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Abstract—The throughput of wireless networks is known to scale poorly
when the number of users grows. The rate at which an arbitrary pair of
nodes can communicate must decrease to zero as the number of users tends
to infinity, under various assumptions. One of them is the requirement that
the network is fully connected: the computed rate must hold for any pair of
nodes of the network.We show that this requirement can be responsible for
the lack of throughput scalability.We consider a two-dimensional (2-D) net-
work of extending area with only one active source-destination pair at any
given time, and all remaining nodes acting only as possible relays. Allowing
an arbitrary small fraction of the nodes to be disconnected, we show that
the per-node throughput remains constant as the network size increases.
As a converse bound, we show that communications occurring at a fixed
nonzero rate imply a fraction of the nodes to be disconnected. Our results
are of information theoretic flavor, as they hold without assumptions on the
communication strategies employed by the network nodes.

Index Terms—Ad hoc networks, information theory, percolation theory,
scaling laws, sensor networks, wireless networks.

I. INTRODUCTION

A completely wireless network consists of n nodes that communi-
cate over a common wireless channel. A natural question that arises in
such systems is how the throughput scales with the number n. Typi-
cally, there are two ways of letting n tend to infinity. One can either
keep the area on which the network is deployed constant, and make
the node density � tend to infinity (dense networks); or one can keep
the node density � constant, and increase the area to infinity (extended
networks). In both of these settings, network theoretic lower bounds on
achievable transmission rates can be obtained constructively, for given
communication strategies and power attenuation laws; while informa-
tion theoretic upper bounds must be obtained allowing arbitrary com-
munication strategies and assuming only the power decay law in the
propagation medium.

The first paper [1] to address these problems considered the dense
network case, and a traffic scenario where each node generates packets
for a destination nonvanishingly far away. Using a network theoretic
approach based on multihop communication, it showed a lower bound
on the per-node rate of 
(1=

p
n) bit/s, if nodes are arbitrarily located;

and a lower bound of 
(1=
p
n logn) bit/s if nodes are randomly lo-

cated, see also [2]. Note that these results optimistically rely on point to
point connections delivering infinite power as nodes tend to be closer
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to each other, which is a physical impossibility. When the physical con-
straint of bounded power is enforced, the results are corrected by intro-
ducing an additional 1=

p
n factor, see [3].

For extended networks, the works in [4] and [5] present information
theoretic bounds of �(1=

p
n) bit/s per node, for arbitrarily located

nodes, assuming some natural power attenuation law in the wireless
medium [6], which can be bounded without affecting the final result.
Finally, using percolation theory arguments, it has been shown [7] that
it is possible to achieve the same
(1=

p
n) rate with randomly located

nodes.
All works aforementioned consider an all-to-all communication sce-

nario. Instead, when nodes are located at random, but there is only one
active source-destination pair at any given time, while the remaining
nodes act as possible relays, it has been shown that the transmission
rate in dense networks can grow at most as O(logn), under the as-
sumption that around each of the two active nodes there is a dead zone
of finite nonzero radius without any node [8]. For extended networks
(and without dead zone assumption) it has been shown that the rate de-
creases as O((logn)�d�), where � > 2 is the exponent of the power
attenuation function and d 2 f1; 2g denotes the dimension of the net-
work [9].
The conclusion drawn from all these works is rather pessimistic,

since the rate offered to each node always tends asymptotically to zero
as the number of nodes grows—except for relay transmission in dense
networks [8]. On the other hand, the common requirement for all the
works mentioned above, is that every pair of nodes can be connected
at that rate.
In this correspondence, we show that the price to pay to operate the

network at a given rate is precisely its full connectivity. We prove that
if we allow an arbitrary small fraction of the nodes to be disconnected,
then a nonvanishing rate can be achieved in two–dimensional (2-D)
extended networks and in the relay scenario of [9]. On the contrary, it
turns out that in the 1-D case, a nonzero rate is impossible even if we
allow an arbitrary large fraction of nodes to be disconnected.
Finally, we want to spend fewwords on the intuition behind these re-

