the requester becomes the new owner�
the version number is incremented� and the page stays in
single�writer mode�
The essential aspect that needs to be understood about

this protocol is that it correctly detects the presence or ab�
sence of write�write false sharing� Consider the example
of a data item protected by a lock� and assume that there
is no write�write false sharing on the page containing that
data item� When processor p acquires the lock� it receives
the owner write notice from the previous owner q with ver�
sion number V � When p writes on the page� it incurs a
page fault� and it tries to achieve ownership� It sends an
ownership message to q� including the version number V �
By our assumption that there is no write�write false shar�
ing on the page� no other processor has attempted to write
on the page� and therefore q is still the owner and the page
version�s number is still V � Therefore� the ownership is
granted� and p becomes the new owner� Consider next the
case where there is write�write false sharing on the page�
either because q or some other processor wrote on a dif�
ferent part of the page� If q wrote to the page� it must
have re�acquired ownership of the page� and thus it must

have incremented the version number� If a di�erent pro�
cessor wrote to the page� it must have acquired ownership�
and q is no longer the owner� In either case� p�s ownership
request is refused� and the page is put in multiple�writer
mode� For a more detailed description and a correctness
argument� we refer the reader to Amza et al� ����

A�� Adapting to Migratory Access

Adaptation to migratory access only makes sense in the
context of an adaptive protocol operating in single�writer
mode 	or a single�writer protocol
 where its purpose is to
eliminate the need for explicit ownership messages� Com�
pared to the base multiple�writer protocol� the adaptive
protocol requires an extra message to acquire ownership in
the following scenario� A processor takes a read fault on
an invalid page� obtains the di�s to validate the page� and
then later takes a write fault on the page� With the base
multiple�writer protocol� a twin is created but no messages
are sent at the time of the write fault� With the adaptive
protocol� an ownership request is sent� The scenario de�
scribed is that of a migratory access pattern� a sequence
of reads followed by a sequence of writes by one processor
with no intervening accesses by other processors ����

Detecting migratory access and eliminating the explicit
ownership message is straightforward ���� ����� If a page
is migratory� when a processor performs its �rst read from
the page� it will fault because the page is invalid� Its re�
quest for the page will go to the processor that still owns
the page� If that processor accessed the page in a simi�
lar� migratory fashion� it will preemptively send ownership
along with the page� Later� if the page changes access pat�
tern� for example� to producer�consumer� the overhead to
switch will be one ownership request�

B� Adaptive Run�time Aggregation of Pages

B�� The Basic Protocols and Their Tradeo�s

Software DSM systems based on virtual memory tech�
niques traditionally use the hardware page as the unit of
access detection and as the unit of transfer� The single�
writer� multiple�writer� and adaptive protocols discussed
in Section III�A all follow this approach� Depending on
whether a single� or multiple�writer protocol is used� a di�
or a whole page is transferred� but in both cases� access
detection is done on a per�page basis� and the data trans�
ferred in a page fault response always pertains to a single
hardware page� For simplicity� the discussion in this sec�
tion is cast in terms of the multiple�writer protocol� unless
otherwise noted� but it can easily be extended to the single�
writer protocol and the adaptive single�writer�multiple�
writer protocol described in Section III�A�

Both the unit of access detection and the unit of trans�
fer can be increased� for instance by using a multiple of the
hardware page size� Doing so trades o� aggregation vs� the
potential for increased false sharing� Aggregation reduces
the number of messages exchanged� If a processor accesses
several pages in succession� a single page fault request and
reply now su�ce� where before multiple exchanges were re�



�

quired� As a secondary bene�t� the number of page faults is
also reduced� These gains� however� come at the expense of
potentially increased false sharing� False sharing may lead
to an increase in the amount of data exchanged� Assume�
for instance� that processor p writes to successive pages a

and b� and processor q accesses only a� With the base page
size� only the di�s for a are transferred� but if the page size
is doubled� the di�s for a and b are transferred� Worse�
false sharing may also lead to an increase in the number of
messages� If processor p writes a� processor q writes b� and
processor r reads a� two message exchanges occur with a
doubled page size� one between p and r� and one between q

and r� where an exchange between p and r su�ced with the
base page size� The e�ects of false sharing are aggravated
under the single�writer protocol� causing more and larger
page transfers� Under the adaptive single�writer�multiple�
writer protocol the larger page may be put in multiple�
writer mode� while the individual hardware pages could
have been handled in single�writer mode�

