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Abstract

Efficient representation of geometrical information in images is very important in many im-
age processing areas, including compression, denoising and feature extraction. However, the
design of transforms that can capture these geometrical features and represent them with a
sparse description is very challenging.

Recently, the separable wavelet transform achieved a great success providing a compu-
tationally simple tool and allowing for a sparse representation of images. However, in spite
of the success, the efficiency of the representation is limited by the spatial isotropy of the
wavelet basis functions built in the horizontal and vertical directions as well as the lack of
directionality. One-dimensional discontinuities in images (edges and contours), which are
very important elements in visual perception, intersect with too many wavelet basis functions
leading to a non-sparse representation. To capture efficiently these anisotropic geometrical
structures characterized by many more than the horizontal and vertical directions, more flex-
ible multi-directional and anisotropic transforms are required.

We present a new lattice-based perfect reconstruction and critically sampled anisotropic
multi-directional wavelet transform. The transform retains the separable filtering, subsam-
pling and simplicity of computations and filter design from the standard two-dimensional
wavelet transform, unlike in the case of some other existing directional transform construc-
tions (e.g. curvelets, contourlets or edgelets). The corresponding anisotropic basis functions,
which we call directionlets, have directional vanishing moments along any two directions
with rational slopes.

Furthermore, we show that this novel transform provides an efficient tool for non-linear
approximation of images, achieving the decay of mean-square error O(N −1.55), which, while
slower than the optimal rate O(N−2), is much better than O(N−1) achieved with wavelets,
but at similar complexity. Owing to critical sampling, directionlets can easily be applied to
image compression since it is possible to use Lagrange optimization as opposed to the case
of overcomplete expansions. The compression algorithms based on directionlets outperform
the methods based on the standard wavelet transform achieving better numerical results and
visual quality of the reconstructed images. Moreover, we have adapted image denoising
algorithms to be used in conjunction with an undecimated version of directionlets obtaining
results that are competitive with the current state-of-the-art image denoising methods while
having lower computational complexity.
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Résumé

La représentation adéquate de l’information géométrique dans des images est très importante
à nombreuses applications du traitement d’image, y compris la compression, la réduction du
bruit et l’extraction de caractéristiques. Pourtant, la conception des transformations pouvant
capturer ces caractéristiques géométriques et les représenter dans une description éparse est
très compliqué.

Récemment, la transformation en ondelettes séparable a connu un grand succès four-
nissant un outil simple et permettant une représentation éparse des images. Pourtant, malgré
le succès, l’efficacité de la représentation est limitée par l’isotropie spatiale des fonctions
de base des ondelettes établie dans les directions horizontales et verticales. Les discontinu-
ités unidimensionnelles dans les images (les bords et les contours) qui sont les éléments très
importants dans la perception visuelle, intersectent trop de fonctions de base des ondelettes
et conduisent à une représentation non-éparse. Pour capturer efficacement ces structures
géométriques anisotropes caractérisées par beaucoup plus que les directions horizontales et
verticales, des transformations orientablées et anisotropées plus complexées sont nécessaire.

Nous présentons une nouvelle transformation en ondelettes anisotropée orientable treillis-
basée reconstruction parfaite et échantillonée critique. La transformation maintient le filtrage
et le sous-échantillonnage séparable et la simplicité des calculs et de la conception des fil-
tres de la transformation en ondelettes bidimensionnelle standard, à la différence du cas de
quelque autre constructions des transformations directionnelles (par exemple des contourlets
ou des edgelets). Les fonctions anisotropes correspondantes de base (directionlets) ont des
moments volatilisé directionnels le long de deux directions quelconques avec des pentes ra-
tionnelles.

De plus, nous démontrons que cette nouvelle transformation fournit un outil efficace
pour l’approximation non linéaire des images, réalisant l’affaiblissement de l’erreur de carré
moyen O(N−1.55), qui est concurrentiel aux taux réalisés par les autres constructions des
transformations sur-échantillonées. En raison de l’échantillonnage critique, des directionlets
sont facilement appliqués dans les algorithmes de compression d’image évitant la question
d’une représentation sur-échantillonée. Les algorithmes de compression basés sur des direc-
tionlets surpassent les méthodes basées sur la transformation en ondelettes standard réaliser
de meilleurs résultats numériques et la qualité visuelle des images reconstruites. En plus,
la version sur-échantillonée des directionlets appliqués dans un algorithme de la réduction
du bruit est concurrentielle aux méthodes de la réduction du bruit d’image actuels ayant la
complexité des calculs inférieure.
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Chapter 1

Introduction

1.1 Motivation

The problem of finding efficient representations of images is a fundamental problem in many
image processing areas, including denoising, compression and feature extraction. An efficient
transform-based representation requires sparsity, that is, a large amount of information has to
be contained in a small portion of transform coefficients.

Geometrical features in images, like edges and contours, play one of the most important
roles in the human visual system, since they carry most of the perceptual information. This
fact is well known from the image processing [48] and computer vision [3] literature. These
features are discontinuities in the two-dimensional (2-D) image domain, but they exhibit some
degree of smoothness along a one-dimensional (1-D) curve. An efficient representation has
to be capable of precise modeling and of providing a sparse description of this geometrical
information.

The 1-D wavelet transform (WT) has become very successful in the last decade be-
cause it provides an efficient multiresolution representation of 1-D piecewise smooth sig-
nals [35; 101]. The application of wavelets to image processing requires the design of two-
dimensional (2-D) wavelet bases. The most common approach is to construct such bases
using 2-D separable filter-banks, which consist of the direct product of two independent 1-
D filter-banks in the horizontal and vertical directions. Filtering using high-pass (HP) filters
with enough vanishing moments (or zeroes at the corresponding frequency response at ω = 0)
along these two directions leads to a sparse representation of smooth signals. This method
is conceptually simple and has very low complexity while all the 1-D wavelet theory carries
over. These are the main reasons why it has been adopted in the image compression standard
JPEG-2000 [86; 91].

Some other notable approaches use non-separable filter-banks and subsampling (e.g. quin-
cunx) [17; 51; 52], but these methods are computationally complex and the design of the as-
sociated 2-D filter-banks is often challenging and much more involved. Also, several general
multi-dimensional multi-channel filter design methods have been proposed in [4; 16; 67; 92]
resulting in filters with separable polyphase components. In this thesis, we focus on the de-
sign and applications of 2-D separable two-channel filter-banks based on the 1-D wavelets,
but allowing directionality and anisotropy.

Despite their success, the standard separable 2-D WT fails to provide a sparse represen-
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2 Introduction

tation in the presence of 1-D discontinuities, like edges or contours. These discontinuities,
being highly anisotropic objects present in images, are characterized by a geometrical co-
herence that is not properly captured by the standard isotropic WT. Namely, many wavelets
intersect a discontinuity and this leads to many large magnitude coefficients.

The reason for the inefficiency of the standard 2-D WT resides in the spatial isotropy
of its construction, that is, filtering and subsampling operations are applied equally along the
horizontal and vertical directions at each scale. As a result, the corresponding filters, obtained
as the direct products of the 1-D filters, are isotropic at all scales.

This motivates us to design anisotropic basis functions that can “match” anisotropic ob-
jects. However, ensuring an efficient matching between anisotropic basis functions and ob-
jects in images is a non-trivial task. Anisotropic basis functions have already been consid-
ered and exploited by adaptive (e.g. bandelets [64; 65; 66])) or non-adaptive (edgelets and
wedgelets [31; 74; 75; 107; 108], curvelets [9; 10; 11], contourlets [27; 28], etc.) process-
ing. These methods build dictionaries of anisotropic basis functions that provide a sparse
representation of edges in images. Furthermore, Candès and Donoho [10] showed that the
parabolic scaling relation between the length and width of basis functions is a key feature
to achieve a good non-linear approximation (NLA) behavior. However, the implementation
of these transforms usually requires oversampling, having higher complexity when compared
to the standard WT, and require non-separable processing (convolution) and non-separable
filter design. Furthermore, in some of these constructions (e.g. curvelets [10]) the design of
the associated filters is performed in the continuous domain and this makes it difficult to use
them directly on discrete images and to achieve perfect reconstruction.

Notice that the standard 2-D WT uses only horizontal and vertical directions and the HP
filters in this transform have vanishing moments only along these directions. Since char-
acterization of features in synthetic and natural images involves many more than these two
standard directions, multi-directionality (M-DIR) and directional vanishing moments (DVM)
play an important role in pursuing sparse representations.

Several other approaches also analyze geometrical structures in images, like polynomial
modeling with quadtree segmentation [83; 84], footprints and edgeprints [36; 37; 38], edge
adapted multiscale transform [19], etc. Apart from the goal of efficient representation ex-
ploiting geometrical coherence, M-DIR processing has also been applied to image denoising
and classification. Examples of such transforms are the steerable pyramids [85; 93], the cor-
tex transform [109], the complex wavelets [50], the directional wavelet analysis [116], the
directional filter-banks [4; 67; 77], brushlets [57], and the associative representation of visual
information [41]. Some other methods involve directionally adaptive processing in order to
preserve edges in images [44; 55; 60; 61], whereas the methods proposed in [23; 24] im-
pose DVM in either critically sampled or oversampled filter-banks. However, all of them
fail to provide a perfect reconstruction and critical and separable sampling while keeping
filter design completely in the discrete domain and with filters having DVM along arbitrary
directions.