sults. The original result of [8] for dense relay networks can be easily
seen as an application of the capacity formula for multi-antenna chan-
nels: the addition of more nodes in a finite area, each of which is ca-
pable of working as a relay transmitting at constant power, improves
the transmission rate by a logarithmic factor of the total power. Our re-
sult for extended relay networks of constant density can be seen as a
consequence of percolation theory: by choosing the constant density of
the nodes � larger than a critical value �c, a giant connected component
forms. Inside this component every pair of nodes can communicate at a
constant bit rate. Percolation theory tells us even more: it follows from
a result by Penrose and Pisztora [10] that this component contains a
constant fraction of the nodes that can be made arbitrarily close to one
by an appropriate choice of �. This good news is counterbalanced by
a corresponding pessimistic result that immediately leads to a corre-
sponding upper bound: in an extended network, no matter how small
the rate of transmissions, there will always be a nonzero fraction of the
nodes that will not be able to communicate to the rest of the network
at that rate, even if we allow arbitrary cooperation between the nodes.
This is proven by recasting the constraint on a minimal rate from the
source to all other nodes, as a constraint on the value of a shot noise at
the source location, and by showing that the fraction of nodes verifying
this constraint is strictly less than one.
We point out that our bounds tend to zero when the fraction of the

nodes required to sustain the given rate tends to one, in agreement with
[9]; and that they diverge as the density increases, in agreement with
[8]. Moreover, it is interesting that allowing a fraction of the nodes to
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be disconnected does not change the scaling law in [4], [5], as in an
all-to-all communication scenario the 1=

p
n bottleneck is due to the

cost of relaying packets for other nodes.
The rest of the correspondence is organized as follows. We consider

two different connectivity models, the Boolean model and the infor-
mation theoretic relay model. Section II summarizes the assumptions
made for both models. We begin with the Boolean model in Section III,
to stress the importance of dimensionality on the connectivity, and to
set up preliminary results that will be useful for the information the-
oretic relay model. Section IV contains the two main results of our
correspondence, a lower bound (Theorem 2) and upper bound (The-
orem 3) on the fraction of nodes that can communicate at a given rate.
The lower bound is proven using percolation theory and the computa-
tion of the achievable throughput along the shortest path between the
source and destination in Appendix I. The upper bound is proven by
establishing an ergodic property of shot noises in Appendix II. Finally,
Section V concludes the correspondence.

II. NETWORK MODELS

We consider 1- and 2-D random networks. In one dimension, we as-
sume that nodes are scattered according to a Poisson point process of
unit intensity over the interval [0; n]. The average number of nodes in
the network is thus equal to n. Similarly, in two dimensions, we con-
sider a Poisson point process of unit intensity over the square [0;

p
n]�

[0;
p
n], so that the average number of nodes is also equal to n.

We look at asymptotic connectivity results when n tends to infinity,
while the node density remains constant (extended network). In the
following, we will use the expression with high probability (w.h.p.)
to qualify an event whose probability tends to one when n tends to
infinity.

Connectivity results strongly depend on how we define the word
“connected.” Throughout this correspondence, we will look at the two
following connectivity models:

A. Boolean Connectivity

In the first -and simplest- model, we assume that two nodes are di-
rectly connected if the distance between them is less than a given dis-
tance (or range) r. Two nodes are connected if there exists a path of
directly connected nodes joining them.

It turns out that this definition of connectivity leads to a well known
model in stochastic geometry called Boolean model [11]. In fact, if we
center a ball (segment or disk, depending on the dimensionality of the
network) of radius r=2 on each node, we end up with a Boolean model
where the clusters formed by overlapping balls correspond exactly to
the connected components in our network.