B�� The Adaptive Protocol

In this section� we present a protocol that continues to
use the hardware page as the unit of detection� but adap�
tively coalesces pages into page groups for the purpose of
transfer� The algorithm monitors the access patterns on
each processor� and tries to construct page groups so as to
increase aggregation without incurring the harmful e�ects
of false sharing�
The di�s for all of the pages in a group are requested at

the �rst fault on any page that is a member of the group�
Requests addressed to the same processor are combined
into one message� resulting in fewer request messages and
enabling the data transfer to occur in one message as well�
Even if the di�s must come from di�erent processors� there
is still an advantage to requesting the di�s for all pages in
the group at once� because those processors can return the
di�s in parallel rather than in sequence�
A processor uses two di�erent mechanisms for grouping

pages� The �rst mechanism is based on the past accesses
on that processor itself� Essentially� the processor groups
pages that were accessed during the previous synchroniza�
tion interval� In order to avoid packet loss in the network�
the implementation limits the maximum number of pages
in a single group to eight� Thus� more than one group
may be formed at a synchronization point� If two or more
groups are formed� the pages are assigned to groups in the
order they were accessed� The second mechanism is based
on past accesses of other processors� It comes into play
only if the �rst mechanism did not produce a group for the
missing page� The faulting processor checks if the page was
modi�ed by a single processor during the previous synchro�
nization interval� and� if so� it requests from that processor
any contiguous pages that were modi�ed during that inter�
val� Again� the number of pages in any group is limited to
eight�
In order to allow the membership of a group to change

over time� the algorithm keeps every page invalid until the
�rst access to that page occurs� Thus� a page may be kept

invalid� even though it has been updated by an access to
another page within the same group� When the page fault
handler is triggered by an access to such a page� it can
simply change the page�s state to valid without requesting
any data� In this case� the page will remain a part of its
group� If� however� the page is never accessed� it will be
dropped from the group at the next synchronization point�
Hence� this strategy allows the algorithm to adapt to any
change in the program�s access pattern over the course of
its execution�

C� Invalidate vs� Update

C�� The Basic Protocols and Their Tradeo�s

In an invalidate protocol� a page is invalidated when the
processor becomes aware of a remote modi�cation� In LRC�
this happens at the time of a synchronization� A synchro�
nization message� for instance� a lock grant or a barrier
departure message� contains a number of 	owner
 write no�
tices� indicating which pages have been modi�ed� When
the processor later accesses one of these pages� it incurs an
access miss� Depending on whether a single� or multiple�
writer protocol is in use� either the whole page or the di�s
are fetched� In an update protocol� instead� the modi�ca�
tions to the page are sent with the synchronization message�
Pages are never invalidated�

The tradeo�s between invalidate and update protocols
are well known ����� Update protocols send substantially
more data� including data that the processor may never
access or that may be overwritten by newer data before
the processor accesses the data originally sent� Invalidate
protocols only retrieve the data for the pages the processor
accesses� but they pay the penalty of the access miss fault
and the round�trip latency to get the modi�cations� In ad�
dition� in release�consistent software DSM� update proto�
cols naturally include aggregation� when a processor mod�
i�es several pages� all the modi�cations are sent in a single
message to the other processor	s
�

C�� The Adaptive Protocol

The adaptive invalidate�update protocol updates the
pages that the processor is expected to access and inval�
idates the other pages� As with the aggregation for invali�
date protocols described in Section III�B� we limit a single
update message to contain data for no more than eight
pages in order to avoid packet loss in the network� Predic�
tion of future accesses may be done in a variety of ways� For
programs based on barriers� each processor p records the
set of processors from which it receives a page fault request
for a particular page� When p arrives at the next barrier� if
it has modi�ed a particular page� it sends updates for that
page to the processors in the set it has computed during
the interval before the barrier ����� These processors re�
turn negative acknowledgements to these updates� if they
receive a second update for a page and have not accessed
the page since the �rst update� For data protected by a
lock� we use the method proposed by� among others� Mon�
nerat and Bianchini ����� and Speight and Bennett ����� We



