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ABSTRACT

We demonstrate the benefits of software shared mem-
ory protocols that adapt at run-time to the memory access
patterns observed in the applications. This adaptation is
automatic — no user annotations are required — and does
not rely on compiler support or special hardware. We in-
vestigate adaptation between single- and multiple-writer
protocols, dynamic aggregation of pages into a larger trans-
fer unit, and adaptation between invalidate and update.
Our results indicate that adaptation between single- and
multiple-writer and dynamic page aggregation are clearly
beneficial. The results for the adaptation between invali-
date and update are less compelling, showing at best gains
similar to the dynamic aggregation adaptation and at worst
serious performance deterioration.

I. INTRODUCTION

Many different protocols have been proposed for im-
plementing a software shared memory abstraction on dis-
tributed memory hardware. The relative performance of
these protocols is application-dependent: the memory ac-
cess patterns of the application determine which protocols
exhibit good performance. It is therefore appealing to build
a system with multiple protocols, and let the system choose
between the different protocols based on the access patterns
it observes in the application. In this paper we present
the design of such an adaptive software distributed shared
memory system and evaluate its performance.

Specifically, this paper focuses on protocols that im-
plement the lazy release consistency (LRC) memory
model [16]. We furthermore assume that shared mem-
ory accesses are detected using virtual memory protection.
This paper explores the benefits of LRC protocols that
adapt to the memory access patterns of the applications,
by comparing their performance to non-adaptive versions
of the protocols. In particular, we investigate:

1. adaptation between single- and multiple-writer proto-
cols, including adaptation to migratory access patterns,

2. dynamic aggregation of pages into larger transfer units,
and

3. adaptation between invalidate and update protocols.
The adaptations considered in this paper are triggered au-
tomatically: the run-time system detects certain access pat-
terns and switches between protocols accordingly. This au-
tomated adaptation distinguishes our work from so called
multi-protocol software shared memory implementations
(e.g. [8]), in which the user has to annotate the program

to select the appropriate protocol. In our experience, re-
moving the need for annotation leads to much improved
usability.

The adaptive protocols were implemented in Tread-
Marks [1]. Our experimental platform is a switched
100Mbps Ethernet consisting of eight 166Mhz Pentium
Pro machines running FreeBSD. We use eight applications
to demonstrate the performance of the adaptive proto-
cols: 3D-FFT, CG, MG and IS from the NAS benchmark
suite [4], Water and Barnes-Hut from the SPLASH bench-
mark suite [22], Gauss from the TreadMarks distribution,
and ILINK from the FASTLINK package [21]. The results
indicate that:

1. Adaptation between single- and multiple-writer and dy-
namic aggregation perform well, in some cases showing sub-
stantial performance improvement, and never decreasing
performance.

2. Adaptation between invalidate and update is less suc-
cessful, with performance improvements that match dy-
namic aggregation in some cases and substantial perfor-
mance losses in others.

The outline of the rest of this paper is as follows.
Section II presents the necessary background information
about LRC. Section III presents the possible protocol
choices for implementing LRC, and the policies and mech-
anisms by which the adaptive protocols choose between
their alternatives. Section IV describes the experimental
environment. Section V describes the applications used.
Section VI presents the results of the performance com-
parison. Section VII discusses related work. Section VIII
presents our conclusions.

II. PROGRAMMING MODEL

We assume an explicitly parallel programming model,
with primitives for process creation and destruction, syn-
chronization, and shared memory allocation and dealloca-
tion. Synchronization primitives include mutual exclusion
locks and barriers. Shared memory is accessed through
load and store instructions. The memory consistency
model presented to the user is release consistency (RC),
a relaxed memory model [13].

In RC, ordinary shared memory accesses are distin-
guished from synchronization accesses, with the latter cat-
egory subdivided into acquire and release accesses. Lock
synchronization maps onto acquires and releases in the ob-
vious way: a lock operation corresponds to an acquire,
and an unlock corresponds to a release. With barriers, a
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barrier arrival corresponds to a release, whereas a barrier
departure corresponds to an acquire. Roughly speaking,
RC requires that, before a release by a processor p becomes
visible to another processor g, all ordinary shared memory
modifications by processor p become visible to processor
g. The Lazy Release Consistency (LRC) algorithm [16],
one of the possible RC implementations, delays the prop-
agation of shared memory modifications by processor p to
processor g until ¢ executes an acquire corresponding to a
release by p.

