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ABSTRACT

Techniques where a stereo or a multichannel signal is decomposed into spatial source-labeled time-frequency
slots by level, time-difference, and coherence metrics have become popular in recent years. Good examples
are binaural cue coding and up/downmixing techniques. In the article, we will provide an overview and
discuss parallel approaches in the field of array processing and blind source separation. Typically, time-
frequency slots are formed from subband representations of signals. However, it is also possible to produce a
similar spatial decomposition for a parametric representation (sinusoids, transients, and noise) of a stereo or
multichannel audio signal. Advantages and disadvantages of the two approaches for audio coding applications
are discussed in this article.
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1. INTRODUCTION to a new loudspeaker configuration [1, 2], or in differ-
In some cases a stereo or a multichannel audio signant types of enhancement, suppression, and re-panning
is composed of independent channels such as separaeplications [3].

tracks of a studio recording. In these recordings it is norFinding unknown source signatsand the mixing ma-
generally mea'ningfu.I to characterize t.he s'et of signals by w1 from signals inX is an inverse problem which
common spatlal attributes such as dlre(_:tlons of sourceg, impossible to solve without regularization of the prob-
or a spatial image. Another class of multichannel record1em_ In blind source separation (BSS) it is required that

mr?s IS produce.d frorgaregzrdmg v|\{|thdan array Ofmlcrr?'the source signals are independent [4] and the number
phones, or a mix produced by amplitude panning or othep o, ;e signals is the same or less than the number of

rendering techniques. In this ar't|cle we mgmly consider.annels inX. It may also be assumed that signXis
the latter class of stereo or multichannel signals.

are recorded with a specific microphone array [5]. In
In these multichannel signals individual sources coexisfact, even ifM is known source separation is not perfect
in different channels of the recording. In a general case ainless the source signals are independentMnchn be
P-channel audio sign& is produced fromV indepen- inverted. Clearly, the general formulation of the problem
dent source signal$ by the following matrix expression is impossible to solve exactly, other than in uninteresting
trivial cases (e.g., wheM is an orthogonal transform

X =MS, matrix).

whereM is a P x N matrix. For example, a stereo signal However, in many applications a mathematically exact
X = [z,(t) z-(t)]T may be produced from an array of spatial decomposition is not necessary. In audio coding
original source signal§ = [so(t) s1(t) -+~ sy—1(t)]T  very simple techniques such as sum-difference coding
by a N x 2 scalar amplitude panning matd, where  [6] does already a good job in reducing the bitrate of a
each column has a pair of gain factors for each sourcstereo signal. Sum-difference coding is basically an ap-
signal. When the multichannel signal is captured usingplication of beamforming techniques to the problem of
an array of microphones in a recording space, the matrispatial decomposition of a stereo signal. Here the sum
formulation of (1) applies when the signals in matricessignal corresponds to the sources panned to the middle
S and X are replaced by their respective Fourier trans-(or the median plane) and the difference has sources spa-
forms and each element df is the Fourier transform of tially at the sides in the original stereo signal [also called
the acoustic transfer function from a source location to amid-side (M/S) coding]. This generalizes to Walsh-
microphone. In more complex scenaridk can also be Hadamard transform coding or actually the use of any or-
time-varying. thogonal transform matrix applied to samples or subband
samples of a multichannel signal [5]. Here the spatial de-
composition of a multichannel signal is performed with

a fixed transform matrixM~—1. The transform matrix
can also be signal dependent such as in Karhunen-Loeve

observed set of signals. In source separatiorthe goal Transform (KL_T)’ which has bggn applie'd “? multichan-
is to find original sources signa& from signalsX. In nel a‘%d'o COO!'”G [7] and upmixing appllcatl'ons [1] for
this article the problem of source separation is consid—adap'"\’e spatial decomposition of fullband signals.

ered to be a part of the problem of spatial decomposiA simple way to estimate some properties of the mix-
tion. Spatial decomposition is useful in many differenting matrix M adaptively from signals is to continuously
applications. In audio coding, spatial decomposition ofmeasure level-differences and time-differences between
a multichannel signal can be as useful as frequency dehe signals. This can be used as side information in cod-
composition, that is, it can be used to allocate more bitsng or as information for re-panning of signals. Inten-
to spatial regions where they are more needed. A spatiaity stereo coding is based on this principle but it is ap-
decomposition can also be used to manipulate or remix glied separately at different subbands of a subband audio
recording by changing directions and levels of individual coder [8]. The binaural cue coding (BCC) method in-
sources. For example, in a teleconference application introduced in [9] is doing basically the same but the time-
dividual speakers could be amplified or attenuated as defrequency decomposition of stereo or multichannel sig-
sired. A spatial decomposition can also be used to adaptals is based on FFT and is separate from the MDCT

In both examples it is meaningful to say thdt contains
all information about the spatial representation of the ob
served multichannel sign&. In spatial decomposition
of a multichannel signal, the aim is to fifd given an
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used in the coding algorithm. A similar audio coding al- ,__BCC ENCODER . DCC DECODER
gorithm has been recently introduced in the context ofc: > OWNMIX SUM _I"I:[]
parametric coding [10]. In their approach level and time o] | SIGNAL, SYNQF%%SIS —\_{[]
differences, and coherence between the channels wegg | [, 2 L
estimated from a subband decomposition very similar to ! : | ) _\—>|:I:]
BCC. In this article we study a method where the spa- ||| > | SIDE f spatacues

tial decomposition is estimated separately for sinusoidal || | ANALYSIS |1 INFO | | SDEINFO |
components. — || PROCESSING |

The goal is to estimate the mixing properties separately
for different components of a decomposed signal rather Fig. 1: Generic encoder and decoder scheme of BCC
than for samples or frames of fullband signals. The wis-

dom in this approach is that in non-stationary audio ma- a,(k)

terial with muIt_ipIe sources there are uguai_lmpletime- d,(k) | f’_(k) IAFB »
frequency regions with only one dominating source. In  guyu k) ;
such regions we can make a successful spatial decompgeNAt 3 (k)
sition. In time-frequency regions where we fail, we just dy(k) —» A [ *|IAFB\>
try to do something which sounds tolerable for a partic- ! -
ular application. We may safely argue that in many ap- ; P ayk) B

. . . _ . . _ )e k)
pllcat|0|js_ the time frquency regions where a spatial de L' 4, (k) .l N( IAFB >
composition method fails due to complexity are the re- :

gions where our spatial hearing mechanism will also fail
in acquiring reliable spatial cues. Fig. 2: Detailed scheme for multi-channel synthesis

There are infinitely many different (time-frequency) de- 9iven the transmitted single audio channel.
compositions of multichannel signals that are in princi-

ple applicable. !n this article we compare two different assumption are shown in Fig. 1. The BCC encoder esti-
approachheds.. F|r§tly, (\jN'e rewevr\]/_ tEe_ bt')nauré’“ cue COS'mates the inter-channel cues which are the determining
Ing metho mtrq iucea n [9] which is base 0N & SUD°¢4ctors for the perceived spatial image of the input multi-
band decomposition of §|gnals. Secondly, we IntrOducei:hannel audio signal. These cues are quantized, coded,
a method where essentially the sames that is level 54 transmitted to the BCC decoder along with a single
and time differences, are estimated from sinusoidal dedownmixed audio channel. Given the transmitted sin-
compositions of signals. gle channel and the transmitted inter-channel cues, the
In the current article we limit the discussion to a specialBCC decoder generates a multi-channel signal with cues
case of stereophonic audio recordings. In addition, theipproximating the cues of the original multi-channel sig-
presented techniques are based on specific regularizatioal.

O.f the estimation problem, i.e., .it is assum_ed that stere igure 2 shows the details of the “BCC synthesis” block
signals are generated by amplitude panning of origina f Fig. 1. The transmitted audio channel is decomposed

source signals. That is, we assume that each componep]tto subbands by an auditory filterbank (AFB). AFB here
of a signal 'has a scalar mixing mat that we are denotes an invertible filterbank with subbands with a
trying to estimate. bandwidth equal or proportional to the critical bandwidth
2 SPATIAL CODING IN SUBBANDS of the _auditory system. Time_differv_ances between chan-
The frequency decomposition used in BCC (and othernel pairs are synthe3|ze(_j by imposing delays on the sub-
: . band signals and level differences are synthesized by ap-
related approaches) is motivated by the fact that the auF—)Iying different gain factors. The processing block A in
ditory system has a limited spectral resolution. It is aS-Fig 1 is a mechanism to réduce the coherence between
sumed that, given a mono sum signal, any spatial image <" ; L
containing the sources in the sum signal can be rendere%?S?“ﬂ?ﬁggg;ggﬁﬁe?fe:i Zﬂtep:tlc; alnlr]els. This is used

by synthesizing appropriate spatial cues in a number o
subbands. A BCC encoder and decoder based on this this study we are focusing on the properties of level
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difference cues only. p=0,1,---, P — 1. The residual for the next iteration
is then given by

3. SINUSOIDAL SPATIAL CODING

Sinusoidal or parametric representations of speech [12, €(k+1)p(t) = €xp(t) — Akp cos(wit + ¢ip)w(t), (5)

13] and audio signals [14] have been developed and stud-

ied by many authors. Parametric representation of audi ;ert; 0, 1& ) ’f —;i.(Smt(.:e ti;edalgorlthrg '? basteudéon
signals is known to be a very useful domain for manipu-I eralive subtraction ak estimated sinusolds from

. . ; ; hannels it holds that perfect reconstruction of an origi-
lation of audio material, see e.g. [15] for a review. ¢ P 9
g- 191 nal windowed signal frame at channetan be obtained
The sinusoidal coder used in this article is basedyith
on a parametric line spectrum estimation method
which is often called Analysis-By-Synthesis/Overlap- _
Add (ABS/OLA) when referring to an efficient cop(t) = excp(t) + ZAkpCOS(wkt+¢kp)w(t)' )
frequency-domain algorithm proposed by George and h=0

Smith [16]. The only difference to the original algorithm The result of the decomposition is a matrix of residual

is that here the signal envelope normalization is omitted. .
signals Ex 1, an array of frequency terms; (k =

K-1

The algorithm subtracts iteratively far = 0,1,---, K 0,---,K — 1) common to all signals, and amplitude and
windowed sinusoidal pulses, phase termsi;, and ¢y,, respectively, for each chan-
nel and sinusoid. Note that the frequency of a sinusoidal
sk(t) = A cos(wit + dr)w(t) , (2)  pulse is the same in all audio channels. Therefore, this

scheme is a model of a set gfatial sinusoidswhich a

much more compact representation than a scheme where

lew(t) — sk (t)[2 3) a_sinusoidal model is applied separately to different au-
dio channels.

is minimized at each step. Fér= 0 the residual cor- 3o Spatial decomposition by sinusoids

responds to the windowed original signal. The window the spatial decomposition of the multichannel signal can
functionw(#) is applied to the original signal with 50% o\ he performed by the analysis of amplitude and phase
overlap. The estimation technique is such that the fre’termsAk,, and ¢y, respectively. For example in am-
quency of a highest spec'trum.peak IS chosen from th‘;f)litude panned stereo signals, level differences i
spectrum ofe, (¢) at each iteration. Amplitudel;; and sinusoidal pulse can be expressed by

phaseg, terms are then computed such that they mini-

mize (3) (see [16] for more details). Next,,; is com-

At
outed by Ly = 201ogs (Ak> , @)

exr1(t) = ex(t) — si(t) (4) o I f het
. . . A Apr i i i -
to produce a signal frame where the sinusoidal pulse haW eredy, and4y, are amplitudes of sinusoids atthe fre

been removed. The last step can be implemented Veréuency ofwy, in the left and right channels, respectively.
efficiently in the FFT domain. The estimated sinusoidalln order to separate sinusoids corresponding to an origi-
signal can be synthesized from sinusoidal pulses directiyal source signal which has been panned to the left side
with overlap-add. of a spatial image we may pick only sinusoids for which
L > 0 and attenuate others. In purely amplitude panned
stereo signal this will give high attenuation for signals
‘panned to the right. Similarly, time-difference between

sinusoidal pulses at; may be estimated by computing

from the residuat (¢) such that

3.1. Decomposition of a multichannel signal
For a stereo or multichannel signal we consider a sim
ple modification of the algorithm.P signals in a ma-

trix Ex = [exo ex1 - ek(p,l)}T are synchronously he ph | .
windowed with the Hann window. For each frame oft e phase delay given by
a multichannel signal and at each iteration the one high- di = (b1 — Drr )Wk (8)

est peak of all spectra is identified and its frequengy
is determined. Then amplitude and phase terrg, However, this is difficult especially at high frequencies
and ¢y, at frequencyw;, are computed for all signals because of the ambiguity of the phase term.
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L ¢ litud q . Fig. 4: A pangram for an amplitude panned stereo sig-
Fig. 3: A pangram for an amplitude panned Stereo Sigq, | yhere two instruments (cello and clarinet) are play-
nals where ‘W.° instruments are taking turns in pIaylnging synchronously a different melody. This pangram was
a melody. This pangram was computed from fLIII'bandcomputed from full-band signal energy in frames of 2048

signal energy in frames of 1024 samples. The two inStru'sampIes. The two instruments were panned to 8dB left

ments were panned to 8dB left and right, respectively. and right, respectively

The residual signal is still a multichannel signal. It has a

low energy if the sinusoidal model is successful in mod_cpmposnllonshof sua]nals we created ? cgllectlon 3f mu-
eling the original signals but it is typically non-vanishing SI¢ Signals where there are two amplitude panned (at -8

and absolutely necessary in high quality audio applica—and 8 dB) instruments playing synchronously a different

tions. The coding of the residual signals is discussed IateWeIOdy'_ Some of these samples are av_a|IabIe on our In-
in this article. ternet site [17]. In the following, these signals are called

Set | The set has 21 sequences with all combinations be-
4. EXPERIMENTS tween cello, clarinet, french horn, saxophone, flute, vio-
Estimates of amplitude panning information in a steredlin, and piano. The set was assumed to be very difficult
Signa| can be visualized using a graph Showing the disbecause the notes have been Carefully aligned in time so
tribution of signal energy being panned to different di- that they start and end at the same time and they have
rections. In this article, such a graph is callegpan- @ similarly rich spectral structure. For these signals the
gram Figure 3 gives a simple example. The x-axis in €stimation of the pangram from signal energies of a full-
the left panel is time in frames and the y-axis represent$and signal almost completely fails, as is illustrated for
the amount of signal energy panned to different directhe cello-clarinet pair in Fig. 4.

tions. In this example the original signal was a musictpq pangram produced using the BCC algorithm is
signal where two instruments take turns such that thergp,,vn in Fig. 5. It gives peaks arounds dB and

is no temporal overlap. The two instruments were am- yg nanning directions where the original sources were
plitude panned with 8dB and -8dB to the left and rightin 5 nneq to. But the peaks are often shifted towards the

the stereo signal. Since the two source signals in Fig. 3anter and there are many false peaks. The shifting of
d_o not overlap in tir_ne, level differences can be estimateq)eak positions and false peaks may cause an effect which
directly by measuring RMS values from time frames ofj5 o metimes encountered in BCC synthesis: sources are
fullband signals. In this case, estimation of level differ- oy ghatially placed in static locations but they fluctuate
ences from a fullband signal, time-frequency slots of & {ime 18] If the panning information depicted in Fig. 5
subband coder, or sinusoidal decomposition of the Sigis ;e to control the resynthesis of a stereo signal from
nals give almost identical results. a downmixed monophonic signal, fluctuations of the left
In order to compare the difference between different de{upper) source may be expected.
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Fig. 5: A pangram for the same signal as in Fig. 4 butFig. 6: A pangram for the same signal as in Fig. 4 but
computed using the BCC analysis, that is a subband desomputed for a sinusoidal decomposition of the stereo
composition of the stereo signal. The length of the analysignal. The length of the analysis window is 2048 sam-
sis FFT window is 2048 samples and each complex spe@les and each frame has been modeled using 20 sinu-
trum has been divided into 20 nonuniform approximatelysoids.

2 ERB wide frequency bands for the analysis.

8 dB). The source signals contained many different sam-
Figure 6 shows the pangram produced from the amplip|es of music and speech sequences including percussive
tude parameterd;; and Ay, of a sinusoidal model esti- sounds (e.g., castanets). This data set represents typi-
mated from the same cello-clarinet duet as in Figs. 4 anga| stereo audio material where spectrum overlap is not
5. The total number of sinusoids in each frame of 2048as severe as in Set |. The mean energy distribution esti-
samples was 20. The cues of the two sources are clearpyated using the BCC method and sinusoidal modeling
implied by the two peaks, although there is also a sigwith 20 sinusoids are shown in Fig. 7a. The dotted curve
nificant amount of errors (values between peaks). Thosg the middle represents the spatial energy distribution of
errors are produced by overlapping harmonics in the twahe residual signal of the sinusoidal model computed us-
instrument signals. The right panel in Figs. 6 and 4 is dng the BCC algorithm. We may now define two mea-
plot of the mean energy distribution computed from thesyres (see Fig. 7a) which can be used to characterize
pangram. In sinusoidal decomposition the source directhe performance of the two algorithms. Theodeling
tions at—8 dB and8 dB give peaks which ar@0 dB  gain, ,[dB] is similar to the classical prediction gain
higher than the middle region around the 0 dB panningand simply gives the difference between the original sig-
direction. In the BCC case, however, the difference bena| and the residual signal after subtraction of sinusoids.
tween correct peak positions and the region in betweerrhis is averaged over all panning directions. The dif-
is much smaller. ference between a peak value in a mean energy distribu-
The difference between the two methods results from théion curve and a local minimum between maxima is here
fact that the frequency resolution is lower in the subbandralled panning gain G,[dB]. This is illustrated in the
scheme of BCC than in the sinusoidal model. In Figs. 6-bottom curve of Fig. 7a.

5, the length of the analysis window was 2048 samples,:igure 7b shows the modeling gain and panning gain de-

Iq fact, if the length of the_ Wind_ow was 512 or 1024, the fined in Fig. 7a averaged over the set of four-source sig-
difference between the sinusoidal and BCC cases woulflyis - |ncreasing the number of sinusoids obviously in-

be significantly reduced. creases the modeling gain, that is, the energy of the resid-
Another set et I)) of ten test signals was produced by ual decreases. However, the difference between the sinu-
panning randomly four monophonic source signals tosoidal coder and BCC algorithm in terms of the panning

four directions (amplitude differences of -8, -4, 4, andgainG,, decreases as the number of sinusoids grows and
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Fig. 8: Modeling gainG in sinusoidal modeling (solid)
and the average difference in panning g&ipn (dashed)
between sinusoidal modeling and BCC in Sets | and I
signals as a function of the length of the analysis window.

finally, in this particular case, remains approximately at
the level of 4 dB. This indicates that after a certain point
the sinusoidal modeling starts losing its efficiency and
extracted sinusoidal pulses represent noise rather than
spectrum peaks. The same trend can also be seen using
signals from Set | (top panel). There, both gain values
are approximately 3-5 dB higher than in bottom panel of
Fig. 7b but the overall trend is the same.