�

Application Data size Sync� Time
	sec�


Water ��� molecules b�l ���
Barnes ��K bodies b �����
IS ����� b ���
�D�FFT ������� b ����
MG ����������� b �����
CG ������������� 	sparse
 b �����
Gauss ��������� b ����
ILINK CLP b ����

TABLE I

Applications� input data sets� synchronization �l�locks�

b�barriers�� and sequential execution time

record which pages a processor modi�es while it holds the
lock� Updates for these pages are sent to the next acquirer
of the lock� while any other modi�ed pages are invalidated�

IV� Experimental Environment

Our experimental platform is a network of eight �MHz
Pentium Pros running FreeBSD ������ Each machine has a
��K byte secondary cache and a �M byte memory� The
hardware page size is �K bytes� The network connecting
the machines is a switched� full�duplex ���Mbps Ethernet�

TreadMarks uses the UDP�IP protocol for interproces�
sor communication� The round�trip latency for a ��byte
message using the UDP�IP protocol is �� microseconds
on this platform� The time to acquire a lock varies from
�� to ��� microseconds� The time for an eight proces�
sor barrier is ��� microseconds� The time to obtain a di�
varies from ��� to ����� microseconds�

V� Applications

We use eight applications in this study� Water and
Barnes�Hut come from the SPLASH benchmark suite �����
Integer Sort 	IS
� �D�FFT� Multigrid 	MG
 and Conjugate
Gradient 	CG
 come from the NAS benchmark suite ����
Gauss is a Gaussian elimination kernel distributed with
TreadMarks� ILINK is part of the FASTLINK package ����
of genetic linkage analysis programs�

Table I summarizes the relevant characteristics of the
applications� It includes for each application� the data set
size used� the method of synchronization 	locks� barriers�
or both
� and the sequential running times� Sequential run�
ning times were obtained by removing all synchronization
from the TreadMarks programs� these times were used as
the basis for the speedup �gures reported later in the pa�
per�

VI� Results

For each of the applications we show speedups under the
following scenarios�

�� the single� and multiple�writer protocols and the adap�
tive single�writer�multiple�writer protocol�

SW MW Adapt SW/MW

Water Barnes FFT IS MG CG Gauss Ilink

S
p
e
e
d
u
p

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Fig� �� Speedup comparison� single�writer� multiple�writer� and
adaptive protocols�

�� the adaptive single�writer�multiple�writer protocol plus
dynamic aggregation� and
�� the adaptive single�writer�multiple�writer protocol plus
invalidate�update adaptation� including aggregation of the
updates�

The e�ects of dynamic aggregation are independent of
whether the base protocol is the single�writer� multiple�
writer� or adaptive single�writer�multiple�writer protocol�
Hence� we only present the results for dynamic aggregation
using the base protocol with the best overall performance�
the adaptive single�writer�multiple�writer protocol�
Similarly� the e�ects of adaptation between invalidate

and update are the same for the single�writer� multiple�
writer� and adaptive single�writer�multiple�writer protocol�
Furthermore� since the �update� part of the adaptive in�
validate�update protocol inherently includes aggregation�
and since aggregation is always bene�cial with invalidate
protocols� we compare the invalidate�based adaptive single�
writer�multiple�writer protocol with aggregation to the
adaptive invalidate�update� single�writer�multiple�writer
protocol�

A� Single� vs� Multiple�Writer Protocol

Figure � shows the speedup on eight processors for each
of the applications using the single�writer protocol� the
multiple�writer protocol� and the protocol that adapts be�
tween the two� including the adaptation to migratory ac�
cesses� An invalidate protocol using the hardware page size
is used� as in the base TreadMarks system�
We �rst compare the non�adaptive single� and multiple�

writer protocols� As expected� the amount of write�write
false sharing determines the tradeo�� The single�writer
protocol performs better than the multiple�writer proto�
col on applications with no write�write false sharing and
large overlapping di�s 	IS
� performs comparably on appli�
cations with low write�write false sharing 	Water� �D�FFT�
Gauss
� and worse for applications with high write�write
false sharing 	Barnes� MG� CG� and ILINK
� Comparing