Programs without data races, i.e., programs with suf-
ficient synchronization such that any pair of conflicting
memory accesses is separated by a release-acquire pair, pro-
duce the same results on an RC or an LRC memory system
as on a conventional sequentially-consistent memory sys-
tem [17]. Performance, however, can be much improved by
the use of RC or LRC, especially for software implementa-
tions of shared memory, because the messages propagating
the shared memory modifications can be delayed and coa-
lesced with the synchronization messages, leading to a sub-
stantial reduction in communication [8], [16]. In addition
to being data-race-free, all synchronization in the program
must be done through the primitives supplied by the run-
time system, so that it can take the required consistency
actions at synchronization points.

We assume that the shared memory is implemented as
a global virtual memory segment, shared by all processors.
The virtual memory protection hardware is used to detect
access to individual pages. Some of these accesses may
cause page faults, which then trigger protocol operations
as described in the next section.

III. ProTOCOLS
A. Single- vs. Multiple-Writer Protocols
A.1 The Basic Protocols and Their Tradeoffs

In a single-writer protocol, there is a single writable copy
of a page at any given time [14]. The processor currently
holding the writable copy of a page is called the owner of
that page. Several read-only copies of the page may co-
exist with the writable owner copy. According to the defi-
nition of RC, a read-only copy may be temporarily incon-
sistent with the writable copy, but it must be brought up-
to-date when the processor on which it resides synchronizes
with the owner. Assume, for instance, that an invalidate
protocol is used and synchronization is by means of a bar-
rier. If the owner has modified a particular page, it creates
an owner write notice for that page, containing its proces-
sor id and a version number. The barrier protocol causes
the owner write notice to be transmitted to the processors
which have read-only copies of the page, and these proces-
sors then invalidate their copies. On a subsequent access
miss, they retrieve the page from the owner. The owner
write-protects his copy during the first retrieval. Before a
processor may write on a page, it must obtain ownership
from the current owner. The owner is located by means of
the write notice with the highest version number, possibly
by forwarding if ownership has changed since this write no-

tice was received. Once ownership is obtained, the page’s
version number is incremented by one.

In contrast, in a multiple-writer protocol, there may be
several writable copies of a page on different processors [8].
Each processor with a writable copy records its own mod-
ifications to the page by a technique called twinning and
diffing. Pages are initially write-protected so that the first
write access to a page causes a protection violation. At this
point, the system makes a copy of the page, the twin, and
unprotects the original page. To detect what modifications
have been made to a page, the current copy is compared
word-by-word to the twin, and a record of the modifica-
tions, the diff, is constructed. Continuing the above ex-
ample, when an invalidate protocol is used and synchro-
nization is by means of barriers, each processor that has
modified a page constructs a write notice for that page,
which is forwarded by the barrier protocol to all processors
with copies of that page.! A processor might receive several
write notices for a single page. These write notices cause
the page to be invalidated. On an access miss, the diffs
corresponding to these write notices have to be retrieved
and applied to the processor’s current copy of the page.

The tradeoff between single- and multiple-writer proto-
cols is dependent on the access pattern to the page, and
affects both execution time and memory overhead. If mul-
tiple processors write concurrently to different parts of a
page (write-write false sharing), then multiple-writer pro-
tocols achieve better performance, because they do not in-
cur the cost of transferring the page over the network to
the next writer. Even if there is only a single writer, it may
be advantageous to use twinning and diffing. This scenario
occurs when the writer modifies only a small portion of the
page. The multiple-writer protocol transmits only those
modifications, while a single-writer protocol transmits the
entire page.