The length of the analysis frame may change the results
significantly. The modeling gain and the difference in
panning gain in the two algorithms is illustrated in Fig. 8.
In all window sizes the number of sinusoidal components

Fig. 7: a) The mean energy distribution averaged over th&vas 20. When the analysis frame is short, the model-
Set Il of stereo signals with four sources. The curve foring gain will be higher because the sinusoidal model can
the sinusoidal case (dashed) was shifted down for i||usm0de| finer temporal details in the SlgnaIS. But, increas-

tative reasons. b) Modeling gair, in sinusoidal model-
ing (solid) and the average difference in panning gajn

ing the length of the analysis window improves the pan-
ning gain in sinusoidal modeling. For example, in the

(dashed) between sinusoidal modeling and BCC in Set $et | simulations in the top panel of Fig. 8 the difference
(top) and Set Il (bottom) signals. In both algorithms, thein panning gain between the sinusoidal and BCC cases

length of the analysis window was 1024 samples.

is almost 15 dB for a window length of 2048 but nearly
zero for a 512-sample Hann window.

5. DISCUSSION

In the set of signals in Fig. 7, the spatial energy distribu-
tion of the residual signal (dotted curve) still has peaks
in the same positions as in the original signal, although
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the difference between a peak and a valley is someent applications such as audio coding, up/downmixing,
what smaller. That is, the spatial distribution of original and equalization or manipulation of a stereo image.
sources I_argely remains in the residual signal even if theI'he first algorithm is based on subband decomposition
largest sinusoidal components have been removed from . : .
. s ... Where amplitude differences between the two stereo sig-
the signals (this is also easy to hear [17]). Therefore, it is . S .
; . : . nals has been estimated individually in each subband. In
meaningful to consider also making a spatial decompo- : : N )
. X . the second algorithm, the stereo signal is divided into a
sition for the residual signal. ) . .
set of sinusoidal components where we may estimate a
Let us consider a hybrid system where the modeling ofspatial decomposition of the stereo signal from ampli-

amplitude panned sinusoids is followed by BCC-typetudes of sinusoidal components in the two channels.

subband processing of the residual stereo signal. Thepe reqyits presented in this article were based on the

first phase would be the sinusoidal parametrization Of e f 4 representation which shows how signal energy
the stereo signal. It would be beneficial to perform SiNU-is gistributed in terms of amplitude panning to differ-

soidal modeling at different time resolutions adaptivelyem directions in the spatial image. In general, we may

according to the momentary signal properties. In add"argue that the spatial information related to amplitude

tion the number of sinusoids could also be chosen adafs,nneq sources can be estimated more accurately from
tively in each signal frame, e.g., using a similar stoppingy g spidal representation of a stereo signal than from
c.r|ter|on. as hgs been er’pose,d in [19]. After t.he SUbtrathe subband representation. In some cases the difference
tIOI’].Of S'T‘“.So'ds the residual is processed using subpang small. In particular, when the analysis frame is short
coding similar to thg BCC .alg'o.nthm. The re§|dual SIg- (512 sample), the two algorithms produce almost similar
nal can be coded with a significantly lower bitrate than results. However, the benefits of the sinusoidal approach

the original audio signal. Using the classical coding the'become very clear if the analysis window is allowed to
oretic approximation given byNR ~ 6bits+~y we may lge long (2048 samples)
[

argue that the bitrate can be reduced by 2 bits/sample
the modeling gain is 12 dB. This margin would be suffi- 7. ACKNOWLEDGEMENTS
cient for the coding of the sinusoidal data because typi‘l‘he work of A. Harma has been supported by the
cally the sinusoidal components in one audio channel Caf&cademy of Einland.
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