�

Adapt SW/MW(no aggr) Adapt SW/MW (with aggr)

Water Barnes FFT IS MG CG Gauss Ilink

S
p
e
e
d
u
p

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Fig� �� Speedup comparison� protocols with and without dynamic
aggregation�

the adaptive to the non�adaptive protocols� we see from
Figure � that the adaptive protocol matches or exceeds the
speedup of the best of the non�adaptive protocols�
The adaptation that optimizes migratory access only af�

fects IS� None of the other programs� such as Water� that
have migratory data modify the entire page or su�er from
signi�cant di� accumulation� Consequently� they do not
switch to single�writer mode� and thus the migratory op�
timization is not needed� For IS� it limits the ownership
messages to one per page per iteration� instead of eight�
We do not present the memory demands for the proto�

cols here� but� we o�er the following anecdote� for a larger
�D�FFT data set 	�� � ��� � ���
� the single�writer and
adaptive protocols performed well� running completely in
main memory� while the multiple�writer protocol paged be�
cause of the twins and di�s it stored� causing a ���fold in�
crease in execution time� 	See Amza et al� ��� for a detailed
account�


B� Dynamic Aggregation of Pages

Figure � shows the speedups achieved with dynamic
page aggregation� in addition to adapting between single�
and multiple�writer and adapting to migratory access�
As a baseline for comparison� we reiterate in Figure �
the speedups from Figure � for the adaptive single�
writer�multiple�writer protocol� Five out of the eight ap�
plications bene�t from dynamic page aggregation� Barnes�
Hut� �D�FFT� IS� MG� and CG� The bene�ts for IS derive
from the aggregation based on write accesses by other pro�
cessors� while the bene�ts for the other four applications
derive from the past access patterns by that processor it�
self� In IS� which sees the greatest bene�ts� processors ex�
change a large amount of data� leading to a signi�cant re�
duction in the number of messages� with the attendant per�
formance bene�ts� A similar argument explains the some�
what smaller improvements for Barnes�Hut� �D�FFT� CG
and MG�
Surprisingly� three of the applications that bene�t from

Adapt SW/MW (with aggr, inval)

Adapt SW/MW (with aggr, adaptive update/inval)

Water Barnes FFT IS MG CG Gauss Ilink

S
p

e
e

d
u

p

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Fig� 	� Speedup comparison� invalidate and adaptive invali�
date
update protocols�

aggregation� Barnes�Hut� MG� and CG� su�er from write�
write false sharing� This illustrates the fact that dynamic
page aggregation can reduce the number of messages with�
out increasing false sharing�

C� Invalidate vs� Update

Figure � shows the speedups for the protocol that adapts
between invalidate and update 	including aggregation of
the updates
� adapts between single� and multiple�writer�
and adapts to migratory access� The results are shown
along side those for the invalidate protocol that performs
dynamic page aggregation from Figure ��
The bene�ts of automatic adaptation between invalidate

and update are questionable when such a protocol is com�
pared to a base protocol that performs aggregation� Its
bene�ts are limited to avoiding page faults and round�trip
latencies� resulting in a small improvement� In many cases�
these improvements are o�set by the additional data trans�
fer� Typically� the additional data transfer comes from
changes in the sharing pattern� For example� IS consists
of a number of iterations� each of which is divided into a
number of migratory phases followed by a phase in which
the data produced by any single processor is consumed by
all other processors� This latter phase causes the adaptive
algorithm to send updates to all processors in the �rst mi�
gratory phase of the next iteration� The negative acknowl�
edgements halt these updates after two migratory phases�
but the large amount of unnecessary data sent in these
two phases causes performance to deteriorate substantially�
Adaptation between invalidate and update is� however� at�
tractive in some cases if the invalidate mode of the base
protocol does not support aggregation�

VII� Related Work

A large number of software shared memory systems have
been built 	e�g� ���� ���� ����� ����� ����� ����
� Although the
work described here is done in the context of a speci�c sys�
tem� TreadMarks� many of the ideas are applicable to other



�

systems as well� First� the adaptation between single� and
multiple�writer protocols carries over to all page�based sys�
tems� Second� aggregation should prove to be bene�cial to
all systems� especially the ones that use smaller consistency
units� Finally� the tradeo� between update and invalidate
also applies to these other systems� although the nature
of the tradeo� may change substantially if compiler sup�
port is used to determine the choice between update and
invalidate ���� �����

The multiple�writer protocol described in this paper
is the one in use with the current version of Tread�
Marks ���� The single�writer protocol is a variation of
the one presented by Keleher ����� The adaptive single�
writer�multiple�writer protocol extends our earlier work ���
on this topic� In this earlier work� we chose a protocol that
started out in single�writer mode� because of its reduced
memory use 	no twins are ever made for pages that remain
in single�writer mode
� We found that the same reduction
in memory use can be achieved by a protocol that starts out
in multiple�writer mode� by not creating the initial twin�
which contains all zeroes� Starting in multiple�writer mode
allows for a straightforward adaptation according to the
size of the di�s�

The adaptive DSM system described by Monnerat and
Bianchini ���� is most closely related to our work� They also
investigate the adaptation between single� and multiple�
writer protocols� and adaptation between invalidate and
update� In their system� pages are classi�ed as migra�
tory� producer�consumer or falsely shared� Single�writer
mode is used for migratory and producer�consumer pages�
while the falsely shared pages are maintained in multiple�
writer mode� Updates are used only for migratory and
producer�consumer pages� Keleher et al� ���� and Espeight
et al� ���� have also investigated the bene�ts of allowing a
software shared memory system the choice between invali�
date and update� However� to the best of our knowledge�
all of these studies were conducted in the absence of aggre�
gation for the invalidate protocol� in�ating the perceived
bene�ts of update� We have demonstrated that commu�
nication aggregation is the key to improving performance
in both invalidate and update protocols� Adding dynamic
aggregation to the invalidate protocol provides the same
bene�ts as using an update protocol� without the risk of
sending extra messages�

Amza et al� ��� investigated the bene�ts of dynamic page
aggregation� They did not� however� combine aggrega�
tion with other forms of adaptation� Lu et al� ���� found
that aggregation is the main reason that message�passing
programs outperform 	software
 shared�memory programs�
Overall� they found that for six out of their eight appli�
cations the speedup on TreadMarks was within ��� of
that achieved by PVM� With the best static page aggre�
gation for each of those six applications� the speedup on
TreadMarks improved to within ��� of the speedup on
PVM� These results were obtained on two platforms� one of
which� the ���Mbps ATM network of eight SPARCstation�
�� Model � workstations� is similar to the platform used
in this paper�

Our adaptive single�writer�multiple�writer protocol ad�
dresses the most extreme cases of a less common problem�
di� accumulation� found by Lu et al� ����� Di� accumu�
lation in IS contributed to the worst performance with
respect to PVM� TreadMarks� speedup was only ��� of
PVM�s� With di� accumulation manually removed� the
speedup improved to within ��� of the speedup on PVM�
Our adaptive protocol automatically achieves a similar im�
provement�
Several other systems both hardware and software have

investigated con�gurability or adaptivity as a means of im�
proving performance�
Shasta ���� features con�gurable consistency units to ad�

dress the requirements of applications with �ne�grain shar�
ing at the expense of higher memory overheads�
Munin ��� uses multiple protocols to handle data with

di�erent access characteristics� The novelty in our work is
that it chooses automatically between di�erent protocols�
In Munin� the choice of protocol was based on somewhat
burdensome user annotations�
Cashmere ���� improves on the home�based protocol in�

troduced by Zhou et al� ����� allowing dynamic migration of
the home node� The home�based protocol allows a single�
writer optimization that avoids di�ng overhead when the
home node is the only writer for the page� The downside is
that whole pages are fetched on faults� even if the amount
of data modi�ed is small�
Dubnicki and LeBlanc ���� proposed a scheme to reduce