If, however, only a single processor writes to a page at
any given time, and this processor modifies a large part
of the page, then the single-writer protocol avoids the cost
of twinning, diffing, and diff application, without much in-
crease in communication. More importantly, it avoids a
pitfall of the multiple-writer protocol, called diff accumu-
lation [18], a scenario in which a number of partially or
completely overlapping diffs are transmitted, significantly
increasing the amount of communication. While it is possi-
ble to modify the multiple-writer protocol to eliminate the
overlap, there is a high computational cost to pruning use-
less data from older diffs each time a new diff is created. It
is more efficient to manage the page in single-writer mode.

Finally, while the memory overhead for the single-writer
protocol is negligible, the multiple-writer protocol has to
allocate memory for the twins and the diffs. This extra
overhead may cause an application to page to disk with a
multiple-writer protocol, while running in memory with a

1The information in the write notices of the multiple-writer protocol
is more complicated than the version number present in the owner
write notices of the single-writer protocol. In particular, it contains a
vector timestamp that allows the write notice to be partially ordered
w.r.t. write notices from other processors.



single-writer protocol.

A.2 Adapting between Single- and Multiple-Writers

In the adaptive protocol used in this paper, all pages
start out in multiple-writer mode. A page may switch to
single-writer mode by one of two events:

1. A processor receives a diff request for a page, and it has
modified the entire page. In this case, the page is clearly
single-writer, and there is no reduction in communication
by sending a diff.

2. A processor sends out diff requests for a page, it re-
ceives no concurrent diffs, and the sum of the sizes of the
diffs received is bigger than the page size. This is indica-
tive of the diff accumulation phenomenon discussed earlier.
Since there are no concurrent diffs, there is no write-write
false sharing. Looking ahead to the time where a different
processor requests the diffs for this page, keeping the page
in multiple-writer mode would cause more data to be sent
than a page. It is therefore more efficient to put the page
in single-writer mode.

A page may switch back to multiple-writer mode at
the onset of write-write false sharing, which is detected
by the ownership refusal protocol, a modification to the
single-writer protocol for locating and transferring owner-
ship [2]. On a release (an unlock or a barrier arrival), a
processor communicates both its owner write notices and
its multiple-writer write notices. On a write fault to a page
in single-writer mode, a processor requests ownership, as
in the single-writer protocol: The owner is located, using
the owner write notice with the highest version number.
This version number is included in the ownership request
message. If the recipient of the message is no longer the
owner, or if the version number has changed, write-write
false sharing has been detected, the ownership request is re-
fused, and the page is put into multiple-writer mode. Oth-
erwise, ownership is granted, the old owner write protects
its copy of the page, the requester becomes the new owner,
the version number is incremented, and the page stays in
single-writer mode.

The essential aspect that needs to be understood about
this protocol is that it correctly detects the presence or ab-
sence of write-write false sharing. Consider the example
of a data item protected by a lock, and assume that there
is no write-write false sharing on the page containing that
data item. When processor p acquires the lock, it receives
the owner write notice from the previous owner ¢ with ver-
sion number V. When p writes on the page, it incurs a
page fault, and it tries to achieve ownership. It sends an
ownership message to ¢, including the version number V.
By our assumption that there is no write-write false shar-
ing on the page, no other processor has attempted to write
on the page, and therefore q is still the owner and the page
version’s number is still V. Therefore, the ownership is
granted, and p becomes the new owner. Consider next the
case where there is write-write false sharing on the page,
either because g or some other processor wrote on a dif-
ferent part of the page. If ¢ wrote to the page, it must
have re-acquired ownership of the page, and thus it must

have incremented the version number. If a different pro-
cessor wrote to the page, it must have acquired ownership,
and g is no longer the owner. In either case, p’s ownership
request is refused, and the page is put in multiple-writer
mode. For a more detailed description and a correctness
argument, we refer the reader to Amza et al. [2].

A.3 Adapting to Migratory Access

Adaptation to migratory access only makes sense in the
context of an adaptive protocol operating in single-writer
mode (or a single-writer protocol) where its purpose is to
eliminate the need for explicit ownership messages. Com-
pared to the base multiple-writer protocol, the adaptive
protocol requires an extra message to acquire ownership in
the following scenario. A processor takes a read fault on
an invalid page, obtains the diffs to validate the page, and
then later takes a write fault on the page. With the base
multiple-writer protocol, a twin is created but no messages
are sent at the time of the write fault. With the adaptive
protocol, an ownership request is sent. The scenario de-
scribed is that of a migratory access pattern: a sequence
of reads followed by a sequence of writes by one processor
with no intervening accesses by other processors [26].

Detecting migratory access and eliminating the explicit
ownership message is straightforward [9], [24]. If a page
is migratory, when a processor performs its first read from
the page, it will fault because the page is invalid. Its re-
quest for the page will go to the processor that still owns
the page. If that processor accessed the page in a simi-
lar, migratory fashion, it will preemptively send ownership
along with the page. Later, if the page changes access pat-
tern, for example, to producer/consumer, the overhead to
switch will be one ownership request.

B. Adaptive Run-time Aggregation of Pages
B.1 The Basic Protocols and Their Tradeoffs

Software DSM systems based on virtual memory tech-
niques traditionally use the hardware page as the unit of
access detection and as the unit of transfer. The single-
writer, multiple-writer, and adaptive protocols discussed
in Section III-A all follow this approach. Depending on
whether a single- or multiple-writer protocol is used, a diff
or a whole page is transferred, but in both cases, access
detection is done on a per-page basis, and the data trans-
ferred in a page fault response always pertains to a single
hardware page. For simplicity, the discussion in this sec-
tion is cast in terms of the multiple-writer protocol, unless
otherwise noted, but it can easily be extended to the single-
writer protocol and the adaptive single-writer/multiple-
writer protocol described in Section ITI-A.

Both the unit of access detection and the unit of trans-
fer can be increased, for instance by using a multiple of the
hardware page size. Doing so trades off aggregation vs. the
potential for increased false sharing. Aggregation reduces
the number of messages exchanged. If a processor accesses
several pages in succession, a single page fault request and
reply now suffice, where before multiple exchanges were re-



quired. As a secondary benefit, the number of page faults is
also reduced. These gains, however, come at the expense of
potentially increased false sharing. False sharing may lead
to an increase in the amount of data exchanged. Assume,
for instance, that processor p writes to successive pages a
and b, and processor g accesses only a. With the base page
size, only the diffs for a are transferred, but if the page size
is doubled, the diffs for a and b are transferred. Worse,
false sharing may also lead to an increase in the number of
messages. If processor p writes a, processor g writes b, and
processor r reads a, two message exchanges occur with a
doubled page size, one between p and r, and one between ¢
and r, where an exchange between p and r sufficed with the
base page size. The effects of false sharing are aggravated
under the single-writer protocol, causing more and larger
page transfers. Under the adaptive single-writer /multiple-
writer protocol the larger page may be put in multiple-
writer mode, while the individual hardware pages could
have been handled in single-writer mode.

B.2 The Adaptive Protocol

In this section, we present a protocol that continues to
use the hardware page as the unit of detection, but adap-
tively coalesces pages into page groups for the purpose of
transfer. The algorithm monitors the access patterns on
each processor, and tries to construct page groups so as to
increase aggregation without incurring the harmful effects
of false sharing.

The diffs for all of the pages in a group are requested at
the first fault on any page that is a member of the group.
Requests addressed to the same processor are combined
into one message, resulting in fewer request messages and
enabling the data transfer to occur in one message as well.
Even if the diffs must come from different processors, there
is still an advantage to requesting the diffs for all pages in
the group at once, because those processors can return the
diffs in parallel rather than in sequence.

A processor uses two different mechanisms for grouping
pages. The first mechanism is based on the past accesses
on that processor itself. Essentially, the processor groups
pages that were accessed during the previous synchroniza-
tion interval. In order to avoid packet loss in the network,
the implementation limits the maximum number of pages
in a single group to eight. Thus, more than one group
may be formed at a synchronization point. If two or more
groups are formed, the pages are assigned to groups in the
order they were accessed. The second mechanism is based
on past accesses of other processors. It comes into play
only if the first mechanism did not produce a group for the
missing page. The faulting processor checks if the page was
modified by a single processor during the previous synchro-
nization interval, and, if so, it requests from that processor
any contiguous pages that were modified during that inter-
val. Again, the number of pages in any group is limited to
eight.

In order to allow the membership of a group to change
over time, the algorithm keeps every page invalid until the
first access to that page occurs. Thus, a page may be kept

invalid, even though it has been updated by an access to
another page within the same group. When the page fault
handler is triggered by an access to such a page, it can
simply change the page’s state to valid without requesting
any data. In this case, the page will remain a part of its
group. If, however, the page is never accessed, it will be
dropped from the group at the next synchronization point.
Hence, this strategy allows the algorithm to adapt to any
change in the program’s access pattern over the course of
its execution.

C. Invalidate vs. Update
C.1 The Basic Protocols and Their Tradeoffs

In an invalidate protocol, a page is invalidated when the
processor becomes aware of a remote modification. In LRC,
this happens at the time of a synchronization. A synchro-
nization message, for instance, a lock grant or a barrier
departure message, contains a number of (owner) write no-
tices, indicating which pages have been modified. When
the processor later accesses one of these pages, it incurs an
access miss. Depending on whether a single- or multiple-
writer protocol is in use, either the whole page or the diffs
are fetched. In an update protocol, instead, the modifica-
tions to the page are sent with the synchronization message.
Pages are never invalidated.

The tradeoffs between invalidate and update protocols
are well known [12]. Update protocols send substantially
more data, including data that the processor may never
access or that may be overwritten by newer data before
the processor accesses the data originally sent. Invalidate
protocols only retrieve the data for the pages the processor
accesses, but they pay the penalty of the access miss fault
and the round-trip latency to get the modifications. In ad-
dition, in release-consistent software DSM, update proto-
cols naturally include aggregation: when a processor mod-
ifies several pages, all the modifications are sent in a single
message to the other processor(s).

C.2 The Adaptive Protocol

The adaptive invalidate/update protocol updates the
pages that the processor is expected to access and inval-
idates the other pages. As with the aggregation for invali-
date protocols described in Section III-B, we limit a single
update message to contain data for no more than eight
pages in order to avoid packet loss in the network. Predic-
tion of future accesses may be done in a variety of ways. For
programs based on barriers, each processor p records the
set of processors from which it receives a page fault request
for a particular page. When p arrives at the next barrier, if
it has modified a particular page, it sends updates for that
page to the processors in the set it has computed during
the interval before the barrier [15]. These processors re-
turn negative acknowledgements to these updates, if they
receive a second update for a page and have not accessed
the page since the first update. For data protected by a
lock, we use the method proposed by, among others, Mon-
nerat and Bianchini [19], and Speight and Bennett [23]. We



Application | Data size Sync. | Time

(sec.)
Water 512 molecules b,l 56.8
Barnes 32K bodies b 191.7
IS 21x15 b 5.1
3D-FFT 128 x64 x 64 b 51.7
MG 128x128x128 b 838.9
CcG 14,000%14,000 (sparse) | b 113.7
Gauss 1024x1024 b 344
ILINK CLP b 776.8

TABLE I

APPLICATIONS, INPUT DATA SETS, SYNCHRONIZATION (L=LOCKS,
B=BARRIERS), AND SEQUENTIAL EXECUTION TIME

record which pages a processor modifies while it holds the
lock. Updates for these pages are sent to the next acquirer
of the lock, while any other modified pages are invalidated.

IV. EXPERIMENTAL ENVIRONMENT

Our experimental platform is a network of eight 166MHz
Pentium Pros running FreeBSD 2.2.5. Each machine has a
256K byte secondary cache and a 64M byte memory. The
hardware page size is 4K bytes. The network connecting
the machines is a switched, full-duplex 100Mbps Ethernet.

TreadMarks uses the UDP/IP protocol for interproces-
sor communication. The round-trip latency for a 1-byte
message using the UDP/IP protocol is 196 microseconds
on this platform. The time to acquire a lock varies from
256 to 393 microseconds. The time for an eight proces-
sor barrier is 481 microseconds. The time to obtain a diff
varies from 387 to 1,225 microseconds.

V. APPLICATIONS

We use eight applications in this study. Water and
Barnes-Hut come from the SPLASH benchmark suite [22].
Integer Sort (IS), 3D-FFT, Multigrid (MG) and Conjugate
Gradient (CG) come from the NAS benchmark suite [4].
Gauss is a Gaussian elimination kernel distributed with
TreadMarks. ILINK is part of the FASTLINK package [21]
of genetic linkage analysis programs.

Table I summarizes the relevant characteristics of the
applications. It includes for each application, the data set
size used, the method of synchronization (locks, barriers,
or both), and the sequential running times. Sequential run-
ning times were obtained by removing all synchronization
from the TreadMarks programs; these times were used as
the basis for the speedup figures reported later in the pa-
per.

VI. RESULTS

For each of the applications we show speedups under the
following scenarios:
1. the single- and multiple-writer protocols and the adap-
tive single-writer /multiple-writer protocol,
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Fig. 1. Speedup comparison:
adaptive protocols.

single-writer, multiple-writer, and

2. the adaptive single-writer /multiple-writer protocol plus
dynamic aggregation, and

3. the adaptive single-writer/multiple-writer protocol plus
invalidate /update adaptation, including aggregation of the
updates.

The effects of dynamic aggregation are independent of
whether the base protocol is the single-writer, multiple-
writer, or adaptive single-writer/multiple-writer protocol.
Hence, we only present the results for dynamic aggregation
using the base protocol with the best overall performance,
the adaptive single-writer /multiple-writer protocol.

Similarly, the effects of adaptation between invalidate
and update are the same for the single-writer, multiple-
writer, and adaptive single-writer /multiple-writer protocol.
Furthermore, since the “update” part of the adaptive in-
validate/update protocol inherently includes aggregation,
and since aggregation is always beneficial with invalidate
protocols, we compare the invalidate-based adaptive single-
writer /multiple-writer protocol with aggregation to the
adaptive invalidate/update, single-writer/multiple-writer
protocol.

A. Single- vs. Multiple-Writer Protocol

Figure 1 shows the speedup on eight processors for each
of the applications using the single-writer protocol, the
multiple-writer protocol, and the protocol that adapts be-
tween the two, including the adaptation to migratory ac-
cesses. An invalidate protocol using the hardware page size
is used, as in the base TreadMarks system.

We first compare the non-adaptive single- and multiple-
writer protocols. As expected, the amount of write-write
false sharing determines the tradeoff. The single-writer
protocol performs better than the multiple-writer proto-
col on applications with no write-write false sharing and
large overlapping diffs (IS), performs comparably on appli-
cations with low write-write false sharing (Water, 3D-FFT,
Gauss), and worse for applications with high write-write
false sharing (Barnes, MG, CG, and ILINK). Comparing
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Fig. 2. Speedup comparison: protocols with and without dynamic
aggregation.

the adaptive to the non-adaptive protocols, we see from
Figure 1 that the adaptive protocol matches or exceeds the
speedup of the best of the non-adaptive protocols.

The adaptation that optimizes migratory access only af-
fects IS. None of the other programs, such as Water, that
have migratory data modify the entire page or suffer from
significant diff accumulation. Consequently, they do not
switch to single-writer mode, and thus the migratory op-
timization is not needed. For IS, it limits the ownership
messages to one per page per iteration, instead of eight.

We do not present the memory demands for the proto-
cols here, but, we offer the following anecdote: for a larger
3D-FFT data set (256 x 128 x 128), the single-writer and
adaptive protocols performed well, running completely in
main memory, while the multiple-writer protocol paged be-
cause of the twins and diffs it stored, causing a 15-fold in-
crease in execution time. (See Amza et al. [2] for a detailed
account.)