Our goal is to construct an anisotropic perfect reconstruction transform with HP filters
having DVM, while retaining the simplicity of 1-D processing and filter design from the
standard separable 2-D WT. We propose a transform construction based on partitioning of
the discrete space using integer lattices, where the 1-D filtering is performed along lines
across the lattice. The corresponding basis functions are called directionlets. We show in
this thesis that the critically sampled directionlets provide a successful representation for
NLA and compression of synthetic and natural images, whereas the undecimated version of
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directionlets is convenient for image denoising. We propose our construction for the 2-D case
but it is realizable for any dimension.

The problem of NLA is defined as follows: an image (or signal, in general) is transformed
and the N largest magnitude coefficients are retained, while the rest is set to zero. The
reconstructed approximation of the original image is obtained as the inverse transform of the
thresholded transform coefficients. The numerical result of NLA is expressed in terms of the
mean-square error (MSE) defined as

MSE =
1

NxNy
‖x− x̂‖2 =

1
NxNy

NxNy∑

n=1

(xn − x̂n)2 , (1.1)

where x̂ is an approximation of the original image x and Nx and Ny are the dimensions of
the image. For orthogonal transforms, the norm ‖x− x̂‖2 that is related to the original image
domain is equal to the sum of squares of the discarded transform coefficients y n, that is,

‖x− x̂‖2 =
NxNy∑

n=N+1

y2
n. (1.2)

Recall from [56] that, in the case of orthogonal transforms, the optimal NLA approach
in order to minimize the MSE given by (1.2) is to sort the transform coefficients y n in the
descending order of magnitudes. If the representation is complete, then the MSE decays,
as N grows. The asymptotic rate of decay of the MSE, as N → ∞, is the most important
approximation property of a transform in terms of NLA. Here, we show that directionlets
applied in NLA outperform the standard 2-D WT and achieve an asymptotic rate of decay
for the MSE that is competitive with the rates achieved by other state-of-the-art oversampled
methods.

Compression using orthogonal transforms is an extension of NLA involving indexing and
quantization of the retained transform coefficients. The reconstructed images are compared
in terms of an operational rate-distortion (R-D) performance, where, given R encoding bits,
the distortion D is equal to the MSE of the reconstruction. Notice that the distortion is con-
served in the case of orthogonal transforms making it easier to apply the Lagrangian based
optimization methods. The application of directionlets in the wavelet-based compression
methods [79; 81; 113; 114] is straightforward substituting the standard 2-D WT by the ori-
ented anisotropic transforms. We show that an adaptive algorithm based on directionlets and
allowing for spatial segmentation achieves compression results that outperform the results
obtained by the standard 2-D WT.

Furthermore, the undecimated version of directionlets allows for an efficient denoising
algorithm, where the original image is estimated from a noisy observation. The coherence
among transform coefficients across space, directions and scales is efficiently enforced by the
M-DIR multiresolution decomposition performed by directionlets. The obtained results are
comparable to the current best results [23; 68; 87], while the computational complexity of
directionlets is lower than the complexity of other denoising methods based on non-separable
transforms.

Therefore, to summarize, we aim at the following goals in the thesis:

1. To propose a transform construction that inherits the separability, the computational
simplicity and the simplicity of filter design from the standard separable 2-D WT, but
that can improve efficiency of the representation of discontinuity curves in images.
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2. To design practical methods that can provide a better approximation and compression
power (that is, a faster asymptotic decay of the mean-square error and better rate-
distortion performance) for synthetic and natural images, while keeping complexity
low.

3. To come up with a denoising method based on the undecimated version of the trans-
form, which can efficiently exploit correlation among wavelet coefficients across space,
scales, and angles.

1.2 Related Work

The 2-D transforms that involve anisotropic basis functions and M-DIR processing have
been topics of thorough research in the recent literature concerning their construction, prop-
erties, and the NLA behavior on piecewise smooth images. Example of these transforms
are (as already mentioned in Section 1.1) bandelets [64; 65; 66], edgelets and wedgelets
[31; 74; 75; 107; 108], curvelets [9; 10; 11], and contourlets [27; 28]. On the one hand,
bandelets and wedgelets provide the optimal asymptotic decay of the MSE of approximation
of C2/C2 images,1 that is, MSE=O(N−2). On the other hand, curvelets and contourlets
perform nearly optimally, achieving an asymptotic decay given by MSE=O(N −2 log3 N).
However, notice that these transforms have the disadvantage that they are overcomplete and
require non-separable processing.

Several other approaches also exploit geometrical coherence in images. Shukla et al.
have applied piecewise polynomial modeling on spatial segments of images and compute the
optimal quadtree spatial segmentation in order to minimize the distortion for a given bitrate
[84]. Dragotti et al. have proposed edgeprints for image representation as an extension of
the footprints to 2-D joining the footprint coefficients generated by smooth discontinuities in
images [37]. Cohen and Matei have studied non-separable multi-scale transforms adapted to
edges in images [19].

M-DIR processing is applied in several other methods. For instance, an example of such
methods is given in [4; 67; 77], where the oriented filter-banks are designed in different
directions. Furthermore, directionality in [50] is obtained using complex wavelets, whereas
the construction proposed in [116] uses directional wavelets. Steerable filter-banks that are
designed to have directional selectivity in the Fourier domain are given in [85]. Brushlets
[57] also provide an efficient M-DIR description of images, whereas the methods in [41; 109]
handle with directionality in visual representation in a more general way.

Compression of images has been a hot topic in the image processing literature. Certainly,
the most popular result is the wavelet-based image coding standard JPEG-2000 [86; 91].
However, wavelet-based image coders have been proposed well before. Thus, scalar quan-
tization and optimal bit allocation have been proposed in [2]. An efficient coding method
that uses vector quantization of coefficients based on zerotree structures of wavelets has been
presented in [81], followed by the even more efficient SPIHT algorithm [79]. The coding
by spatial-frequency quantization [113; 114] optimizes the decomposition of the image in
space and frequency using the Lagrangian optimization method. This coding algorithm uses
quad-tree spatial segmentation, which is the most common approach in tiling-based image

1Piecewise twice continuously differentiable images with discontinuities that are 1-D twice continuously differ-
entiable functions.
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coding methods because of its efficient coding. The quad-tree spatial segmentation has been
introduced in image compression in [53] and also used later in [84; 89; 90; 96; 112]. On the
other hand, more complex spatial segmentation methods have been analyzed in [45; 46; 47].

Denoising of images has been also a topic of interest in the recent literature. The wavelet-
based thresholding methods have been introduced in [20; 30; 32; 33; 34]. Some alterna-
tive approaches can be found in [12; 14; 15; 22; 49; 78]. Several M-DIR transforms have
been successfully applied in denoising methods. As an example, in [68], the Gaussian scale
mixture model is used for estimation of the transform coefficients obtained by the steerable
pyramids from a noisy observation. Furthermore, thresholding of the transform coefficients
is exploited in [87] for curvelets and in [23] for contourlets to obtain denoised version of
images.

1.3 Thesis Outline and Contribution

The main goal of the thesis is to design new M-DIR anisotropic transforms that retain sepa-
rability and simplicity of the standard 2-D WT, while being capable of capturing geometrical
features in images.

In Chapter 2, we propose new transform constructions that lead to anisotropic basis func-
tions. These basis functions are more convenient to match anisotropic features in images,
like edges and contours. We show that anisotropy contributes to sparsity in the description of
these objects.

Chapter 3 presents the construction of skewed transforms based on integer lattices. These
transforms allow to iterate 1-D filters efficiently across different directions. The correspond-
ing basis functions have directional vanishing moments along two directions different from
horizontal and vertical. These basis functions are called directionlets. The polyphase rep-
resentation associated to the skewed transforms allows for an efficient implementation since
the polyphase matrix is block-diagonal.

The construction of general M-DIR transforms is described in Chapter 4. Directional van-
ishing moments are imposed along a set of arbitrary directions in the M-DIR basis functions,
while critical sampling is retained. However, we illustrate experimentally that it is difficult to
have regularity of the basis functions in the general construction.

Chapter 5 studies the non-linear approximation power of directionlets using spatial seg-
mentation of the image that reduces the number of dominant directions in each segment. The
critically sampled directionlets outperform the standard 2-D WT in asymptotic approxima-
tion of piecewise smooth images and are comparable to other oversampled methods. We
also apply directionlets to the field of image compression, where directionlets substitute the
standard WT in the wavelet-based image coders, while spatial segmentation ensures that the
orientation of directionlets is matched with the local dominant directions across the image
domain. The numerical results of compression and the visual quality of the reconstructed im-
ages obtained by directionlets are substantially improved compared to the case of the standard
WT.

In Chapter 6, we propose an image denoising method based on the undecimated version
of directionlets. The transform coefficients are estimated from a noisy observation using the
Gaussian scale mixtures. The results obtained by the method are comparable to the current
state-of-the-art denoising results, while having lower complexity.

Finally, we conclude and summarize the key results in Chapter 7, where we also discuss
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future research work.



Chapter 2

Anisotropic Two-Dimensional
Wavelet Decompositions

2.1 Introduction

As explained in Chapter 1, the standard two-dimensional (2-D) wavelet transform (WT) fails
to provide a compact representation in the presence of one-dimensional (1-D) discontinu-
ities, like edges or contours. Many wavelets that intersect the discontinuity curve have large
magnitudes.

The main reason for this inefficiency is the spatial isotropy of the construction of the
standard 2-D WT, that is, filtering and subsampling operations are applied equally along both
the horizontal and vertical directions at each scale. The corresponding filters, obtained as
direct products of the 1-D counterparts, are isotropic at all scales (see Section 2.2).

However, discontinuity curves are highly anisotropic features present in images and they
are characterized by a geometrical coherence that is not properly captured by the isotropic
transforms. Such anisotropic objects generate many large magnitude wavelet coefficients, as
shown in a simple example in Figure 2.1(a).

Our goal is to design anisotropic basis functions that can “match” anisotropic objects
(Figure 2.1(b)). However, the design of the anisotropic transforms that ensures an efficient
matching between the basis functions and objects in images is challenging.

In some recent work, anisotropic basis functions have already been proposed using adap-
tive (e.g. bandelets [64; 65; 66]) and non-adaptive (edgelets and wedgelets [31; 74; 75; 107;
108], curvelets [9; 10; 11], contourlets [27; 28], etc.) constructions. These methods build
dictionaries of anisotropic basis functions that provide a sparse representation of edges in
images. Furthermore, Candès and Donoho [10] showed that the necessary condition to have
a good non-linear approximation (NLA) performance is that the length and width of basis
functions obey the parabolic scaling relation. However, the implemented transforms are of-
ten oversampled and require non-separable processing (convolution) and non-separable filter
design. Moreover, in some of these constructions (like curvelets) the design of the associated
filters is performed in the continuous domain and this makes it difficult to use them directly
on discrete images.

Here, we propose a new modified method that retains the 1-D filtering and subsampling

7
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(a) (b)

Figure 2.1: A simple image with one discontinuity along a smooth curve is repre-
sented by the two types of basis functions: isotropic and anisotropic. The support of
these basis functions is shown schematically as black rectangles. (a) Isotropic basis
functions generate a large number of significant coefficients around the discontinu-
ity. (b) Anisotropic basis functions trace the discontinuity line and produce just a
few significant coefficients.

operations and can provide anisotropy. In the sequel of this chapter, we first review the stan-
dard 2-D WT construction and, then, we give two examples of constructions of the anisotropic
transforms that still inherit the simplicity of processing and filter design from the standard
WT. Furthermore, these two anisotropic transforms are critically sampled and lead to perfect
reconstruction.

2.2 Standard Decomposition

The most common design of the 2-D wavelet filter-banks is separable, where the associated
basis functions are obtained as the direct product of two independent 1-D basis functions in
the horizontal and vertical directions. Filtering with high-pass (HP) filters with enough van-
ishing moments along these two directions results in a sparse representation of smooth signals
[101]. This method is conceptually simple and has very low computational complexity.

The construction of the standard 2-D WT is shown in Figure 2.2. The filtering and sub-
sampling operations in the transform are iterated with an equal number of steps along both
the horizontal and vertical directions at each scale. The basic 1-D low-pass (LP) and HP fil-
ters used in the transform are denoted as H0(z) and H1(z), respectively. The resulting filters,
obtained as direct products of the 1-D counterparts, are isotropic at all scales.
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Figure 2.2: The standard 2-D WT is isotropic. (a) The filtering and subsampling
operations are applied equally in both directions at each scale of the transform. (b)
The corresponding decomposition in frequency. The basis functions obtained in this
way are isotropic at each scale as shown in (c) for Haar and in (d) for biorthogonal
"9-7" 1-D scaling and wavelet functions. (e) The corresponding Fourier transforms
of the basis functions obtained from the "9-7" 1-D filters.
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2.3 Fully separable decomposition

Define a simple class of piecewise polynomial images, denoted as ��������(k1,k2) and
inspired by the geometrical period of Piet Mondrian 1 [58].

Definition 2.1 The class ��������(k1,k2) contains M ×M piecewise polynomial images
with k1 horizontal and k2 vertical discontinuities.

An example of the image from the class ��������(k1,k2) is shown in Fig. 2.3(a). This
class is not efficiently represented by the standard WT. The discontinuities lead to too many
nonzero coefficients, as shown in the lemma below and in Fig. 2.3(b).

Lemma 2.1 Given an M ×M pixel image from the class ��������(k1,k2), the number of
nonzero transform coefficients in band-pass subbands produced by the standard WT with the
1-D wavelets having enough vanishing moments2 is given by

N = O ((k1 + k2)M) . (2.1)

Proof: The three band-pass subbands at the jth (1 ≤ j ≤ log2 M ) level of the standard
WT contain O(k1M/2j + k2), O(k1 + k2M/2j), and O(k1 + k2) nonzero coefficients. The
total number of nonzero coefficients across scales is given by

N =
log2 M∑

j=1

(
O

(
k1

M

2j
+ k2

)
+ O

(
k1 + k2

M

2j

)
+ O (k1 + k2)

)

= O (2(k1 + k2) log2 M) + O ((k1 + k2)(M − 1)) = O ((k1 + k2)M) .

To improve compactness of the representation of the class ��������(k 1,k2), we define
the fully separable WT (FSWT). In this transform a full 1-D WT is applied in the horizontal
direction (each row of image) and then, on each output a full 1-D WT is applied in the vertical
direction (each column). The decomposition scheme is shown in Figure 2.4(a). Notice that
such a decomposition has already been proposed in [110] and also in [62; 76], where it is
referred to as tensor wavelet basis.

The FSWT provides anisotropic basis functions (Figure 2.4(c)) that are better adapted
to the anisotropic objects such as the discontinuities in the class ��������(k1,k2). Repre-
sentation efficiency is strongly improved, as can be seen in Figure 2.3(c) from the resulting
sparsity and it is given in Lemma 2.2.

Lemma 2.2 Given an M ×M pixel image from the class ��������(k1,k2), the number of
nonzero transform coefficients in band-pass subbands produced by the FSWT with the 1-D
wavelets having enough vanishing moments is given by

O
(
(k1 + k2) (log2 M)2

)
. (2.2)

1The Dutch painter established neoplasticism and De Stijl in Europe in the beginning of the 20th century. The
image shown in Fig. 2.3(a) resembles to the paintings from his geometrical period (1930)

2A polynomial of the nth order is annihilated by a wavelet that has at least n + 1 vanishing moments.
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(a) (b)

(c) (d)

Figure 2.3: The transforms of an image from the class ��������(k1,k2). (a) An
image from the class ��������(k1,k2). This class is inspired by the painting style
established by Piet Mondrian (1872 - 1944). The image is transformed by the three
transforms: (b) standard WT, (c) FSWT, (d) AWT(2,1) with 1-D wavelet filters
having enough vanishing moments.
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Proof: Each band-pass subband is indexed by (j1, j2), where j1 determines the number
of the horizontal transforms, whereas j2 enumerates the vertical transforms. The indexes are
in the range 1 ≤ j1, j2 ≤ log2 M .

The subband (j1, j2) contains O (k1 + k2) nonzero transform coefficients, therefore, the
total number of nonzero coefficients is given by

N =
log2 M∑

j1=1

log2 M∑

j2=1

O (k1 + k2) = O
(
(k1 + k2) (log2 M)2

)
.

The performance of the FSWT on the class ��������(k1,k2), given by (2.2), is substan-
tially better than the result of the standard WT, given by (2.1), namely, there is an exponential
improvement in terms of M . The improvement is a consequence of anisotropy of the basis
functions that is matched to the anisotropy of the class. However, the FSWT performs well
only when it is applied on Mondrian-like images, while natural images contain features that
are not well represented by straight (horizontal and vertical) lines.

Notice that if a transformed image contains a curve (or any discontinuity that is not a
straight line), then the FSWT fails, as the number of nonzero coefficients grows exponen-
tially across scales. Intuitively, the failure happens because the FSWT enforces a higher
anisotropy (or elongation of the basis functions) than the one that is required in order to pro-
vide a compact representation of objects in natural images. To overcome this problem, we
introduce a novel anisotropic transform, which performs better on a larger class of images.

2.4 Anisotropic wavelet decomposition

In the anisotropic WT (AWT) the number of transforms applied along the horizontal and
vertical directions is unequal, that is, there are n1 horizontal and n2 vertical transforms
at a scale, where n1 is not necessarily equal to n2. Then, the iteration is continued in
the low-pass (LP), like in the standard WT. We denote such an anisotropic transform as
AWT(n1,n2). The anisotropy ratio ρ = n1/n2 determines elongation of the basis func-
tions of the AWT(n1,n2). An example of the construction and basis functions is shown in
Figure 2.5, where the AWT(2,1) is used.

Notice that both the standard WT and the FSWT can be expressed in terms of the AWT.
The standard WT is simply given by AWT(1,1). However, the representation of the FSWT
is more complex and is given as a concatenation of two AWTs. The first transform is
AWT(n1max,0) that produces n1max + 1 subbands and it is followed by the AWT(0,n2max)
applied on each subband. The arguments n1max and n2max determine the maximal number
of transforms in the two directions and depend on the size of the image.

Even though the AWT is not the most appropriate representation for the particular case
of Mondrian-like images, it improves approximation of more general classes of images, as
shown in Chapter 5. Figure 2.3(d) shows the result of the AWT(2,1) of an image from the
class ��������(k1,k2). The order of the number of nonzero coefficients is given by the
following lemma.

Lemma 2.3 Given an M ×M pixel image from the class ��������(k1,k2), the number of
nonzero transform coefficients in band-pass subbands produced by the AWT(n 1,n2) with 1-D
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Figure 2.4: The FSWT is anisotropic, as the number of 1-D transforms is not equal
in the two directions. (a) An example of the transform scheme. Only 2 steps in
each direction are shown. (b) The decomposition in frequency that corresponds to
the construction in (a) with 4 steps in each direction. The anisotropic basis func-
tions obtained from the (c) Haar and (d) biorthogonal "9-7" 1-D scaling and wavelet
functions. (e) The corresponding Fourier transform of the basis functions obtained
from the "9-7" 1-D filters.
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Figure 2.5: The AWT allows for anisotropic iteration of the filtering and subsam-
pling applied on the LP, similarly as in the standard WT. Although this transform
does not improve approximation of the class ��������(k1,k2), it provides an effi-
cient approximation tool for more general classes of images (Chapter 5). (a) The
filtering scheme for the AWT(2,1), where one step of iteration is shown. (b) The
decomposition in frequency. The basis functions obtained from the (c) Haar and
(d) biorthogonal "9-7" 1-D scaling and wavelet functions. (e) The corresponding
Fourier transform of the basis functions obtained from the "9-7" 1-D filters.
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Table 2.1: Orders of approximation by the standard WT, FSWT and AWT applied
on the class ��������(k1,k2).

Standard WT FSWT AWT
(k1 + k2)M (k1 + k2)(log2 M)2 (k1a + k2/a)M

wavelets having enough vanishing moments is given by

O

((
ak1 +

1
a
k2

)
M

)
, where a =

2n2 − 1
2n1 − 1

. (2.3)

Proof: The number of nonzero coefficients produced at the jth level of the AWT(n 1,n2)
is given by

n(j) =O(k1 (2n2 − 1)
M

2n1j
+ k1 (2n1 − 1) 2n2

+k2 (2n1 − 1)
M

2n2j
+ k2 (2n2 − 1) 2n1).

The total number of nonzero coefficients across scales is, therefore,

N =

log2 M

max(n1,n2)∑

j=1

n(j) = O

((
ak1 +

1
a
k2

)
M

)
.

Notice that the result in Lemma 2.3 is a generalization of the result in Lemma 2.1. Table
2.1 summarizes the orders of numbers of nonzero coefficients in band-pass subbands pro-
duced by the three transforms applied on the class ��������(k1,k2).

The transforms explained in this chapter are applied in the horizontal and vertical direc-
tions only. More general transforms can be obtained by imposing vanishing moments along
different directions. These transforms provide an efficient representation of more general
classes of images, involving more than only the two standard directions, as shown in the next
chapter.

2.5 Conclusions

In this chapter, we have presented two anisotropic transform constructions, which are called
fully separable WT and anisotropic WT. We have shown that these transforms retain the
simplicity of separable filtering and subsampling from the standard 2-D WT and provide
anisotropic basis functions that can capture more efficiently anisotropic features in images,
like edges and contours.
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Chapter 3

Lattice-based Skewed Discrete
Wavelet Transforms

3.1 Introduction

Several transform constructions that lead to anisotropic basis functions have been presented
in Chapter 2. However, all the constructions, including also the standard two-dimensional
(2-D) wavelet transform (WT), use only the horizontal and vertical directions. Notice also
that the high-pass (HP) filters in these transforms have vanishing moments only along these
two directions. Since characterization of features in synthetic and natural images involves
many more than these two standard directions, multi-directionality (M-DIR) and directional
vanishing moments (DVM) are very important in achieving sparse representation.

Multi-directionality has also been exploited in bandelets [64; 65; 66], edgelets and wedge-
lets [31; 74; 75; 107; 108], curvelets [9; 10; 11], and contourlets [27; 28]. Apart from the
geometrical representation, several methods involve also multi-directional (M-DIR) process-
ing, like the steerable pyramids [85], the cortex transform [109], the complex wavelets [50],
the directional wavelet analysis [116], the directional filter-banks [4; 77], brushlets [57], and
the associative representation of visual information [41]. However, all of them fail to pro-
vide a perfect reconstruction and critically sampled separable scheme with a filter design
completely in the discrete domain and with filters having DVM along arbitrary directions.

Our goal in this chapter is to construct an anisotropic perfect reconstruction and critically
sampled transform with HP filters having DVM along different directions, while retaining
the simplicity of 1-D processing and filter design from the standard separable 2-D WT. Here,
we present a novel M-DIR basis construction that is based on partitioning the discrete space
using integer lattices.

In the continuation, we explain the problem of approximation of directions in the dis-
crete space �2 and we introduce the concept of directional interaction. Then, we propose
the new lattice-based method that allows for a generalization of the anisotropic transform
constructions from Chapter 2 to include separable (1-D) filtering and subsampling across
multiple directions, not only horizontal and vertical. We also give the polyphase analysis of
the lattice-based transforms.

17
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3.2 Discretization of Directions

To apply a discrete transform in the discrete space �2 in a certain direction, we need to
define the pixels that approximate the chosen direction. This problem has been considered in
computer graphics in the 1960’s [7] as well as in [13; 40].

Recall that the set of points (x, y) ∈ �2 represents a continuous line with the slope r and
intercept b if the following equality is satisfied:

y = rx + b. (3.1)

The discrete approximation of (3.1) is called digital line L(r, n) [100]. To preserve
critical sampling in the transform, given a slope r, every pixel belongs to one and only
one digital line L(r, n). In that case, we say that, given a slope r, the set of digital lines
{L(r, n) : n ∈ �}, partitions the discrete space �2.

The definitions of digital lines proposed in [7; 13; 40] are similar and here we give the
definition that is a variation of the one given in [7]. We show also below that such digital
lines partition the discrete space �2.

Definition 3.1 Given a rational slope r, the digital line L(r, n), where n ∈ �, is defined as
the set of pixels (i, j) such that

j = �ri�+ n, ∀i ∈ �, for |r| ≤ 1, or

i = �j/r�+ n, ∀j ∈ �, for |r| > 1. (3.2)

Lemma 3.1 Given a rational slope r, the set of digital lines {L(r, n) : n ∈ �} partitions the
discrete space �2.

Proof: We give the proof only for the case |r| ≤ 1. Similar arguments can be used for
the other cases.

For each pixel (i, j) ∈ �
2, we can find the intercept n = j − �ri� such that the pixel

belongs to the digital line L(r, n). Furthermore, from (3.2) it follows that this intercept is
unique. Therefore, the digital lines L(r, n), ∀n ∈ �, partitions the discrete space � 2.

The concept of digital lines is useful for overcomplete M-DIR representation. However, in
the sequel, we show why digital lines do not provide an efficient framework when transforms
are applied in different directions and critical sampling is enforced.

3.3 Directional Interaction

To explain the problem of directional interaction, let us first generalize the class ��������
allowing for more directions. The class ���������� consists of the skewed Mondrian-like
images along two directions with the rational slopes r1 = b1/a1 and r2 = b2/a2, where a1,
a2, b1, and b2 are integers. To simplify notation, the two slopes are jointly denoted by the
matrix

M(r1, r2) =
[

a1 b1

a2 b2

]
.

Definition 3.2 The class ����������(M(r1, r2),k1,k2) contains M ×M piecewise poly-
nomial images with k1 and k2 discontinuities along the digital lines L(r1, n) and L(r2, n),
respectively, where n ∈ �, r1 = b1/a1, r2 = b2/a2, and a1, a2, b1, b2 ∈ �.
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(a) (b)

(c) (d)

Figure 3.1: The transforms of an image from the class
����������(M(r1, r2),k1,k2) (a) An example of an image from the class
���������� (M(r1, r2),k1,k2), for M = [v1,v2]T , where v1 = [1, 1] and
v2 = [−1, 1]. The image is transformed using (b) S-WT, (c) S-FSWT, and (d)
S-AWT(MΛ,2,1) (directionlets), where all the transforms are built on the lattice Λ
determined by the generator matrix MΛ = M(r1, r2).
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Figure 3.2: A 1-D WT is applied on an image from the class ����������

(M(−1/2, 2/3),1,1) along the digital lines L(−1/2, n). The HP filtering anni-
hilates the digital line with the slope −1/2. However, the nonzero coefficients
produced by the other line with the slope 2/3 are not aligned in the digital lines
L(2/3, n). This is called directional interaction. Although the transform along
digital lines is efficient when applied in oversampled schemes, it fails to provide a
systematic subsampling method when critical sampling is enforced.

Notice that the class ��������(k1,k2) is a special case of the larger class ����������
(M(r1, r2),k1,k2) when M(r1, r2) = I2. An example of an image from the class ��������-
��(M(r1, r2),k1,k2) is shown in Figure 3.1(a). Notice also that only the lines with rational
slopes are used in the class ����������. However, in spite of this constraint, a wealth of
directions is still available, as we will explain in Section 3.4.

To provide a sparse representation of the class ����������(M(r1, r2),k1,k2) and fol-
lowing the ideas from Chapter 2, we apply a 1-D WT along the digital lines L(r 1, n), for
n ∈ �. The transform produces two types of nonzero coefficients, that is, the coefficients
corresponding to the discontinuities with the slopes r1 and r2.

Since the HP filter has vanishing moments along digital lines with the slope r1, the coeffi-
cients along this direction are annihilated in the HP subband, while the coefficients along the
second direction with the slope r2 are retained in both subbands. However, after subsampling,
unlike in the case of the standard directions, the coefficients along the second direction are
not aligned, that is, they cannot be clustered in the digital lines with the slope r 2. Therefore,
the following 1-D WT applied along the digital lines with the slope r2 does not annihilate
the coefficients along the second direction and, hence, it yields a non-sparse representation.
We call this phenomenon directional interaction. The proof is trivial and is omitted here. An
example is shown in Figure 3.2.

Notice also that the concept of digital lines does not provide a systematic rule for sub-
sampling in the case of iteration of the filtering and subsampling along the directions with
the slopes r1 and r2 when critical sampling is enforced. To overcome the directional interac-
tion and to propose an organized iterated subsampling method we use the concept of integer
lattices.
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Figure 3.3: The intersections between the 3 cosets of the lattice Λ given by the
generator matrix MΛ and the digital lines L(r1 = 1/2, n), where n ∈ �, are the
co-lines CL[0,0](1/2, n), CL[0,1](1/2, n), and CL[1,1](1/2, n).

3.4 Lattice-based Filtering and Subsampling

Instead of applying a transform along digital lines, we propose a novel method that is based
on integer lattices [21]. We also prove that the lattice-based transforms can avoid direc-
tional interaction and are capable of providing the same order of approximation for the class
���������� as the fully separable WT (FSWT) achieves for the class ��������.

A full-rank integer lattice Λ consists of the points obtained as linear combinations of two
linearly independent vectors, where both the components of the vectors and the coefficients
are integers. Any integer lattice Λ is a sublattice of the cubic integer lattice �2, that is,
Λ ⊂ �2. The lattice Λ can be represented by a non-unique generator matrix

MΛ =
[

a1 b1

a2 b2

]
=

[
d1

d2

]
, where a1, a2, b1, b2 ∈ �. (3.3)

Recall that the cubic lattice �2 can be partitioned into | det(MΛ)| cosets of the lattice Λ
[21], where each coset is determined by the shift vector sk, for k = 0, 1, . . . , | det(MΛ)| −
1. Therefore, the lattice Λ with the corresponding generator matrix MΛ given by (3.3),
partitions each digital line L(r1 = b1/a1, n) into co-lines. Notice that a co-line is simply the
intersection between a coset and a digital line. Similarly, the digital line L(r2 = b2/a2, n) is
also partitioned into the corresponding co-lines (Figure 3.3).

We denote as CLsk
(r1, n) the co-line obtained as the intersection between the kth coset

of the lattice Λ and the digital line L(r1 = b1/a1, n). Notice that the co-line CLsk
(r1, n)

consists of the pixels {c1d1 + c2d2 + sk : ∀c1 ∈ �, fixed c2 ∈ �}, where n = �c2(b2 −
r1a2) + sk,2 − r1sk,1� and sk = [sk,1, sk,2].

Now we apply the 1-D WT (including the 1-D both filtering and subsampling operations)
along the co-lines {CLsk

(r1, n) : n ∈ �, k = 0, 1, . . . , | det(MΛ)| − 1} (see also [97; 98;
99]). Notice that both filtering and subsampling are applied in each of the cosets separately.
Furthermore, each filtering operation is purely 1-D. After subsampling, the retained points
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Figure 3.4: The lattice-based filtering and subsampling does not create directional
interaction. (a) The lattice Λ is determined by the generator matrix MΛ. 1-D Filter-
ing is applied along the co-lines {CLsk

(r1, n) : n ∈ �, k = 0, 1, . . . , | det(MΛ)|−
1}, where the slope r1 corresponds to the vector [1, 1], that is, along 45◦. The pix-
els retained after the subsampling belong to the lattice Λ ′ ⊂ Λ determined by the
generator matrix MΛ′ . Notice that filtering and subsampling are applied separately
in two cosets, determined by the shift vectors s0 and s1. (b) The nonzero pixels
obtained after one step of the lattice-based filtering operation applied on the same
example as in Figure 3.2 are clustered in the digital lines with the slope 2/3.
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belong to the sublattice Λ′ of the lattice Λ (Λ′ ⊂ Λ) with the corresponding generator matrix
given by (see Figure 3.4(a))

MΛ′ = Ds ·MΛ =
[

2d1

d2

]
.

Here, Ds is the horizontal subsampling operator, that is,

Ds =
[

2 0
0 1

]
.

We call the direction along the first vector d1 (with the slope r1 = b1/a1), the transform
direction. Similarly, the direction along the second vector d 2 we call the alignment direction.

Therefore, since the filtering and subsampling are applied in each coset separately, the
pixels retained after the subsampling are clustered in co-lines along the alignment direction.
This property is crucial to avoid directional interaction (see Figure 3.4(b)).

Lemma 3.2 Given a 1-D WT applied along the set of co-lines {CLsk
(r1, n) : n ∈ �, k =

0, 1, . . . , | det(MΛ)| − 1} on an image from the class ����������(M(r1, r2),k1,k2), the
transform coefficients in band-pass subbands that correspond to the discontinuities with the
slope r2 are aligned, that is, they can be clustered in the co-lines CLsk

(r2, n), n ∈ �.

Proof: Recall that the co-line CLsk
(r1, n) consists of the pixels {(i, j) : i = c1a1 +

c2a2 + sk,1, j = c1b1 + c2b2 + sk,2, ∀c1 ∈ �, fixed c2 ∈ �}. After the subsampling, the
retained pixels belong to the lattice Λ′ and, thus, the corresponding co-lines consist of the
pixels (i, j) such that i = c1 · 2a1 + c2a2 + sk,1 and j = c1 · 2b1 + c2b2 + sk,2 for each
c1 ∈ � and a fixed c2 ∈ �.

Notice that the co-lines CLsk
(r2, n) with the other slope r2 that correspond to the lattice

Λ′ consist of the same pixels. Therefore all the retained pixels are aligned in the direction
with the slope r2.

Combining lattices with the different constructions given in Chapter 2, we build skewed
wavelet transforms.

3.5 Skewed Wavelet Transforms

The transforms defined in Chapter 2 (the standard WT, FSWT, and anisotropic WT (AWT))
are inefficient when applied on the class ����������(M(r1, r2),k1,k2), unless M(r1, r2)
is the identity matrix. Since the directions of the transforms and discontinuities in images
are not matched, the transforms fail to provide a compact representation. The following
lemma gives the orders of approximation that can be achieved by the three transforms with
the standard directions.

Lemma 3.3 Given an M ×M pixel image from the class ����������(M(r1, r2),k1,k2),
where M(r1, r2) is not the identity matrix, the standard WT, FSWT, and AWT with 1-D
wavelets having enough vanishing moments provide O((k1 + k2)M) nonzero transform co-
efficients in band-pass subbands.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: The basis functions obtained by the skewed transforms using the Haar
1-D scaling and wavelet functions: (a) S-WT, (b) S-FSWT, (c) S-AWT(MΛ,2,1)
(directionlets). The same, but with the biorthogonal "9-7" 1-D scaling and wavelet
functions: (d) S-WT, (e) S-FSWT, (f) S-AWT(MΛ,2,1) (directionlets). In all cases
MΛ = [d1,d2]T , where d1 = [1, 1], and d2 = [−1, 1]. The DVMs are imposed
along the vectors d1 and d2, that is, along 45◦ and−45◦. The corresponding Fourier
transforms: (g) S-WT, (h) S-FSWT, (i) S-AWT(MΛ,2,1) (directionlets).
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Proof: The subbands produced by the FSWT are indexed by (j 1, j2), where 1 ≤
j1, j2 ≤ log2 M . Each subband contains O(k1M/2j1 + k2M/2j2) nonzero coefficients.
The total number is given by

N =
log2 M∑

j1=1

log2 M∑

j2=1

O

(
k1

M

2j1
+ k2

M

2j2

)
= O ((k1 + k2)M) .

Notice that the standard WT, as a special case of the AWT, has the same behavior. Thus,
we give the proof only for the AWT. The AWT(n1,n2) produces 2n1+n2−1 band-pass and HP
subbands at each scale j. Each of these subbands contain n(j) = O((2n1+n2−1)M(2−n1j +
2−n2j)) nonzero coefficients. Therefore, the total number of nonzero coefficients is given by

log2 M

max(n1,n2)∑

j=1

n(j) = O ((k1 + k2)M) .

Using integer lattices, we define the three new transforms, which are skewed versions
of the standard WT, FSWT, and AWT. Given a lattice Λ, the skewed transforms are applied
along co-lines in the transform and alignment directions of the lattice Λ, retaining the same
frequency decompositions as the corresponding transforms along the standard directions ex-
plained in Chapter 2. Thus, following the notation introduced in Section 2.4, we denote as
S-AWT(MΛ,n1,n2) the skewed anisotropic transform built on the lattice Λ that has n1 and
n2 transforms in one iteration step along the transform and alignment directions, respectively.
We call the basis functions of the S-AWT directionlets since they are anisotropic and have a
specific direction. Similarly, we denote the skewed standard WT as S-WT and the skewed
FSWT as S-FSWT. The corresponding basis functions are shown in Figure 3.5 for the direc-
tions along the vectors d1 = [1, 1] and d2 = [−1, 1]. Notice that the skewed transforms are
applied in all cosets of the lattice Λ separately.

The basis functions of the skewed transforms have DVM in any two directions with
rational slopes. Recall that the N th order DVM along the direction with a rational slope
r1 = b1/a1 is equivalent to requiring the z-transform of a basis function to have a factor term
(1− z−a1

1 z−b1
2 )N [27; 28; 103]. The following lemma gives the number and directions of the

DVM in directionlets.

Lemma 3.4 Assume that the directionlets of the S-AWT(MΛ,n1,n2) are obtained using a 1-D
wavelet with N vanishing moments. Then, at each scale of the iteration, there are:

(a) 2n1 − 1 directionlets with the N th order DVM along the transform direction of the
lattice Λ,

(b) 2n2 − 1 directionlets with the N th order DVM along the alignment direction of the
lattice Λ, and

(c) (2n1 − 1)(2n2 − 1) directionlets with the N th order DVM along both directions.

Proof: Recall first from [103] that 1-D filtering using the filter H(z) along the transform
direction of the lattice Λ is equivalent to filtering in the 2-D discrete space using H(z a1

1 zb1
2 ).

Similarly, filtering along the alignment direction of the lattice Λ is equivalent to filtering in
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Table 3.1: Orders of approximation by the S-WT, S-FSWT and S-AWT (di-
rectionlets) built on the lattice Λ determined by MΛ applied on the class �-
��������(M(r1, r2),k1,k2).

MΛ = M(r1, r2) MΛ 
= M(r1, r2)
S-WT (k1 + k2)M (k1 + k2)M

S-FSWT (k1 + k2)(log2 M)2 (k1 + k2)M
S-AWT (k1a + k2/a)M (k1 + k2)M

the 2-D discrete space using H(za2
1 zb2

2 ). Since the 1-D HP filter has N vanishing moments,
its z-transform has a factor term (1− z−1)N . Therefore, the HP filtering along the transform
and alignment directions uses the equivalent filters with the factor terms (1 − z −a1

1 z−b1
2 )N

and (1− z−a2
1 z−b2

2 )N , respectively, in the z-transforms.
Filtering using the 1-D two-channel filter-bank along two directions in the construction

of the S-AWT (see Figure 2.5(a)) yields (a) 2n1 − 1 subbands with HP filtering along only
the transform direction, (b) 2n2 − 1 subbands with HP filtering along only the alignment
direction, and (c) (2n1 − 1)(2n2 − 1) subbands with HP filtering along both directions. Thus,
the statement of the lemma follows directly.

Efficiency of representation of the class ����������(M(r1, r2),k1,k2) by the three skew-
ed transforms depends on matching between the directions of discontinuities and the direc-
tions used in these transforms. If these directions are matched, then the orders of nonzero
coefficients in band-pass subbands are equal to the orders calculated in Chapter 2 (see Table
2.1). Otherwise, they are given by the result in Lemma 3.3. The following lemma formalizes
this statement. The proof is omitted since it uses the same arguments as in Lemmas 2.1 to
2.3.

Lemma 3.5 Given is an M ×M pixel image from the class ����������(M(r1, r2),k1,k2).
The S-WT, S-FSWT and S-AWT(MΛ,n1,n2) with 1-D wavelets having enough vanishing mo-
ments built on the lattice Λ determined by the generator matrix MΛ = M(r1, r2) give
O((k1 + k2)M), O((k1 + k2)(log2 M)2) and O((k1a + k2/a)M) nonzero coefficients in
band-pass subbands, respectively. Here, a = (2n2 − 1)/(2n1 − 1).

The transforms of the image shown in Figure 3.1(a) are given in Figure 3.1(b)-(d). The
applied transforms are S-WT, S-FSWT, and S-AWT(MΛ,2,1), where M(r1, r2) = MΛ.
Table 3.1 summarizes the orders of nonzero coefficients in band-pass subbands in the case of
both matched and mismatched directions.

Notice that the lattice-based method allows for a more general construction of M-DIR
transforms using more than two directions in an arbitrary order. These M-DIR transforms
and properties of the corresponding basis functions [97] are outlined in Chapter 4.

3.6 Polyphase Representation

Filtering and subsampling across lattices, as explained in Section 3.4, can be efficiently rep-
resented in the polyphase domain. Recall first that a two-channel 1-D filter-bank

(H0(z), H1(z))
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Figure 3.6: A 1-D filter-bank (H0(z), H1(z)) with the subsampling factor 2 is
represented in the polyphase domain with the corresponding polyphase components
H00(z), H01(z), H10(z), and H11(z).

followed by a subsampler by the factor 2 can be given in terms of the polyphase components
as [101; 104]

H0(z) = H00

(
z2

)
+ zH01

(
z2

)
and

H1(z) = H10

(
z2

)
+ zH11

(
z2

)
.

Here, H00, H01, H10, and H11 are the polyphase components of the filters H0(z) and H1(z)
that correspond to even and odd samples of the impulse response, respectively. Such a
polyphase representation is shown in Figure 3.6.

Similarly, we can find the equivalent polyphase components of a 2-D filter-bank (H 0(z),
H1(z)), where z = (z1, z2), applied in the lattice-based method, as explained in Section
3.4. Recall that the filters H0(z) and H1(z) used in this method are purely 1-D filters, that
is, H0(z) = H0(z1) and H1(z) = H1(z1). To illustrate this polyphase decomposition, we
consider the particular example with the lattice Λ determined by the generator matrix

MΛ =
[

1 1
−1 1

]
,

as shown in Figure 3.4(a). Recall that the lattice-based filtering and subsampling are applied
in each coset of the lattice Λ separately. Thus, the equivalent scheme has two sections, which
are (a) separation into two cosets and (b) 1-D filtering and subsampling in the transform
direction (Figure 3.7(a)). Notice that filtering in the transform direction is performed as
horizontal filtering preceded by rotation by the generator matrix M Λ.

Since the total subsampling rate is | det(Ds ·MΛ)| = 4, the polyphase representation of
such a filter-bank consists of 4 polyphase components. The equivalent polyphase represen-
tation is shown in Figure 3.7(b), where the polyphase transform H p is block-diagonal, that
is,

Hp =





H00(z1) H01(z1) 0 0
H10(z1) H11(z1) 0 0

0 0 H00(z1) H01(z1)
0 0 H10(z1) H11(z1)



 .

Notice that the block-diagonal polyphase transform with two identical blocks is a conse-
quence of the separable transforms applied across cosets. This property allows for a simple
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Figure 3.7: The lattice-based filtering and subsampling can be represented in the
polyphase domain. (a) The 2-D two-channel filter-bank applied in the example
shown in Figure 3.4(a). Filtering and subsampling are applied in 2 cosets separately.
(b) Equivalent polyphase representation contains 4 components. The polyphase
transform Hp is block-diagonal.



3.7 Conclusions 29

filter design and computational efficiency in the polyphase domain. Such separability in the
polyphase domain has also been used in other 2-D filter-bank designs [4; 67].

3.7 Conclusions

In this chapter, we have proposed new lattice-based anisotropic transforms that have the cor-
responding oriented basis functions with DVM along different directions, not only horizontal
and vertical. The transforms retain the separable filtering and subsampling from the standard
2-D WT, while achieving an efficient description of anisotropic oriented features in images.
The corresponding polyphase representation of these filtering and subsampling operations is
given by a block-diagonal polyphase transform with separable components.
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Chapter 4

General Multi-directional Wavelet
Transforms and Regularity

4.1 Introduction

Visual 2-D features in real images contain information in more orientations than only hor-
izontal and vertical. The 2-D separable standard or skewed wavelet transforms (WT) are
limited to provide a sparse representation of these features because they use only two trans-
form directions in the construction. This has motivated recently an important research effort
towards the design of “true” multi-directional (M-DIR) wavelet bases with 2-D functions that
have directional vanishing moments (DVM) along more directions.

The lattice-based separable filtering and subsampling operations explained in Chapter
3 allows for the construction of skewed transforms along any two directions with rational
slopes. However, a similar method can be used to generalize the construction of the trans-
forms allowing for more than only two transform directions.

An important property of the standard wavelet bases is regularity, which consists of a
smoothness condition on the corresponding continuous wavelet basis functions. Regular
wavelet bases are useful in many image processing applications, in particular, image com-
pression. The main reason why regularity plays an important role in a multiresolution decom-
position, such as the wavelet transform, is in a better visual perception of the reconstructed
images, that is, perturbation of transform coefficients results in a smooth and perceptually
less annoying perturbation in the image domain.

In this chapter, we propose a novel design of general M-DIR wavelet bases, which allows
separable filtering that can be performed using standard regular 1-D wavelet filter banks.
The lattice-based construction allows for a large freedom in the 1-D filters and directions
that can be iterated in any order. Thus, our approach keeps exactly the same complexity as
the traditional separable scheme while globally, it defines a powerful and general truly M-
DIR transform with DVM along any combination of directions. We also address the issue
of regularity of these bases, which is a much more complex problem than regularity of the
standard 1-D or 2-D wavelet bases.

In the sequel, we explain the construction of the general lattice-based M-DIR wavelet
bases that are built using the separable filtering operations and we give two examples of the

31
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M-DIR transform constructions called cyclic and unbalanced. Then, we analyze regularity
of these basis functions.

4.2 General Lattice-based Multi-directional Construction

Recall that the lattice Λ is determined by an integer generator matrix MΛ given by (3.3).
In order to simplify the notation, we denote the generator matrices of the lattice Λ j and its
sublattice Λ′

j as Mj and M′
j , respectively.

The key idea to obtain multi-directionality is to perform redirection, where the transform
and alignment directions in the ith subsampled lattice Λ ′

j are changed. The change of these
directions is made by multiplying the generator matrix M ′

j by a full-rank integer redirection
matrix Tj , that is,

Mj+1 = Tj ·M′
j = Tj ·Ds ·Mj. (4.1)

Here, the matrix Ds performs horizontal subsampling and it is given by

Ds =
[

2 0
0 1

]
. (4.2)

The new generator matrix Mj+1 defines a new lattice Λj+1 with the new transform and
alignment directions. Notice that, if | det(Tj)| = 1, then the lattice Λj+1 is the same as
the lattice Λ′

j , even though the transform and alignment directions are changed. In this case,
the redirection is called unitary. Otherwise, if | det(Tj)| > 1, then Λj+1 ⊂ Λ′

j , and, thus,
the lattice Λj+1 partitions the lattice Λ′

j into more cosets [21]. Such a redirection is called
non-unitary. Notice also that, in the trivial case, when the transform and alignment directions
are not changed, the redirection matrix Tj is equal to the identity matrix I.

The M-DIR transforms constructed using non-unitary redirections are intuitively less ef-
ficient (in terms of providing a sparse representation) because the pixel magnitudes within a
sparser coset are less correlated. However, in spite of this inefficiency, non-unitary redirec-
tions are necessary when a series of unitary redirections does not allow for transforming in a
chosen direction.

To clarify the construction of the M-DIR transforms, we consider an example of a series
of 4 transforms along the directions 0◦, 90◦, 45◦, and −45◦ as shown in Figure 4.1. The
first lattice Λ1 is cubic and it is determined by the identity generator matrix M 1 = I. The
following lattices Λ2, Λ3, and Λ4 are determined by the generator matrices

M2 =
[

0 1
2 2

]
,M3 =

[
2 2
−2 2

]
, and M4 =

[ −2 2
8 0

]
. (4.3)

Notice that the transform directions (determined by the first row-vectors in the generator
matrices) in these lattices correspond to the chosen directions 0◦, 90◦, 45◦, and −45◦, re-
spectively. From (4.1) it follows that the three redirections, which yield the lattices Λ 2, Λ3,
and Λ4 are given by the redirection matrices

T1 =
[

0 1
1 2

]
,T2 =

[
0 1
2 −1

]
, and T3 =

[
0 1
1 −2

]
. (4.4)

The second redirection determined by the redirection matrix T 2 is non-unitary since

| det(T2)| = 2.
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Figure 4.1: Four transform steps are applied along 0◦, 90◦, 45◦, and −45◦, respec-
tively. The corresponding lattices (a) Λ1, (b) Λ2, (c) Λ3, and (d) Λ4 are determined
by the generator matrices M1, M2, M3, and M4. Filtering and subsampling are ap-
plied in the transform direction in each lattice, respectively, determined by the first
row-vector in the generator matrices. In order to change the transform and align-
ment directions, the subsampled lattices determined by the generator matrices M ′

1,
M′

2, M′
3, and M′

4 are multiplied by the redirection matrices T1, T2, and T3 given
by (4.4). The non-unitary redirection shown in (c) partitions the lattice Λ ′

2 into 2
cosets. The following filtering and subsampling operations are applied in each coset
separately.
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Thus, the lattice Λ3 partitions the lattice Λ′
2 into 2 cosets. The following consecutive trans-

forms applied on the lattices Λ3 and Λ4 have to be applied in these 2 cosets separately to
avoid directional interaction, as described in Chapter 3.

Recall from (4.1) that the redirection matrices have to be full rank and with integer en-
tries resulting in transform and alignment directions with rational slopes. This is the only
constraint we have to impose and, thus, a variety of M-DIR transforms is available. Notice
that, since the transforms produce 2 subbands (LP and HP) at each scale and the iteration of
the transforms is allowed in each subband, the total number of subbands grows exponentially,
that is, there are 2j subbands at the jth scale.

Notice also that the transforms explained in Chapters 2 and 3 are special cases of the M-
DIR transforms. Hence, in the standard and skewed WT the only one used redirection matrix
is the inverse diagonal matrix given by

J =
[

0 1
1 0

]
. (4.5)

The initial generator matrix M1 is the identity matrix I for the standard WT and given by
(3.3) for the skewed WT. Similarly, the fully separable and anisotropic WT (both standard and
skewed) can be also represented as the M-DIR transforms with the corresponding redirection
matrices equal to either I or J. Thus, since these redirections are unitary, the number of
cosets in the case of these transforms is retained the same through iterations and that number
is equal to the initial number of cosets given by | det(M1)|.

Notice that the HP filters in the M-DIR transforms impose vanishing moments in all,
not only two, chosen directions producing the corresponding basis functions with combi-
nations of DVM (that is, the functions that have the factor terms (1 − z−a1

1 z−b1
2 )N in the

z-transform, for different combinations of a1 and b1). Notice also that the transform coeffi-
cients are aligned along the alignment directions in the sense given in Lemma 3.2 avoiding
directional interactions.

In the continuation we explain two examples of M-DIR constructions, which we call
cyclic and unbalanced.

4.2.1 Cyclic Construction

In order to retain the spatial symmetry of the basis functions and to impose DVM in more
directions, we propose the cyclic construction of the M-DIR transforms. In this construction,
the transform and alignment directions are iterated in a cyclic manner, that is, for a chosen
set of D directions determined by the vectors {d i}|i=1,...,D, the generator matrices are given
by

Mj =

[
k

(j)
1 d(j mod D)

k
(j)
2 d((j+1) mod D)

]
, where k

(j)
1 , k

(j)
2 ∈ �. (4.6)

The corresponding redirection matrices satisfy (4.1) and they are given by

Tj =
[

0 1
m

(j)
1 m

(j)
2

]
, where m

(j)
1 , m

(j)
2 ∈ �.

The construction is schematically illustrated in Fig. 4.2(a), whereas the basis functions with
the Haar and biorthogonal "9-7" 1-D filters are shown in Fig. 4.2(b) and (c).
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Figure 4.2: The cyclic construction of the M-DIR transforms. (a) Iteration of the
transform steps in the cyclic construction is shown only for the LP subbands. Each
block implies redirection and transform (filtering and subsampling operations) along
the chosen transform directions 0◦, 90◦, 45◦, and −45◦. The block-scheme shows
the processing in one coset only. The basis functions are obtained in the case of
the (b) Haar and (c) biorthogonal "9-7" 1-D filter-banks. DVM are imposed along
combinations of the chosen directions.
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The cyclic construction is periodic. The following lemma gives the period of the sequence
of the redirection matrices and the scaling relation that holds in the sequence of the generator
matrices.

Lemma 4.1 Given a set of D directions determined by the vectors {di, i = 1, . . . , D}, the
sequence of redirection matrices Tj used in the cyclic transform construction is periodic with
the period given by

L =
{

D, D even,
2D, D odd

.

Moreover, Mj = KMj−L, where

K = 2L/2
L∏

j=1

| det(Tj)|1/2. (4.7)

Proof: Periodicity of the redirection matrices Tj follows from the definition of the gen-
erator matrices Mj in the cyclic construction given by (4.6). If D is even, then the generator
matrix Mj is, by definition, the subsampled version of the matrix M j−D and the redirection
matrix Tj is equivalent to the matrix Tj−D . Otherwise, if D is odd, then the sequence of
redirection matrices is repeated after two cycles and, thus, the period is 2D.

It follows from the recursive relation (4.1) that the factor K is given by the ratio
√∣∣∣∣

det(Mn)
det(Mn−L)

∣∣∣∣

resulting in (4.7).
The corresponding cyclic basis functions have DVM along combinations of the D chosen

transform directions. The number and distribution of the DVM across subbands is given in
the following lemma.

Lemma 4.2 Given a set of D directions determined by the vectors {di, i = 1, . . . , D}, there
are (

D
n

)
=

D!
n!(D − n)!

(4.8)

corresponding cyclic basis functions at one scale that have DVM in n directions, where 0 ≤
n ≤ D.

Proof: Recall from the proof of Lemma 3.4 that an N th order DVM imposed in the
2-D filter H(z1, z2) along the rational slope direction determined by the vector d i = [ai, bi]
is equivalent to the z-transform of the filter to have the factor term (1 − z −ai

1 z−bi
2 )N . This

term is imposed by 1-D HP filtering in the direction d i.
Since the full decomposition tree is performed in one cycle of the transform, there are 2 D

subbands per cycle. The number of subbands that have DVM in n directions is equal to the
number of transform sequences in which HP filtering is repeated exactly n times. It follows
from combinatorics that this number is given by (4.8). Furthermore, notice that there exists
exactly one subband that does not have any DVM (that is, for n = 0) and that subband is LP.

Notice that the basis functions that correspond to the previous example constructed using
4 transform directions and shown in Figure 4.2 (b) and (c) have DVM along combinations of
these 4 directions.
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4.2.2 Unbalanced Construction

In the second M-DIR construction, which we call unbalanced, only two transform directions
are iterated. In order to get DVM along more than only two directions, the transform steps
along two other directions (different than the iterated directions) are performed only once.
Notice that, unlike in the case of the cyclic construction, the transform directions are used in
an unbalanced manner, that is, the first pair of directions is used more than the second. Notice
also that the analysis of regularity of the corresponding basis functions is easier than in the
case of the cyclic basis functions because most of the regularity properties is inherited from
the two-directional case.

An example of the unbalanced construction with the iterated transform steps along 0 ◦ and
90◦ and a transform step along 45◦ and −45◦ is shown in Fig. 4.3(a). The corresponding
basis functions with the Haar and biorthogonal "9-7" 1-D filters are shown in Fig. 4.3(b) and
(c).