the impact on performance due to a mismatch between
the cache block size and the sharing patterns exhibited by
a given application� They adjusted the amount of data
stored in a cache block according to recent reference pat�
terns� They found that the adjustable cache�block�size im�
plementation did better than the best �xed�size implemen�
tations for most of the programs in their suite�
The adaptation to migratory behavior was �rst suggested

by Cox and Fowler ��� and Stenstrom et al� ���� in the
context of hardware shared memory machines�
Another form of adaptivity that is important in networks

of workstations is adapting to environmental characteris�
tics such as processor and network load ��� ���� This form
of adaptivity is orthogonal to the one discussed in this pa�
per�

VIII� Conclusions

We have described software DSM protocols that auto�
matically adapt� on a per�page basis� to the access patterns
in the application� The protocols dynamically choose be�
tween single� and multiple�writer protocols� Pages can be
dynamically aggregated into larger page groups� Finally�
the protocols choose dynamically between invalidate and
update� All adaptation is automatic�
The choice between the single� and multiple�writer pro�

tocols is based on the presence of write�write false sharing
and on write granularity� In addition� the protocol detects
migratory behavior� and chooses a version of the protocol
optimized accordingly� Aggregation uses records of earlier
accesses by a processor to coalesce pages into page groups�



�

in the expectation that those pages will be accessed again
by the processor� The choice between invalidate and up�
date is based on whether we expect the destination to ac�
cess the modi�ed data before it is overwritten or not� The
three adaptations can easily be combined�
Adaptation between single� and multiple�writer and dy�

namic aggregation proved to be the most bene�cial� never
causing any deterioration and providing substantial im�
provement for some applications� Our automatic adap�
tation between invalidate and update was less successful�
showing at best gains equal to the dynamic aggregation
adaptation and at worst serious performance deterioration�
We speculate that it may be di�cult to �nd a fully auto�
matic� purely run�time algorithm for adaptation between
invalidate and update� and that either compiler or user in�
put may be necessary to achieve good performance�

Acknowledgements

This work was supported in part by NSF grants CCR�
������ CCR��������� CCR��������� CCR���������
CCR��������� CCR��������� CDA��������� and MIP�
������� by the Texas TATP program under Grant ������
���� and by grants from IBM Corporation and from Tech�
Sym� Inc�

References

��� C� Amza� A�L� Cox� S� Dwarkadas� P� Keleher� H� Lu� R� Raja�
mony� W� Yu� and W� Zwaenepoel� TreadMarks� Shared mem�
ory computing on networks of workstations� IEEE Computer�
����������� February ���

��� C� Amza� A�L� Cox� S� Dwarkadas� and W� Zwaenepoel� Software
DSM protocols that adapt between single writer and multiple
writer� In Proceedings of the Third International Symposium
on High�Performance Computer Architecture� pages ��������
February ���

�	� C� Amza� A�L� Cox� K� Rajamani� and W� Zwaenepoel� Trade�
o�s between false sharing and aggregation in software distributed
shared memory� In Proceedings of the �th Symposium on the
Principles and Practice of Parallel Programming� pages ���
June ���

��� D� Bailey� J� Barton� T� Lasinski� and H� Simon� The NAS
parallel benchmarks� Technical Report TR RNR������� NASA
Ames� August ���

��� H�E� Bal� M�F� Kaashoek� and A�S� Tanenbaum� Orca� A lan�
guage for parallel programming of distributed systems� IEEE
Transactions on Software Engineering� pages ������� June
���

��� R�D� Blumofe and P�A� Lisiecki� Adaptive and reliable parallel
computing on network of workstations� In Proceedings of the
USENIX ���� Annual Technical Symposium� January ���

��� N� Carriero� E� Freeman� D� Gelernter� and D� Kaminsky� Adap�
tive parallelism and piranha� IEEE Computer� ������ January
���

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Techniques for
reducing consistency�related information in distributed shared
memory systems� ACM Transactions on Computer Systems�
�	�	��������	� August ���

�� A� L� Cox and R�J� Fowler� Adaptive cache coherency for detect�
ing migratory shared data� In Proceedings of the ��th Annual
International Symposium on Computer Architecture� pages ��
���� May �	�

���� C� Dubnicki and T� LeBlanc� Adjustable block size coherent
caches� In Proceedings of the ��th Annual International Sympo�
sium on Computer Architecture� pages �������� May ���

���� S� Dwarkadas� A�L� Cox� and W� Zwaenepoel� An integrated
compile�time
run�time software distributed shared memory sys�
tem� In Proceedings of the �th Symposium on Architectural Sup�
port for Programming Languages and Operating Systems� pages
������� October ���

���� S�J� Eggers and R�H� Katz� A characterization of sharing in par�
allel programs and its application to coherency protocol evalu�
ation� In Proceedings of the �	th Annual International Sympo�
sium on Computer Architecture� pages 	�	�	�	� May ����

��	� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta�
and J� Hennessy� Memory consistency and event ordering in
scalable shared�memory multiprocessors� In Proceedings of the
��th Annual International Symposium on Computer Architec�
ture� pages ������ May ���

���� P� Keleher� The relative importance of concurrent writers and
weak consistency models� In Proceedings of the ��th Interna�
tional Conference on Distributed Computing Systems� pages ��
�� May ���

���� P� Keleher� A� L� Cox� S� Dwarkadas� and W� Zwaenepoel� An
evaluation of software�based release consistent protocols� Jour�
nal of Parallel and Distributed Computing� ���������� October
���

���� P� Keleher� A� L� Cox� and W� Zwaenepoel� Lazy release consis�
tency for software distributed shared memory� In Proceedings of
the ��th Annual International Symposium on Computer Archi�
tecture� pages �	���� May ���

���� L� Lamport� How to make a multiprocessor computer that cor�
rectly executes multiprocess programs� IEEE Transactions on
Computers� C������������ September ���

���� H� Lu� S� Dwarkadas� A� L� Cox� and W� Zwaenepoel� Quantify�
ing the performance di�erences between PVM and TreadMarks�
Journal of Parallel and Distributed Computing� �	����������
June ���

��� L�R� Monnerat and R� Bianchini� E�ciently adapting to shar�
ing patterns in software DSMs� In Proceedings of the Fourth
International Symposium on High�Performance Computer Ar�
chitecture� February ���

���� D�J� Scales� K� Gharachorloo� and C�A� Thekkath� Shasta� A
low overhead software�only approach for supporting �ne�grain
shared memory� In Proceedings of the �th Symposium on Ar�
chitectural Support for Programming Languages and Operating
Systems� October ���

���� A�A� Sch�a�er� Faster linkage analysis computations for pedigrees
with loops or unused alleles� Human Heredity� �����������	�� jul
���

���� J�P� Singh� W��D� Weber� and A� Gupta� SPLASH� Stanford
parallel applications for shared�memory� Technical Report CSL�
TR������ Stanford University� April ���

��	� W�E� Speight and J�K� Bennett� Using multicast and multi�
threading to reduce communication in software DSM systems�
In Proceedings of the Fourth International Symposium on High�
Performance Computer Architecture� February ���

���� P� Stenstr�om� M� Brorsson� and L� Sandberg� An adaptive cache
coherence protocol optimized for migratory sharing� In Proceed�
ings of the ��th Annual International Symposium on Computer
Architecture� May �	�

���� R� Stets� S� Dwarkadas� N� Hardavellas� G� Hunt� L� Kon�
tothanassis� S� Parthasarathy� and M� Scott� Cashmere��L� Soft�
ware coherent shared memory on a clustered remote write net�
work� In Proceedings of the ��th ACM Symposium on Operating
Systems Principles� October ���

���� W��D� Weber and A� Gupta� Analysis of cache invalidation pat�
terns in multiprocessors� In Proceedings of the 
rd Symposium
on Architectural Support for Programming Languages and Op�
erating Systems� pages ��	����� April ���

���� Y� Zhou� L� Iftode� and K� Li� Performance evaluation of two
home�based lazy release consistency protocols for shared virtual
memory systems� In Proceedings of the Second USENIX Sym�
posium on Operating System Design and Implementation� pages
������ nov ���


