
THÈSE NO 3382 (2005)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE à LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

Institut de traitement des signaux

SECTION DE GÉNIE ÉLECTRIQUE ET ÉLECTRONIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Laurea di Dottore in Ingegneria delle Telecomunicazioni, Università degli Studi di Siena, Italie
et de nationalité italienne

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. J.-P. Thiran, Dr M. Bierlaire, directeurs de thèse
Prof. M. Ben Akiva, rapporteur

Dr A. Cavallaro, rapporteur
Prof. R. Siegwart, rapporteur

a discrete choice modeling framework for 
pedestrian walking behavior with application 

to human tracking in video sequences

Gianluca ANTONINI





Preface

I was very excited when i have started to work on my PhD project, because of the cross-disciplinary
nature of the subject. The original idea was actually to investigate and analyze pedestrian dynamics
from a behavioral point of view, and use this kind of prior information for multi-object tracking
in video sequences. Human behavior modeling represents a very complex and challenging task, un-
dertaken by classical disciplines such as social sciences and psychology. Specific instances of human
behavior have been studied for a long time in economics (consumer behavior), transportation science
(driver behavior), cognitive sciences (individuals’ perception) and artificial intelligence (agent-based
systems). The first important step in this work was the choice of a behavioral paradigm. I decided
for the use of rational behavior, implemented by means of discrete choice models, more specifically
random utility models.

Pedestrian modeling and simulation represent by per se recent research fields. Growing interest
is in the context of crowd evacuation management and panic situation analysis, for obvious reasons.
Capturing the behavior of individuals in normal situations is instead important for architecture,
urban planning, land use, marketing, traffic operations. The second step of this work was to make
a bridge between discrete choice analysis and pedestrian modeling and simulation.

Recent applications and research directions in the image processing and computer vision commu-
nities (video surveillance, scene analysis, activity recognition) have triggered the interest in model-
based approaches. Different sources of prior information are modeled and integrated into algorithms
for fundamental problems, such as image segmentation, object detection and tracking. This con-
text represents the main motivation for the third step in this work, where I have tried to combine
behavioral models for pedestrian dynamics as a source of prior information for multi-object tracking.

Every tracking system suffers from a bias in the estimation of the number of targets. This fact
represents the motivation for the last part of this thesis. A post-processing of the tracking output is
performed, using clustering techniques, in order to reduce the bias in the targets’ number estimation.

The work has been appealing but not always simple. The methodological choices have been
made in the belief they were representing the best solution for that specific problem at that time. I
have given the preference to a cross-disciplinary approach, highlighting the integration between the
different parts, rather than the single part.
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Abstract

Intelligent Transportation Systems (ITS) have triggered important research activities in the context
of behavioral dynamics. Several new models and simulators for driving and travel behaviors, along
with new integrated systems to manage various elements of ITS, have been proposed in the past
decades. In this context, less attention has been given to pedestrian modeling and simulation. In
2001, the first international conference on Pedestrian and Evacuation Dynamics took place in Duis-
burg, Germany, showing the recent, growing interest in pedestrian simulation and modeling in the
scientific community. The ability of predicting the movements of pedestrians is valuable indeed in
many contexts. Architects are interested in understanding how individuals move into buildings to
find out optimality criteria for space design. Transport engineers face the problem of integration
of transportation facilities, with particular emphasis on safety issues for pedestrians. Recent trag-
ic events have increased the interest for automatic video surveillance systems, able to monitoring
pedestrian flows in public spaces, throwing alarms when abnormal behaviors occur. In this spirit, it
is important to define mathematical models based on specific (and context-dependent) behavioral
assumptions, tested by means of proper statistical methods. Data collection for pedestrian dynamics
is particularly difficult and few models presented in literature have been calibrated and validated
on real datasets.
Pedestrian behavior can be modelled at various scales. This work addresses the problem of pedestri-
an walking behavior modeling, interpreting the walking process as a sequence of choices over time.
People are assumed to be rational decision makers. They are involved in the process of choosing
their next position in the surrounding space, as a function of their kinematic characteristics and
reacting to the presence of other individuals. We choose a mathematical framework based on dis-
crete choice analysis, which provides a set of well founded econometric tools to model disaggregate
phenomena.
The pedestrian model is applied in a computer vision application, namely detection and tracking
of pedestrians in video sequences. A methodology to integrate behavioral and image-based infor-
mation is proposed. The result of this approach is a dynamic detection of the individuals in the
video sequence. We do not make a clear cut between detection and tracking, which are rather
thought as inter-operating procedures, in order to generate a set of hypothetical pedestrian trajec-
tories, evaluated with the proposed model, exploiting both dynamic and behavioral information.
The main advantage applying such methodology is given by the fact that the standard target de-
tection/recognition step is bypassed, reducing the complexity of the system, with a consistent gain
in computational time. On the other hand, the price to pay as a consequence for the simple initial-
ization procedure is the overestimation of the number of targets. In order to reduce the bias in the
targets’ number estimation, a comparative study between different approaches, based on clustering
techniques, is proposed.

vii



viii Abstract



Versione abbreviata

Negli ultimi anni la ricerca nei Sistemi di Trasporto Intelligenti (ITS) ha visto lo sviluppo di nu-
merosi lavori nel campo delle dinamiche comportamentali. Nuovi modelli e simulatori per lo studio
del traffico, insieme allo sviluppo di sistemi integrati per la gestione dei vari elementi dell’ITS, sono
stati proposti negli ultimi decenni. In questo contesto, pochi sforzi sono stati fatti nella modelliz-
zazione e simulazione del traffico pedonale. La prima conferenza internazionale sullo studio delle
dinamiche pedonali e di evacuazione (PED 2001) ha avuto luogo a Duisburg, Germania, nel 2001,
a testimonianza del crescente interesse della comunita’ scientifica per l’argomento. L’abilita’ nel
predirre i movimenti pedonali e’ valutabile in vari contesti. In architettura, i progettisti sono in-
teressati a capire come gli individui si muovono all’interno di edifici e spazi in generale, per trarre
criteri di ottimalita’ nella progettazione degli spazi stessi. In ingegneria dei trasporti si ha il proble-
ma dell’integrazione delle infrastrutture per traffico pedonale e veicolare, dove particolare enfasi e’
dedicata a problemi di sicurezza per i pedoni. I tragici avvenimenti degli ultimi anni hanno aumenta-
to l’interesse per sistemi automatizzati di video-sorveglianza, per il monitoraggio dei pedoni in spazi
publici, e la possibilita’ di avere sistemi di allarme in caso di comportamenti anormali. In questo
contesto, e’ importante definire modelli matematici basati su specifiche ipotesi comportamentali,
testati con l’ausilio di metodi statistici. La raccolta di dati per il traffico pedonale e’ particolar-
mente difficile e pochi dei modelli presentati in letteratura sono stati calibrati e validati su dati reali.

Il comportamento pedonale puo essere modellato su scale differenti. In questa tesi il problema af-
frontato e’ quello della modellizzazione di agenti pedonali dinamici, walking behavior. Le traiettorie
degli agenti nello spazio sono interpretate come una sequenza di scelte nel tempo. Gli individui sono
assunti come unita’ decisionali razionali, coinvolti nella scelta di dove muovere il prossimo passo
nello spazio circostante, in funzione dei propri parametri cinematici e in reazione alla presenza e
movimento di altri pedoni. Il framework matematico usato e’ quello dei modelli di scelta discreti
(DCM), il quale fornisce un insieme di tecniche econometriche per la modellizzazione di comporta-
menti disaggregati. Il modello sviluppato e’ calibrato su dati reali, raccolti con tracking manuale di
pedoni su sequenze video.

Il modello e’ stato poi applicato ad un problema di computer vision, piu precisamente alla detezione
e tracking di pedoni in sequenze video. Una metodologia per l’integrazione dell’informazione com-
portamentale e quella basata sull’immagine e’ proposta. Il risultato e’ una detezione dinamica degli
individui nella sequenza video. Tracking e detezione sono considerati come due processi interagenti,
piuttosto che come due parti separate. Un insieme di traiettorie pedonali ipotetiche e’ generato con
tecniche standard di object-tracking. Il modello e’ in seguito utilizzato per filtrare l’insieme delle
traiettorie che piu si avvicinano al comportamento pedonale, cosi come descritto dal modello stesso.
Il vantaggio principale di questo approccio consiste nella detezione dinamica. Complessi algoritmi
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di segmentazione e riconoscimento di oggetti sull’immagine sono cosi evitati, riducendo la comp-
lessita’ del sistema, con conseguente guadagno in termini computazionali. La semplicita’ usata per
la parte di inizializzazione ha come conseguenza un fenomeno di detezione multipla dei pedoni nella
sequenza video. Il sistema di tracking stima per eccesso il vero numero di individui presenti nella
scena. Per ridurre questo errore, uno studio comparativo basato su tecniche di clustering applicate
alle traiettorie generate dal sistema di detezione e tracking e’ stato proposto.
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Chapter 1

Introduction

1.1 A twofold motivation

In the last years several domains of engineering have seen the increase of interest in pedestrian be-
havior modeling. The huge amount of people in city centres, shopping malls, public infrastructures,
such as rail stations and airports, triggers the interest of different research communities in under-
standing and describing behavior of individuals in such situations. Getting insights in pedestrian
modeling is important for public space designers, dealing with space constraints and congestion
problems, for transportation researchers, dealing with facilities integration, demand modeling and
safety issues. Recently (and unfortunately) tragic events have also triggered the interest in evacua-
tion dynamics and modeling. Individual dynamics, in all these situations, are dictated by behavioral
issues. Defining models based on precise behavioral assumptions, well founded mathematical frame-
works, and supported by a real data calibration step, represents at the same time a first challenge
and motivation for this work. In this spirit, inspiration is taken from transportation science, where
sophisticated modeling techniques, aiming to reproduce driver and travel behaviors, have been bor-
rowed from microeconomics and econometrics, and widely used in different contexts. I try here to
extend part of these ideas to the pedestrian case.

A multitude of recording devices are placed almost everywhere, providing hours of collected videos.
Scientists in computer vision are interested in extracting information from image sequences, aiming
to perform automatic tasks, such as pedestrian detection and tracking, activity monitoring and
recognition and scene analysis in general. Detection and tracking of individuals in video sequences
is one of the most important tools for many applications, from video surveillance to scene analysis
in general. The final goal in such systems consists in the recognition and evaluation of human
activities.∗ The adopted solution is, in most of the cases, a hierarchical one. Detection and tracking
represent low level tasks, based on the image information, while higher level tasks, such as activity
recognition and evaluation, are treated in post-processing steps. This point of view is summarized
in Figure 1.1. Given the complexity of real scenarios, and the difficulties making a bridge between
low level and high level tasks, in the last years the research community moved towards integrated
methods. Several sources of information are combined together, trying to overcome the limits
imposed by a pure image-based methodology. This context represents the second motivation for

∗We refer implicitly to scenes where only pedestrian dynamics and the related activities are of interest
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Figure 1.1: Combining low-level and high-level tasks under a common mathematical framework.

this work.

1.2 Aims and overview

The big challenge is the formulation of a mathematical framework, effective at the same time to
improve the low-level tasks, namely detection and tracking of pedestrians, and which is suitable to
be extended to higher level operations. In this spirit, the objective of this thesis is twofold. First, we
aim to provide a behavioral model for pedestrian dynamics; second, we investigate a methodology
to integrate the behavioral information with standard detection/tracking approaches.
An overview of the thesis is presented in the following. It is organized in two parts:

• Discrete choice models for pedestrian walking behavior

• Application: model-based pedestrian detection, tracking and counting

Each part is composed by different modules which are shown in Figure 1.2 and briefly described in
the following sections.

1.2.1 Discrete choice models for pedestrian walking behavior

Research in the domains of crowd evacuation management, panic situation analysis, safety issues in
the development of intelligent transportation systems, have triggered important issues on pedestrian
dynamics and on the development of related modeling and simulation techniques. In 2001, the first
international conference on Pedestrian and Evacuation Dynamics took place in Duisburg, Germany,
showing the growing interest in the scientific community. A detailed revision of the state of the art
on pedestrian modeling techniques is presented in Chapter 2.
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Figure 1.2: System overview. Three main modules are present (enclosed by dotted lines), behav-
ioral modeling, dynamic detection/tracking and target counting, corresponding to the two parts.
The solid lines represent the implemented links between the different parts, while the dashed lines
are possible feedbacks, not yet implemented in the system. The estimated model parameters are
used to evaluate the trajectories collected by the tracking itself, providing the dynamic detection
output. On the other hands, the evaluated trajectories could be used for automatic data collection in
new modeling procedures, while they are actually used as input data for the target counting module.
Finally, the output of this module could be used to re-initialize periodically the detection/tracking
system
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Figure 1.3: The different steps in the behavioral modeling process

Iterative process The specification and calibration of the behavioral model is the subject of
Part I. It is a strongly iterative process, and it can be summarized as illustrated in Figure 1.3.
As modellers, we have first to define the behavioral assumptions and the mathematical framework
able to support them. We can then start with an initial model specification, including a number
of unknown parameters that will have to be estimated. A final validation step is required on the
coefficient estimates, in order to check their reliability. The estimated values have to be coherent
with the behavioral assumptions, and consistent with the mathematical framework chosen for mod-
eling. These last three steps, namely specification, estimation and validation, represent the core of
the modeling process and are iterated until the final “best” solution is achieved (at least in terms of
the explanatory power of the model fitting a given training dataset, and in terms of coherence with
the behavioral assumptions made at the beginning).

Behavioral assumptions The walking process is considered as a sequence of choices over time,
where individuals choose where they will be at the next time step, in the space around their current
position. This decision making process is approached through the rational behavior paradigm,
using Discrete Choice Models (DCM), with a Random Utility (RU) representation. Following this
paradigm, individuals (decision makers) choose between different options, maximizing a certain
utility function. Such a function is represented by the utility that each individual perceives from each
of the available alternatives. In this context, the term rational is used to describe decision makers
having consistent and transitive preferences (Ben-Akiva and Lerman, 1985). It means that repeated
choices are made under identical circumstances, and the preferences over different alternatives satisfy
at the transitivity property.
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Mathematical framework The choice for DCM and RU models is dictated by two reasons.
First, these kind of models are based on utility maximization, so they are consistent with the rational
behavior assumption. Second, DCMs are disaggregate behavioral models, designed to forecast the
behavior of individuals in choice situations, where the set of alternatives is finite. As a consequence,
they well adapt to a microscopic∗ approach to pedestrian modeling, and they are coherent with an
agent-based methodology, where each individual can be modeled independently. The advantages
using a microscopic modeling approach will be described later on in Part I. The general theoretic
framework for DCM and RU models is treated in Chapter 3.

Specification The specification of the model consists to define the utility functions, aiming to
capture the short range (walking) behavior of individuals, as a response to their immediate en-
vironment. Alternative specifications are treated in Section 4.2 and Section 4.3. The use of the
DCM methodology imposes the definition of the set of alternatives (choice set). This lead to the
formulation of a space model. This first modeling element is adaptive with respect to individuals,
meaning that each pedestrian has its own spatial representation, depending on her current speed
and direction. A detailed description of the space model is given in Section 4.2. The model refers
to interactions between individuals (constrained patterns) and to behaviors that are independent
on the presence of other pedestrians (unconstrained patterns). The formers are captured by leader
follower and collision avoidance models. The latters take into account the influence of subjective
factors, independently from the other individuals. Fixed and moving obstacles are not taken into
account. The reason for this “simplistic” point of view is that we have preferred a simpler but fully
estimable specification, rather than more complex modeling assumptions, that did not find confir-
mation in the available data.

The RU formulation allows to take into account the sources of uncertainty in the modeling
process, deriving by a limited knowledge of the modeller on the choice process. This lack of knowl-
edge leads to unobserved factors, influencing the choice made step by step by walking pedestrians,
choosing their spatial positions along their trajectories. This unobserved factors may give rise to
correlation patterns between the different options in the choice process, and have to be taken into
account. The RU approach provides us with strong econometric tools in the design of the unobserved
factors influencing the behavior of decision makers. The hypotheses on the correlation structure are
part of the model specification and are treated in both Section 4.2 and Section 4.3.

Estimation and validation The estimation of the unknown parameters is performed by maxi-
mum likelihood estimation (MLE), and its simulated counterpart (MSLE). Training datasets have
been collected manually tracking pedestrians from video sequences, recorded in real scenarios. The
collected data are described in Section 5.1 and the estimation results are presented in Section 5.2.
Finally, the use of a pedestrian simulator as a validation tool for the model is described in Section 5.3.

1.2.2 Model-based pedestrian tracking

The integration of the estimated model into a tracking system is the subject of the first chapter in
Part II. In the last years the problem of detection and tracking of human beings has been extensively
tackled by the computer vision and image processing communities. A review of the state of the art
on detection and tracking techniques is presented in Section 6.1. The tracking system is described
in its parts. First, the initialization procedure to identify potential targets (pedestrians). Second,

∗Microscopic approaches to pedestrian dynamics model each individual in an independent way, in contrast with

the macroscopic models, where collective behaviors are taken into account, such as lanes and queues
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the approach adopted to track such targets generating hypothetical trajectories is described, with
particular emphasis on the methodology used and the integration of the calibrated model. Most of
the existing methods for object tracking make a clear cut between object detection and tracking
itself. Normally, the first task is accomplished by means of segmentation-like algorithms. This
approach, which appears very natural from a conceptual point of view, has to face with the difficulties
intrinsic with the segmentation problem, analyzing real scenarios. The presence of multiple targets,
partial and/or total occlusions, cluttered backgrounds, along with possible low image quality and
resolution, represent well known problems in detection and tracking. Often, the errors occurred
and the computational time spent during this phase affect the performances of the whole system.
As a consequence, we have preferred to avoid such a clear cut between detection and tracking. As
indicated in Figure 1.2, after an initialization step, we track all the hypothetical targets over a
certain evaluation time, leaving the target/non-target decision to a trajectory evaluation step. The
calibrated model is used to evaluate the hypothetical trajectories, keeping only the most human-
like. The output of this process consists in what we call dynamic detection, to underline the fact
that pedestrians are detected on the base of their dynamic behavior over time. The shape of
the tracked trajectories is so defined as a function of individual kinematic variables as well as
pedestrian-pedestrian interaction parameters. The feedback from the dynamic detection module
on the model parameter estimation (dashed line in Figure 1.2) illustrates how, in principle, the
trajectories generated by the model-based tracker could be used as a new way to automatically
collect data for new models. Numerous simplifications are made to make the integration of the
model operational. The model based tracking is described into details in Section 6.2 and the relative
results are shown in Section 6.3.

1.2.3 Automatic counting of pedestrians in video sequences

The subject of the second chapter in Part II is the problem of automatic counting of targets. Once we
are able to track individuals with a certain accuracy, good scene descriptors such as statistical maps
of the averaged pedestrian flow, density and direction could be derived. Such high level descriptors
are based on the assumption to have reliable estimates of the real number of targets present in the
scene. The output of a video tracking system not always provide such an accuracy, leading to a bias
in the estimated number of targets. In this context, the target counting problem is fundamental for
further scene analysis. The approach proposed in this third part consists in a pure post-processing
of the tracked trajectories, and it is interpreted as a trajectory clustering problem. We investigate
here different combinations of data representations, distance/similarity measures and grouping rules.
Comparing the obtained results, interesting conclusions are drawn on this subject. The potential
feedback of the counting module on the tracking system (dashed line in Figure 1.2) shows how, in
principle, the clustering results could be used to re-initialize the tracker periodically.

1.3 Thesis contributions

The main objective of this research is to define a framework for pedestrian walking behavior. An
application to the problem of detection and tracking is described. Finally, an analysis of the target
counting problem is performed. This thesis contributes to the state-of-the-art in the following
principal aspects:

• A new approach for pedestrian walking behavior modeling is proposed, based on discrete
choice analysis. Several innovations are presented: an adaptive spatial discretization; a general
framework including both constrained and unconstrained behaviors; specification of the leader
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follower and the collision avoidance models; pameter estimation based on real pedestrian
trajectory data; behavioral interpretation of the coefficient estimates.

• Application of the model in a computer vision context, namely pedestrian detection, tracking
and counting in video sequences. A simple initialization scheme is proposed, avoiding complex
target recognition steps; the idea of dynamic detection is presented, which consider both
detection and tracking as two inter-operating tasks, in order to perform pedestrian detection
using dynamic and behavioral criteria; both a deterministic and probabilistic setups for the
model-based tracker are presented.

• A new approach for target counting is proposed, based on a hierarchical clustering frame-
work. Several data representations and distance/similarity measures are compared, drawing
interesting conclusions and presenting quantitative results.
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Discrete Choice Models for

Pedestrian Walking Behavior
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Chapter 2

Pedestrian modeling: state of the

art

The development of Intelligent Transportation Systems has triggered important research activities in
the context of behavioral dynamics. Several new models (driving and travel behavior models), new
simulators (traffic simulators, driving simulators) and new integrated systems to manage various
elements of ITS, have been proposed in the past decade (see Mahmassani, 1996, Golledge, 2002).
With regards to pedestrians, the focus of ITS has mainly been on safety issues (see, for example,
Fuerstenberg et al., 2002), and modeling pedestrian movements in detail has rarely been considered.
The ability of predicting the movements of pedestrians is valuable in many contexts. The panic
situation analysis is probably the one which has motivated the large majority of research activities
in the field (e.g. Helbing et al., 2000, Klüpfel et al., 2000, Helbing et al., 2002). However, it is a
specific situation. Not only is the range of applications small, but also the behavior of individuals
is dictated by a unique objective (save their own life) and may become irrational (Schultz, 1964,
Quarantelli, 2001). Capturing the behavior of pedestrians in “normal” situations is also important
in architecture (Okazaki, 1979), urban planning (Jiang, 1999), land use (Parker et al., forthcoming),
marketing (Borgers and Timmermans, 1986b) or traffic operations (Nagel, in progress).
The objective of this chapter is to identify the behavioral issues arising in the context of pedestrian
dynamics and analyze how they have been addressed in the literature (Bierlaire et al., 2003).

2.1 Methodological approaches for behavioral dynamics

The complexity of pedestrian behavior comes from the presence of collective behavioral patterns (as
clustering, lanes and queues) evolving from the interactions among a large number of individuals.
This empirical evidence leads to consider a first important distinction among the different method-
ological approaches: pedestrians as a flow and pedestrians as a set of individuals or agents. In the
first case, the crowd is described with fluid-like properties, giving rise to macroscopic approach-
es. These models describe how density and velocity of the pedestrian flow change over time, using
partial differential equations (Navier-Stokes or Boltzmann-like equations). This approach is based
on some analogies observed at medium and high densities. For example, the footprints of pedes-
trians in snow look similar to streamlines of fluids or, again, the streams of pedestrians through
standing crowds are analogous to river beds (Helbing et al., 2002). Nevertheless in these analo-

11
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gies, the fluid-dynamic equation is difficult and not flexible. As a consequence, research focuses on
the pedestrian as a set of individuals paradigm. This means microscopic models, where collective
phenomena emerge from the complex interactions between many individuals (self-organizing effects).

System dynamics are based on equations describing the evolution of a system over time and have
been used for both microscopic and macroscopic models. Discrete time models have the following
form

xt+1 = f(xt, β) (2.1)

where xt is a vector of state variables at time t, and β are model parameters. Continuous time
models are captured by differential equations, such as

dx

dt
= f(x(t), β) (2.2)

where the vector of state variables x(t) is a continuous function of time. This has been used for
pedestrian simulation in the literature (Helbing and Molnár, 1995, Teknomo et al., 2001). In the
social forces model of Helbing and Molnár (1995) an individual is subject to long-range forces and
his dynamics follow the equation of motion, similar to Newtonian mechanics. However, we believe
that complex behavioral rules and behavioral heterogeneity are difficult to capture with such models.
Moreover, in most practical cases, there is no analytical solution to (2.1) or (2.2). Consequently, we
have decided not to adopt this approach.

While system dynamics are time-based, queueing models are event-based, in the sense that they
compute the state of the system for each event in a predefined agenda. The system is composed of
several servers organized within a network. Each server processes items at a given rate. Items not
yet processed are accumulated in queues associated with each server. The arrival of items and the
service time for each server is modeled by a stochastic process. Queueing models are not appropri-
ate to capture pedestrian dynamics. The concept of servers and the network organisation do not
correspond to a tangible reality.

Game theory mimics the behavior of players, adopting a strategy knowing the strategy adopted by
other players. The outcome of a game is characterized by a payoff matrix. The main focus of game
theory is to identify and analyze equilibrium situations, such that no player can improve her own
payoff by unilaterally changing her strategy. The approach is relevant in the context of pedestrian
simulation, where the behavior in a crowd strongly depends on the behavior of other persons in the
crowd. Because of the large number of “players” and the difficulty to identify an appropriate payoff
matrix, we have decided to postpone the use of game theory for pedestrian simulation for future
research projects.

Cellular automata allow for a time-based simulation approach, where the state of the system is
represented by a regular grid composed of cells (see Toffoli and Margolus, 1987 for an introduction).
Each cell can be in one of a few states (typically two, 0 or 1). At each time step, the state of
each cell is updated based on its previous state and the previous state of its immediate neighbours.
Therefore, it is designed for situations with local interactions. Schadschneider (2002) introduces the
interesting concept of floor field to model the long-range forces. This field has its own dynamic
(diffusion and decay), is modified by pedestrians and in turn modifies the matrix of preferences,
simulating interactions between individuals and the geometry of the system. Cellular automata
have been successful in the context of traffic simulation (see, for instance, Rickert et al., 1996).
It is also appealing to model pedestrian behavior, and has been adopted by several authors (see,
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for example, Dijkstra et al., 2000, Blue and Adler, 2001, Schadschneider et al., 2002 and Yang
et al., 2002). We have decided that this approach is not appropriate in our context, due to the fixed
regularity of the grid, the homogeneity of the rules and the limited number of states of each cells.

2.2 Modeling elements

Pedestrian and crowd dynamics have been studied, from an empirical point of view, for some decades
using time-lapse films, photographs and direct observations. These initial efforts have yielded good
empirical knowledge about the different behaviors of individuals in different kinds of environments
and situations. Based on this empirical knowledge, we identify the following most important mod-
eling elements.

2.2.1 Agents

An agent is an entity with its own behavior. Developed in the context of artificial intelligence
(see, for instance, Ferber, 1998), agent-based models and simulation have been widely used in the
context of traffic simulation (Yang and Koutsopoulos, 1997, Mahmassani et al., 1993, Barceló and
Ferrer, 1997, Ben-Akiva et al., 2002). It provides a great deal of flexibility, as the behavior of each
element in the system can be modeled independently, and complex interactions can be captured.
All the agent-based models are also microscopic models and are based on some elementary form
of intelligence for each agent (attempts to provide a vision and/or cognition capabilities). Simple
behavioral rules are implemented (turning directions, obstacle avoidance) in order to reproduce
more complex collective phenomena (Penn and Turner, 2002). In our context, each pedestrian is an
“agent”. The behavior of each agent can be modeled as a sequence of specific choices, such as the
choice of the destination, the choice of the itinerary, the choice of an overall direction, or the choice
of where to put the next step.

2.2.2 Space

The representation of the physical space plays a central role in the simulation. The Cellular Au-
tomata model (Schadschneider, 2002) uses a discrete structure of space. A grid of 40x40 cm2 cells
is overlapped to the area available for pedestrians, as shown in Figure 2.1. This is the typical space
requirement for an individual in a dense crowd. The same grid structure is used by Kessel et al.
(2002). Helbing et al. (2002), in their social force model, use the equation of motion to describe
the change of location xi(t) of the pedestrian i, assuming a continuous treatment of space, similarly
to the multi-layer utility maximization approach proposed by Hoogendoorn et al. (2002). In all
these models the pedestrian is seen as a point or a particle in a 2D environment. With the recent
development in rendering techniques and Virtual Reality simulations, other models are based on a
3D representation. In the agent-based approaches, the agent moves through a virtual environment
where the movements can be discrete or continuous (Thalmann and Bandi, 1998, Penn and Turn-
er, 2002).

A completely different approach is proposed by Borgers and Timmermans (1986b). They use a
network representation (Figure 2.2), where each node corresponds to a city-center entry point or a
departure point and each link denotes a different shopping street. In this case, the network topology
represents the walk-able space and any movement occurs along the links between two consecutive
nodes.
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Figure 2.1: Example of a static grid discretization

Figure 2.2: Example of a network-based spatial representation
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The space model is directly connected with the concept of visual field. Indeed, pedestrians are
influenced by what they actually see. More precisely, the complex cognitive mapping and learning
process in a human being, find their first source of inputs from the images of the space around.
Some attempts of explicit modeling have been attempted in the robotics community (Bachelder and
Waxman, 1994), who simulate the hippocampal cognition process with a really high computational
cost. Important studies on the interactions between pedestrians and the space are made by Tim-
mermans group (Essyx tool), while a pedestrian simulator that tries to reproduce the visual field
is EVAS (Penn and Turner, 2002). The EVAS approach is based on a development of the Space
Syntax theory (Hillier and Hanson, 1984 and Hillier et al., 1993): the Visibility Graph Analysis
(VGA). The configuration of the space seems to be one of the first sources in the variance of human
behavioral patterns. The VGA states that, given a grid of points that covers the space layout, it is
possible to create a graph, the visibility graph. Each grid’s point represents a node and two nodes
are connected if and only if they are mutually visible (another possibility is one-depth visibility
that is, visible by means of an intermediate node). From the graph, it is possible to calculate some
features of the space that are important for pedestrian way-finding. The first of these coefficients is
the Neighbourhood size Ni defined as the set of directly visible vertices:

Ni = {vj : eij ∈ E} (2.3)

where Ni is the neighbourhood of location vi, eij is the link between nodes vi and vj and E is the set
of all links in the graph. The neighbourhood size value is proportional to the visible area and its plot
draws contours of equal viewable areas across the space (Turner et al., 2001). Another important
measure is the clustering coefficient Ci for the neighbourhood Ni ( of size ki) of location vi:

Ci =
|{ejk : vj , vk ∈ Ni ∧ ejk ∈ E}|

ki(ki − 1)
(2.4)

It is the number of edges between all the vertices in the neighbourhood of vertex vi divided by the
total number of possible connections with that neighbourhood size. It can be seen also as a measure
of the inter-visible space within the visibility neighbourhood of a point. Again if we think about a
pedestrian in position vi, the Ci values give a measure of the potential to form groups or to interact
(Turner et al., 2001). Conroy (2001) have further shown that in multi- directional visual field areas,
as junctions, there is a strong correspondence with the stopping behavior of people (thinking about
a new direction). Many other features can be extracted from the graph, as the mean shortest path
length, giving to the pedestrian a crude form of cognition or memory.

Obstacles and attractors must be also modeled. Fixed obstacles are represented by regions that no
pedestrian can access. Moving obstacles are (groups of) other pedestrians occupying some space
which is consequently not available anymore. Attractors are useful areas with particular meaning for
the individuals. Examples of attractors can be the shopping windows or areas becoming interesting
because of the presence of painters or musicians. Helbing et al. (2002), in their social force model,
take into account time-dependent attractive interactions. They use social forces with an interaction
range longer and a strength parameter smaller compared with repulsive interactions. So, practically,
they define attractors as long-range forces.

Finally, origin and destination areas, where pedestrians enter and exit the system must be defined.
Those could be doors, elevators, stairs, and of course the boundaries of the modeled area.
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2.3 Behavior

Several decisions can be made by pedestrians. Each of them can be associated to a different behav-
ioral model.

2.3.1 Destination choice

The destination choice problem is tricky in the context of pedestrian simulation. Indeed, some in-
dividuals may not have a destination at all if, for instance, they are walking around waiting for a
bus. In shopping areas, the destination may change rapidly depending on the environment or on
the attractors (see Whynes et al., 1996, Dellaert et al., 1998).

Borgers and Timmermans (1986b) propose a simulation of pedestrians in the shopping streets of
the city centres. The model is a Monte Carlo simulation which implies that the behavior of each
individual is simulated by a series of draws of random numbers from successive probability distribu-
tions. In their work, the authors build different sub-models related to the number of goods bought
by pedestrians, in which retail sector, in which link of the urban network (the link is the shopping
street). As an example, we report the link-choice model:

pg
nl =

(
∑

m∈l F
g
m)α exp (−β min [

∑
l′′∈r dl′′ ])∑L

l′=1{(
∑

m∈l′ F g
m)α exp (−β min[

∑
l′′∈r dl′′ ])}

(2.5)

where pg
nl is the probability that a good in retail sector g will be bought at link l providing that the

pedestrian departed from city entry point n, F g
m is the total amount of floor-space in retail sector g

at destination m(m = 1, 2, ..., M), min [
∑

l′′∈r dl′′ ] is the distance associated with the shortest route
from city entry point n to link l, and α,β are parameters to be estimated.

Kopp (1999) uses in the EVACSIM simulator the so called Primary/Secondary destination selection.
A shortest path algorithm, using a sub-goal system, was developed for this simulator to allow people
to effectively navigate around obstacles. If a person’s path to an exit destination is blocked (checked
with a line intersection test), the person finds a sub-goal that is in a line-of-sight with the person.
If multiple sub-goals are in a line-of-sight, the person chooses the one that will lead to the shortest
path to the exit destination. This approach to model the destination selection is local and captures
an obstacle avoidance behavioral pattern. It does not deal with any “high level” decision process
as for example trip purpose or activity-based scheme. Moreover, EVACSIM is mainly oriented
to evacuation situations, where the pedestrians have one or multiple exits and their behavior is
essentially an event response pattern (for example fire in a building).

2.3.2 Route Choice

Borgers and Timmermans (1986a) addresses the route choice problem as an utility maximization
problem. The objective characteristics Xlk of the link l are transformed into subjective perceptions
or evaluations by means of a functional relationship fk:

xlk = fk{Xlk}, k = 1, 2, ..., K. (2.6)

After that, the subjective utility U(l) is obtained as an algebraic combination of the subjective values:

U(l) = h(xlk), k = 1, 2, ..., K. (2.7)



2.3. Behavior 17

Likewise, the route’s utility equals:

U(r) = h′(U(l); dr), l ∈ r (2.8)

where h′ is another algebraic function and dr is the total subjective distance associated with route
r. The pedestrian will choose the route that will maximizes his subjective utility.

Blue and Adler (2001) analyse the problem from a self-organizing point of view. They use a CA
model, with a limited rule-set for the pedestrian behavior and look at the emergent collective behav-
iors. Their route-choice is lane-based. They show how unidirectional, bi-directional, cross-directional
and 4-directional pedestrian flows emerge from CA simulations. The model centres on a two-stage
parallel update process whereby lane assignment and forward motions change the positions of all
pedestrians in two parallel update stages in each time step. They assume that only pedestrians in the
immediate neighbourhood affect the movement of a pedestrian. We believe that this assumption is
valid only at the operational level in a hierarchical model (the local interactions among pedestrians).

There is a distinction between the individuals who know their destinations and the others who do
not have a precise destination. All the models seen until now, refer to the first category. We could
talk about explorers referring to people who do not have a specific destination. It is clear that,
in this case, the behavioral patterns are different and other parameters become important. Penn
and Turner (2002), in their EVAS simulator (agent-based), address this kind of population. The
agent takes a decision about her destination and chooses the route every three steps, basing the
decision process on the simulated visual field. The direction is chosen randomly inside the visual
field. We think that this is a limitation and is applicable to the only exploratory pattern. It would
be interesting to apply these concepts in a discrete choice model framework, using the visual field
as a source of exogenous information and mixing it with endogenous parameters.

We conclude this section saying that the idea to address the destination and/or route choice problems
in a pedestrian behavior context, stems from previous research activities, namely in the Intelligent
Transportation System context. Among the route choice literature, we refer the reader to Ben-Akiva
et al. (1984), Charlesworth and Gunawan (1987), Bovy and Stern (1990), Cascetta et al. (1992),
Ben-Akiva and Bierlaire (1999) and Ramming (2001). As already mentioned in the introduction,
several new models capturing driver behavior and traveler behavior, as well as traffic simulators,
have been extended to the pedestrian behavior and way-finding problems (Muramatsu et al., 1999).

2.3.3 Speed

In an empty space, the destination and the path are almost sufficient to reproduce the trajectory of a
given pedestrian. Almost, because an average speed must be assumed, and small random deviations
from the given path must be allowed for the sake of realism. When the environment is crowed and
contains obstacles, the direction and the speed of the pedestrian may be significantly affected.

In most models in the literature, the important parameters influencing the behavior are the desired
speed and speed regimes. In the social force model, the desire to adapt the actual velocity vi(t)
to the desired speed v0

t within a certain “relaxation time” τi is reflected by the acceleration term
[v0

i e0
i −vi(t)]/τi. The contribution v0

i e0
i /τi is interpreted as a driving term and −vi(t)/τi as a friction

term. The CA model addresses the problem using the dynamic of the floor field. So, the movement
of a pedestrian is considered as the movement of a particle that crosses a field with its own dynamic
(diffusion and decay). In the lane-based approach, Blue and Adler (2002) design the model to
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account for variations in walking speeds observed in the real world. Each time step is one second
and they consider walking speed varying among pedestrians, using distribution of walking speed
with a cell size of 0.21m2:

1. fast walkers: maximum speed of 4 cells per time step (about 1.8m per time step);

2. standard walkers : maximum of 3 cells per time step (1.3m per time step);

3. slow walkers : maximum of 2 cells per time step (0.85m per time step).

In their experiments, they use a population composed of 5% of fast, 90% of standard and 5% of
slow walkers. In the multi-layer utility maximization model, Hoogendoorn et al. (2002) define the
kinematics of the pedestrian as follows:

dx = vdt + σdw (2.9)

where v = v(τ) is the velocity vector for τ > t. The term w is a Wiener process and denotes the
uncertainty in the expected traffic conditions and its effects on the pedestrian’s kinematics. The
speed of the individual is limited by the physical conditions and by the other individuals. There is
a set of admissible velocities defined as

Va(t, x) = {v : ‖v‖ ≤ v0(t, x)} ⊂ R
2 (2.10)

The t and x dependence describes the changing of the maximum speed stemming from the change
in flow conditions as well as differences in maximum speed between different parts of the walking
infrastructure. Last, but not least, the maximum speed of a specific pedestrian also depends on the
individual’s characteristics (age, gender, trip-purposes, luggage etc...).

2.3.4 Pedestrian interactions

Collision avoidance The collision avoidance pattern stems automatically from a combination of
the velocity vector of the other pedestrians and the density parameter. In microscopic models, an
individual tries to keep a minimum distance from the others (“territorial effect”). In the social force
model, this pattern is described by repulsive social forces:

fij = Ai exp [(rij − dij)/Bi]nij(λi + (1 − λi)
1 + cosϕij

2
) (2.11)

where Ai is the interaction strength, Bi the range of the repulsive interaction, dij the distance
between pedestrians i and j, rij the sum of the radii, nij the vector pointing from i to j, the angle
ϕij denotes the angle between the direction of motion and the direction of the object exerting the
repulsive force. Finally, the parameter λi takes into account the fact that the situation in front of
a pedestrian has a larger impact than things happening behind.

Crowd effects One of the first approaches to describe the crowd effect was in Reynolds (1987),
the leader-follower pattern. One or more individuals follow another moving individual designated
as the leader. Generally the followers want to stay near the leader, without crowding the leader,
and taking care to stay out of the leader’s way (in case they happen to find themselves in front of
the leader). In addition, if there is more than one follower, they want to avoid bumping into each
other. The implementation of leader following relies on arrival behavior, a desire to move toward a
point, slowing down as it draws near. The arrival target is a point offset slightly behind the leader
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(the offset distance may optionally increase with speed). If a follower finds herself in a rectangular
region in front of the leader, she will steer laterally away from the leader’s path before resuming
arrival behavior.

In the social force model of Helbing et al. (2002), physical interaction forces come into play when
pedestrians get so close to each other that they have physical contact. This is mainly the case in
panic situations but also as a reaction to an event. The authors assume a body force k(rij − dij)nij

counteracting body compression and a sliding friction force k(rij − dij)∆vt
ijtij impeding relative

tangential motion. The model for this effect comes from the granular interaction formula:

fph
ij (t) = kφ(rij − dij)nij + k1φ(rij − dij)∆vt

ijtij (2.12)

where the function φ(x) is equal to x if x ≥ 0 and 0 otherwise. The vector tij is the tangential
direction and ∆vt

ij is the tangential velocity difference. The rij term is the sum of the radii ri and
rj , dij is the distance between the centres of mass of pedestrians i and j and k,k1 are some large
constants.

A large amount of literature in transportation science concerning car following models has inspired
our analysis of the leader follower behavior for pedestrians. The main idea in these models is that
two vehicles are involved in a car following situation when a subject vehicle follows a leader, nor-
mally represented by the vehicle in front, reacting to its actions. Normally, a sensitivity-stimulus
framework is adopted. According to this framework a driver reacts to stimuli from the environ-
ment, where the stimulus is normally chosen as the leader relative speed. Different models differ in
the specification of the sensitivity term (see Ahmed, 1999, Herman and Rothery, 1965, Lee, 1966,
Newell, 1961 and Toledo, 2003 among the others). The sensitivity-stimulus approach models accel-
eration behaviors. In the case of cars, it is natural a distinction between acceleration and direction
change (lane change) behaviors, being imposed by the transport facility itself. On the other hand,
the pedestrian case is more complex being the movements purely two-dimensional movements on
the walking plane, where accelerations and direction changes are not easily separable.

Interesting studies on human interactions have been conducted in human sciences and psychology,
providing a sociological interpretation of crowd effects. A related and interesting concept is that of
personal space (see Horowitz et al., 1964, Dosey and Meisels, 1969 and Sommer, 1969). Personal
space is a protective mechanism founded on the ability of the individual to perceive signals from one’s
physical and social environment. Its function is to create the spacing patterns that regulate distances
between individuals and on which individual behaviors are based (Webb and Weber, 2003). Several
studies in psychology and sociology show how individual characteristics influence the perception of
the space and interpersonal distance. Brady and Walker (1978) found for example that anxiety states
are positively correlated with interpersonal distance. Similarly, Dosey and Meisels (1969) found that
individuals establish greater distances in high-stress conditions. Hartnett et al. (1974) found that
male and female individuals approached short individuals more closely than a tall individual. Other
studies (Phillips, 1979 and Sanders, 1976) indicate that the other person’s body size influences space.
Hence, it seems natural that individual characteristics as age, sex, weight among others influence
the spatial perception, interpersonal distance and human-human interactions. Unfortunately, such a
kind of information is very hard to collect, requiring the setting of controlled experimental conditions.
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2.3.5 Hierarchical decision process for pedestrians

A very important work, especially from a methodological point of view, is that proposed by Hoogen-
doorn et al. (2002), Hoogendoorn (2003) and Daamen (2004). The authors proposed a very plausible
framework for the decision process related to walking pedestrians. They assume that people make
decisions at three different levels. The highest level is called strategical, where people decide about
the activities they want to perform. Some of those activities are discretionary, some other are
mandatory (Dijkstra et al., 2000, Arentze and Timmermans, 2004, Penn, 2003). The second level
is called tactical. Here people, given the activities chosen at the strategical layer, decide about the
order of the activity execution (the activity scheduling process); they can also decide about where
to perform the different tasks involved in their planned activities (activity area choice process).
These first two decision making processes in the tactical level are actually more conceptual than
operational. Few literature exists about these topics and, more important, few models have been
calibrated on real data. Also for the objective difficulties to collect related data, often such a choices
are assumed to be exogenous in the models. The most important tactical level process is the route
choice between origins and (intermediate) destinations. The principle is the utility maximization
(more precisely the expected disutility minimization) taking into account different route attributes
such as travel time, distance travelled, safety, comfort, etc.... They do not use a discrete choice
framework; the number of choice options is infinite in continuous time and space. We show, as an
example, the equation used to describe the expected cost Ci:

Ci(Ti, v[t,Ti)|Ti−1, x(Ti−1)) = E

[∫ Ti

t

L(τ, x(τ), v(τ)) dτ + φ(Ti, x(Ti))

]
(2.13)

The time interval [t, Ti) denotes the interval between the current time and the arrival time at an
activity area while v[t, Ti) is the velocity path. The running cost L(τ, x(τ), v(τ)) shows the costs
incurred during the time interval [τ, τ +dτ) where x(τ) is the location and v(τ) is the applied velocity
to change the position. The terminal cost φ(Ti, x(Ti)) reflects the cost due to ending up at position
x(Ti) at the terminal time Ti. The terminal cost represents the penalty φi for not having arrived
in time at any of the activity areas. The running cost is related to the different contributions of
the different route attributes (discomfort, walking at certain speed, expected number of pedestrian
interactions etc...).

The last level in the conceptual hierarchy is the operational one. People make instantaneous decisions
for the next time step, given the choices made at the two higher levels. Individual walking behavior
is defined here, where pedestrians are involved in managing interactions with other people, with the
surrounding environment (fixed and moving obstacles, depending on the context), waiting at the
activity areas and performing activities themselves.

2.4 Simulation

We report here some previous works on pedestrian simulation. Several programs have been developed
to simulate pedestrian behavior in various contexts, but the great majority of them seems to be
aimed at building evacuation, especially in case of fire. Given that a full discussion on pedestrian
simulation techniques is out of the scope of this thesis, we provide here only some references to some
of the existing simulation systems, referring the interested reader to the reported references:

• PEDSIM is a software tool for microscopic pedestrian and crowd simulation. It implements
the social force model described in Helbing and Molnár (1995).
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• NOMAD is a microscopic simulator developed at the Transport & Planning department of the
Delft University of Technology. It is based on microscopic characteristics of pedestrians, such
as walking speed, pedestrian size, etc....

• EXODUS (Gwynne et al., 1997) is a software tool for simulating the evacuation of large
numbers of people from buildings, airplanes, boats, etc.

• Simulex (Thompson and Marchant, 1994) is the evacuation simulation part of the IES Virtual
Environment, a set of tools developed to aid in the design and evaluation of buildings.

• EVAS (Turner and Penn, 2002) is a pedestrian simulator based on Visibility Graph Analysis.

• EVACSIM (Kopp, 1999) is an evacuation oriented simulator developed in Java. It is freely
available, including source code.

Pedestrian modeling and simulation is becoming an important field of research, as the range of
possible applications is widening. In this chapter, we have tried to identify the behavioral aspects
of pedestrian dynamics, describing how they have been addressed in the existing literature. Some
analogies with traffic modeling and simulation techniques arise from this state-of-the-art review.
Problems such as destination choice or route choice are well known to the transportation science
community.

Being inspired by traffic modeling techniques, our approach interprets the short range behavior of
pedestrians as a sequence of choices, in a discretized spatial representation. As already mentioned
in Chapter 1, this idea is naturally implemented by means of a DCM approach.
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Chapter 3

Discrete Choice Models and

Random Utility Models

In this chapter we introduce discrete choice models (DCM) and random utility models (RUM), giving
an overview on the theoretical aspects and focusing on those models that will be used in the following
chapters to model the pedestrian walking behavior. The use of DCM in our context is justified by
several reasons. First of all, we model the walking process as a sequence of choices on where to put
the next step, so DCMs represent a natural way to deal with this modeling assumption. Moreover,
they are disaggregate models, hence well adapted to a microscopic approach for pedestrian behavior,
and coherent with an agent-based methodology, where each individual can be modeled independent-
ly. Finally, being econometric models, they are designed to be calibrated on real data, providing a
set of statistical techniques to model the uncertainty. DCMs have been widely used in econometrics
(McFadden, 1978; Manski and McFadden, 1981; Koning, 1991; Koning and Ridder, 1994; Hensher
and Johnson, 1981) with numerous applications to different fields, such as marketing, finance and
labour economics. Large use of DCMs has also been done in transportation science (Ben-Akiva
and Lerman, 1985; Ben-Akiva and Bierlaire, 1999; Ben-Akiva et al., 1984; Cascetta et al., 1992)
over the last three decades and more (route choice, destination choice, departure time choice). In
2000, Daniel McFadden won the Nobel prize in Economics for his contributions on discrete choice
analysis, increasing furthermore the interest of the scientific community on this modeling techniques.

The chapter is structured as follows. Section 3.1 and 3.2 give an overview on the most impor-
tant behavioral assumptions for DCM, while the remaining sections describe the different model
specifications.

3.1 Individual choice behavior

The interest here is focussed on individual choice behavior, i.e. a disaggregate approach is adopted.
Such a choice behavior theory is (1)descriptive, postulating how individuals behave and not how
they should behave, (2)abstract, i.e. generalisable and (3) operational, resulting in a certain number
of parameters estimated from data (Ben-Akiva and Lerman, 1985). The main assumptions about
individual choice behavior are:

• decision maker, including her socio-economic characteristics,

23
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• the set of alternatives (choice set),

• attributes of alternatives,

• decision rules.

The decision maker is the unit of decision and can represent a single individual, a household, a firm,
an organization. Decision makers face to different choices and have different tastes. The choice set
represents the set of alternatives which are known to the decision maker and are available during the
decision process. The attributes describe the alternatives in terms of their attractiveness. Finally,
the decision rule describes the mechanisms internal to the decision maker that are used to process
the available information, arriving to a unique choice.

3.2 Rational behavior and random utility

Despite other existing approaches, the decision rule here is assumed to be deterministic. More pre-
cisely, individuals choose among the alternatives, maximizing the utility they perceive from each of
them. This index captures the attractiveness for an alternative, and can be reduced to a scalar value.
It is based on the notion of trade-offs used by the decision maker comparing different attributes.
This behavioral paradigm is called rational, meaning that the decision maker shows consistent and
transitive preferences. Consistent in the sense that she will repeat the same choice when faced to
identical situations; transitive in the sense that if in the choice set alternative one is preferred to
alternative two, and alternative two is preferred to alternative three, then alternative one is also
preferred to alternative three. Nonetheless, some inconsistencies are observed in choice experiments.
They are assumed to be the result of a lack of knowledge on the part of the analyst. While the
individual is always assumed to choose the alternative with the highest utility, modellers do not
know with certainty the utility values, which are then treated as random variables. This approach
has been formalized by Manski (Manski, 1977), identifying four sources of randomness: unobserved
alternative attributes, unobserved socio-economic characteristics, measurements errors and instru-
mental variables.

3.3 Random utility models

Given a population of N individuals, making choices between a choice set Cn with J alternatives,
we define the (random) utility function Uin perceived by individual n for alternative i as follows:

Uin = Vin + εin (3.1)

with i = 1, ..., J and n = 1, ..., N . Vin represents the deterministic part of the utility and it is a
function of the alternatives’ attributes and the socio-economic characteristics of the decision maker.
Normally, the term Vin is modeled with a linear-in-parameters specification. The εin term is a
random variable capturing the uncertainty. Under the utility maximization assumption, the output
of the model is represented by the choice probability that individual n will choose alternative i,
given the choice set Cn. It is given by:
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Pn(i|Cn) = Pn(Uin ≥ Ujn, ∀j ∈ Cn)

= Pn(Vin + εin ≥ Vjn + εjn, ∀j ∈ Cn)

= Pn(εjn − εin ≤ Vin − Vjn, ∀j ∈ Cn)

(3.2)

Looking at Equation 3.2, we can conclude that in order to define the choice probability, only the
difference between the utilities matters. Moreover, multiplying the utilities by a positive constant
does not affect the choice probability. Different DCMs are obtained making different assumptions
on the error terms.

3.4 The Multinomial Logit model

The Multinomial Logit model (MNL) is largely the simplest and most used discrete choice model.
The MNL is obtained by assuming that each εin in the utility functions is independently and
identically Gumbel distributed. This distribution, also called type I extreme value distribution, is
characterized by the density

f(εin) = µe−µ(εin−η)e−e−µ(εin−η)
(3.3)

where η is a location parameter and µ is a positive scale parameter. Under these assumptions, the
choice probability is given by the following expression

Pn(i|Cn) =
eµVin∑

j∈Cn
eµVjn

(3.4)

with j ∈ Cn and assuming a null location parameter (which is not a restrictive assumption). The
MNL model provides a closed form solution for the choice probabilities, which is a clear advantage
against other models, as for example the Probit model (see Ben-Akiva and Lerman, 1985 and
Train, 2003). However, despite its large use in the literature, it shows some limitations that can be
severe in certain situations.

MNL limitations For the purposes of our work, we describe here three important characteristics
of the MNL, which limit its flexibility and induce the use of more sophisticated techniques. They
are:

• independence from irrelevant alternatives (IIA);

• deterministic taste variations;

• homoscedasticity.

The IIA property derives from the independence assumption on the error terms. It can be formulat-
ed as follows: the ratio of the choice probabilities for two alternatives is not affected by the systematic
utilities of the other alternatives. This property is the most important limitation of the MNL model.
As modellers, we do not observe all the attributes for each alternative. It is possible that two or
more alternatives, sharing common unobserved attributes, give rise to correlation patterns in the
choice set, violating the IIA assumption.
The second limitation concerns with taste variations. It seems plausible that the behavior in choice
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situations varies across the population, and it is fundamental for a model to capture such variations.
The MNL model can capture only deterministic taste variations, occurring when for example the
population can be deterministically divided into different segments. This is not always the case,
especially when relevant data are not available for all the segments.
The third limitation, i.e. the homoscedasticity, is imposed by the assumption that the error terms
are identically distributed. It means that all of them have the same scale parameter µ. This fact
implies that the variances are the same across the population. This assumption represents a limita-
tion in those cases, for example, where different sources of data are combined. This is actually the
problem in our case. We will use two different sets of pedestrian trajectories, collected separately in
Switzerland and Japan at different time, and pooled together in an unique dataset, as explained in
Chapter 5.1.

In the following, Section 3.5 and Section 3.6 describe different models which allow to overcome the
first limitation of the MNL model. In Section 3.7 we deal with the second limitation, while the third
one is addressed in Section 3.8.

3.5 Generalized Extreme Value models

Common unobserved attributes shared between alternatives give rise to correlation patterns in the
choice set. The Generalized Extreme Value model family (GEV) allows to take into account these
patterns. These models provide a closed form solution for the choice probabilities, allowing at the
same time for flexible correlation structures. GEV models have been introduced by McFadden (1978)
and are characterized by a multivariate extreme value distribution (Bierlaire, 2005). The distribution
of the vector ε of the error terms is characterized by the following cumulative distribution function:

Fε(V1, ..., VJ ) = e−G(e−V1 ,...,e−VJ ) (3.5)

where G is a differentiable function defined on RJ
+ with the following properties:

• G(y) ≥ 0 for all y ∈ RJ
+;

• G is homogeneous of degree µ > 0, that is G(αy) = αµG(y);

• limyi→+∞G(y1, ..., yi, ..., yJ) = +∞, for each i = 1, ..., J ;

• the kth partial derivative with respect to k distinct yi is non-negative if k is odd and non-
positive if k is even, i.e. for any distinct indices i1, ..., ik ∈ 1, ..., J, we have

(−1)k ∂kG

∂yi1 ...∂yik

(x) ≤ 0, ∀y ∈ RJ
+ (3.6)

where yi = eVi . The choice probability for alternative i to be chosen by a given decision maker is:

P (i|C) =
yiGi(y1, ..., yJ)
µG(y1, ..., yJ)

(3.7)

Several models can be derived from this general formulation, through an opportune specification
of the generating function G. The MNL model, the Nested Logit (NL) and the Cross Nested
(CNL) logit models can all be derived from the GEV formulation. We describe here only the CNL
because it will be used in the following chapters. For more details on the derivation of the other
models we remind the interested reader to Ben-Akiva and Lerman (1985), Train (2003) and Wen
and Koppelman (2001).
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Figure 3.1: An example of cross nested logit model. Alternative 1 belongs to nest 1 and alternative
3 belongs to nest 2. Alternative 2 belongs to both nests 1 and 2, and it is correlated with both
alternatives 1 and 3.

3.5.1 The Cross Nested Logit model

The CNL model is a GEV model based on the following generating function (Abbé et al., 2005)
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where αjm ≥ 0, ∀j, m,
∑M

m=1 αjm > 0, ∀j, µ > 0, µm > 0, ∀m and µ ≤ µm, ∀m. This formulation
leads to the following expression for the choice probability, using yi = eVi :
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For each j and m, αjm represents the degree of membership of alternative j to nest m. The
nested logit model is a special case, where αjm = 1 if alternative j belongs to nest m, and 0
otherwise. In the CNL formulation flexible correlation patterns are allowed among the alternatives.
An example is shown in Figure 3.1. In this case we have three alternatives and two nests. The second
alternative belongs to both nests, and it is correlated with both the first and third alternatives. This
correlation structure would not be allowed, for example, with a simpler nested logit model, where
each alternative can belong to only one nest.

3.6 The Logit Kernel Error Component model

The GEV models allow to relax the IIA property of the MNL model, still keeping a closed form
solution for the choice probabilities. However, in order to reproduce more general correlation
structures between the alternatives, more flexible models have been developed. The Logit Ker-
nel model family attains this goal. While several specifications have been presented in literature
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(see Walker, 2001; Ben-Akiva and Bolduc, 1996; McFadden and Train, 2000; Train, 2003; Hensher
and Greene, 2001), the one we describe here is the error component specification. In this model the
vector of the error terms εn for an individual n is specified as follows:

εn = Fnξn + νn (3.10)

where ξn is an (M × 1) vector of M multivariate latent factors, Fn is a (Jn × M) matrix of fixed
factor loadings equal to 0 or 1 and νn is a Jn × 1 vector if i.i.d Gumbel terms, with Jn the number
of alternatives. Generally, we assume the factors as independent normally distributed, such as

ξn = Tζn (3.11)

where ζn are a set of standard independent normal terms, and TT ′ is the covariance matrix of
ξn (being T the Cholesky factorization). In Equation 3.10, the error term is made up of two
components: the first one has a multivariate distribution, capturing the interdependencies between
the alternatives, and the second is the standard Gumbel term of the logit model. This specification
is interesting because conditioning on the ζn, the choice probability becomes equal to a MNL model
(i.e., logit kernel). The unconditional choice probability is then obtained through integration of the
conditional one, over all the possible values of the multivariate ζ:

P (i) =
∫

ζ

Λ(i|ζn)n(ζ, IM )dζ (3.12)

where with Λ(i|ζn) we indicate the (conditional) logit kernel and n(ζ, IM ) is the joint density of ζ,
given by the product of M standard normal densities. The unconditional probability is approximated
by the following unbiased, smooth and tractable simulator:

P̂ (i) =
1
D

D∑
d=1

Λ(i|ζd
n) (3.13)

where Λ(i|ζd
n) denotes the dth draw from the distribution of ζ.

3.7 Taste variations

The behavior of individuals varies across the population. The simplest case arises when segments in
the population are deterministically identified by the vector of the socio-economic characteristics.
The definition of the segment associated to a socio-economic variable is direct when they have discrete
values (for example, a race variable), while it requires to define classes in the continuous case. An
example referring to pedestrians might be the speed of individuals. Arbitrary limiting values should
be defined in order to identify, for example, slow, normal and fast pedestrians. Moreover, using this
technique, different parameters might be associated to the corresponding segments, increasing the
complexity of the estimation process. These cases of deterministic taste variations can be captured
with a MNL model, with the standard linear-in-parameters formulation.
The fact that a parameter β varies with a continuous socio-economic variable x can be modeled as
follows:

β = β̂

(
x

xref

)λ

(3.14)

where xref is an arbitrary reference value, β̂ is the parameter value associated with x = xref and λ is
the elasticity of the parameter with respect to x. We use this non-linear specification in Chapter 4.2
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and Chapter 4.3, modeling the free-flow acceleration behavior. More complex is the case where it is
not possible to segment the population in a deterministic way. The proposed solution is a random
coefficients specification, which assumes the vector of the parameters β as randomly distributed
over the population. It is possible to show that such a formulation is mathematically equivalent to
the error component specification. We do not deal with this model in this work, and we remind the
interested reader to McFadden and Train, 2000; Train, 2003; Hess et al., 2005.

3.8 Heteroscedasticity

The MNL model (and the GEV models in general) does not support the heteroscedasticity. Let us
assume to have two different sources of data, and assume that the utilities for the alternative i, as
perceived by decision makers in the first dataset, is

Uin = Vin + εin (3.15)

and for those of the second dataset is

Uim = Vim + εim (3.16)

where V ar(εin) 	= V ar(εin), i.e. the model is heteroscedastic. It corresponds to have an α > 0 and
α 	= 1 such that

Uin = Vin + εin

αUim = αVim + αεim (3.17)

with V ar(εin) = α2V ar(εim). Now the resulting model is homoscedastic. We can say that the scale
parameter α (which is unknown and has to be estimated) defined for one of the two groups, captures
the heteroscedasticity in the population. This fact holds for any number G of groups, defining G−1
scale parameters. We use this method in Chapter 4.3, estimating the scale parameter for the Swiss
portion of the dataset, with respect to the Japanese one.

3.9 Mixed GEV models

Mixed GEV models represent an extension of the model reported in Section 3.6. The idea to sepa-
rate the error term into normal and Gumbel terms is still valid. The difference here is that instead
of assuming i.i.d. Gumbel terms, reproducing a MNL kernel, some assumptions on the correlation
patterns are made, reproducing a more general and flexible GEV kernel. The normal distributed
error components remain, in order to capture additional inter-alternative correlations. Actually, all
the correlation structures could be designed using the error component formulation (MNL kernel).
The problem is the fact that we might have an excessive number of random terms, making the model
not operational. The use of mixed GEV models is justified by the need to reduce the number of
error terms, leaving to the GEV kernel the task to capture some of the correlation patterns. We use
a mixed GEV model (mixed nested logit model) in Chapter 4.2.
Another possibility consists in the combination of a GEV kernel with a random coefficient specifica-
tion. The aim here is to try to capture the inter-alternative correlation through the GEV kernel and
the random taste variations through the random coefficients specification. The interested reader
can find more details on these topics in Bath and Guo (2004), Chernew et al. (2003) and Hess et al.
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(2005).

We conclude this chapter mentioning that the freeware package BIOGEME (Bierlaire, 2003)
allows for the maximum likelihood estimation of the models presented here, with both linear and
non-linear in parameters specifications for the utility functions.



Chapter 4

Pedestrian Walking Behavior

In Chapter 2 a review of the pedestrian modeling literature has been done. Some similar problems
to those of traffic modeling are arisen, representing actually the motivation and the source of in-
spiration for our approach based on discrete choice analysis. In Chapter 3 we have described the
theory behind DCM.

In this chapter we enter into the details of the model specification. The destination and the route are
assumed to be known, generated by one of the many models listed in Chapter 1. We are interested
in modeling the short range walking behavior, as a response to her immediate environment and to
the presence of other pedestrians (Antonini et al., 2004a).

4.1 Adaptive spatial discretization

The interpretation of human trajectories as a sequence of choices imposes to define the first modeling
element: a suitable spatial discretization. One recognized limit in most of the previous pedestri-
an models is that they assume a static spatial discretization. Human walking behavior is a very
complex task and of course some simplifications are necessary. However, having an adaptive space
model, different for each individual in the scene, allows the relaxation of (at least) part of such
simplistic assumptions. Different individuals have different perception of the space around them.
This intuitive idea is confirmed by numerous studies in architecture (Penn and Turner, 2002; Hillier
and Hanson, 1984) and geography (Golledge, 1993; Golledge, 1999).

At a given point in time, we model where the pedestrian decide to be in a time horizon t. Typically,
t is of the order of 1 second. The representation of the physical space plays an important role in the
definition of the behavioral model. In our approach, we use a dynamic and individual-based spatial
discretization representing the physical space. The basic elements that we use to define our spatial
structure are illustrated in figure Figure 4.1.
The current position of the decision maker n is pn, her current speed vn ∈ IR, her current direction
is dn ∈ IR2 (normalized, so that ‖dn‖ = 1) and her visual angle is θn. The region of interest is situ-
ated in front of the pedestrian, within her visual field represented by the shaded area in Figure 4.1.
The size of the region of interest is conceptually given by the depth of decision maker visual field.
In practice, being the dimension of the analyzed scene reasonable, we have simply considered the

31
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Figure 4.1: The basic geometrical elements of the space structure

region of interest coinciding with the scene floor size.

The choice set consists of a combination of speed regimes and directions. With regard to speed
regimes, the decision-maker has three possibilities: keep the same speed vn, slow down to vdec =
(1 − γ)vn or accelerate up to vacc = (1 + γ)vn, where vn is the current speed of the decision maker
and γ an accelaration/deceleration factor. In our model, we have arbitrarily selected γ = 0.5. With
regard to directions, the visual angle θn = 170◦ (Costella, 1992) is segmented into 11 radial cones,
one cone capturing the decision not to change the direction (assumed to have an angle of 10◦),
and 10 cones capturing the decision to change direction, 5 at the left of the central cone, and 5
symmetrically defined at the right, as illustrated in Figure 4.2. Note that the apertures of those
cones are not equal. Cones far from the central one have larger angles, as mentioned in Figure 4.2.
Each cone is characterized in the model by its bisecting direction, denoted by d and assumed to be
normalized, that is ‖d‖ = 1. The central cone is obviously characterized by the current direction
dn. Each alternative with speed v and direction d is characterized by the physical center of the
corresponding cell in the space discretization cvd, that is

cvd = pn + vtd.

The above assumptions arise from a twofold justification. First, we need to calibrate models where
the number of alternatives plays an important role in the computational efficiency of the estimation
process. In this spirit, 3 speed regimes and 11 radial directions represent a good tradeoff between
choice set size and flexibility in the captured behaviors. Second, we are interested in direction changes
and speed variations determined by actual choices. By using a higher spatial resolution the risk is
to have numerous choices not corresponding to actual behaviors. It is important to emphasize that
this conceptual universal choice set, composed of N = 33 alternatives, is associated with different
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physical locations in space, depending on the current position and speed of the decision-maker. We
refer to it as a dynamic and individual-based spatial discretization. A universal choice set derived
from a simple static discretization of the space, similar to the model used by CA approaches, would
have been too cumbersome and not sufficiently flexible in a discrete choice context.

Figure 4.2: Choice set

For each individual, some cells can be declared unavailable because there is a physical obstacle
blocking the corresponding space. Also, a maximum speed can be assigned to each individual (it
can be fixed for the entire population, or drawn from a distribution). If the pedestrian is already
walking at maximum speed, the cells corresponding to acceleration are declared not available.

4.2 A first model specification

We denote by cvdn the alternative of individual n corresponding to speed regime v ∈ {vn, vdec, vacc},
and direction d. The utility associated with this alternative is a random variable, for which the
deterministic part is defined as

Vvdn = βocc occupationvd +
βdir dirdn +
βddir ddirdn +
βangle anglevdn +
βacc Iv,acc(vn/vmax)λacc +
βdec Iv,dec(vn/vmax)λdec

(4.1)

where βocc, βdir, βdest, βangle, βacc, λacc, βdec, and λdec are unknown parameters to be estimated.
Note that this specification is the result of an intensive modeling process, where many different
specifications have been tested. The attributes describe the environment of the decision-maker.
Namely, the position and direction of other pedestrians are important. We assume that there are
N pedestrians potentially influencing the decision-maker, ideally all those staying inside the visual
field of the decision maker. Each pedestrian k is at a position pk and walks toward a direction dk.
The attributes are defined as follows:

occupationvd It is defined as the weighted number of pedestrians being in the cone characterized
by d, that is

occupationvd =
N∑

k=1

Ikde−γ1‖pk−cvdn‖ (4.2)
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where N is the total number of pedestrians in the environment, Ikd is one if pedestrian k

belongs to the cone characterized by d and 0 otherwise, ‖pk − cvdn‖ is the distance between
pedestrian k and the physical center of the alternative cvdn. The role of γ1 is to weight the
importance of the distance in the formula. It is designed to capture the influence of the
proximity of other pedestrians in the movements decisions as illustrated in Figure 4.3. We
arbitrarily fix the value of γ1 equal to 1.

Figure 4.3: Occupation and angle

dirdn It is defined as the angle (in degrees) between direction d and direction dn, corresponding to
the central cone, as shown in Figure 4.8. It is designed to capture the propensity of pedestrians
to prefer their current direction, and not to erratically modify it.

ddirdn If we denote by Dn the direction pointing toward the actual destination of decision-maker
n, this attribute is defined as the angle in degrees between Dn and d, as shown in Figure 4.8.
It is designed to capture the propensity of pedestrians to move toward their destination.

anglevdn It is defined as the weighted sum of the angles between direction dn and the walking
directions of other pedestrians, that is

anglevdn =
N∑

k=1

Ikdαkne−γ2‖pk−cvdn‖ (4.3)

where αkn is the angle between dn and dk (Figure 4.3). The indicator function Ikd equals to 1 if
pedestrian k is inside the cone characterised by direction d. The role of γ2 is similar to the role
of γ1 in Eq. (4.2). This attribute is designed to capture the influence of the other pedestrians
dynamics. Indeed, if a pedestrian k walks in the same direction (angle=0) or in the opposite
direction (angle=π) with respect to the decision maker, we expect a different influence on
the choice of the decision-maker. Note that, similarly to the definition of occupationvd, close
pedestrians play a more important influence than those who are further away. In our tests,
we have arbitrarily fixed γ2 to 1.
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Figure 4.4: Destination and direction

We finally comment on the last two terms of the utility function Eq. (4.1). The attribute Iv,acc is
1 if v = vacc, that is, if the alternative corresponds to an acceleration and 0 otherwise. Iv,dec is
similarly defined. If we write

β̃acc = βacc(vn/vmax)λacc ,

β̃dec = βdec(vn/vmax)λdec ,

the parameters β̃acc and β̃dec are simple dummies for the acceleration and deceleration alternatives,
respectively, capturing the attractiveness of acceleration, respectively deceleration. We postulate
that these dummies vary with the current speed of the decision-maker vn. Indeed, someone who is
already walking fast has less incentive to accelerate than someone who is walking slowly. The value
of the parameter vmax is arbitrary. We have set it to the maximum speed observed in the data, for
numerical convenience. βacc is the value of the dummy associated with vn = vmax and λacc is the
elasticity of the dummy with respect to speed, that is

λacc =
∂β̃acc

∂vn

vn

β̃acc

(4.4)

We conclude this section pointing out the fact that, with the exception of the current speed value, the
variables introduced in the utility functions are decision maker independent. This fact represents of
course a limitation in the explanatory power of the model but it is dictated by reasons related to the
available data. They are actually collected from video sequences, so no socio-economic characteristics
are available. A detailed description of the collected data is given in Chapter 5.1.

4.2.1 The random variable

As introduced in Chapter 3, the utility of each alternative is a random variable containing a system-
atic part and a random part. Different assumptions about the random term give rise to different
models. We present in this Section two different model formulations: a cross nested logit model and
a nested logit with error components.
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Cross nested logit formulation

The theoretical aspects of the CNL model have been described in Section 3.5.1. We assume a
correlation structure depending on the speed and direction and we identify five nests in the choice
set: accelerated, constant, decelerated, central and not central. This correlation structure is illustrated
in Figure 4.5. The degrees of membership to the different nests (αjm, see Eq. (3.9)) are fixed to the
constant value 0.5. This choice reflects the lack of a precise prior knowledge on such coefficients.
In principle, it would be possible also to estimate them from the data, increasing considerably the
complexity of the model as well as the computational time of the estimation. For identification
purposes, the global scale of the model µ is fixed to 1 and we estimate the scale parameters for the
error terms associated with the five nests, µm.

Figure 4.5: left: Nesting based on direction right: Nesting based on speed

Nested logit with error components

The theoretical aspects of the Logit Kernel and mixed GEV models have been illustrated in Sec-
tion 3.6 and Section 3.9, respectively. Here we specify a nested logit model with an error components
formulation, where the correlation between alternatives still depends on speed and direction. Three
Extreme Value error terms capture the correlation in the speed related nests (accelerated, constant
and decelerated), while 11 normally distributed error components capture the correlation between
alternatives along the 11 radial directions, one component for each direction. We show this structure
in Figure 4.6. The mixed NL formulation only changes the error structure of the model, with respect
to the previous CNL formulation. The systematic part of the utility functions is exactly the same
as before.

The utility function for alternative i as perceived by the individual n has the following form:

Uin = Vin + ξk + εin (4.5)

where Vin is defined by (Eq. (4.1)), ξk are normally distributed error components with zero mean
and variance σk, k = 1, ..., 11 the index of directions, εin is the error term capturing the nested
structure, n = 1, ..., N is the index of alternatives. If the ξk are known, the model corresponds to a
NL formulation:

P (i|ξk) =
e

µs(i)Vi∑
j∈s(i)

e
µs(i)Vj

· e
µV̄s(i)∑

s∈S eµV̄s
(4.6)

where
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V̄s =
1
µs

ln
∑
j∈s

exp µsVj (4.7)

and P (i|ξk) is the probability that the choice is i conditional to ξk. The index s(i) refers to the
nest s containing the alternative i, where s ∈ S = {accelerated, constant, decelerated}. The µ and µs

are the global and the nest scale factors, respectively. Since the ξk are unknown, the unconditional
choice probability is given by

P (i) =
∫

ξ

P (i|ξk)n(ξ, IM )dξ (4.8)

with n(ξ, IM ) being the joint density of ξ given by the product of M = 11 standard normal densities.
The unconditional probability is approximated by the following unbiased, smooth and tractable
simulator:

P̂ (i) =
1
D

D∑
d=1

P (i|ξd
k) (4.9)

where P (i|ξd
k) denotes the dth draw from the distribution of ξ.

Figure 4.6: Correlation structure in the Mixed Nested Logit formulation

Assuming such an error structure, the parameters that have to be estimated are the scale parame-
ters µs of the extreme value error terms associated with the speed-based nests and the 11 standard
deviations σk of the normal error components associated with the directions.
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4.3 A more general framework

In this Section more insights are gained on the interactions between individuals. We keep here
the same space model (leading to the same choice set definition) and the cross nested logit error
structure presented in Section 4.2. A more general framework for pedestrian walking behavior is
introduced, while detailed models for pedestrian-pedestrian interactions are specified (Antonini and
Bierlaire, 2005).

4.3.1 Behavioral framework

We refer to the general framework for pedestrian behavior described by Hoogendoorn (2003) and
Daamen (2004). Individuals in a certain environment make different decisions, following a hierar-
chical scheme: strategical, tactical and operational. We are interested in modeling the operational
level of such a hierarchy. Two types of behavior are modeled here: unconstrained and constrained.
The constrained patterns are further classified into attractive interactions and repulsive interactions.
This conceptual framework is illustrated in Figure 4.7.

Figure 4.7: Conceptual framework for pedestrian walking behavior

The unconstrained decisions are independent from the presence of other pedestrians and are gen-
erated by subjective and/or unobserved factors. The first of these factors is represented by the
individual’s destination. It is assumed to be exogenous to the model and decided at the strategical
level. The second factor is represented by the tendency of people to keep their current direction,
minimizing their angular displacement. Finally, unconstrained accelerations (with accelerations we
mean both positive and negative speed variations) are dictated by the individual desired speed. The
implementation of these ideas is made through the three unconstrained patterns indicated in Figure
4.7.
The main contribution of this chapter consists in a detailed analysis of the constrained behaviors.
We assume that behavioral constraints are induced by the interactions with the other individuals
in the scene. Repulsive interactions are modeled through the collision avoidance pattern, which is
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designed to capture the effects of possible collisions on the current trajectory of the decision maker.
Attractive interactions are modeled through the leader-follower behavior, that is the tendency of
people to follow another individual in a crowd, in order to benefit from the space she is creating.
Here, the existence of one or more leaders is assumed. They are represented by those individuals
in a neighbor of the decision maker and with similar moving directions and speed, affecting her
decisions.

4.3.2 Assumptions

Individuals walk on a 2D plane and any kind of behavior influencing their movement results in two
kind of observations: changes in direction and changes in speed, i.e. accelerations. This specification
is important to perform walking behavior analysis, and hypotheses have to be made concerning
the unobserved factors in the model and how they are related to the observed data. Figure 4.7
summarizes the set of assumptions we want to test. Five behavioral patterns are defined. In
a discrete choice context, they have to be considered as competitive terms entering the utility
functions of each alternative, as reported in Equation 4.10. The utilities describe the space around
the decision maker and under the rational behavior assumption the individual will choose that
location (alternative) with the maximum utility. In the following, we discuss the different patterns
and the associated assumptions in more details.

Unconstrained patterns

The unconstrained patterns are identified by those behaviors that are independent from the pres-
ence of other pedestrians. In this conditions we assume that three factors influence the individual
behavior.

• Toward destination The first factor is represented by the choice of the final destination
which can be a specific area where the individual wants to perform a certain activity in her
schedule. We assume that the destination choice is performed at the strategical layer in the
hierarchical decision process. Such a higher level choice is naturally reflected on the short term
behavior as the tendency of individuals to choose, for the next step, such spatial location that
minimize both the angular displacement and the distance from the destination.

• Keep direction The second factor influencing the unconstrained behavior is represented
by the tendency of people to avoid frequent changings in direction. People choose their next
position in order to minimize the angular displacement from their current movement direc-
tion, analogously to the specification presented in Section 4.2. In addition to the behavioral
motivation of this factor, it also plays a smoothing role in the model, avoiding drastic changes
of direction from one time period to the next.

• Free flow acceleration In free flow conditions the behavior of the individual is driven by
her desired speed. The acceleration is then a function of the difference between current speed
and desired speed. However, this factor is an unobserved individual characteristic and it can
not be introduced explicitly in the model. The specification for this pattern is the same as
that presented in Section ??spec1).

Constrained patterns

Constrained behaviors are induced by the presence of other individuals in the scene and capture the
pedestrian-pedestrian interactions. We identify attractive and repulsive interactions, described by
the following patterns.
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• Leader-follower We assume that the decision maker is influenced by leaders. In our spatial
representation 11 radial cones partition the choice set (see Figure 4.2). In each of these
directions a possible leader can be identified among a set of potential leaders. A potential
leader is an individual which is inside a certain region of interest, not so far from the decision
maker and having a moving direction close enough to the direction of the radial cone where she
is. Once identified, the leader induces an attractive interaction on the decision maker. Similarly
to car following models, a leader acceleration (deceleration) corresponds to a decision maker
acceleration (deceleration).

• Collision avoidance This pattern captures the effects of possible collisions on the decision
maker trajectory. For each direction in the choice set, a collider is identified among a set of
potential colliders. Another individual is selected as a potential collider if she stays inside a
certain region of interest, not so far from the decision maker and walking against the decision
maker herself. This pattern is associated with repulsive interactions in the obvious sense that
pedestrians change their current direction avoiding collisions with other individuals.

4.3.3 The model

Following the framework proposed in Figure 4.7 we report here the systematic utilities of the model:

Vvdn = βdirdirdn +
}

keep direction

βddistddistvdn +

βddirddirdn +

}
toward destination

βaccIv,acc(vn/vmax)λacc +

βdecIv,dec(vn/vmax)λdec +

}
free flow acceleration

Iv,accI
L
accα

L
accD

ρL
acc

L ∆v
γL

acc

L ∆θ
δL

acc

L +

Iv,decI
L
decα

L
decD

ρL
dec

L ∆v
γL

dec

L ∆θ
δL

dec

L +

⎫⎬
⎭ leader follower

Id,dnICαCe−ρCDC ∆vγC

C ∆θδC

C

}
collision avoidance

(4.10)

where all the β parameters as well as λacc, λdec, αL
acc, ρL

acc, γL
acc, δL

acc, αL
dec, ρL

dec, γL
dec, δL

dec, αC ,
ρC , γC , δC are unknown and have to be estimated. Note that this specification is the result of an
intensive modeling process, where many different specifications have been tested. We explain in the
following the different terms of the utilities.

• Keep direction This behavior is captured by the term βdirdirdn as in the first model speci-
fication (see Equation 4.1 and Figure 4.8).

• Toward destination This behavior is slightly modified with respect to the first specification.
It is captured by the term

βddistddistvdn + βddirddirdn

where the variable ddirdn is the same as in Equation 4.1 and ddistvdn is defined as the distance
between the destination and the center of the alternative Cvdn. The direction and distance
attributes for the destination are introduced in order to take into account the two dimensional
nature of pedestrian mevements (see figure 4.8).
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Figure 4.8: The elements capturing the keep direction and toward destination behaviors

• Free flow acceleration We keep here the same model used in Equation 4.1 for the acceleration
and deceleration dummies.

• Leader-follower The leader-follower model captures the attractive interactions among pedes-
trians and is given by the following terms

Iv,accI
L
accα

L
accD

ρL
acc

L ∆v
γL

acc

L ∆θ
δL

acc

L + Iv,decI
L
decα

L
decD

ρL
dec

L ∆v
γL

dec

L ∆θ
δL

dec

L .

It is described by a sensitivity/stimulus framework. For a given leader, the sensitivity is
described by

sensitivity = f(DL) = αL
g D

ρL
g

L (4.11)

where DL represents the distance between the decision maker and the leader. The parameters
αL

g and ρL
g have to be estimated and g = {acc, dec} indicates when the leader is accelerating or

decelerating with respect to the decision maker. The decision maker reacts to stimuli coming
from the chosen leader. We model the stimulus as a function of the leader’s relative speed
∆vL and the leader’s relative direction ∆θL as follows:

stimulus = g(∆vL, ∆θL) = ∆v
γL

g

L ∆θ
δL

g

L (4.12)

with ∆vL = |vL−vn|, where vL and vn are the leader’s speed module and the decision maker’s
speed module, respectively. The variable ∆θL = θL − θd, where θL represents the leader’s
movement direction and θd is the angle characterizing direction d, as shown in Figure 4.9(a).
The parameters γL

g and δL
g have to be estimated. A leader acceleration (deceleration) induces

a decision maker’s acceleration (deceleration). A substantially different movement direction
in the leader reduces the influence of the latter on the decision maker.

The leader for each direction is chosen considering several potential leaders, as shown in Figure
4.9(b). An individual k is defined as a potential leader based on the following indicator function
Ik
g :
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(a) (b)

Figure 4.9: Figure 4.9(a) shows the leader’s movement direction, θL, the direction of the radial
cone where the leader lies, θd, and her distance from the decision maker, DL, used in the definitions
of both the sensitivity and the stimulus terms. Figure 4.9(b) illustrates how many potential leaders
are considered for each direction and how only the nearest one is chosen as leader for a specific
direction (darker circles)

Ik
g =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if dl ≤ dk ≤ dr,
and 0 < Dk ≤ Dth,
and 0 < |∆θk| ≤ ∆θth

0, otherwise.

where dl and dr represent the bounding left and right directions of the choice set (defining
the region of interest) while dk is the direction identifying the pedestrian k position. Dk is
the distance between pedestrian k and the decision maker, ∆θk = θk − θd is the difference
between the movement direction of pedestrian k (θk) and the angle characterizing direction d,
i.e. the direction identifying the radial cone where individual k lies (θd ). The two thresholds
Dth and ∆θth are fixed at the values Dth = 5Dmax, where Dmax is the radius of the choice
set, and ∆θth = 10 degrees. We assume an implicit leader choice process, executed by the
decision maker herself and modeled choosing as leader for each direction the potential leader
at the minimum distance DL = mink∈K(Dk), illustrated in Figure 4.9(b) by the darker cir-
cles. Finally, the indicator functions Iv,acc and Iv,dec discriminate between accelerated and
decelerated alternatives, as for the free flow acceleration model.

• Collision avoidance The collision avoidance model captures the repulsive interactions among
pedestrians and is given by the following term

Id,dnICαCe−ρCDC ∆vγC

C ∆θδC

C

The scenario is similar to the leader follower. We keep the sensitivity/stimulus framework,
where the sensitivity function is defined as

sensitivity = f(DC) = αCe−ρCDC (4.13)

where the parameters αC and ρC have to be estimated and DC is the distance between the
collider position and the center of the alternative, as shown in Figure 4.10(a). We choose the
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exponential to keep the same functional form as that used in Antonini et al. (2004b). The
decision maker reacts to stimuli coming from the collider. We model the stimulus as a function
of two variables:

stimulus = f(∆vC , ∆θC) = ∆vγC

C ∆θδC

C (4.14)

with ∆θC = θC − θdn , where θC is the collider movement direction and θdn is the decision
maker movement direction, and ∆vC = vC + vn, where vC is the collider’s speed module and
vn is the decision maker’s speed module. The parameters γC and δC have to be estimated.
Individuals walking against the decision maker at higher speeds and in more frontal directions
(higher ∆θC) generate stronger reactions, weighted by the sensitivity function.

(a) (b)

Figure 4.10: Figure 4.10(a) shows the collider and decision maker movement directions, θC and
θdn respectively. DC represents here the distance of the collider with the center of the alternative.
Figure 4.10(b) shows many potential colliders taken into account for each direction

The collider for each direction is chosen considering several potential colliders, as shown in
Figure 4.10(b). An individual k is defined as a potential collider based on the following
indicator function

Ik
C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if dl ≤ dk ≤ dr,
and 0 < Dk ≤ D′

th,
and π

2 ≤ |∆θk| ≤ π

0, otherwise.

where dl, dr and dk are the same as those defined for the leader follower model. Dk is now
the distance between individual k and the center of the alternative, ∆θk = θk − θdn is the
difference between the movement direction of pedestrian k (θk) and the movement direction
of the decision maker, θdn . The value of the distance threshold is now fixed to D′

th = 10Dmax.
We use a larger value for such a threshold compared to the leader-follower model, assuming
the collision avoidance behavior being a longer range interaction, happening also at a lower
density level. We assume an implicit collider choice process, executed by the decision maker
herself. Among the set of Kd potential colliders for direction d, the collider is chosen as that
individual having ∆θC = maxk∈Kd

|∆θk|. The related indicator function is IC . Finally, the
collision avoidance term is included in the utility functions of all the alternatives, with the
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exception of the central ones. So, the indicator function Id,dn is equal to 1 for those alternatives
that are not in the current direction (d 	= dn), 0 otherwise.

4.4 Summary

In this chapter the pedestrian walking behavior model has been presented. An adaptive spatial
discretization has been introduced, modeling the fact that different individuals differently perceive
the surrounding available space, in order to move their next step. In our approach, the choice set
is always oriented along the current pedestrian moving direction and its size is a function of the
current individual speed module.
As already said in Chapter 1, behavioral modeling is a strong iterative process. In this spirit, two
model specifications are described here, reflecting the logical order of the model development. In the
first one, the focus is on the unconstrained patterns, and a first attempt is done in order to model
pedestrian-pedestrian interactions. The error structure is captured by two alternative solutions, a
cross nested logit and a mixed nested logit models. The second specification provides a more general
framework, where the unconstrained patterns are slightly changed, focussing on the development
of the constrained behaviors, resulting in the leader follower and collision avoidance models. This
model is more sophisticated than the previous one, presenting non-linearities in most of the included
patterns. The error structure here is captured with the cross nested logit specification, also used
in the first model. The estimation results for both the specifications are reported and discussed in
Section 5.2.



Chapter 5

Estimation results and validation

In this chapter we describe the data used for model calibration in Section 5.1 and we report the
estimation results for the different specifications and error structures described in the previous
chapter in Section 5.2. Finally, in order to validate the model, a pedestrian simulator is described
and a simulation case is presented.

5.1 Collected data

We have used two datasets for the estimation of the unknown parameters. They have been collected
manually tracking pedestrians in video sequences. In this chapter we describe the collection method
and we provide descriptive statistics for both the collected datasets.

5.1.1 The Swiss dataset

This dataset has been collected from digital video sequences of actual pedestrians recorded in the
city of Lausanne in 2002, next to an entrance of a metro station. An image of the corresponding
scenario is shown in Figure 5.1.

The fundamental condition for our data collection process is the calibration of the video camera
used to make the video sequences in order to match the image with the walking plane. The camera
calibration is a process providing an explicit mapping (under a 3x4 projection matrix) between a
real 3D world point and a 2D image pixel. From a mathematical point of view, the calibration
problem gives rise to a system of non-linear equations where the variables are the following camera
parameters: height, focal distance and the three angles with respect to the three camera axes. In
these conditions, it is possible to associate one and only one point on the walking plane with the
corresponding point on the image plane, and vice-versa. A full description of the calibration problem
is out of the scope of this thesis and we refer the reader to the related literature (Heikkila, 2000,
Willson, 1994 among others).

The video sequences have been converted to AVI format with a frame rate equal to 10 frames/second.
We have collected data for 36 pedestrians for a total of 1675 observed positions, with a time interval
of 3 frames (0.3 seconds). Having a calibrated camera, it has been possible to manually track the
individuals, projecting the coordinates for each observation from the image plane to the walking
plane, giving rise to trajectories.

45
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Figure 5.1: Swiss scenario

It is important to underline the fact that the manual tracking of pedestrians introduces some
systematic errors in the data collection process. First of all, it is practically difficult to track the
same point (the feet in our case) on the image, especially in cases of partial and/or total occlusions
between the individuals. Moreover, being the camera calibration a numerical approximation to the
real solution, projection errors are present in the stored trajectories. Such errors are more accentu-
ated for those positions at the top of the image. However, the model is based on relative movements
and these errors are systematic. This allows for most errors to cancel out, with few consequences
on the model estimation process.

We derive the speed data from the positions :

vt+1
k =

pt+1
k − pt

k

∆t
(5.1)

where pt
k represents the position vector for pedestrian k at time t. The motion direction information

is the normalized vector: (
arccos(vt

kx/‖vt
k‖)

arccos(vt
ky/‖vt

k‖)

)

vt
kx and vt

ky are the observed speed vector components at time t. Table 5.1 shows some data statistics.
For each pedestrian, we report the trajectory length and the average values of the speed module,
the angle between two consecutive directions and the angle between the current direction and the
destination (taken as the last point in the pedestrian’s trajectory). The speed values are expressed
in m/s and all the angles are in degrees.
We report in Figure 5.3(a), Figure 5.3(b) two examples of manually tracked trajectories. Finally,
Figure 5.4(a) and Figure 5.4(b) report the speed-time graphs for the same pedestrians. Looking
at the trajectory of pedestrian in (Figure 5.3(b)) we can see how this individual is moving away
from the camera position. On the image plane the farthest positions are located on the top of
the image where the projection errors are larger. This is reflected in the speed-time graph, where
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the speed values increase over time. Figure 5.2 illustrates the speed distribution and Table 5.2 the
speed statistics. We finally report in Figure 5.5 the histogram of the revealed choices. We note how
such a distribution presents three modes, around the three alternatives corresponding to the central
direction, as expected.

Figure 5.2: Speed histogram

(a) (b)

Figure 5.3: Examples of two manually tracked trajectories

5.1.2 The Japanese dataset

This dataset has been collected in Sendai, Japan, on August 2000 (see Teknomo et al., 2000,
Teknomo, 2002). The video sequence has been recorded from the 6th floor of the JTB parking
building (around 19 meter height), situated at a large pedestrian crossing point. An image of the
corresponding scenario is shown in Figure 5.6. Two main pedestrian flows cross the street, giving rise
to a large number of interactions. In this context, 190 pedestrian trajectories have been manually
tracked, for a total number of 10200 observed positions. The collected data contain the pedestrian
identifier, the time step and the image coordinates.
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(a) (b)

Figure 5.4: Speed-time graphs for the same two pedestrians

Figure 5.5: Revealed choices histogram

The mapping between the image plane and the walking plane is approximated by a 2D-affine trans-
formation, whose parameters are learnt by linear regression (for more details we refer the reader to
Teknomo, 2002). The reference system on the walking plane has the origin arbitrarily placed on
the bottom left corner of the zebra crossing in Figure 5.6. The x axis represent the width of the
crossing while y axis is the crossing length. We report in Figure 5.7 two example of trajectories and
in Figure 5.8(a) and Figure 5.8(b) the related speed-time graphs. In Figure 5.9 we report the speed
histogram and in Table 5.3 the speed statistics. Finally, the revealed choices histogram is reported
in Figure 5.10, showing the three modes around the three alternatives along the central direction,
as expected.

5.1.3 Data post-processing

The original Swiss dataset has been post-processed in order to generate the input data for the es-
timation process. At each step, the observed choice made by the current decision maker has been
measured 3 steps forward in time, i.e. 0.9 seconds. As a consequence, the last four positions of each
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Figure 5.6: Japanese scenario

Figure 5.7: Examples of two manually tracked trajectories

trajectory are not used. Moreover, in both the datasets those observations corresponding to a static
pedestrian (vn = 0) and those corresponding to an observed choice out of the choice set have been
discarded.
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(a) (b)

Figure 5.8: Speed-time graphs for the same two pedestrians

Figure 5.9: Speed histogram

We report in Table 5.4 and Table 5.5 the averaged values of the leader and collider availabilities
(represented by the two indicator functions IL

g and IC defined above) defined as follows:

ĪL
g =

1
NS

NS∑
n=1

IL
g

ĪC =
1

NJ

NJ∑
n=1

IC (5.2)

where NS and NJ are the two sample sizes.

5.2 Estimation results

In the previous section the datasets used for parameter estimation have been described. Collecting
pedestrian trajectories through manual tracking from video sequences allows for the calibration of
short range behavior models. We have seen in Chapter 4.2 different specifications. In this section
the estimation results related to the different specifications are reported, using both the datasets,
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Figure 5.10: Revealed choices histogram

separately and pooled together. The aim is to present the results obtained at the different steps
in the iterative modeling process. All the models have been estimated using the Biogeme package
(Bierlaire, 2003), which is a freeware package for the estimation of a wide range of random utility
models.

5.2.1 Step1

We discuss here the results related to themodel specification presented in Section 4.2. The param-
eters of the systematic utility functions are similar under different error structures, as shown in
Table 5.7 and Table 5.8. It is a sign of reliability of the model specification, at least with respect to
the dataset used for the estimation.
The βdirection and βdestination coefficients are both negative. This means that the utility of an alter-
native is going to decrease when its angular position is more decentralised with respect to the current
direction and the final destination, respectively. This intuitive fact can be actually interpreted in a
more interesting way. The tendency of an individual to keep her current direction and to move, if
it is possible, toward her final destination can be seen as the evidence of decisions made at a higher
level in the decision process. People decide their final destinations at a strategic level, their routes
and paths at a tactical level (Hoogendoorn et al., 2002). These decisions are reflected on a short
time horizon and are coherent with negative signs for the βdirection and βdestination coefficients. This
conclusion is also accordant with other previous studies on the idea that individuals move through
spaces along paths that minimize the angular displacements (see Turner, 2001 for more details).
The βoccupation parameter has a negative sign, implying that individuals tend to prefer nearby spa-
tial zones less crowded by other pedestrians. This follows our expectation but it requires a certain
prudence in terms of generalizability. It is actually licit to expect a positive value of this parameter
(based on its definition) in those situations where a lot of individuals are walking toward the same
destination (crowded environments with lane formation). More insights are necessary to generalize
such a behavior, working with larger datasets.
The βangle parameter has not been estimated significantly different from zero. The collision avoid-
ance behavior is an important part of the pedestrian walking behavior. The lack of a significant
result in this case is due to a lack of pedestrian-pedestrian interactions in the Swiss dataset.
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Finally, the acceleration model is also accordant with our expectations. The signs of the βacc and
βdec are negative, revealing a preference for the constant speed alternatives. The absolute values
of the two coefficients are strongly different. An early specification introduced a linear term. The
implementation of such a model in the simulator has shown important limits. We were actually
faced with undefined accelerations or sudden abrupt decelerations. The introduction of a non linear
specification with the elasticity coefficients has solved the problem. The λacc and λdec parameters
have the expected signs. λacc > 0 implies an actractiveness for accelerations which decreases when
the speed increases. This trend is shown in Figure 5.11. The curve for the acceleration dummy
shows that when the speed increases the β̃acc decreases, reaching an ideal negative asymptote in
correspondence of a maximum speed. Similarly, λdec < 0 indicates that when the speed decreases
the attractiveness for a further deceleration decreases, reaching an ideal negative asymptote for a
speed value equal to zero. The current speed module is normalized with respect to the maximum
value observed in the dataset, for numerical reasons. The correlation between alternatives is par-
tially captured by the CNL formulation. Two over five nest coefficients are significantly different
from one, the first capturing the correlation between the constant speed alternatives and the sec-
ond the correlation between the not-central choices. The mixed NL formulation results, shown in
Table 5.8, present a better explanatory power with a better final log-likelihood value (−2559.97
against −2579.25). Here, the correlation based on the speed is captured by two (over three) nest
coefficients, significantly different from 1, for the constant speed and the decelerated alternatives,
respectively. The correlation depending on direction is captured by the normal terms, for which
six standard deviations have been estimated, significantly different from zero. It is interesting to
note that those normal terms capturing the correlation between those alternatives belonging to far
radial directions (from the central one), namely σ1, σ9 and σ10, show larger standard deviation
values. On the contrary, the same values for more central alternatives, namely σ5, σ7 and σ8, are
lower. A possible interpretation for this fact is that choices corresponding to central alternatives are
easily interpretable based only on kinematic characteristics, while more stressed direction changes
are more likely to be caused by other causes, not included in the model (depending for example
on individual characteristics), leading to random parts of the corresponding utilities with a higher
variance. It is an indication for a more detailed direction change model. In Figure 5.12 we report
the values of the probability vs. speed, all the rest remaining constant, for the decelerated, constant
speed and accelerated alternatives (28, 17 and 6, respectively) of the central direction. The speed
value increases in the range [0.1, 7.1] m/s, with a step of 0.1 m/s. The fixed values for the other
attributes are reported in Table 5.6. The curves are as expected. The probability for an acceleration
(deceleration) decreases (increases) when the speed increases. Note that the curve describing the
constant speed alternative is higher with respect to the others, showing how actually individuals
perceive variations in speed as costs.
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Figure 5.11: The parameters β̃acc and β̃dec.

Figure 5.12: The probabilities as function of the speed modules, all the rest remaining constant
in the utilities.
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Pedestrian Length Av. speed Av. direction Av. dest/dir
module changes angle

1 80 1.31 17.21 49.74
2 76 1.39 24.46 50.79
3 58 1.07 12.74 34.85
4 67 1.10 25.72 41.48
5 30 1.50 12.38 18.25
6 31 1.40 12.38 23.82
7 98 2.65 4.76 8.20
8 78 1.47 10.67 8.47
9 76 1.50 7.66 7.76
10 74 1.51 6.55 6.54
11 65 1.17 15.79 15.02
12 64 1.21 11.60 14.69
13 64 1.18 10.64 17.75
14 64 1.21 22.98 25.73
15 41 1.37 19.31 14.27
16 44 1.44 10.69 10.30
17 93 1.80 6.11 10.14
18 26 1.36 11.31 9.86
19 27 1.39 7.43 8.30
20 31 1.48 8.02 7.06
21 27 2.08 5.45 11.62
22 26 2.23 5.20 5.66
23 23 1.50 15.02 15.00
24 21 1.67 21.93 21.75
25 10 3.13 8.78 8.27
26 8 3.13 14.95 11.72
27 52 1.35 16.91 15.24
28 48 1.41 10.03 9.23
29 51 1.31 10.74 9.49
30 50 1.32 9.98 12.27
31 27 1.99 6.48 5.72
32 33 2.09 11.05 9.17
33 37 1.63 13.18 14.71
34 29 1.21 11.38 9.26
35 23 1.10 9.48 8.90
36 23 1.32 14.15 17.88

Table 5.1: Data statistics
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Mean 1.577680303
Standard Error 0.018473153

Median 1.446021656
Mode 0.80741

Standard Deviation 0.697101509
Range 6.763794202

Minimum 0.244096667
Maximum 7.007890869

Table 5.2: Speed statistics

Mean 0.668242
Standard Error 0.003547

Median 0.58023
Mode 0

Standard Deviation 0.35826
Range 3.939786

Minimum 0
Maximum 3.939786

Table 5.3: Speed statistics

direction leader availability collider availability

accelerated decelerated

1 0.004 0.004 0.145
2 0.006 0.013 0.117
3 0.004 0.014 0.148
4 0.002 0.017 0.142
5 0.003 0.021 0.150
6 0.001 0.012 0.152
7 0.001 0.015 0.116
8 0.004 0.016 0.111
9 0.002 0.016 0.136
10 0.002 0.006 0.104
11 0.0007 0.002 0.069

Table 5.4: Averaged leader and collider availabilities for the Swiss dataset
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direction leader availability collider availability

accelerated decelerated

1 0.07 0.11 0.45
2 0.09 0.13 0.47
3 0.07 0.12 0.47
4 0.06 0.10 0.44
5 0.09 0.14 0.45
6 0.10 0.16 0.44
7 0.08 0.13 0.45
8 0.05 0.10 0.44
9 0.05 0.10 0.48
10 0.05 0.12 0.49
11 0.05 0.10 0.47

Table 5.5: Averaged leader and collider availabilities for the Japanese dataset

alternative direction destination occupation angle
6 0 40.41084 0 0
17 0 40.41084 0 0
28 0 40.41084 0 0

Table 5.6: Attributes’ values to compute the probabilities reported in Figure 5.12.
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Variable Coefficient t test 0 t test 1
name estimate

βoccupation -1.7334 -2.4767
βdir -0.0921 -12.3423
βddir -0.0615 -12.2974
βacc -33.6222 -2.9011
βdec -0.5036 -3.8286
λacc 1.8322 9.0784
λdec -0.8650 -4.9753

µconst 1.7957 6.1643 2.7315
µnot central 1.2867 8.2960 1.8486

Sample size = 1424
Number of estimated parameters = 9
Init log-likelihood = -4979.03
Final log-likelihood = -2579.25
Likelihood ratio test = 4799.55
ρ̄2 = 0.4802

Table 5.7: CNL estimation results
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Variable Coefficient t test 0 t test 1
name estimate

βoccupation -1.5031 -2.7973
βdir -0.1170 -10.5978
βddir -0.0737 -9.3415
βacc -32.7867 -4.4996
βdec -0.4495 -5.4054
λacc 1.7677 12.1902
λdec -0.8987 -8.7415
σ1 1.4875 2.3527
σ5 0.6850 3.7304
σ7 0.9284 5.3723
σ8 1.2338 5.9258
σ9 1.6298 5.7021
σ10 2.3415 4.8001

µconst 1.4067 10.5971 3.0636
µdec 1.3164 6.3777 1.5329

Sample size = 1424
Number of Halton draws = 2000
Number of estimated parameters = 15
Init log-likelihood = -4979.03
Final log-likelihood = -2559.97
Likelihood ratio test = 4838.11
ρ̄2 = 0.4828

Table 5.8: Mixed NL estimation results
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5.2.2 Step2

We describe, from a qualitative point of view, those intermediate steps in the modeling process
that triggered interesting problems and represented the motivations for the further development
presented in Section 4.3, whose results are reported in the next section. The original specification
described in Section 4.2 has been tested on the Japanese dataset, when it was available. Only the
CNL specification was used for preliminary tests, giving the huge estimation time required by the
mixed nested logit model. These intermediate results clearly show a lack in modeling pedestrian
interactions. The occupation parameter in Eq. (4.1) is an aggregate attribute designed to capture
the negative impact of crowding on the utility of the corresponding alternatives. The Japanese
dataset, as already said in Section 5.1, refers to a situation where two main pedestrian flows walk in
opposite directions. The βoccupation parameter results positive when the original model is estimated
on this dataset. This counter-intuitive sign shows that this parameter captures a mixed effect due
to the presence of the two main pedestrian flows. In our original interpretation, this fact would have
meant that people move towards crowded positions. Another counter-intuitive sign obtained in this
test refers to the elasticity for decelerations. The λdec parameter results positive and significantly
different from zero, leading to the conclusion that the attractiveness for a deceleration is going to
increase when the speed decreases, against our intuition. These results have triggered the need for a
more detailed pedestrian interaction modeling, leading to the leader follower and collision avoidance
models presented in Section 4.2.

5.2.3 Step3

In this section we present the estimation results for the model specification given in Section 4.3.
They are reported in Table 5.9.
We first shortly comment the results for those parameters related to the unconstrained models (to-
ward destination, keep direction and free flow acceleration). This part of the model specification
is practically the same as the previous model, specified in Section 4.2. The toward destination
coefficients βddir and βddist have been estimated significantly different from zero, indicating that
the assumption that destination distance and direction capture two different effects is supported by
the data, being related to the 2D nature of the pedestrian movements. Their signs are negative,
as expected, reflecting the tendency of individuals to move directly toward their final destination,
through the shortest path. The interpretation for the coefficients of the keep direction and free flow
acceleration models are the same as Section 5.2.1.
We now comment on the constrained models’ parameters. For the leader follower behavior we note
that in the case of an accelerated leader, 3 out of 4 parameters have been estimated significantly
different from zero. The positive value for the αL

acc multiplicative coefficient indicates that when a
leader is present (or several potential leaders are present, so that the closest to the decision maker
is considered), a leader’s acceleration induces a correspondent acceleration on the decision maker.
The negative sign for the distance exponential coefficient, ρL

acc, indicates that the influence of the
leader on the decision maker acceleration behavior reduces when their relative distance increases,
as expected. The positive sign for the speed exponential coefficient, γL

acc, shows that the utility
of an acceleration increases with higher values of the relative leader speed, as expected. The same
interpretation is given for the parameters correspondent to a decelerated leader. In this case we keep
in the model also the exponential coefficient related to the direction, δL

dec, being the related t -test
statistics equal to 1.642. Its negative sign is coherent with the leader follower behavior. It reflects
the fact that in those cases where the leader’s relative direction is higher, the influence of the leader
on the decision maker is lower, resulting in a lower utility value for the decelerated alternatives.
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Variable Coefficient t test 0 t test 1
name estimate

βddir -0.061 -19.066
βddist -1.614 -1.9749
βdir -0.027 -11.342
βacc -19.822 -5.847
βdec -2.069 -2.651
λacc 0.969 26.880
αL

acc 4.883 3.368
ρL

acc -0.657 -3.034
γL

acc 0.869 9.877
αL

dec 4.061 6.278
ρL

dec -0.481 -4.280
γL

dec 0.524 9.089
δL
dec -0.892 -1.642
αC -0.0058 -4.639
ρC -0.313 6.748
γC 0.781 3.318

µconst 1.597 32.413 12.119
µnot central 1.487 15.765 5.160

µscale 0.591 - -8.565

Sample size = 10783
Number of estimated parameters = 19
Init log-likelihood = -78558.3
Final log-likelihood = -22572.7
Likelihood ratio test = 30260.3
ρ̄2 = 0.4007

Table 5.9: CNL estimation results for the specification of Chapter 4.3

For the estimation of the collision avoidance parameters, we fix the exponential coefficient related
to the collider relative direction, δC , equal to 1 for numerical convenience. The other three free
parameters have been estimated significantly different from zero. The multiplicative coefficient αC

is negative, as expected, indicating that those directions more likely to lead to a collision have a
lower utility with respect to the central (current) direction, taken as the reference one for normal-
ization purposes. The exponential coefficient related to the distance between the collider and the
alternative, ρC , has a negative sign. It shows the fact that a more distant collider has a less negative
impact on the alternative utility. Finally, the exponential coefficient related to the relative speed,
γC , is positive, as expected. It captures the fact that faster colliders have a more negative impact
on the utilities than slower individuals, being the possible collision perceived as an event happening
before in time.
The correlation structure is captured by the cross nested specification. Three nest parameters have
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been fixed to 1 while two are left free in the model, capturing the correlation between the constant
speed and the not central alternatives. They have been estimated significantly different from 1,
which guarantee the consistency with the random utility theory.
We finally comment on the heterogeneity in the dataset. We estimate the scale factor µscale for the
Swiss data, which captures the variance of the associated error term.

We report in the following some graphics illustrating the marginal effects of the different variables
for the constrained models. In Figure 5.13(a) and Figure 5.13(b) the effects of a stimulus variation
(due to changes in the relative leader direction and speed) are shown. Figure 5.13(a) shows an
accentuated variation in the leader acceleration term which decays quite quickly when varying its
relative direction. Figure 5.13(b) shows the acceleration term (for a fixed decision maker speed equal
to 3 m/s) when the leader speed is free to vary. As expected, higher acceleration values correspond
to higher relative speed values, with a zero acceleration when the leader speed is equal to the decision
maker speed, as expected. In Figure 5.14 the effect of variations in the sensitivity function (varying
the leader distance) are reported. As expected, lower acceleration terms correspond to lower relative
distance values. Finally, we report in Figure 5.15(a), Figure 5.15(b) and Figure 5.16 an example
of the probability of a central deceleration (alternative 28) when varying the relative (decelerated)
leader direction, speed and distance, respectively.

Similarly, in Figure 5.17(a) and Figure 5.17(b) we report the effects of variations in the stimulus
term for the collision avoidance model. Figure 5.17(a) shows how for colliders coming from more
frontal directions with respect to the decision maker direction (increasing relative direction), the
collision term is reduced, reducing the alternative’s utility. Figure 5.17(b) show how the collision
term reduces for higher relative collider speed values. In Figure 5.18 the effects of changes in the
sensitivity term are reported. It shows how farther colliders induced a lower negative effect on the
utility, i.e. the collision term increases. Finally, we report in Figure 5.19(a), Figure 5.19(b) and
Figure 5.20 an example of the probability of a central acceleration (alternative 6) when varying the
relative collider direction, speed and distance, respectively.

5.3 Pedestrian simulator

In order to validate our model, we needed to apply it so that we could verify if it represented realistic
human walking behavior. We did indeed discover quite a few problems in early specifications of
the model by using the simulator — problems that we probably would not have seen without its
help. Initial versions of the model were instable with regard to speed: the pedestrians were either
accelerating or decelerating to unreasonable speeds, which led us to introduce the speed elasticity
parameters, which solved the problem by giving the pedestrians a stronger “will” to maintain a
constant speed.

As shown in Figure 5.21 the addition of the simulator to our system creates a feedback loop that
results in an enhanced model (Antonini et al., 2004b).

Other potential uses of simulation include capacity analysis, evacuation scenarios, incident sce-
narios, analysis of flow organization. Many developments exist in this area (see for instance Helbing
et al., 2000, Kopp, 1999 and Gwynne et al., 1997) but to our knowledge, none of them uses a
behavior model calibrated on actual data.
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(a) Marginal effect of the relative leader direction

(b) Marginal effect of the relative leader speed

Figure 5.13: Effects of variations in the leader stimulus parameters

5.3.1 Design

There are essentially two approaches to simulation: time-based and event-based. In the time-based
approach, the simulation proceeds in fixed time steps and all actors of the simulation are updated at
each of these steps. In the event-based approach, events (e.g. collisions) are generated and inserted
into a priority queue and are then executed in increasing time order. For now, we have chosen a
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Figure 5.14: Effects of variations in the leader relative distance

time-based approach because the model is simpler, but we might move to an event-based approach
later if the evolution of our model requires each footstep to be controlled precisely. We currently
use a time step of ∆t = 0.9s in our simulations, consistently with the model assumption.

The simulator was developed using object oriented design techniques and written in standard
C++. As input, it accepts a description of the cross nested logit model (preferred for the closed
form of the choice probabilities) as specified in Section 4.2:

• the βi coefficients in Eq. (4.10),

• the µ and µm coefficients in Eq. (3.9),

• the αjm coefficients in Eq. (3.9).

As output it produces images in a scene description language. We have successfully used POVRay
for that purpose (http://www.povray.org/).

Following is a brief description of the algorithm inside our simulator:

• Initialization

The input to our simulator is a time-dependent origin-destination matrix, where each cell
corresponds to an origin o, a destination d and a time interval ∆T , exactly like the OD
matrices used for transportation applications. The cells contain the number of individuals
departing from o, targeting d during the time interval ∆T .

From the time-dependent OD matrix, we create a population of pedestrians. Each pedestrian
can be associated with a list of characteristics which can be adapted to specific model re-
quirements. This approach is consistent with the concept of demand simulation proposed by
Antoniou et al. (1997) and Bierlaire et al. (2000). Our CNL model does not contain socio-
economic characteristics. Also, we associate an itinerary with each pedestrian. An itinerary is
defined as a sequence of intermediate targets, such that target k in the itinerary is visible from
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(a) Probability of central deceleration as a function of the relative (decelerated) leader direction

(b) Probability of central deceleration as a function of the relative (decelerated) leader speed

Figure 5.15: Variations in probability as a function of the leader parameters

the position of target k − 1, consistently with the network presentation presented in Bierlaire
et al. (2003).

• Moving decisions

First, new pedestrians are loaded in the system, with an initial speed corresponding to their
desired speed, and an initial direction corresponding to the next target in their itinerary.
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Figure 5.16: Probability of central deceleration as a function of the relative (decelerated) leader
distance

A pre-step/step logic is followed. This means that in the pre-step phase the next position
for the agent is computed but the actual move is left to the step stage which is performed
only in the case that the chosen next position results available. At each time step (∆t), the
utility value of each possible move is calculated for each pedestrian. These values are then
transformed into probabilities consistent with the discrete choice model. A move is declared
infeasible (and the associated alternative unavailable) in the presence of a physical obstacle. We
report in the following an example of one simulation step. Figure 5.22 represents an hypothetic
simple scenario where 3 other pedestrians are present in the scene, at the indicated positions
with the reported movement directions. For simplicity, we assume here that the current
direction d coincides with the final destination direction D. An obstacle is present, leading
to the unavailability of alternatives 1, 2, 3 and 4. We report in Table 5.10 the availability,
systematic utility, probability values and the attributes’ values for each alternative. Based on
the computed probabilities, the pedestrian’s choice is randomly selected according to these
probabilities.

Once the chosen position is recognized to be available, the speed and direction of the individual
are updated according to the formula xi+1 = xi + ∆t vi, where x is the position, i the time
step and v the speed.

Figure 5.23 shows a pedestrian as depicted by our simulator. Here the choice set is shown.



66 Chapter 5. Estimation results and validation

(a) Marginal effect of the relative collider direction

(b) Marginal effect of the relative collider speed

Figure 5.17: Effects of variations in the collider stimulus parameters
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Figure 5.18: Effects of variations in the collider relative distance
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(a) Probability of central acceleration as a function of the relative collider direction

(b) Probability of central acceleration as a function of the relative collider speed

Figure 5.19: Variations in probability as a function of the collider parameters
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Figure 5.20: Probability of central acceleration as a function of the relative collider distance

Figure 5.21: Model/simulator feedback
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Figure 5.22: Example of a simulated scenario.

Figure 5.23: Pedestrian with choice set
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alt avail vn direction destination occupation V prob
1 0 1.7 72.5 72.5 0 - 0
2 0 1.7 50 50 0 - 0
3 0 1.7 32.5 32.5 0 - 0
4 0 1.7 20 20 0 - 0
5 1 1.7 10 10 0 -4.05 7.64e-03
6 1 1.7 0 0 0 -2.51 5.09e-02
7 1 1.7 10 10 0 -4.05 7.64e-03
8 1 1.7 20 20 0.454 -6.37 6.46e-04
9 1 1.7 32.5 32.5 0 -7.51 1.98e-04
10 1 1.7 50 50 1.325 -12.49 1.22e-06
11 1 1.7 72.5 72.5 0 -13.65 3.8e-07
12 1 1.7 72.5 72.5 0 -11.14 2.37e-07
13 1 1.7 50 50 0 -7.68 2.05e-05
14 1 1.7 32.5 32.5 0 -4.99 6.8e-04
15 1 1.7 20 20 0 -3.07 8.8e-03
16 1 1.7 10 10 0 -1.54 7.37e-02
17 1 1.7 0 0 0 0 6.13e-01
18 1 1.7 10 10 0 -1.54 7.37e-02
19 1 1.7 20 20 0.217 -3.45 5.29e-03
20 1 1.7 32.5 32.5 0 -4.99 6.8e-04
21 1 1.7 50 50 0.639 -8.79 4.9e-06
22 1 1.7 72.5 72.5 0 -11.14 2.37e-07
23 1 1.7 72.5 72.5 0 -12.85 8.53e-07
24 1 1.7 50 50 0 -9.39 2.84e-05
25 1 1.7 32.5 32.5 0 -6.71 4.56e-04
26 1 1.7 20 20 0 -4.79 3.47e-03
27 1 1.7 10 10 0 -3.25 1.83e-02
28 1 1.7 0 0 0 -1.71 1.14e-01
29 1 1.7 10 10 0 -3.25 1.83e-02
30 1 1.7 20 20 0.108 -4.97 2.84e-03
31 1 1.7 32.5 32.5 0 -6.71 4.56e-04
32 1 1.7 50 50 0.296 -9.91 1.68e-05
33 1 1.7 72.5 72.5 0 -12.85 8.53e-07

Table 5.10: Simulation example. We report the attributes’ values with the exception of the angle
attribute, being the relative coefficient not significant.
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5.3.2 Results

The videos generated by the simulator can be found at

http://ltswww.epfl.ch/ltsftp/antonini/Simulator/

Three different views can be generated by the simulator. In Figure 5.24 we illustrate the normal
view. Pedestrians move on a real background (in front of a metro station in Lausanne) according to
the calibrated CNL model. The model view is reported in Figure 5.25, where also the choice set is
displayed. Finally, in Figure 5.26 we illustrate the top view obtained assuming to look at pedestrians
from the top of the scene.

Figure 5.24: Normal view

5.4 Summary

In this chapter the data collection process, parameter estimation step along with a validation pro-
cedure have been discussed. Collecting data on pedestrian movements is a complex task. We used
video sequences, manually tracking individuals over time and storing their spatial positions on the
walking plane. These data are purely dynamic, allowing to extract speed and acceleration informa-
tion. Two different samples, one collected in Switzerland and the other in Japan, are used separately
and pooled together, in order to calibrate the proposed models. The maximum likelihood estimates



5.4. Summary 73

Figure 5.25: Model view

of the models’ parameters are reported, with a discussion on their behavioral interpretation. Finally,
a pedestrian simulator based on one of the proposed models, has been described. A simulation case
is reported, showing how a it actually represents a precious tool for model validation.
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Figure 5.26: Top view
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Chapter 6

Pedestrian detection and tracking

In Part I the pedestrian behavioral model has been presented. In this second part an application
is proposed, integrating the behavioral model for pedestrian tracking in video sequences. In this
first chapter a review of the state of the art on detection and tracking methods is provided in
Section 6.1. In Section 6.2 we describe our approach for pedestrian tracking and in Section 6.3
results are reported and discussed.

6.1 State of the art

Several different methods have been proposed in the last decade by researchers to address the object
tracking problem. Among this multitude of approaches, different ways to classify them are possible.
We first distinguish the problem of target detection from that of pure target tracking, adopting for
the latter a two class partition, namely deterministic and probabilistic tracking methods.

6.1.1 Detection

Talking about tracking systems we are facing actually to a double problem. The first step consists
in detecting a target of interest and only in a second time the detected target is tracked over time.
Interesting surveys which include pedestrian detection are those of Gavrila (1999) and Lombardi
(2001). This section is an extract from these works.
A first distinction in target detection methods is whether the steps of detection and target recog-
nition are well separated or are not. Methods belonging to the first category usually perform an
image segmentation step, where the foreground region is separated by the background, followed by
a post-processing step where the foreground object is checked for the presence of the target of in-
terest. Methods belonging to the second category, look for pedestrians in the whole image since the
beginning and can be considered conceptually closer to the pattern recognition paradigm. A third
(smaller) category can be identified with those methods where actually only foreground objects are
detected in a blind way, assuming that all these image regions detected under a certain criterion are
human subjects.

Motion detection

The information related to moving regions is certainly one of the most important cues to detect
targets of interest. Some previous works use motion detection techniques (optical flow) to detect

77
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individuals. Homogeneous regions under a certain criterion, as for example colour, shape or texture
are checked to have similar values of optical flow. In this spirit, Bregler (1997) check for coherent
motion of groups (blobs) of pixels of the same colour. Each pixel belongs to a given blob with
a certain probability and each blob is classified using probabilistic models of motion. A space-
time discretization is adopted by Polana and Nelson (1997), which assign to each image region
(obtained simply overlapping a grid on the image) its averaged optical flow. Fourier analysis on
the resulting feature vector is performed to detect periodic motion patterns. Shio and Sklansky
(1991) use a motion field obtained by correlation techniques over successive frames and after some
space-time smoothing followed by a quantization step of such a field, they identify motion regions
with similar directions. Heisele et al. (1997) use groups of pixels obtained by clustering techniques
as basic units for tracking. Both colour and spatial information is used to perform cluster analysis;
the motivation for this is that adding spatial information makes clustering more stable than using
only color information. The clusters are adapted over consecutive images by means of a k-means
algorithm. Cutler and Davis (2000) use a “stabilized” change detection algorithm, with a time
window τ . Followed by an appropriate thresholding, this operation provides a map of the pixels
representing moving objects.

Background subtraction

Background subtraction represents probably the most used paradigm for foreground segmentation.
Many approaches fall into the mixture-of-Gaussian framework. Wren et al. (1997) use a one single
Gaussian distribution describing the colour. Foreground pixels are determined as those that lie
some number of standard deviations from the background mean and are assigned to one between
several Gaussian models corresponding to objects. The classification is based on the Mahalanobis
metric. Stauffer and Grimson (2000) extend the statistical model, allowing for an adaptive mixture
of Gaussians also for the background itself. Every pixel value is compared against the existing set of
models at that location to find a match. The parameters for the matched model are updated based
on a learning factor. If there is no match, the least-likely model is discarded and replaced by a new
Gaussian with statistics initialized by the current pixel value. The models that account for some
predefined fraction of the recent data are deemed “background” and the rest “foreground”. Collins
et al. (2000) augmented this approach with a second level of analysis to determine whether a pixel
is due to a moving object, a stationary object, or an ambient illumination change. Oliver et al.
(2000) use principal component analysis (PCA) on background eigenvectors resulting in a system
analogue to the mean-variance map. A similar approach is used by Jabri et al. (2000) extending
the idea to three mean-variance maps of colours, vertical and horizontal edges. Other statistics on
the pixel intensity values (maximum and minimum, maximum of derivative over time and disparity)
are used by Haritaoglu (1998). This approach works better than those based on simple mean-
variance maps when pedestrian colours are closer to background colours. The drawback consists
in too many false alarms for small objects with random movements. Paragios and Tziritas (1999)
proposed an approach for finding moving objects in image sequences that further constrained the
background/foreground map to be a Markov random field. Elgammal et al. (2002) used a non-
parametric kernel density estimate for the intensity of the background and each foreground object.
Pixel intensities that are unlikely based on the instantaneous density estimate are classified as
foreground.
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6.1.2 Pedestrian recognition

Shape-based models

Once a number of hypothetical targets are detected a decision has to be made about pedestrian/not-
pedestrian. Classic approaches to pedestrian recognition are those based on shape models. The
advantage of such methods is that they do not rely on any temporal information, so in principle
they can recognize both moving and static targets. Papageorgiou and Poggio (1999) use a wavelet
template to characterise a pedestrian shape and then scan the wavelet transform of the image to
check for the presence of such a template. Wren et al. (1997) use a process guided by a 2-D contour
shape analysis that attempts to identify various body parts using heuristics. Cai and Aggarwal
(1996) describe a system with a simple head-trunk model to track humans across multiple cameras.
Beymer and Konolige (1999) fit a simple shape on the candidates. They use an Ω model for the
head and shoulders. This approach is very sensible to scale variation, so five different models are
used, from coarse to fine resolution, according to the estimated distance of a subject. Fujiyoshi
and Lipton (1998) use a skeletonization procedure to characterize the shape of a foreground object
previously detected. For each object, they calculate first the centroid of the area and then the
distances from the centroid to each border points. Local maxima of the distance function are taken
as the external points of the skeleton. The authors suggest that the relative position of centroid and
external points, and their rigidity, may be applied to recognition of different types of targets. For
what concerns humans, they further confirm the analysis with gait detection. Kahn et al. (1996)
use several cues including intensity, motion and edge. Many different object templates are defined
and visual routines are provided to detect these in the images.

Gait recognition

Different approaches using temporal information relying on gait recognition. Human gait exhibits
periodic characteristics and can be a very useful cue for walking pedestrians. The drawback of such
methodology is that these methods do not allow for recognition of static pedestrians. Fourier-based
methods are applied for periodicities. The candidate patterns varying over time are analyzed in
frequency and classification techniques are used to select the human-like. Fujiyoshi and Lipton
(1998), Cutler and Davis (2000), Polana and Nelson (1997) among the others use this approach. In
Efros et al. (2003) the problem is recognizing actions from video taken from a distance, where the
person appears only as a small patch. They compute a set of space-time motion descriptors on a
stabilized figure-centric sequence, and match the descriptors to a database of pre-classified actions
using nearest neighbour classification. Finally, Foster et al. (2003) use masking functions to measure
area as a time varying signal from a sequence of silhouettes of a walking subject. Essentially, this
combines the simplicity of a baseline area measure with the specificity of the selected (masked) area.
The dynamic temporal signal is used as a signature for automatic gait recognition.

6.1.3 Pedestrian tracking

Once the target of interest is detected several approaches to track it over time can be applied.

Probabilistic tracking

Between the probabilistic methods for object tracking, special interest has been received in the last
years by all those approaches based on a state space modeling for the target and looking at the
tracking problem as a Bayesian filtering problem. We do not give here a detailed description of
the Bayesian filtering theory, because out of the scope of this thesis. Such a statistical framework
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is based on two stochastic equations. A dynamic equation describes how the state of the target
evolves over time while a measurement equation updates the way how we can observe the state
itself. Fall into this framework the classical Kalman filter, assuming linear dynamics and Gaussian
error terms (for both the dynamic and measurement equation). In the last years, the non-linear non-
Gaussian extension (particle filtering) has been of interest for many works in object tracking. We
report here just a few of such (numerous) works (Isard and Blake, 1996; Kitagawa, 1996; Isard and
Blake, 1998; Nummiaro et al., 2003; Nummiaro et al., 2002; Arulampalam et al., 2002; Thayanan-
than et al., 2003). Basically, the research in this direction has focussed on new state representations
for the targets and different dynamic models, mostly based on the image plane. An interesting work
in this direction is Thayananthan et al., 2003 where the state-space is partitioned using a tree-based
representation and a 3D hand model is used as a prior. Different hand-poses are generated by the
model and projected on the image plane. The posterior is represented using a piecewise constant
distribution over the leaves of the tree. Thresholds on the posterior (on the different sub-trees)
are used to converge efficiently towards the high-modes of the distribution. Maggio and Cavallaro
(2005) propose a combination of particle filter and mean shift, and enhanced with a new adaptive
state transition model. The proposed tracker first produces a smaller number of samples than Par-
ticle Filter and then shifts the samples toward a close local maximum using mean shift (Comaniciu
et al., 2003, Han et al., 2004). The transition model predicts the state based on adaptive variances.
A different probabilistic approach is that of Senior (2002). Here the author deals with appearance
models from a probabilistic point of view. The target is represented using an RGB color model. The
value given by the model in position x represents the appearance in that position while an associ-
ated probability mask gives the likelihood of the object being observed at that pixel. The tracking
problem is formulated as a maximum likelihood problem. Sminchisescu and Triggs (2003) present an
alternative approach to stochastic tracking using the Covariance Scaled Sampling (CSS) algorithm.
CSS propagates a multi-modal prior, essentially a mixture of Gaussians, and locally optimizes the
new estimates such that they correspond to local minima in the posterior. Minima are sought as
optimization involves minimizing a cost function as opposed to maximizing pdf. During propaga-
tion, each Gaussian is sampled from according to the shape of the cost function, allowing sampling
to be biased along the directions of most uncertainty. Mean-Shift tracking is another probabilistic
algorithm that endeavours to maximize the correlation between two statistical distributions. The
correlation, or similarity between two distributions is expressed as a measurement derived from the
Bhattacharyya coefficient. Statistical distributions can be built using any characteristic discriminat-
ing to a particular object of interest. A general model might use color, or texture or include both. A
very simple form of the image gradient, i.e., pixel intensity differences between nearest neighbours
in both the x and y directions will be used as the random variables in the tracking distributions
implemented here

Deterministic tracking

Deterministic algorithms assume that the human body position can be uniquely determined at each
point in time, contrarily to probabilistic methods where a distribution is given. A first kind of
deterministic methods refer to all those techniques where the tracking of a certain feature or tar-
get over time is based on the comparison of the content of each image with a sample template.
These algorithms focus more on the target representation problem, dealing with the changes in
the appearance of the target itself (Jurie and Dhome, 2001; Kaneko and Hori, 2003; DeCarlo and
Metaxas, 2000; Terzopoulos et al., 1988). Luck et al. (2002) adopt a deterministic approach where
they construct a visual hull using shape from silhouette methods and fit a body model to it using a
physics based fitting mechanism.
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Figure 6.1: Overview of the dynamic detection approach

Most of the methods proposed in litterature for pedestrian tracking make use of the image-based
information. The probabilistic framework provides a natural way to include any other source of
knowledge, from different modalities to models for motion. In this context, the dynamic models
used for tracking (usually in a state space modeling setup, from the first Kalman filter until the
recent particle filtering) have been defined referring to a physical paradigm, where individuals are
considered as particles subjected to forces. We propose a behavioral paradigm, where people move
motivated by their destination, they follow other people in a crowd as a sub-optimal solution, avoid
collisions with other individuals and perceive different discretizations of their surrounding space. In
the next section we describe the integration of the model defined in Part I with a simple correlation-
based tracking framework.

6.2 Model-based tracking

We do not make a clean distinction between detection and tracking. A simple blind initialization
is performed, in order to reduce the computational complexity of this step. Both the deterministic
and probabilistic approach to tracking are discussed (Antonini et al., 2005).

6.2.1 Dynamic detection

The idea is to recognize pedestrians on the base of their behavior over an evaluation period. In this
spirit, our detection/recognition method can be classified as based on temporal information. The
behavioral model presented in Part I is used to recognize those trajectories which are more likely to
be generated by real pedestrians. A general overview of the dynamic detection method is illustrated
in Figure 6.1.
Three main steps are required. First, an initialization step has to be performed in other to generate
hypothetical pedestrians. Second, hypothetical pedestrian trajectories are generated from the ini-
tialization step. Third, the generated trajectories are evaluated by means of the calibrated model.
The result of such an evaluation process is a filtering step, allowing to keep the most human-like
trajectories. Such filtered trajectories represent the output of the dynamic detection system and
correspond to the detected pedestrians. This approach to the detection problem differs from the
state of the art basically for two main reasons

• the detection is based on the target’s behavior rather than on the target’s appearance;
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Figure 6.2: The initialization step

• tracking and detection are inter-operating steps. We need in fact a tracking method to build
trajectories which will be evaluated over the evaluation period.

Hypothetical target generation

The initialization is performed in two steps. At first we place on the top-view a uniform rectangular
lattice of points, at a resolution of 0.5m. Each of these points represents an hypothetical target to
be detected and tracked. The topology and the resolution of the lattice can be tuned according to
the a priori knowledge we have on the scene (exit and entry points, elevators, stairs etc...). The
lattice structure is projected on the image plane by means of the calibrated camera, as shown in
Figure 6.2.
Most of the video surveillance systems are actually equipped with fixed camera devices so it is
relatively easy, in a real application context, to obtain the camera parameters. For this reason, our
first operational constraint is the assumption to work with a monocular calibrated camera. It allows
to define a unique correspondence between the image plane and the real walking plane, i.e. the
top-view plane. There are two main reasons to work on the top-view plane. The target positions
projected on the top-view does not suffer from occlusions, and the pedestrian behavioral model is
defined on the real walking plane. As a consequence, the top-view represents the natural plane
where image-related measures and behavioral constraints can be merged. Assuming the camera
calibrated we know its parameters represented by the focal angle, the camera height, the angle with
the horizon direction and the tilting angle around the vertical axis. So, given the pixel coordinates
of an image point we can obtain unambiguously its projection on the top-view plane.
The second part of the initialization step consists in the use of a foreground mask, obtained by
background subtraction. Any of the previous cited methods for background estimation can be used.
In our case, for simplicity, we have an empty image of the scene. We can identify this initialization
approach with a sub-sampling of the foreground region, driven by any specific knowledge on the
layout of the scene, which is reflected in the topology and resolution of the grid. This approach
represents a simple but effective way to initialize a tracking system, allowing at the same time for a
low computational cost and fully automatic procedure.
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Figure 6.3: Automatic resizing of the target region.

Hypothetical trajectory generation

In this part of the algorithm we build step by step the hypothetical pedestrian trajectories which
have to be evaluated. For each pair of consecutive frames we compute the displacement vector by
maximisation of correlation. Given two images f and g of size MxN , the 2D discrete correlation
between them is defined as:

C(x, y) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m, n)g(x + m, y + n) (6.1)

for x = 0, 1, ..., M − 1 and y = 0, 1, ..., N − 1.
We aim to detect pedestrians looking at their behavior so we need information about their dis-
placements rather than their appearance. Given an hypothetical pedestrian position p ≡ (x, y) (on
the image plane) and the corresponding image region r̂p

t of size MxN centred around p at frame t,
we compute the correlation C(r̂p

t , rp
t+1) between r̂p

t and the corresponding region on the successive
frame rp

t+1. The maximum of the correlation gives the location pmax ≡ (xmax, ymax) of the best
matching between the two image regions. The vector identified by the position of pmax with respect
to p corresponds to the displacement vector of the current image region over the two frames. The
interesting thing behind this well known method is that in two consecutive frames a human being can
cover a limited distance, so it is reasonable to think that the searching region, used for correlation
computation, contains the real target position. As it will be explained in the next section, we apply
behavioral constraints to the trajectories generated by the motion vectors, projecting each of them
on the top-view and stored in a buffer of length Ep while the pmax position in the successive frame is
used to make a resizing of the region of interest. Assuming an averaged height of the human beings
equal to 1.70 m, we obtain an automatic resize of the hypothetical target region on the image (see
figure Figure 6.3), avoiding the use of complex deformation models to take into account changes in
appearance given by the perspective, and introducing a negligible approximation error.
This step is repeated for each hypothetical target present on the current image and for Ep frames. In
order to be able to detect any new target coming into the scene later in time, we need to periodically
refresh the top-view grid at the image border. We illustrate the refresh grid in figure Figure 6.4.
The refresh period, Rp, is assumed to be Rp < Ep.

Trajectory evaluation

The evaluation of the hypothetical trajectories is made in two steps.
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Figure 6.4: The refresh grid.

Pre-filtering We start to evaluate each of the Ep displacement vectors for each trajectory using
simple distance and angular thresholds on the top view. This step is necessary to filter out the
obvious outliers. In fact, many hypothetical targets placed for example on the shadows, can arise
from noise (represented by some impurity on the foreground) or come simply from correlation errors.
The goal of this preliminary step is to avoid the behavioral model computation for such outliers. In
this stage we verify the projected displacements dn

t and direction changes ∆θn
t of the hypothetical

moving objects, defined as:

dn
t = pn

t − pn
t−1, (6.2)

∆θn
t = θn

t − θn
t−1 (6.3)

where pn
t represents the position of the visual tracker n at time t, and θn

t represents the direction of
the displacement between the positions pn

t and pn
t−1. Following the idea to filter targets based on

their dynamic, we give a cumulative score to a pedestrian trajectory over an evaluation period Ep.
We implement these ideas with simple thresholds on the projected displacement vectors defining:

It =

{
0 if ‖dn

t ‖ ≤ td and ‖∆θn
t ‖ ≤ tθ

−1 otherwise

where td and tθ are the thresholds on one-step distance and direction change. Studies on pedestrian
dynamics (Schreckenberg and Sharma, 2002) show that the average speed value (in free-flow con-
ditions) of a pedestrian is about 1.34 m/s. Our frame rate is 10 fps so we fix td to 13 cm. With
analogous considerations we set tθ to 120 degrees. The It is the one-step score given to a trajectory.
We assign at each tracker an activation value representing the starting score and we decrement it
at each ’bad’ step. The final score for a tracker, S, is evaluated assuming a certain tolerance ξ to
bad steps along the trajectory. We keep the tracker if the following condition is satisfied:

S =
1
T

T∑
t=1

It ≥ Sinf (6.4)
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Figure 6.5: Each step in the collected hypothetical trajectory correspond to and alternative in the
choice set of the calibrated model and has associated a probability value.

where Sinf represents the minimum score for a good trajectory. In our experiments we use ξ =
activation−Sinf

activation ≥ 0.3, which means a margin of 30% (we tollerate 3 ’bad’ steps over 10). The
important parameters that have to be tuned are the activation and the evaluation period Ep.

Filtering The pre-filtered trajectories are the input for the behavioral filter. Each step done by
an hypothetic pedestrian along his trajectory represents a choice made by the individual and it is
characterised by a probability value given by the model, as illustrated in Figure 6.5.
We detect pedestrians giving a mark to the trajectory k based on the cumulative value of probabil-
ities:

Mk =

∑L
l=1,j∈Cn

Pjl∑L
l′=1,j′∈Cn

maxj′∈Cn
(Pj′ l′ )

≥ th (6.5)

where j, j
′ ∈ Cn are the alternative indexes in the choice set Cn, l and l

′
refer to the single step, L

is the number of steps in the trajectory k, Pjl is the step probability as given by the discrete choice
model and maxj′∈Cn

(Pj′ l′ ) is the highest probability value associated with the most likely position
at each step. The th value has to be fixed. This thresholding operation measures how much the
collected score is far from the maximum probability score.

We want to underline the fact that the output model probabilities at each time step (which will give
us the associated scores) are computed knowing the other pedestrians position, speed and direction
but assuming those variables as stationary at the time of decision making for the current individual.
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Figure 6.6: The dynamic detection algorithm

So, the interaction terms with the other pedestrians are implicit in the utility expressions (and hence
are mapped into the probability values), defining how people perceive different positions as a function
of both individual parameters and parameters related to the presence of the other pedestrians. The
algorithm for dynamic detection is summarized in Figure 6.6.

6.2.2 Tracking

Deterministic tracking

One interpretation of the tracking problem is to treat it as an object detection made in each frame.
Following this idea, the first implementation of the tracker is made repeating the dynamic detection
algorithm.
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Probabilistic tracking

In the first approach the behavioral model has used basically as a filter. Given a set of trajectories,
we keep the most human-like. In the probabilistic implementation we adopt a Bayesian framework

P (M |D) ∝ P (D|M) · P (M) (6.6)

to build trajectories frame after frame, once the dynamic detection has been performed. The im-
plementation of the Bayes formula is made identifying the P (M) term with the model probabilities
and the likelihood term P (D|M) with the following normalised correlation function:

NCi
t,t+1(h, k) =

Ci
t,t+1(h, k)∑

l

∑
m Ci

t,t+1(l, m)
(6.7)

where Ci
t,t+1(h, k) represents (h, k)-element of the correlation matrix between r̂i

t and ri
t+1 for the

i-th pedestrian and the denominator is the sum of all the elements of the matrix. This normalisation
implies that the probability of finding the pedestrian i in a certain position inside the ri

t+1 region is
proportional to the corresponding correlation value.∗

6.3 Results

6.3.1 Test sequences

Two outdoor sequences have been used to test the algorithm. The first sequence, Flon, has been
recorded in front of the Flon metro station in Lausanne, 2002. The complexity of the scene is very
high. Several pedestrians are present at the same time, moving in a scene with a highly cluttered
background, many shadows areas and a deep (more than 100 meters) visual field. As a consequence,
the target deformation induced by the perspective field is huge, leading to pedestrians of only a few
pixels in the upper part of the images. Partial and total occlusions between pedestrians and group
of pedestrians are frequent in this sequence. We report in Figure 6.7 a sketch of the Flon scene.
Five different entry/exit points are present. From A to D they represent access points to the public
square in front of the metro station. E are the elevators. As a consequence of this urban layout, five
main bi-directional flows of pedestrian movement are present (arrows from a to e in Figure 6.7).

The second sequence, Monaco, has been recorded in Monaco by the Maia Research Institute. † This
sequence is less complex than the Flon one. The visual field is restricted and only one bi-directional
pedestrian flow is present. In the test sequence one individual is walking from left to right while 8
people walk in the opposite direction.

As already said in Chapter 6.2, for both the sequences a monocular static camera has been used,
and an approximated camera calibration step has been performed, in order to use the top-view
projection of the scene.

∗This formulation contains the following approximation: the model is always propagated on a maximum a posteriori

estimation of the posterior distribution. In this way, multi-modalities of the posterior are not taken into account
†http://www.maia-institute.org/
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Figure 6.7: A sketch of the Flon scene. Five entry/exit zones are present. The arrows represent
the main directions of pedestrian flow
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6.3.2 Dynamic detection

In Figure 6.8 and Figure 6.9 we plot the number of filtered trackers as a function of the trajectory
length (i.e. the evaluation time Ep in Figure 6.6), for different resolutions of the top-view grid for
the two test sequences. It is interesting to note that the number of moving regions, associated with
the moving points, presents a good stability. It means that we have a good degree of independence
from the choice of the grid resolution and the evaluation time. In Figure 6.10 the three families of
curves correspond to three different evaluation periods Ep. For each couple of curves, the dotted one
represents the number of trackers after the pre-filtering, while the solid one refers to the output of
the filtering step. We note that for low activation values (lower starting score of trackers), most of
the filtering task is performed by the pre-filtering module. The DCM does not perform in this case
any further filtering (the two curves overlap). Increasing the activation value (for example to avoid
to loose at once good trackers), we see that a consistent further selection is done by the behavioral
filter, as expected.

The temporal resolution of the model is of the order of 1 second. The idea is to observe people for
a few walking steps, before to decide about pedestrian/not-pedestrian. The evaluation period and
the activation parameters are logically correlated, in the sense that one refers to how long do we
want to judge a trajectory and the other refers to how permissive we are in the evaluation process.

Figure 6.8: The number of filtered trackers for the Flon sequence, as a function of the evaluation
time T for three different grid resolutions

In Figure 6.11 we report an example of dynamic detection for the Flon sequence. On the left-side
image it is shown how the correlation process makes the trajectories’ shape noisy. After the appli-
cation of the behavioral filter most of the noise is removed, obtaining the human-like trajectories.
The model filters the data at a trajectory level, and not at a single step level, so it is possible that
good points are rejected if they are part of a trajectory not accepted by the filter. There is a tradeoff
between the need to evaluate a whole trajectory, in line with the dynamic detection idea, and the
need to avoid too strict threshold values.
In Figure 6.12 detection results at different frames are shown, for both the Flon and Monaco se-
quences. Considering the scene’s complexity, the obtained detection rate shows that the behavioral
filtering discriminates between noisy and human like trajectories, with a reasonable error rate. The
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Figure 6.9: The same graphic as the previous figure for the Monaco video sequence, using two
different grid resolutions.

Figure 6.10: The variation of the filtered trackers as a function of the activation parameter. It
shows the different roles of pre-filtering and filtering stages.

drawback of the system is the false alarm rate. This is due to the initialization step. Actually,
the use of a grid on the top-view plane allows to avoid complex target detection procedures, at the
price of an over-estimation of the real number of the targets. Multiple trackers placed on the same
human body (or its shadow) give rise to multiple accepted trajectories. This problem represents the
motivation for the work presented in Chapter 7.

6.3.3 Deterministic tracking

We report in Figure 6.13 and Figure 6.14 the results obtained from successive detection cycles, for
both the Flon and Monaco sequences. The figures related to the Flon sequence show the results
on both the image and top-view planes. The color of the tracks is related to the tracker identity.
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(a) Un-filtered trajectories

(b) Filtered trajectories

Figure 6.11: Behavioral filtering. The x and y axes refer to the walking plane (in meters). The
zero point on the x-axes corresponds to the camera position. The z axes represents the number of
frames.

The tracking results show good performances of our system, given the complexity of the analysed
sequences. It remains the problem of the target over-estimation. Some failures arise also from the
pre-filtering step. In Figure 6.13 we have a positive detection at frame 65 (the yellow bounding box
on the right) which disappears after a few number of frames. This failure is due to the pre-filtering
step, showing the disadvantages of using fixed thresholds.
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6.3.4 Probabilistic tracking

In Figure 6.15 and Figure 6.16 we show the results of the probabilistic implementation of the tracker.
We compare the results obtained with a pure correlation-based tracker to those obtained integrating
the model. In the first example the blue tracker (pure correlation tracker) does not follow the target
in the dark zone. This problem disappears with the model-based tracker. Similarly, in the second
example an application of the model to the case of tracker’s jumps is illustrated.

The importance of objective evaluation protocols for tracking systems, especially for automatic
video surveillance systems, has been underlined in the last years in both the research and the
industrial communities. The IEEE international workshop on “performance evaluation of tracking
and surveillance” (PETS), and the recent related special session at the 6th international workshop
on image analysis for multimedia interactive services (WIAMIS 2005), show such a growing interest.
The result of such numerous research efforts consists in a series of different (and sometimes confusing)
methods and criteria, showing that at the moment we are far from an objective, recognized method
of evaluation for tracking systems, depending strongly on the application field. Moreover, the
generalizability of such a method often depends on different constraints on the recording devices
(calibrated camera or self-calibrated systems, static or moving devices, monocular or stereo devices,
different resolutions). For these reasons a validation step based on visual inspection has been
adopted. The full video sequences showing the results are available at the web page

http://ltswww.epfl.ch/ltsftp/antonini/

6.4 Summary

The principal aim in the described approach is to investigate the integration of a behavioral model
for pedestrian dynamics into a detection/tracking system. The image processing part has been
kept simple, because of the preliminary nature of the work. The first two blocks in Figure 6.1 can
be implemented, in principle, by any of the existing methods described in Section 6.1 for target
detection and object tracking. The unique constraint is represented by the time resolution of the
target search step, which has to be compatible with the proposed pedestrian behavioral model.
Nevertheless, important conclusions have been reached. First, the use of a behavioral approach
is not only reliable, but can also be extended maintaining the same mathematical framework, to
higher levels of the individual decision process, which become fundamental for activity recognition
and scene analysis. Second, dynamic detection is a powerful concept that integrates both detection
(in the strict sense) and tracking together. The system has been tested on medium-high complex
sequences, with cluttered background and multiple targets and occlusions, showing very encouraging
results.
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(a) Flon 20 (b) Flon 35

(c) Flon 50 (d) Flon 65

(e) Monaco 65 (f) Monaco 80

Figure 6.12: Some dynamic detection results
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(a) Monaco 25 (b) Monaco 35

(c) Monaco 45 (d) Monaco 55

(e) Monaco 65 (f) Monaco 75

Figure 6.13: Deterministic tracking for the Monaco sequence. The color represents the tracker
identity.
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(a) flon 20

(c) flon 35

(e) flon 50

(g) flon 65

Figure 6.14: Deterministic tracking for the Flon sequence.
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(a) no model 20 (b) no model 30 (c) no model 40 (d) no model 50

(e) model 20 (f) model 30 (g) model 40 (h) model 50

Figure 6.15: First example from the Flon sequence. Figures a,b,c,d refer to a pure correlation-
based tracker. Figures e,f,g,h refer to the model-based tracker.

(a) no model 20 (b) no model 30 (c) no model 40

(d) model 20 (e) model 30 (f) model 40

Figure 6.16: Second example. The violet tracker without the model (on the left in figure a) jumps
to the right losing one target.



Chapter 7

Automatic counting of pedestrians

in video sequences

In Part I and Chapter 6 the main points of our work have been presented. A framework based on dis-
crete choice analysis has been defined to model pedestrian walking behavior, looking at a trajectory
as a sequence of choices over time. The information provided by the model consists in a discrete set
of probabilities, describing the space around a current pedestrian position. A basic correlation-based
tracker has been integrated with this model, showing that behavioral prior information is an inter-
esting alternative to other dynamic models used for tracking, establishing a mathematical framework
suitable to integrate higher level information, through a random utility and decision theoretic set up.

In this chapter, we deal with the output of the model-based tracker. The empirics and simplifications
introduced to make the target detection step easier have raisen an interesting problem, which is
actually present independently from the approach used to track targets. In Figure 1.2 we call
the module in output of the tracking system as target counting. More precisely, assuming to have
a tracking algorithm that provides an over-estimated number of targets, we investigate here some
methods aiming to reduce the bias between the real number of targets which are present in the scene,
and the target number as estimated by the tracking system. The problem is defined in Section 7.1
and a hierarchical clustering of pedestrian trajectories is proposed. In Section 7.2 we describe the
different data representations, distance/similarity measures and grouping rules adopted to perform
trajectory clustering. Finally, in Section 7.3 we report the obtained results.

7.1 Problem definition

From an ideal point of view, we would like to have a tracking system able to count the exact number
of targets. The overestimation problem is related, but not identical, to the false positive problem
for detection/tracking systems. Namely, a false positive is informally defined as a tracker placed on
an image region, that does not correspond to a target of interest, which can be a background region
or another object that we do not want to track. On the contrary, a target overestimation occurs
when a target of interest is subject to a multiple detection, giving rise to multiple trackers, all of
them being correct. In the context of pedestrian tracking, the overestimation of targets gives rise to
the generation of multiple trajectories, related to the same individual. In Figure 7.1 we report an

97
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Figure 7.1: Overestimations vs false positives

example of overestimation (red markers) and false positives (green markers).
In Figure 7.2 we show a situation where multiple trackers are manually placed on 3 different in-
dividuals walking together, and manually tracked for a certain number of frames. Three trackers
are place on the head, the center of the body and on the feet, respectively. Informally speaking,
in Figure 7.2(a) it is hard to distinguish that the resulting 9 trajectories arise from 3 individuals.
Figure 7.2(b) gives us a different viewpoint on the data, after adding the time dimension and having
rotated the axes of the reference system.

,

(a) 2D representation

,

(b) 3D representation

Figure 7.2: An example of overestimated trajectories

We finally illustrate in Figure 7.3 how the same trajectory dataset looks like, after that a combination
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Figure 7.3: The same dataset after the application of a combination of linear transformations

of linear transformations (i.e., Independent Component Analysis (ICA) plus rotation) has been
applied.
We note that now it is easier to recognize that the 9 trajectories belong to 3 well defined clusters,
corresponding to the original 3 individuals. This reasoning allows to give a general formulation of
the problem as an optimization problem.

Definition 7.1 Given a trajectory dataset T = {(xi, yi, ti)} ⊆ R3 generated by a tracking system,
with i = 1, ..., N where N is the total number of observations, and given a clustering algorithm r

between the trajectories and an objective function Jr measuring the performances of the clustering
algorithm, we are interested in finding the mapping M : T → T

′ ⊆ R3 maximizing Jr.

The idea behind this general formulation of the problem is that counting targets from trajectories
can be actually seen as providing a set of suitable (and general) transformations on the original
dataset. Moreover, for a given association rule between the data, we are guaranteed to have the
maximum discriminant power in the data association process. Of course, such a general formulation
is intractable, and it represents more a qualitative description of an intuitive process than a mathe-
matical definition. As a consequence, several simplifying assumptions have to be made, in order to
make the problem operational.

7.1.1 Multi-layer hierarchical clustering approach

A natural way to scale down the complexity of the general optimization problem proposed above
is to keep the main idea that those trajectories, originated from trackers who belong to the same
target, are similar to each other. Moreover, the set of suitable transformations on the data is
reduced to a specific and well-founded set of different data representations. This intuition leads
to a reformulation of the problem in terms of a pure trajectory clustering problem. Finding the
number of clusters in a trajectory dataset that overestimates the targets, would actually correspond
to give an estimation of the number of individuals who generate the dataset itself. A similar idea,
even if related to a different context, is used by Shechtman and Irani, 2005. The authors introduce
a behavior-based similarity measure, telling whether two different space-time intensity patterns of
two different video segments could have resulted from a similar underlying motion field. This is
done directly from the intensity information, without explicitly computing the underlying motions.
Moreover, this approach looks for correlated spatio-temporal patterns in a more general context,
not specifically referred to pedestrians.
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Specifically to the clustering domain, many research efforts have been made in the last three decades.
A huge amount of literature exists on this subject and a lot of different methods have been defined.
While a full review of the problem is clearly out of the scope of this thesis, we focus the attention
on the main aspects of clustering, given just the “flavour” on this data analysis methodology. From
a general point view, any clustering method is based on three main steps:

• data representation

• distance/similarity measures between patterns

• the choice of a grouping rule

Data representation

This first step in the general clustering problem can be identified with a general mapping (or a
set of transformations) M : T → T

′ ⊆ R3 applied to the original data set, in order to obtain a
more discriminant data representation for cluster analysis. The transformations to apply in order to
achieve this goal are strongly data dependent. We can say that normally a good data mapping has
to provide a better partition of the samples as well as a dimensionality reduction, for computational
efficiency. Just for the sake of clarity we give the following basic definitions:

Definition 7.2 A pattern (feature vector, observation) X is a single data item used by the clustering
algorithm. It consists of a vector of d measurements:

X = (x1, ..., xd) (7.1)

The individual scalar components xi with i = 1, ..., d are collected features (or attributes) and d is
the dimensionality of the pattern space.

Definition 7.3 A pattern-set S is a set

S = (X1, ..., Xn) (7.2)

The ith pattern in S will be denoted as Xi = (xi,1, ..., xi,d) and S is viewed as an n×d pattern matrix

All the feature selection/extraction methods belong to the set of transformations that map the
original dataset into a more suitable representation. In the case of image data for example, edges,
textures, color etc..., represent features that can help to improve the original representation. Dealing
with time series, we could be interested in removing the offset or the trend from data, re-scale or again
looking for recursiveness of patterns in time (Agrawal et al., 1995 and Box and Jenkins, 1970). Most
of the time, a statistical generative model is given for the data (e.g., Principal Component Analysis
(PCA) or Independent Component Analysis (ICA)) which can be used to change the coordinate
system and achieve dimensionality reduction (Bell and Sejnowski, 1995, Stone, 2002 and Hyvärinen
and Oja, 2000). If linear models do not well adapt to the data at hand, non-linear dimensionality
reduction techniques such as Local Linear Embedding (Saul, 2000) and ISOMAP (Balasubramanian
et al., 2002 and Souvenir and Pless, 2005) can be applied. There are no general guidelines suggesting
methods to obtain a good data representation. The experience of the analyst and the data at hand
represent the main sources of information.
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Distance/similarity measures between patterns

Clustering approaches are based on fuzzy concepts, such as nearness or relatedness. To quantify
these ideas, the choice of a distance and/or a similarity measure between patterns is necessary. The
most popular metric for continuous features is the Euclidean distance, which is a special case of the
more general Minkowski metric

dp(xi, xj) = (
d∑

k=1

|xi,k − xj,k|p)(1/p) (7.3)

when p = 2. This family of metrics work well when the data set has isolated clusters, but often
they need a normalization of the data to avoid that the largest-scaled sample dominates the others.
Another well known distance is the Mahalanobis metric, defined as

dM (xi, xj) = (xi − xj)Σ−1(xi − xj)T (7.4)

where xi and xj are assumed to be row vectors and Σ is the sample covariance matrix (or the
known covariance matrix of the pattern generation process). dM is optimal when the class condi-
tional densities are multivariate Gaussian distributions. Recently, interesting approaches are those
proposed in Eiter and Mannila, 1997 and Ramon and Bruynooghe, 2001 where similarity measures
and metrics are defined based on the definition of specific relations between sets of points.
A classical approach, widely used in time-series analysis, is the DTW (Dynamic Time Warping,
see Berbdt and Clifford, 1994; Keogh and Pazzani, 2000). The main idea behind DTW is to find
an alignment of two time series on a common time-axis. Another classical approach is to use a
vector-form for trajectories and use a p-norm to compute distances (see Yi and Faloutsos, 2000).
This method does not tackle the problem of outliers, while most of the metrics used to compare
data sets are sensitive to this phenomenon. A lot of work has been performed in the data mining
community, mainly focusing on finding better distance measures to indexing items in databases
(Agarwal et al., 2000 and Perng et al., 2000). Recently, several researchers have used the Hausdorff
distance in a point set matching context (Eiter and Mannila, 1997 and Guo et al., 2003), while in the
database retrieval domain an interesting similarity measure is the Longest Common SubSequence
(LCSS) (Vlachos et al., 2002). We describe these two metrics more in details in the next chapter.

The grouping rule

A class is defined as a source of patterns, whose distribution in the feature space is governed by a
probability density, specific to the class. Clustering techniques group patterns in such a way that
classes thereby obtained reflect the different pattern generation process. In Figure 7.4 a summary
of clustering techniques based on different grouping rules is illustrated.
Hard clustering approaches (King, 1967, Anderberg, 1973, Dubes and Jain, 1976, Jain and Dubes,
1988) assign a class label li to each pattern xi, identifying its class. The set of the labels for a
pattern set S is L = (l1, ..., ln) with li = 1, ..., k where k is the number of clusters. Fuzzy clustering
procedures assign to each input pattern xi a fractional degree of membership fij to each output
cluster j (Zadeh, 1965, Bezdek, 1981, Dave, 1992). Hierarchical clustering approaches produce a
nested series of partitions, based on a criterion for merging or splitting clusters. Such methods are
more suitable in those cases where no a priori knowledge provides information on the number of
clusters. The first family of these algorithms, agglomerative, begins with each pattern in a distinct
(singleton) cluster, and successively merges clusters together, until a stopping criterion is satisfied
(Strehl and Ghosh, 2000 and Wallace and Kollias, 2004). The second, divisive, begins with all
patterns in a single cluster and performs splitting until a stopping criterion is riched (Boley, 1998).
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Figure 7.4: Overview on the clustering techniques, based on different grouping rules

Partitional clustering algorithms divide data in a certain number of groups, optimizing a clustering
criterion (Mao and Jain, 1996; Symon, 1977; Dubes and Jain, 1976). The choice of the number of
groups is made based on the a priori knowledge on the data at hand. Additional techniques for
the grouping operation include probabilistic methods, where the underlying assumption is that the
patterns to be clustered are drawn from one of several distributions. The goal is to identify the
parameters of each of such distributions. Most of the work has been done assuming a maximum
likelihood estimation for Mixture of Gaussians distributions (Mitchell, 1997; Jain and Dubes, 1988).

In the next section we present the application of different clustering techniques to pedestrian trajec-
tories, in order to reduce the bias between the real number of individuals in the scene and the targets’
number as estimated by our tracking system. Again, the problem of automatic target counting is
independent from the algorithm used for tracking. Our aim is to provide a simple and well-founded
post-processing method.

7.2 Clustering of trajectories for automatic counting of pedes-

trians

In this section different data representations and distance/similarity measures are presented, under a
common hierarchical clustering framework. In Section 7.2.1 we introduce the general idea describing
how the different techniques are combined, in Section 7.2.2 the different data representations are
described, in Section 7.2.3 the different distance/similarity measures that have been tested are
formally defined, and in Section 7.2.4 the grouping rule is described.
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7.2.1 Proposed methods

A multi-layer structure

The idea for a multi-layer hierarchical clustering arises from the consideration that the comparison
between trajectories can be performed from different point of views. Trajectories of different lengths
rarely belong to the same person. Moreover, paths belonging to the same target likely start from
close spatial points. In figure 7.5 we illustrate the conceptual tree structure of our clustering method.

First level Represents a length-based clustering, where trajectories having the similar length are
grouped together. It is actually possible that pedestrians stay in the scene for different amount
of time, yielding to trajectories of different lengths

Second level Individuals enter the scene at different spatial locations. A pre-clustering on the tra-
jectory starting positions is performed, in order to separate different groups. We assume here
that those trajectories belonging to the same pedestrian and/or to close individuals walking
together start at close spatial positions.

Third level While the first two levels represent simple pre-processing operations on the original
dataset, the actual counting task is performed at the third level. The discrimination between
oversampled pedestrians and different individuals walking close to each other requires a more
detailed analysis.

We approach the problem comparing and testing different data representations and distance/similarity
measures, under a common hierarchical clustering framework.

Compared approaches

In Section 7.1.1 the clustering problem is identified with the choice of a data representation, a
distance/similarity measure and a grouping rule. In Table 7.1 we report the different techniques
that have been combined and tested.

Data Distance/similarity Grouping
representation measure rule
ICA Euclidean Hierarchical

agglomerative
TS Longest Common SubSequence (LCSS)
MCC Hausdorff
ICA = Independent Component Analysis
TS = Time series
MCC = Maximum of cross-correlation

Table 7.1: The set of different data representations and distance/similarity measures that have
been combined and tested, under a common hierarchical agglomerative clustering framework.

• Clustering with ICA and time series representations The aim here is to compare the two
representations using both the Hausdorff distance and the LCSS similarity measures (Antonini
and Thiran, 2004). ICA is a generative statistical model, indicated for clustering analysis on
sparse data. It reduces the influence of outliers, grouping the data around the independent
components. The goal is to show that a distance measure sensible to the presence of outliers
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Figure 7.5: An overview of the proposed multi-layer clustering
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(the Hausdorff distance) performs well, if used with a suitable representation. The time series
representation does not reduce the presence of outliers, requiring a more complex similarity
measure, such as the LCSS. The different combinations are tested on two different datasets,
and the results are reported in Section 7.3.1.

• Clustering with the MCC representation A new representation is proposed, based on the cross-
correlation between pairs of trajectories (Biliotti et al., 2005). The idea is that two identical
trajectories are equally distant from a reference one. Mapping pairs of trajectories with their
maximum correlation value allows to reduce the dimensionality of the data to a set of 3D
points, where spatially close points represent trajectories which are similar to a reference one.
We use the Euclidean distance with the MCC representation, testing the method on two
datasets. The relative results are reported in Section 7.3.2

7.2.2 Data representations

Time series

A trajectory dataset in its original representation can be considered as a time series of 2D spatial
points. Each point is represented by a triplet (x, y, t), the two plane coordinates (x, y) and the
time step t. Time series analysis and clustering are important topics in many different context,
from finance to bio-informatics. Several techniques exist, each of them presenting drawbacks and
advantages when seen from different points of view. For our purposes, we discuss here two common
pre-processing techniques for time series that we have use to pre-process the original data when
using this representation. The first one is the linear trend removal. The trend in a time series
represents the mean slope and can be computed with standard techniques, such as linear/non-
linear regression. Intuitively speaking, removing the trend can be considered as a way to highlight
fluctuations around the mean slope. The advantage of trend removal is that slight non-stationarities
can be (partially) addressed. In the case of pedestrians walking in normal (no panic) conditions, we
can expect a priori a certain degree of regularity and highly non linear time series should be unlikely
(see Schadschneider, 2002; Helbing et al., 2002). As a consequence, we use a linear regression model
to estimate and remove the linear trend. Another family of techniques widely used working with time
series is represented by smoothing algorithms. These techniques are used to remove irregularities in
the data and provide a clearer view of the underlying behavior of the series. When the trend has
been removed a single smoothing algorithm can be used

ft = αyt−1 + (1 − α)ft−1 (7.5)

with 0 < α ≤ 1 and t ≥ 3. The α parameter is called the smoothing constant, ft is the smoothed
value and yt the original value of the series at time t. We can also perform smoothing accounting
for the trend at the same time, using Double exponential smoothing. The equations describing the
model are

ft = αyt + (1 − α)(ft−1 + bt−1) (7.6)

bt = γ(ft − ft−1) + (1 − γ)bt−1 (7.7)

where the same notation as before has been used and bt represents the trend at time t. The first
smoothing equation adjusts ft directly for the trend of the previous period, bt−1. The second
smoothing equation then updates the trend, which is expressed as the difference between the last
two values. The equation is similar to the basic form of single smoothing, but here applied to the
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updating of the trend. α and γ are the two smoothing constants, used to smooth the observation
and the trend, respectively. They are are bounded in the interval [0, 1]. We report in Figure 7.6 an
example of the effect of such a pre-processing techniques on the same manually tracked trajectory
dataset shown in Figure 7.2(a).

,

(a) Original 2D data

,

(b) Pre-processed data

Figure 7.6: Nine trajectories are generated by 3 individuals. In the right-hand figure the effects
of the pre-processing techniques. The trajectories are better grouped into three bundles

Independent Component Analysis

The main idea here is to consider trajectories as sequences of 3D points, (x, y, t), generated by a
stochastic process. Walking pedestrians give rise to trajectories which are well different one from
the other. Even if two persons follow the same spatial path, they do that at different times, leading
the two trajectories to be separated when using a 3D representation. This fact leads the trajectory
dataset to be sparse. These heuristics find a natural mathematical formalization in probabilistic
generative models, which are well known in literature, widely used in almost any scientific domain
involving statistical computation and analysis. Independent Component Analysis (ICA, Bell and
Sejnowski, 1995; Stone, 2002) in particular is a generative model where a set of random variables,
the observations, are supposed to be generated by a mixing process, starting from another set of
statistical independent latent (unobservable) variables, the sources, by means of an unknown mixing
matrix A. This model can be described by the following equation:

X = As (7.8)

where X represents the observations, s the sources and A is the mixing matrix. The number m of
observations can differ from the number n of sources. For a general discussion on ICA we can assume,
without loss of generality, that m = n. The basic hypothesis of the ICA model is the statistical
independence of the latent variables. This property can be derived using an information-theoretic
framework. We define the mutual information I between m scalar random variables yi, i = 1, ..., m

as follows:
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I(y1, ..., ym) =
m∑

i=1

H(yi) − H(y) (7.9)

where H represents the differential entropy. The mutual information is equivalent to the Kullback-
Leibler divergence between the joint density of y and the product of the marginal densities of the
yi. This measure is zero if and only if the variables yi are statistically independent. It is possible
to show that constraining the yi to be uncorrelated and of unit variance, the mutual information is
equal to:

I(y1, ..., ym) = C −
∑

i

J(yi) (7.10)

where J represents the negentropy, defined as:

J(y) = H(ygauss) − H(y) (7.11)

It is well known from information theory that Gaussian variables have the maximum entropy among
all the variables with equal variance. We obtain that minimizing the mutual information is equivalent
to maximize the negentropy, which actually means to maximize the non Gaussianity of the random
variables (see Hyvärinen and Oja, 2000). So, the main assumption in ICA is the non-Gaussianity of
the source signals.

Geometrical interpretation ICA becomes interesting for our purposes when we consider its
geometrical interpretation, compared to Principal Component Analysis (PCA). While the PCA
solution is given by orthogonal axes representing the directions of maximum variance in the data,
ICA can be seen as the non-orthogonal extension of PCA. In Figure 7.7 this property is illustrated
(Figure 7.7 is taken from Bartlett et al. (2002)).

Figure 7.7: ICA vs PCA

When the sources are sparse, ICA provides a better probabilistic model of the data than PCA,
which better identifies where the data concentrate. The chosen solution is based on the high-order



108 Chapter 7. Automatic counting of pedestrians in video sequences

statistics of the data and represents a non-orthogonal rotation. As a consequence, this transforma-
tion can change the relative distances between points affecting similarity and/or distance measures.
For these reasons, it can be quite useful in classification and clustering problems. Figure 7.2(b) and
Figure 7.3 illustrate an example of trajectories projected in the ICA space.

The limitation of this representation resides in an ambiguity intrinsic in the ICA model. In equation
7.8, both s and A are unknown. We can change the order of the independent components keeping
untouched the validity of the model. Therefore, the components are estimated up to a permutation
matrix. When the ICA model is used, for example, as a dimensionality reduction method (by
means of a previous PCA step, where a certain number of eigenvalues of the covariance matrix
are kept) this doesn’t change the results. On the contrary, in our case we use the ICA model to
estimate a transformation matrix, changing the space where the data are represented. Permuting
the order of the estimated components is the same as inverting the axis of the new representation
system, changing the data representation itself. This fact leads to different clustering results. One
solution can be to keep the ICA estimation that optimizes the clustering. In our specific case, having
three independent components, the number of permutations is 3!. As a consequence, it is possible to
choose the order which maximizes the clustering performances. This ambiguity in the ICA model can
seriously deteriorate the performances when such a model is applied to high dimensional datasets,
where the number of permutations become huge.

Maximum of cross-correlation

We introduce here the maximum of cross correlation (MCC) representation. The idea is simply the
realization that two identical trajectories are always equally far from a reference one. This simple
fact is used here. We fix any trajectory t1 of the dataset as the reference trajectory. We compute
the similarity measure between two trajectories as the cross-correlation function between them. We
can look at two trajectories t1 of length M and t2 of length N as two real 2D discrete signals, and
write the cross-correlation function c between them as:

c(m, n) = t1(−m,−n) ∗ t2(m, n) =
M−1∑
j=0

N−1∑
k=0

t1(−j,−k)t2(m − j, n − k) (7.12)

The two trajectories are represented by two matrices of size Mx2 and Nx2 respectively, so the size
of the full cross-correlation is (M +N −1)x3. We show in figure Figure 7.9(a) the 3D representation
of the output c where the axes represent the three columns of the cross-correlation. The new
trajectory representation is obtained mapping each pair of trajectories with the maximum of their
cross-correlation. The intuitive idea is that, independently from the chosen reference trajectory t1,
the maximum of the cross-correlation between two similar trajectories t2 and t3 with t1 maps t2 and
t3 into two close spatial points. In a similar way, two strongly different trajectories will be mapped
into two farther spatial points. In Figure 7.8 a new set of 30 trajectories, manually tracked from 10
pedestrians, is illustrated. The individuals are walking in 3 different groups composed by 3, 3 and
4 persons, respectively. Looking at Figure 7.8 is easy to identify the 3 groups, but it is not easy at
all to count the 10 pedestrians. Figure 7.9 and Figure 7.10 illustrate the 3D MCC with all the 2D
projections.
This representation presents several advantages over the others. First, it can handle trajectories
of different lengths, in a quite easy manner, being the cross-correlation operator independent on



7.2. Clustering of trajectories for automatic counting of pedestrians 109

Figure 7.8: New set of 30 trajectories, manually tracked, corresponding to 10 pedestrians

Figure 7.9: MCC in 3D and the x-y 2D projection

the number of points. Second, it allows to map a couple of trajectories into one 3D point. This
remains true for any dimensionality of the dataset and represents a drastic dimensionality reduction.
Third, it allows to reduce the clustering problem to a much simpler spatial clustering, which can be
handled, with a certain accuracy, by means of the simple Euclidean metric.
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Figure 7.10: The other 2D projections

7.2.3 Distance/similarity measures

Hausdorff distance

The Hausdorff distance is a metric between non-empty compact point sets. Let X1 = (x11, ..., x1m)
and X2 = (x21, ..., x2n) be two finite point sets. The Hausdorff distance H(X1, X2) is defined as
follows:

H(X1, X2) = max(h(X1, X2), h(X2, X1)) (7.13)

where h(X1, X2) is the direct Hausdorff distance between X1 and X2, defined as

h(X1, X2) = max
x1∈X1

D(X1, X2) (7.14)

where ∀x1 ∈ X1, D(x1, X2) is defined as

D(x1, X2) = min
x2∈X2

d(x1, X2) (7.15)

It identifies the point x∗ ∈ X1 that is farthest (using a pre-specified norm d, usually the Euclidean
distance) from any point in X2 and measures the distance from x∗ to its nearest neighbour in X2.
Essentially, h(X1, X2) ranks each point in X1 based on its distance from the nearest point in X2

and then uses the largest ranked such point (x∗ ) as the distance measure. Similarly, we can define
h(X2, X1). The Hausdorff distance is the maximum between the direct and inverse distances. As
it is well known, this metric is very sensitive to outliers so smoothing operations or other kind of
transformations, as for example the ICA representation, are usually performed before to compute
the distance. On the other hand it has also some quite good properties. First, it represents a metric
and not just a similarity. Second, we can easily apply this measure to sets of different sizes.

Longest Common SubSequence

Longest common subsequence (LCSS) is a similarity measure derived from the Levenshtein distance,
also known as edit distance measure (Levenshtein, 1966). The edit distance is a measure of the sim-
ilarity between two strings, given by the number of deletions, insertions, or substitutions required
to transform one string into the other. In this spirit, and using the notation used in Vlachos et al.
(2002), we use what the authors call the S1 similarity measure. It does not extend to translations
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because in our case two parallel trajectories with similar shapes may represent two different indi-
viduals.
Given two trajectories A = ((ax,1, ay,1), ..., (ax,n, ay,n)) and B = ((bx,1, by,1), ..., (bx,m, by,m)), let
Head(A) and Head(B) be two sequences defined as:

Head(A) = ((ax,1, ay,1), ..., (ax,n−1, ay,n−1))
Head(B) = ((bx,1, by,1), ..., (bx,m−1, by,m−1)).

Definition 7.4 Given an integer δ ≥ 0 and a real number 0 < ε < 1 the LCSSδ,ε(A, B) is defined
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if A or B is empty

1 + LCSSδ,ε(Head(A), Head(B)),
if |ax,n − bx,m| < ε and |ay,n − by,m| < ε and |n − m| ≤ δ

max(LCSSδ,ε(Head(A), B), LCSSδ,ε(A, Head(B))),
otherwise

Definition 7.5 Given two trajectories A and B and given ε ∈ (0, 1) and δ ≥ 0, the similarity
measure S1 is defined as follows:

S1(δ, ε, A, B) =
LCSSδ,ε(A, B)

min(m, n)
(7.16)

The constant δ controls how far in time we can go in order to match a given point from one series
to a point in the other time series. ε is the matching threshold. LCSS similarity has the very nice
property of matching two sequences stretching them, without rearranging the order and allowing for
some unmatched elements. This is not allowed for example using Euclidean distance or DTW, which
require all the elements to be matched, including the outliers. For this reasons, LCSS is normally
better in presence of outliers.

7.2.4 Grouping rule

Our aim is to reduce the bias in the number of targets as estimated by the tracking system. We do
not know a priori how many pedestrians are present in the scene. As a consequence, the hierarchical
approach represents a natural way of grouping data over a variety of scales. We use both the
agglomerative and divisive techniques.

• Agglomerative: trajectories are paired into binary clusters, the newly formed clusters are
grouped into larger clusters until a hierarchic tree is created. The resulting tree can be analyzed
at different scales, to find out different resulting data partitions. An agglomerative algorithm
yields a dendogram representing the nested groups of trajectories and the similarity levels
at which the grouping changes. Given n trajectories, the pairwise distance information is
represented by a vector of length n(n − 1/2). The linking method we use to generate the
hierarchical tree is based on the average distance measures. Let u and v two clusters of size
nu and nv respectively and let be xui the ith object in cluster u. We have:



112 Chapter 7. Automatic counting of pedestrians in video sequences

d(u, v) =
1

nu · nv

nu∑
i=1

nv∑
j=1

dist(xui, xvj) (7.17)

where the averaged pair distance between all the object pairs in the two clusters is used.

• Divisive: Hierarchical divisive clustering starts with a single cluster containing all the given
objects and it keeps splitting the clusters based on some criterion in order to obtain a partition
of singleton clusters. We report in the following the main steps of the used algorithm (Clason,
1990):

1. from the whole set of trajectories we choose any one to be the first hub;

2. find the trajectory which is farthest from this hub and make it the second hub;

3. for each remaining trajectory, assign it to the closer hub;

4. to decide for another hub:

– find the average distance between the two hubs d;
– compute the distance from each trajectory to its hub. If any distance is greater than

d, define another hub for such a trajectory;

5. the new hub is the trajectory which is farthest from its respective hub;

6. re-compute the distance of each trajectory to the new hub and reassign the trajectory to
the new hub in the case that the new distance is less then the distance with the previous
assigned hub;

7. repeat iteratively from step 4 until all trajectories are within a distance d from their hub
or all points are themselves hubs.

In the previous chapter a general formulation for the counting pedestrian problem has been giv-
en. The optimization problem is intractable and simplifying hypothesis have to be done. In this
chapter we have proposed some existent methods for data representation (time series and ICA)
and we have proposed a new one (MCC) based on the simple mapping of two trajectories into a
3D point, represented by the maximum of the cross-correlation between the trajectories. Different
distance/similarity measures have been chosen, depending on the method chosen for data represen-
tation. In the following chapter we present the experimental results obtained by the combination of
the techniques defined here.

7.3 Results

We report in this section the quantitative results obtained applying the different trajectory clustering
procedures to different datasets. All the trajectories coming from the tracker are considered in the
clustering step, including those that not correspond to real individuals. Such an error comes actually
from the tracking system and cannot be corrected with the proposed clustering approach. The first
experiment, reported in Section 7.3.1, compares the clustering results obtained with time series and
ICA representations, using the Hausdorff distance and the LCSS similarity measures (Antonini and
Thiran, 2004). The second experiment in Section 7.3.2 compares the ICA representation with the
MCC representation (Biliotti et al., 2005).

The results are compared defining two kind of errors. We call e1 the number of false negatives,
meaning that no clusters refer to an individual. We call e2 the number of false positives, meaning
those pedestrians having more than one resulting cluster over themselves.
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7.3.1 Test 1

In this first test we compare the time series representation with the ICA representation. The
Hausdorff distance and the LCSS similarities are used with both the representations. The aim of this
experiment is to show that better results can be obtained using a more suitable data representation,
which reduces the presence of outliers. Actually, also a metric as the Hausdorff one, extremely
sensible to outliers, can perform well when it is used with an opportune data representation. Two
sets of trajectories are used. The first one is composed by 30 trajectories manually grabbed and the
second one consists in 15 trajectories obtained with our model-based tracking system. We show in
the following the obtained results. The manually tracked points that generate our first data set are
placed on 10 different pedestrians, 3 for each of them, and are placed on the head, the body’s center
and on the middle of feet of the individuals. The selected 10 pedestrians walk divided in groups
of respectively 3, 3 and 4 persons, as we can see in figure Figure 7.11(a). The goal is to correctly
cluster the 30 trajectories in 10 different groups. We show in figure Figure 7.11(b) the trajectories.
The results on the first dataset are summarized in Table 7.2 and Table 7.3.
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(a) Trackers used to collect the data

(b) Trajectories generated by the trackers

Figure 7.11: The first dataset used in Test 1



7.3. Results 115

num clustering num num e1 e2
traj alg clusters ped
30 Time series with 13 10 1 4

Hausdorff distance
30 Time series with 10 10 1 1

LCSS similarity

Table 7.2: Results obtained using the Hausdorff metric and LCSS similarity with a time series
representation

num clustering num num e1 e2
traj alg clusters ped
30 ICA with 10 10 / /

Hausdorff distance
30 ICA with 10 10 / /

LCSS similarity

Table 7.3: Results obtained using the Hausdorff metric and LCSS similarity in the ICA space

In Table 7.4 and Table 7.5 we report the results obtained using the second dataset.

num clustering num num e1 e2
traj alg clusters ped
15 Time series with 6 6 2 2

Hausdorff distance
15 Time series with 1 6 5 /

LCSS similarity

Table 7.4: Results obtained using the Hausdorff metric and LCSS similarity with a time series
representation

num clustering num num e1 e2
traj alg clusters ped
15 ICA with 6 6 1 1

Hausdorff distance
15 ICA with 6 6 1 1

LCSS similarity

Table 7.5: Results obtained using the Hausdorff metric and LCSS similarity in ICA space

Table 7.2, Table 7.3, Table 7.4 and Table 7.5 present different interesting points to discuss. The
results for the first data set clearly show how the ICA transformation improves the clustering. We can
see it also in the respective results using the Hausdorff and LCSS metric/similarity. The differences
of the respective results in the original space are removed in the ICA space, where the Hausdorff
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distance performs as well as the LCSS similarity measure. This is an implicit indication that the
non-orthogonal rotation has reduced the presence of outliers in the trajectories, concentrating the
data along the independent directions. We remark the same qualitative improvements for the second
data set.

7.3.2 Test 2

The results illustrated in the previous section show that a suitable data representation can overcome
the drawbacks related to a specific metric. As we have already said in Section 7.2.2, the ICA
representation presents some limitations, due to the nature of the ICA model itself. The independent
components are defined up to a permutation matrix. This fact can create problems when we use
such components to change the representation of our data. In this section we compare the ICA
representation with the MCC. The first dataset used in this experiment consist in 31 trajectories
distributed on 11 pedestrians (Figure 7.12(a)). The density of the targets in the scene is high. In
particular, we note that the group of four pedestrians walking together (Figure 7.13(a)) is highly over-
estimated by the detection/tracking algorithm. The numerical results are presented in Table 7.6.
The clustering results on the trajectories are shown in Figure 7.12(b) and Figure 7.12(c) while visual
examples are shown in Figure 7.13(b) and Figure 7.13(c).

num num num e1 e2
traj clusters ped
Independent Component Analisys:
31 14 11 0 3

Cross-correlation:
31 12 11 0 1

Table 7.6: Results for the Flon sequence.

The second dataset used in this experiment is strongly over-estimated by the detection/tracking
system. Eight pedestrians are present in the scene but the trajectories obtained are 43. We report
in Table 7.7 the relative numerical results. The clustering results on the trajectories are shown in
7.14(b) and 7.14(c) while visual examples are shown in 7.15(b) and 7.15(c).

num num num e1 e2
traj clusters ped
Independent Component Analisys:
43 17 8 0 4

Cross-correlation:
43 9 8 0 1

Table 7.7: Results for the Monaco sequence.

7.4 Summary

In this chapter we have presented a comparative study of clustering methods for automatic counting
of pedestrians in video sequences. The aim is to reduce the bias in the real number of targets
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(a) The Flon trajectory set
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(b) Cross-correlation-based clustering
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(c) ICA-based clustering

Figure 7.12: The results of the clustering on the Flon trajectory data set.
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(a) The final trajectory points without clustering

(b) The final trajectory points after the max-of-cross-correlation clus-

tering

(c) The same example after the ICA clustering

Figure 7.13: Visual examples for the Flon sequence.
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(a) The Monaco trajectory set
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(b) Cross-correlation-based clustering
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(c) ICA-based clustering

Figure 7.14: The results of the clustering on the Monaco trajectory data set.
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(a) The final trajectory points without clustering

(b) The final trajectory points after the max-of-cross-correlation clus-

tering

(c) The same example after the ICA clustering
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present in the scene, as estimated by the model-based tracker. Such system actually provides an
over-estimation of the real number of targets. We do not focus on the errors coming from the
detection/tracking steps but rather we attempt to exploit the information provided by it. At first,
the data set is analysed based on the length and starting point position of trajectories. On the
resulting pre-clustered dataset, different data representations and distance/similarity measures have
been used. More specifically, we first apply both the Hausdorff distance and LCSS similarity for
the time series and ICA representations. The results presented in Section 7.3.1 show that the
ICA space provides a more suitable representation with respect to the original space-time domain,
reducing the presence of outliers. The second experiment presented in Section 7.3.2 shows that the
maximum-of-cross-correlation mapping allows for better clustering results providing at the same
time dimensionality reduction at a low computational cost. The trajectory clustering problem is
so reduced to a simpler 3D spatial clustering using the Euclidean metric. We finally comment on
the fact that the clustering approach to count targets is independent from the algorithm used for
tracking. The only condition is the target overestimation. The conclusions presented here indicate
an alternative approach to detection and tracking. Computational resources can be saved in the
detection step, allowing for multiple detection of targets. The resulting bias in the number of targets
can be reduced in a post-processing step, by means of trajectory clustering techniques.
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Chapter 8

Conclusions and future works

8.1 Research Summary

8.1.1 Discrete choice models for pedestrian walking behavior

The principal aim of this thesis was to investigate econometric tools, namely DCMs, for pedestrian
walking behavior. The attention paid to these methods has been motivated by two main reasons.
On one side, reliable results obtained in microeconomics and transportation science have shown how
DCMs represent interesting descriptive models, designed to capture both correlation over alterna-
tives and heterogeneity over the population of decision makers. In those cases of choices over a
discrete set of alternatives, the random utility representation provides a consistent way to combine
individual preferences with the knowledge of the modeller about the choice process. A rational be-
havior paradigm is assumed and it is implemented through a random utility maximization approach.
The second reason to motivate our study is the always higher interest in model-based methods to
pedestrian tracking. Scene analysis and activity recognition tasks are hard to perform in real sce-
narios using only standard image-based approaches. In this context, our aim was to provide new
ideas and methodologies, integrating behavioral models for pedestrian dynamics with state-of-the-
art detection/tracking techniques.

In Part I a general framework for pedestrian walking behavior based on DCM has been defined.
The walking process is seen as a sequence of spatial locations choices over time. An adaptive model
for spatial discretization has been given. The choice set is defined in a subjective way, depending
on the current speed and direction of individuals. It represents a first way to take into account
differences between decision makers. Two classes of behavioral patterns are identified: constrained
and unconstrained. Constrained patterns describe the interactions with other individuals and they
are further classified into attractive and repulsive interactions. The former are captured through a
leader follower model. People are influenced by other individuals that have similar kinematic char-
acteristics, when they are in a neighbour of the decision maker. When these individuals, i.e. leaders,
accelerate or decelerate, a corresponding acceleration or deceleration as well as a direction change
are induced on the decision maker. Its value depends on the kinematic characteristics of the leader,
namely position, moving direction and speed. This phenomenon is important and it contributes to
explain the formation of lanes in highly crowded conditions. The repulsive interactions are captured
through a collision avoidance model. Similarly to the leader case, those individuals identified as col-
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liders influence the walking behavior of the decision maker. Based on their kinematic parameters,
the current pedestrian adapts her direction and speed, in other to avoid possible collisions. The
unconstrained patterns capture the behavior of individuals, independently from the other people
present in the scene. Pedestrians perceive as costs both unconstrained accelerations and changes in
directions. In free-flow conditions, the acceleration behavior is modeled as a continuous function of
the current speed. Elasticity parameters are introduced, showing that the attractiveness for both
positive and negative accelerations are non-linear functions of the current speed value. A link is
established with higher level decision making processes (tactical and strategical decisions). In the
short-range context, the individuals move directly toward the final destination they have chosen at
the strategical level. This behavior is captured through the forward destination model. A certain
regularity of the walking trajectories is captured through the keep direction model, showing that
individuals have the tendency to keep their current direction. These results are important in a
pedestrian modeling context, being estimated on real data and validated by means of a pedestrian
simulator.

8.1.2 A model-based pedestrian tracking system

In Part II the behavioral model is applied in a computer vision application, namely detection, track-
ing and counting of pedestrians in video sequences. The aim is to integrate the prior information
provided by the model with the image-based information. Two methods are investigated, the first
deterministic and the second probabilistic, under a common initialization scheme. Under the hypoth-
esis of working with a monocular calibrated camera, the integration is done on the top-view plane.
The target detection step is performed initializing the image through a sub-sampled foreground
mask, obtained by background subtraction. Each hypothetical target is tracked by correlation, over
a certain number of frames (evaluation period), and the resulting hypothetical trajectories are fil-
tered using the calibrated model. The main advantage of this method is the simplicity. Well known
problems related to the target detection step are bypassed, leaving to the model the role of selecting
the most human-like trajectories. The result of this operation is a dynamic detection step, meaning
that pedestrians are detected taking into account their behavior over the evaluation period. In the
deterministic approach, pedestrians are tracked repeating the dynamic detection process. In the
probabilistic approach, once the targets are detected, they are tracked over the video sequence using
a Bayesian approach. The prior distribution is represented by the choice probabilities given by the
model, while the likelihood term is equal to the normalized correlation. Tracking is performed by a
maximum a posteriori approach.

8.1.3 Counting pedestrians

The simple initialization scheme proposed above gives rise to an overestimation of the number of
targets. It is actually possible that more points of the sub-sampled foreground belong to the same
target, generating multiple trajectories referring to the same individual. In this case, the filtering
performed by the model does not discriminate between these trajectories, considering all of them
as human trajectories. This problem has been tackled by a clustering approach. We assume that
those trajectories belonging to the same target are more similar than trajectories belonging to
different targets. The aim is to determine clusters of trajectories, where each cluster contains those
trajectories generated by the same target. Several data representations are proposed and different
distance/similarity measures are tested, under a common hierarchical clustering framework. In the
first representation, trajectories are considered as time series of two-dimensional spatial positions.
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In the second one, they are treated as three-dimensional points originated by a generative statistical
process (ICA). Two different metrics, namely the Hausdorff distance and the Longest Common
SubSequence similarity measure are tested on both the representations. Experimental results show
that a metric notably sensible to outliers as the Hausdorff one, performs well when used with a more
robust data representation, such as ICA. A third representation maps pairs of trajectories with a
three-dimensional point, given by the maximum of their cross-correlation. This approach is simple,
computationally convenient and it allows for a strong dimensionality reduction. Clustering on this
representation is performed using the Euclidean distance, and experimental results show that it
outperforms the other tested approaches.

8.2 Contributions

The proposed research is characterized by the cross-disciplinarity between behavioral modeling and
computer vision. Three specific problems are treated: pedestrian walking behavior modeling, detec-
tion and tracking of pedestrians and counting pedestrians in video sequences. This thesis contributes
to the state of the art of both these topics in the following respects:

• A new microscopic model for short-range pedestrian walking behavior, based on discrete choice
analysis, is proposed. The framework provides a classification of the behavioral patterns into
constrained and unconstrained behaviors. The constrained patterns are further classified as
attractive and repulsive interactions. A dynamic and individual-based spatial representation,
adaptive with individual speed and direction, is provided.

• Leader follower and collision avoidance models are defined to model the constrained behaviors.
We assume that the decision maker identifies leaders and colliders in the space around, based on
the similarities among the respective kinematic characteristics, namely speed, moving direction
and position. These models are specified using a sensitivity-stimulus framework, widely used in
transportation science (driver behavior modeling) for car following models. It has been adapted
and extended to the pedestrian case, for both the leader follower and collision avoidance
models.

• The unconstrained portion of the model takes into account the behavior of individuals, in-
dependently of the presence of other pedestrians. It captures the trade-off between three
behaviors: the attractiveness for accelerations depends continuously on the current speed val-
ue; the tendency of individuals to keep their current directions; the tendency of individuals to
move towards their final destination, chosen at a higher level in the decision process.

• The spatial correlation among the alternatives of the choice set is captured defining different
error structures, based on a cross nested logit and a mixed nested logit specifications.

• The parameters of all components of the pedestrian walking behavior are estimated jointly us-
ing two different sources of pedestrian trajectory data, collected from video sequences recorded
in real scenarios. The result is a model applicable to walking pedestrians in real, normal (no
panic) conditions, rather than only specific cases. The heterogeneity in the data has been
captured, using different error terms for the two sources of data, and estimating the related
scale parameter.

• A detection/tracking system for pedestrians in video sequences, based on the proposed be-
havioral model, has been developed. In the proposed approach, detection and tracking are
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interpreted as inter-operating steps. The idea of using behavioral prior information is imple-
mented by the dynamic detection algorithm.

• Two approaches to track pedestrians over time are proposed. A deterministic one, where
tracking is interpreted as a consecutive detection task and implemented repeating the dynamic
detection step. A probabilistic one, where the behavioral and image-based information are
combined under a Bayesian framework.

• An algorithm to count pedestrians in video sequences is proposed. It is based on hierarchical
clustering of trajectories produced by the tracking system. It can be used independently from
the tracking approach, under the assumption that the latter provides an overestimation of the
number of targets.

8.3 Directions for future research

Several tracks for future research can be identified from this work.

• Pedestrian behavior is complex and a suitable framework to represent the decision making pro-
cesses involved is the hierarchical one, proposed by Hoogendoorn (2003) and Daamen (2004).
We have shown in this work that DCMs are flexible and efficient to model walking behavior,
which corresponds to the operational level in the proposed hierarchy. Route choice, activi-
ty choice and destination choice are captured by higher level decision processes. The DCM
framework has already been used in similar contexts, in transportation science. A possibility
is represented by the extension of the DCM framework from the operational to the tactical
and strategical levels. It would allow for a general model of pedestrian behavior, using the
same mathematical framework.

• The proposed research makes use of pure dynamic data, where only kinematic characteristics
of decision makers are available. Complex behavioral patterns can be captured taking into
account individual characteristics. Under controlled experimental conditions, it would be
possible to collect individual information, such as the age, sex, weight, destination, level of
stress, nature of the trips, area knowledge. DCMs provide a well-founded statistical framework
to integrate such socio-economic characteristics, in order to calibrate more detailed and realistic
models.

• In the proposed research, only pedestrian-pedestrian interactions have been taken into account.
It would be interesting to include the influence of the spatial layout as well as fixed and moving
obstacles.

• The detection/tracking system proposed here is based on a correlation-based tracker. More
advanced methods proposed in the computer vision literature should be tested, combined with
the proposed behavioral model, in order to maximize the performances of the system.

• Most of the vision-based systems installed in public spaces for video-surveillance purposes
have to face the problem of event detection. Especially the identification and recognition of
abnormal situations, such as those dictated by panic and emergency conditions, are crucial.
An extension of the proposed model to these scenarios would be useful, in other to integrate
behavioral information with video processing techniques, for automatic video surveillance,
activity recognition and event detection applications.
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