B. Dynamic Aggregation of Pages

Figure 2 shows the speedups achieved with dynamic
page aggregation, in addition to adapting between single-
and multiple-writer and adapting to migratory access.
As a baseline for comparison, we reiterate in Figure 2
the speedups from Figure 1 for the adaptive single-
writer /multiple-writer protocol. Five out of the eight ap-
plications benefit from dynamic page aggregation: Barnes-
Hut, 3D-FFT, IS, MG, and CG. The benefits for IS derive
from the aggregation based on write accesses by other pro-
cessors, while the benefits for the other four applications
derive from the past access patterns by that processor it-
self. In IS, which sees the greatest benefits, processors ex-
change a large amount of data, leading to a significant re-
duction in the number of messages, with the attendant per-
formance benefits. A similar argument explains the some-
what smaller improvements for Barnes-Hut, 3D-FFT, CG
and MG.

Surprisingly, three of the applications that benefit from
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Fig. 3. Speedup comparison: invalidate and adaptive invali-

date/update protocols.

aggregation, Barnes-Hut, MG, and CG, suffer from write-
write false sharing. This illustrates the fact that dynamic
page aggregation can reduce the number of messages with-
out increasing false sharing.

C. Invalidate vs. Update

Figure 3 shows the speedups for the protocol that adapts
between invalidate and update (including aggregation of
the updates), adapts between single- and multiple-writer,
and adapts to migratory access. The results are shown
along side those for the invalidate protocol that performs
dynamic page aggregation from Figure 2.

The benefits of automatic adaptation between invalidate
and update are questionable when such a protocol is com-
pared to a base protocol that performs aggregation. Its
benefits are limited to avoiding page faults and round-trip
latencies, resulting in a small improvement. In many cases,
these improvements are offset by the additional data trans-
fer. Typically, the additional data transfer comes from
changes in the sharing pattern. For example, IS consists
of a number of iterations, each of which is divided into a
number of migratory phases followed by a phase in which
the data produced by any single processor is consumed by
all other processors. This latter phase causes the adaptive
algorithm to send updates to all processors in the first mi-
gratory phase of the next iteration. The negative acknowl-
edgements halt these updates after two migratory phases,
but the large amount of unnecessary data sent in these
two phases causes performance to deteriorate substantially.
Adaptation between invalidate and update is, however, at-
tractive in some cases if the invalidate mode of the base
protocol does not support aggregation.

VII. RELATED WORK

A large number of software shared memory systems have
been built (e.g. [5], [8], [14], [20], [25], [27]). Although the
work described here is done in the context of a specific sys-
tem, TreadMarks, many of the ideas are applicable to other



systems as well. First, the adaptation between single- and
multiple-writer protocols carries over to all page-based sys-
tems. Second, aggregation should prove to be beneficial to
all systems, especially the ones that use smaller consistency
units. Finally, the tradeoff between update and invalidate
also applies to these other systems, although the nature
of the tradeoff may change substantially if compiler sup-
port is used to determine the choice between update and
invalidate [5], [11].

The multiple-writer protocol described in this paper
is the one in use with the current version of Tread-
Marks [1]. The single-writer protocol is a variation of
the one presented by Keleher [14]. The adaptive single-
writer /multiple-writer protocol extends our earlier work [2]
on this topic. In this earlier work, we chose a protocol that
started out in single-writer mode, because of its reduced
memory use (no twins are ever made for pages that remain
in single-writer mode). We found that the same reduction
in memory use can be achieved by a protocol that starts out
in multiple-writer mode, by not creating the initial twin,
which contains all zeroes. Starting in multiple-writer mode
allows for a straightforward adaptation according to the
size of the diffs.

The adaptive DSM system described by Monnerat and
Bianchini [19] is most closely related to our work. They also
investigate the adaptation between single- and multiple-
writer protocols, and adaptation between invalidate and
update. In their system, pages are classified as migra-
tory, producer/consumer or falsely shared. Single-writer
mode is used for migratory and producer/consumer pages,
while the falsely shared pages are maintained in multiple-
writer mode. Updates are used only for migratory and
producer/consumer pages. Keleher et al. [15] and Espeight
et al. [23] have also investigated the benefits of allowing a
software shared memory system the choice between invali-
date and update. However, to the best of our knowledge,
all of these studies were conducted in the absence of aggre-
gation for the invalidate protocol, inflating the perceived
benefits of update. We have demonstrated that commu-
nication aggregation is the key to improving performance
in both invalidate and update protocols. Adding dynamic
aggregation to the invalidate protocol provides the same
benefits as using an update protocol, without the risk of
sending extra messages.

Amza et al. [3] investigated the benefits of dynamic page
aggregation. They did not, however, combine aggrega-
tion with other forms of adaptation. Lu et al. [18] found
that aggregation is the main reason that message-passing
programs outperform (software) shared-memory programs.
Overall, they found that for six out of their eight appli-
cations the speedup on TreadMarks was within 85% of
that achieved by PVM. With the best static page aggre-
gation for each of those six applications, the speedup on
TreadMarks improved to within 95% of the speedup on
PVM. These results were obtained on two platforms, one of
which, the 155Mbps ATM network of eight SPARCstation-
20 Model 61 workstations, is similar to the platform used
in this paper.

Our adaptive single-writer/multiple-writer protocol ad-
dresses the most extreme cases of a less common problem,
diff accumulation, found by Lu et al. [18]. Diff accumu-
lation in IS contributed to the worst performance with
respect to PVM. TreadMarks’ speedup was only 42% of
PVM’s. With diff accumulation manually removed, the
speedup improved to within 71% of the speedup on PVM.
Our adaptive protocol automatically achieves a similar im-
provement.

Several other systems both hardware and software have
investigated configurability or adaptivity as a means of im-
proving performance.

Shasta [20] features configurable consistency units to ad-
dress the requirements of applications with fine-grain shar-
ing at the expense of higher memory overheads.

Munin [8] uses multiple protocols to handle data with
different access characteristics. The novelty in our work is
that it chooses automatically between different protocols.
In Munin, the choice of protocol was based on somewhat
burdensome user annotations.

Cashmere [25] improves on the home-based protocol in-
troduced by Zhou et al. [27], allowing dynamic migration of
the home node. The home-based protocol allows a single-
writer optimization that avoids diffing overhead when the
home node is the only writer for the page. The downside is
that whole pages are fetched on faults, even if the amount
of data modified is small.

Dubnicki and LeBlanc [10] proposed a scheme to reduce
the impact on performance due to a mismatch between
the cache block size and the sharing patterns exhibited by
a given application. They adjusted the amount of data
stored in a cache block according to recent reference pat-
terns. They found that the adjustable cache-block-size im-
plementation did better than the best fixed-size implemen-
tations for most of the programs in their suite.

The adaptation to migratory behavior was first suggested
by Cox and Fowler [9] and Stenstrom et al. [24] in the
context of hardware shared memory machines.

Another form of adaptivity that is important in networks
of workstations is adapting to environmental characteris-
tics such as processor and network load [6], [7]. This form
of adaptivity is orthogonal to the one discussed in this pa-
per.

VIII. CONCLUSIONS

We have described software DSM protocols that auto-
matically adapt, on a per-page basis, to the access patterns
in the application. The protocols dynamically choose be-
tween single- and multiple-writer protocols. Pages can be
dynamically aggregated into larger page groups. Finally,
the protocols choose dynamically between invalidate and
update. All adaptation is automatic.

The choice between the single- and multiple-writer pro-
tocols is based on the presence of write-write false sharing
and on write granularity. In addition, the protocol detects
migratory behavior, and chooses a version of the protocol
optimized accordingly. Aggregation uses records of earlier
accesses by a processor to coalesce pages into page groups,



in the expectation that those pages will be accessed again
by the processor. The choice between invalidate and up-
date is based on whether we expect the destination to ac-
cess the modified data before it is overwritten or not. The
three adaptations can easily be combined.

Adaptation between single- and multiple-writer and dy-
namic aggregation proved to be the most beneficial, never
causing any deterioration and providing substantial im-
provement for some applications. Our automatic adap-
tation between invalidate and update was less successful,
showing at best gains equal to the dynamic aggregation
adaptation and at worst serious performance deterioration.
We speculate that it may be difficult to find a fully auto-
matic, purely run-time algorithm for adaptation between
invalidate and update, and that either compiler or user in-
put may be necessary to achieve good performance.
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