B. Information Theoretic Connectivity

In this model, we adopt a more practical point of view, and consider
two nodes connected if one can send data to the other at rate R > 0
and vice versa (possibly with the help of all other nodes, as we assume
that at each instant there is only one node transmitting and one node
receiving). We assume that each node has a maximum emitting power
P , and that the power attenuation from Point x to Point y is determin-
istic, and given by some function l(ky � xk), where k � k denotes the
Euclidean norm. We denote byN0 the power of the background white
Gaussian noise added to each received signal (AWGN). Furthermore,
for technical reasons (as, e.g., in [12]), we assume that l is decreasing
and such that

xl(x)dx <1:

Fig. 1. 1-D Boolean model. Each node is the center of a segment of length r.
The origin (on the left end) is connected to all nodes before the first gap (plain
segments). All nodes on the right are disconnected (dashed segments).

Wewill make no further assumptions on the communication protocol
and look at information theoretical bounds on the fraction of nodes that
can communicate at rate R with each other.

III. BOOLEAN CONNECTIVITY

In this section, we review connectivity results in the Boolean model.
These results enlighten the fundamental difference between 1-D and
2-D connectivity and are then applied to prove our main theorems in
the information theoretic model.

A. 1-D Network

In one dimension, connectivity is broken whenever there is a “gap”
somewhere on the line (see Fig. 1). Here, in the Boolean model, con-
nected components end when one finds two consecutive nodes sepa-
rated by a distance greater than r. As the intervals between nodes are
independently and exponentially distributed, when the network size in-
creases, one finds arbitrarily many gaps (intervals longer than r) w.h.p.
(see, e.g., [13]–[15]).
Moreover, if we look at the number of nodes connected to the origin,

we observe that this number is a random variable with finite expecta-
tion. In fact, at each side of the origin, the number of intervals we have
to look at before we find a gap, is a geometrical random variable. There-
fore, the probability that the number of nodes connected to the origin
is finite is equal to one. Now, if we compute the fraction of nodes that
are connected to the origin, we have to divide this finite number by the
total number of nodes n. As n goes to infinity, the fraction tends thus to
zero a.s. This means that the network is completely disconnected w.h.p,
regardless of the value of r.

B. 2-D Network

Contrary to the 1-D case, here we can have isolated nodes without
disconnecting the whole network. The intuition is that if a gap arises,
there can be a path that avoids it, and keep long-range connectivity (see
Fig. 2).
This intuitive observation is confirmed by percolation theory: if we

consider a Boolean model that spreads over the whole plane, there ex-
ists a critical radius r�, such that if r > r�, there exists one unbounded
connected component a.s. We call percolation probability the proba-
bility 0 < �(r) < 1 that an arbitrary node belongs to this unbounded
component. We have also that �(r) tends to 1 when r tends to in-
finity. On the contrary, if r < r�, all connected components remain
a.s. bounded, and the percolation probability is therefore equal to zero.
This latter case (also called subcritical case) is similar to the 1-D case.
See [11] for an extensive treatment of this subject.
In our extended network model, we only look at the box Bn =

[0;
p
n] � [0;

p
n] and we make use of the following result by Pen-

rose and Pisztora [10].

Theorem 1 (Penrose and Pisztora, 1996): Suppose r > r�, and
0 < " < 1=2. Let E(n) be the event that

• there is a unique connected clusterC insideBn containing more
than "�(r)n points;

• (1� ")�(r)n � Card(C) � (1 + ")�(r)n:

Then there exist constants c1 > 0 and n0 > 0 such that

[E(n)] � 1� exp(�c1
p
n); n � n0:
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Fig. 2. 2-D Boolean model. Although there are some isolated nodes, the origin
is connected with a large fraction of the nodes.

We deduce from the above theorem the following corollary.

Corollary 1: For any 0 < �� < 1, there exists an r < 1 such that
there exists a connected cluster that contains a fraction of nodes larger
than ��.

Proof: �(r) is continuous for r > r� and tends to 1 when r tends
to infinity, see [11]. Thus, given a fraction ��, one can choose r large
enough so that �(r) = ��=(1� ") for some " > 0. Theorem 1 ensures
that the number of nodes inside C is at least (1� ")�(r)n w.h.p. Thus
the fraction of nodes inside this cluster is larger than ��.

This result makes a great difference with the 1-D case, as now, with
a fixed r, we can have nonzero fraction of connected nodes for an ar-
bitrarily large network.

However, if we require full connectivity, i.e., if we impose �(r) = 1,
then the price to pay is very high: we know that this is not possible
with fixed r, because there will be a.s. a node that has no neighbor
within distance r. Actually, Penrose [16], and independently Gupta and
Kumar [17], showed that r has to increase like logn to achieve full
connectivity.

This big difference (constant vs increasing r as a function of n)
follows from the fact that if we want to connect the most isolated
node in the network, as the network size increases, we find worse and
worse cases, for pure statistical reasons. In practice, it is not much of a
problem if a tiny fraction of the nodes are disconnected, especially as
it then allows r to no longer increase with n.

This latter result matches the intuition that as the node density re-
mains constant, the quality of the connectivity should not change with
the size of the network. In fact, the explanation behind the result in [16],
is of statistical nature.

IV. INFORMATION THEORETIC CONNECTIVITY

In this section, we use results from Boolean connectivity to obtain
new results under the information theoretic definition of connectivity.

A. 1-D Network

For 1-D networks similar results hold for Boolean and information
theoretic connectivity, namely, for any fixed rate R > 0, the fraction
of connected nodes tends to zero when n tends to infinity.

If a node is disconnected from the origin, then all nodes further away
from the origin are also disconnected. Thus, as the network size in-
creases (and as the node density remains constant), there are w.h.p ar-
bitrarily large gaps in the network, and thus we expect it to be even-
tually disconnected, for any fixed rate R > 0. This intuition matches
the result in [9], which shows that the rate has to decrease to zero as a
function of n.
Now if we require that only a (positive) fraction of the nodes has to

be connected, we can obtain the same negative result. Assume that for
a given rate R, nodes are connected until node x. Then all nodes in
[x; n] are disconnected. In fact, the fraction of connected nodes is thus
x=(n � x), which tends to zero when n goes to infinity. Therefore,
w.h.p, the fraction of connected nodes is below any positive number.
The idea of requiring only partial connectivity does thus not help,

and the same asymptotic result holds. In fact, in one dimension, partial
connectivity and full connectivity are asymptotically equivalent. The
picture is definitely not the same in two dimensions, as we will show
in Section IV-B.

B. 2-D Network

We look at the bounds on the rate at which a given fraction of the
nodes can exchange data with each other. In other words, if we discard
a given fraction of the nodes (the worst positioned), what are the bounds
on the rate? We will see that discarding the worst nodes (up to a given
percentage, that can be arbitrarily small), the asymptotic behavior of the
rate dramatically changes, and stays constant when n tends to infinity.
1) Lower Bound: We construct an explicit scheme that achieves a

constant rate, for an arbitrary (but smaller than one) fraction of the
nodes. The following Theorem gives the rigorous formulation of our
result.

Theorem 2: For any 0 < �� < 1, there exists a rate R > 0 indepen-
dent of n, such that there exists a subset of nodes of size n�� in which
each node can send data to any other node at rate R w.h.p.

Proof: To prove this theorem, we use Corollary 1. Given ��, this
ensures that there exists r such that under the Boolean model, there
exists a connected cluster of size greater than n�� w.h.p.
Then, we use Theorem 4 in Appendix I to show that along the

shortest path in the Boolean model, the throughput

R =
1

6
log 1 +

P l(r)

N0 + P 1

k=1
6(k + 1)l(kr)

is achievable between any two connected nodes. Therefore, a fraction
�� of the nodes can exchange data at rate at least R, independently of
n.
The simple TDMA construction of Theorem 4 described in Ap-

pendix I, along with the percolation theory result of Corollary 1 have
been enough to prove our theorem. A better bound on the throughput
can be obtained using more complex schemes than our simple TDMA
strategy. One could use, for example, the multiple relay scheme
described in [4] and [18], that leads in our case to an achievable
throughput

R =
1

2
log 1 +

P l(r)

N0

: (1)

However, the asymptotic behavior remains the same even with our very
simple scheme and only the preconstant is improved.
It is also important to notice that the proof does not work for �� = 1,

as the fraction of connected nodes in a Boolean model is never equal
to one. This is consistent with the fact that the rate must decrease to
zero if we want to keep all nodes connected. It is therefore impossible
to find a fixed rate R > 0 such that the fraction of connected nodes is
equal to one.
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2) Upper Bound: We now derive an information theoretic bound
on the rate at which a given fraction of the nodes can send data to any
destination. This result does not depend on the adopted strategy for
transmitting information to the destination.

Theorem 3: For any rateR > 0, the fraction of nodes that can send
data to any destination at that rate is at most �̂ w.h.p., where

�̂ = I � N0

P
22R � 1

where I is the shot-noise defined by

I =
x2N

l(kxk)

and N is a Poisson point process of unit density over 2.
Proof: To prove Theorem 3, we proceed in two steps. First, we

show that the rate at which a node can send data to any destination is
bounded above by a function of a shot-noise at its location. Then we
show that the fraction of nodes such that this shot-noise at their location
is lower than a certain threshold is �̂.

In the first step, we use [19, max-flow min-cut Th. 14.10.1 ]. Ac-
cordingly, we divide the network in the following way: on one side the
sender x0, and on the other side all the other nodes xi; i 6= 0. The
max-flow min-cut theorem ensures that the maximum throughput be-
tween these two sides can be upper-bounded by the multiple receiver
Gaussian channel formed by the emitting node and all others listening
to it. The rate of this channel is computed in [20] and corresponds to
the rate at which the emitter x0 can send data to the rest of the nodes xi

R =
1

2
log 1 +

P
1
i=1 l(kxi � x0k)

N0
:

The sum in the expression is a shot-noise process evaluated in x0, that
we will denote by S later on

S(x0) :=

1

i=1

l(kxi � x0k):

From this result, we conclude that a necessary condition for
achieving rate R from node x0 is

S(x0) � N0

P
22R � 1 := M:

We can then use Theorem 5 in Appendix II to compute the fraction
of nodes that fulfill the above condition. As the sequence of squares
[0;
p
n]� [0;

p
n] is a convex averaging sequence (see Definition 1 in

Appendix II), we conclude from this theorem that the fraction of nodes
that do not fulfill the condition is equal to

(I < M) := 1� �̂

where

I =
x2N

l(kxk)

and N is a Poisson point process of intensity 1. As they do not fulfill
the necessary condition, the fraction 1��̂ of nodes cannot for sure send
data at rate R to any destination, and are, thus, isolated. The fraction
of connected nodes is therefore at most �̂.

The bound given in Theorem 3 is not explicit, as it involves the cu-
mulative distribution function of a shot-noise; Lemma 1 in Appendix II
shows that it is always strictly smaller than one. To obtain an explicit
bound, we can use Chernoff’s inequality. We know from Campbell’s
theorem that (see [21, p. 28])

[esI ] = exp � (esl(kxk) � 1)dx :

Fig. 3. Upper and lower bounds on the fraction of nodes that can achieve
a given rate R. The lower bound has been improved using the multiple relay
channel result given in (1), and the upper bound has been computed using the
bound presented in Section IV-B2.

Therefore

[I �M ] � inf
s2

e
�sM [esI ]

= inf
s2

exp � (esl(kxk) � 1)dx� sM :

This bound gives a good approximation when R is large, but be-
comes loose when R is smaller.

C. Discussion

We plot in Fig. 3 the upper and lower bounds on the fraction of the
nodes that can connect to each other at a given rate R.
The lower bound indicates that when R is close to zero, the fraction

of nodes that can achieve this rate tends to one. This case correspond
to the results in [9].
At the other end, ifR is too large, the lower bound becomes zero. In

practice, our lower bound represents a percolation curve that marks a
transition at a critical rate value below which a nonzero fraction of the
nodes in the network can sustain a constant rate.
The upper bound computed by Chernoff’s inequality is not informa-

tive for small values of R, but decreases to zero for large values of R.
Contrary to the lower bound, the curve has a tail for large rates. Al-
though upper and lower bounds are not tight, we believe that there is
also a critical rate, above which each node can only connect to a finite
number of other nodes. This means that under our definition of connec-
tivity, the network would not percolate in this case.

V. CONCLUSION

In wireless random networks with a finite spatial density of nodes,
the price to pay for full connectivity is high: it makes the throughput
of any node vanish when the network size gets large. It is impossible
to offer a nonzero rate to every node of an extended network when the
number of nodes tends to infinity. Even in the most optimistic informa-
tion-theoretic setting (arbitrary complexity of the network encoding, all
nodes acting as relay for one pair source-destination arbitrarily picked
in the network), Theorem 3 shows that if we want to impose a given
rate R > 0 to any possible transmission in the network, a fraction
1 � �̂(R) of nodes will automatically be disconnected. This result is
obtained using tools from shot noise processes and information theory.
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On the other hand, if we allow some nonzero, but arbitrary small
fraction �� of nodes to be disconnected, then Theorem 2 shows that it
is possible to find a rate R(��) that any other pair of nodes can enjoy
in an arbitrarily large network. The theorem is proven by continuum
percolation techniques, and therefore holds for 2-D networks, but not
for 1-D networks, because percolation does not occur in dimension 1.

These two results shed some new light on the throughput scaling
laws of random wireless networks. Relaxing the full connectivity re-
quirement and allowing a small fraction of the nodes to be disconnected
is shown to be both necessary (Theorem 3 ) and sufficient (Theorem 2)
to have nodes communicating at a nonzero, positive rate, with other
nodes acting as potential relays, on an arbitrary large network. Con-
trary to the full connectivity case, the dimensionality of the network is
now a crucial factor.

We therefore believe that these results reinforce the case for “partial
connectivity” (or “�-connectivity”), where a fraction � of the nodes
randomly drawn from the network is connected, as opposed to the tra-
ditional full connectivity.

APPENDIX I
PATH THROUGHPUT

In a Boolean model with fixed ball radius r=2 and spatial density 1,
we consider the shortest path between two points x1 and x2 that belong
to the same cluster. We show in the following theorem an achievable
throughput along this path, that does not depend on the number of hops,
but only on r.

Theorem 4: In a Boolean model with unit point density and ball
radius r=2, the following throughput is achievable along the shortest
path between any two nodes of the same cluster:

R =
1

6
log 1 +

P l(r)

N0 + P 1

k=1
6(k + 1)l(kr)

:

Proof: We look first at the properties of shortest paths in Boolean
models. By construction, the distance between any two consecutive
nodes on the path is smaller than r. We observe furthermore that if we
consider every second ball along the path, these balls do not overlap.
Otherwise, if they had overlapped, they would have made it possible to
take a shortcut between them, which would have avoided at least one
other ball and thus give a shorter path (see Fig. 4), which is impossible.
More generally, the same reason implies that any ball can overlap only
with its predecessor and its successor along the shortest path.

We color now the with three colors—say blue red and green—so that
the path follows the sequence blue red green blue red, etc. Because of
the above observation, two balls of the same color never overlap. Using
this coloring, we can set up a three time slots TDMA scheme, where
nodes of each color emit successively with full power P .

Let us assume that blue nodes are currently emitting, and that red
nodes are listening to their blue predecessor along the path.We consider
a particular (red) receiver, and compute a lower bound on the signal-to-
interference-plus-noise ratio (SINR) at this node. First, the emitter is at
distance atmost r, since the receiver listen to its predecessor. The power
of the received signal is thus at least P l(r), since l(�) is decreasing.

We look now at the interferences.We notice that all interfering (blue)
nodes are located at distance at least r from the receiver. Furthermore,
the interferers are at distance at least r from each other (since blue balls
do not overlap). Thus, we can derive an upper bound to the power of
the interferences by packing an infinite number of blue balls around the
receiver’s ball. The optimal packing is obtained by placing the nodes
on the vertices of a honey comb lattice.

Fig. 4. A shortest path from X to Y in a Boolean model. Filled balls do not
overlap, and neither do the empty balls.

Let us compute the sum of the powers of interfering signals: in a
honey comb lattice, there are six neighbors at distance r, six at distancep
3r, etc. We obtain

1

i=1

P l(x2i � x0)

� P 6l(r) + 6l(
p
3r) + 6l(2r)

+ 12l 2 +

p
3

2
r + � � �

� P

1

k=1

6(k+ 1)l(kr) := PK(r):

The sum K(r) converges because xl(x)dx < 1. Therefore, the
SINR at the receiver is at least

SINR � P l(r)

N0 + PK(r)

where N0 is the power of the background noise. The following
throughput is thus achievable between the emitter and the receiver

1

2
log 1 +

P l(r)

N0 + PK(r)
: (2)

The same bound applies to each red receiver, and by rotating the colors,
to all other emitter-receiver pairs in the two other time slots. Therefore,
the overall throughput of the TDMA scheme is equal to one third of the
throughput in (2), since we used three time slots.

APPENDIX II
SHOT-NOISE

We start this section by introducing some notation. For a setA � d

and a point x 2 d, we define the set A + x as follows:

y 2 A+ x iff y � x 2 A:

Then we define the shift operator Sx as follows: for a random measure
N and a Borel set A

SxN(A) = N(A+ x):

Wedefine now formally the shot-noise process built on a 2-DPoisson
point process, and prove an ergodic result in Theorem 5 .
LetN be a Poisson point process of intensity � in d. We define the

shot-noise as

I =
nf0g

f(x)N(dx) =
x2N

f(x)
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for some positive function f such that

f(x)dx <1: (3)

Given a constant M > 0, we define by Y the random counting
measure that counts the number of points of N such that the value of
the shot-noise at this point is less thanM

Y (A) =
A

1E(SxN)N(dx)

where E is the event

E = fI < Mg:

The mean density of the new point process Y is clearly equal to the
intensity of N , namely �, times the Palm probability 0(E) of the
event E. Because of the properties of the Poisson point process, the
Palm probability of this event is equal to the regular probability (E).
The mean density of Y is therefore equal to � (E).

Before stating the main theorem of this Appendix, we need the fol-
lowing definition.

Definition 1: A sequence fAng of bounded Borel sets in d is a
convex averaging sequence if

1) each An is convex;
2) An � An+1 for n = 1; 2; . . .;
3) r(An) ! 1, where r(A) = supfr :

Acontains a ball of radiusrg.

Theorem 5: For a convex averaging sequence fAng of Borel sets in
d, as n ! 1 we have

Y (An)

`(An)
! � (E)

where `(An) denotes the area of An.

This theorem follows directly from Theorem 6 stated here, and the
observation that the point process Y is stationary and ergodic, since the
underlying point processN is stationary and ergodic. Then we use [22,
Prop. 10.3.III] to prove that Y is also metrically transitive, since it is
ergodic.

Theorem 6 ([22, Corollary 10.2.V]): Let � be a stationary and met-
rically transitive random measure on d with finite mean density m,
and fAng a convex averaging sequence of Borel sets on d. Then as
n ! 1

�(An)=`(An)! m (a.s. and in L1 norm):

Finally, we prove that (E) is strictly positive.

Lemma 1: For any � andM , we have (E) > 0.
Proof: As f verifies (3), we can find a number L > 0 such that

nB(0;L)

f(x)dx <
M

2�

where B(0; L) denotes the ball of radius L centered at the origin. Let
us define

IL =
x2N\B(0;L)

f(x)

and

IL =
x2NnB(0;L)

f(x)

so that I = IL + IL. Then we have (IL < M=2) > 0 since
N \ B(0; L) has nonzero probability to be empty. Furthermore, by
Markov’s inequality and Campbell’s theorem we have

(IL <
M

2
) = 1� (IL �

M

2
)

� 1�
2E[IL]

M

= 1�
2�

nB(0;L)
f(x)dx

M
> 0:

Since the two events are independent, their joint probability is still pos-
itive, and thus, (I < M) > 0:
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