4.3 Regularity of Multi-directional Wavelet Bases

Recall from [101] that a sufficient condition for the convergence in the L 2 sense of an infinite
sequence of functions {fn}∞n=1 to a limit function f(t) is given by

lim
n→∞ ‖f − fn‖2 = 0. (4.9)

For regular iterated 1-D filter-banks, the corresponding iterated continuous basis func-
tions converge through iterations to a piecewise smooth function in the L 2 sense [25; 101].
Furthermore, the Fourier transform of the iterated basis functions also converges to the Fouri-
er transform of the limit function.

Regularity of the iterated filter-banks is equivalent to having an exponential decay of the
first-order differences of the filter coefficients through scales (Lipschitz or Hölder exponents)
[17; 18; 72; 101], that is

max
n

∣∣∣g(j)
0 [n + 1]− g

(j)
0 [n]

∣∣∣ = O
(
2−αj

)
. (4.10)

In the Fourier domain, regularity implies a decay of the Fourier transform of the limit function
given by

O

(
1

(1 + |ω|)α

)
. (4.11)

Recall that the iterated filters and upsamplers can be expressed by one equivalent filter and
upsampler using the Noble identities [95]. It has been shown in [25; 101] that the convergence
of the Fourier transform of the equivalent scaling and wavelet filters in a wavelet filter-bank
is determined by the behavior of the product

n∏

j=1

M0

( ω

2j

)
(4.12)

for large n, where M0(ω) = G0(eiω)/G0(1) is a normalized version of the LP synthesis filter
G0(z). For a regular filter-bank, the product in (4.12) converges in the L 2 sense as n→∞.
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Figure 4.3: The unbalanced construction of the M-DIR transforms. (a) The con-
struction is shown for the LP subbands only. Each block implies redirection and
transform (filtering and subsampling operations) in one direction. The transform
directions are used in an unbalanced manner, that is, the transform steps along the
directions 0◦ and 90◦ are iterated and the iteration is followed by one step of the
transforms along the directions 45◦ and −45◦. The block-scheme shows the pro-
cessing in one coset only. The basis functions are obtained using the (b) Haar and
(c) biorthogonal "9-7" 1-D filters. DVM are imposed along combinations of the
chosen 4 directions.
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(a) (b)

Figure 4.4: The basis functions that correspond to the two-directional transform
constructions (directionlets). This transform construction is proposed in Chapters 2
and 3. In this example the directionlets are constructed along the transform direc-
tions 45◦ and −45◦ for (a) Haar and (b) biorthogonal "9-7" 1-D filter-banks. Both
basis functions are regular within cosets.

The analysis of regularity in 2-D is very complex in general. However, if the Fourier
transform of the iterated scaling function is separable, then the regularity analysis inherits the
properties from the 1-D counterparts, as shown in the continuation.

Notice that the notation of matrix-exponents used in the following analysis is taken from
[103] and is also used in [52]. Hence, we define

zMT
j =

[
z1

z2

]
�
� a1 a2

b1 b2

�
�

=
[

za1
1 · zb1

2

za2
1 · zb2

2

]
.

4.3.1 Two-directional Constructions

Recall that the two-directional transform constructions are explained in Chapters 2 and 3.
An example of the basis functions is shown in Figure 3.5 for the transform directions 45 ◦

and −45◦ and the two directionlets for the Haar and biorthogonal "9-7" 1-D filter-banks are
presented again in Figure 4.4.

Given a 1-D regular wavelet filter-bank, the two-directional transform constructions lead
to the basis functions that are regular within cosets. Owing to separability of the construc-
tion, the Fourier transforms of the basis functions are also separable and, thus, regularity is
inherited from the regularity of the 1-D filter-bank. Furthermore, the limit functions in each
coset are the same. This property is formalized in the following theorem.

Theorem 4.1 Given a regular 1-D wavelet filter-bank, the skewed standard, fully separable,
and anisotropic transform constructions result in regular basis functions within cosets, for
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any chosen pair of directions. Moreover, the iterated basis functions in each coset converge
to the same limit function.

Proof: Using the Noble identities [95], the equivalent iterated filter is given by

Ge(z) =
n∏

j=1

G0

(
zMT

j

)
, (4.13)

where z = [z1, z2]T . Since the redirection matrices in the case of the standard, fully sep-
arable, and anisotropic constructions are separable, the filter G e(z) can be represented by
the product Ge(z) = Ge1(zdT

1 ) · Ge2(zdT
2 ), where the row-vectors d1 = [a1, b1] and

d2 = [a2, b2] constitute the initial generator matrix M1 given by (3.3). Thus, the equiv-
alent product that determines regularity of the basis functions (as given in (4.12)) can be
written as follows

n1∏

j1=1

M0

(
d1 ·w

2j1

)
·

n2∏

j2=1

M0

(
d2 ·w

2j2

)
, (4.14)

where the 2-D frequency w is defined as w = [ω1, ω2]T . Recall that both products in (4.14)
converge as n1, n2 →∞ since the corresponding1-D filters are regular. Therefore, the whole
product in (4.14) also converges and a component of the 2-D separable filter in one coset is
regular.

Since the construction of the transform is identical in each coset, it directly follows that
the corresponding basis functions converge to the same limit function.

Notice that if the transform is built using only one coset (that is, if | det(M1)| = 1), then
the whole filter is regular. Otherwise, the components of the filter in each coset converge
separately to the same limit function, but the whole filter is not regular in general since the
decay given by (4.10) is not satisfied.

Notice also that the separate construction of directionlets in cosets is similar to the prob-
lem of the construction of multiwavelets [80; 88; 102], where a space-variant wavelet filter-
bank is constructed using a set of different scaling and wavelet functions. In fact, directionlets
can be considered as a special case of 2-D multiwavelets, where the scaling and wavelet func-
tions corresponding to each coset are the same.

For the case of the unbalanced M-DIR construction, recall that only two transform di-
rections are iterated. Thus, the analysis of regularity of the basis functions is similar to the
two-directional case. The result of Theorem 4.1 still holds since the asymptotic behavior of
the equivalent filters, as n grows, also depends on the product (4.13). Hence, the equivalent
basis functions are regular within cosets. However, in this case, the limit functions are not
necessarily the same in different cosets.

4.3.2 Cyclic Construction

The analysis of regularity in the case of the cyclic construction is much more complex because
the 1-D regularity condition given by (4.12) cannot be applied directly as in the case of the
two-directional constructions.

In order to clarify this, we consider the equivalent iterated filter G e(z). It follows from
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Lemma 4.1 that the equivalent iterated filter Ge(z) given by (4.13) becomes

Ge(z) =
n∏

j=1

G0

(
zMT

j

)
=

L∏

i=1

�n−i
L �∏

j=1

G0

(
zMT

(j−1)L+i

)

=
L∏

i=1

�n−i
L �∏

j=1

G0

(
zKj−1Mi

)
. (4.15)

However, in this case, the convergence of the Fourier transform of the corresponding iterated
scaling function of the filter given in (4.15) does not depend on the behavior of the product
(4.12) and, thus, in general, we cannot know if the cyclic basis is regular or not.

Even though we cannot provide a theoretical condition on regularity of the cyclic bases,
several experiments give us an intuition that these bases are irregular. Recall from [25] that,
for an iterated 1-D LP filter G0(eiω) with an N th order zero in ω = π, we have

M0(ω) =
(

1 + eiω

2

)N

R(ω), N ≥ 1.

Then, a sufficient condition for regularity of this 1-D wavelet basis is to have [25]

sup
ω∈[0,2π]

|R(ω)| < 2N−1.

Recall also that the 1-D filter satisfies the orthogonality condition, that is, it holds

|M0(ω)|2 + |M0(ω + π)|2 = 1. (4.16)

This relation can be rewritten as

yNP (1− y) + (1− y)NP (y) = 1,

where y = cos2(ω/2) ∈ [0, 1] and P (1 − y) = |R(ω)|2. Daubechies showed [25] that a
general solution for the polynomial P (y) to satisfy (4.16) is

P (y) =
N−1∑

j=0

(
N − 1 + j

j

)
yj + yNQ(y) = PN (y) + yNQ(y),

where Q(y) is an antisymmetric polynomial with the symmetry point at y = 1/2. Notice that
for y = 1/2 it holds that Q(1/2) = 0 and PN (1/2) = 2N−1. Therefore, supω∈[0,2π] |R(ω)|
= supy∈[0,1] |P (y)|1/2 is lower bounded by |P (y = 1/2)|1/2 = 2(N−1)/2 and, thus, for the
orthogonal 1-D filter to be regular, it has to satisfy

2
N−1

2 ≤ sup
ω∈[0,2π]

|R(ω)| < 2N−1. (4.17)

However, from the experiments, this condition does not ensure regularity of the correspond-
ing 2-D cyclic bases for the length of the 1-D filters up to 16 using the directions 0 ◦, 90◦,
45◦, and −45◦. An intuitive explanation for the irregularity of these cyclic basis functions
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is the fact that the cyclic construction ensures the required decay in the frequency given by
(4.11) only in the transform directions, but not in all directions, which is a key condition.

Possible solutions to have both regularity and perfect reconstruction (although not orthog-
onality) is to relax the condition of orthogonality given by (4.16) and to use biorthogonal 1-D
filter-banks. In this case, either the synthesis or the analysis filter-bank can be regular because
it is difficult to have regularity in both. However, this topic is left for future work.

4.4 Conclusions

In this chapter, we have presented a construction of the general M-DIR transforms that have
DVM along more than only two directions. The transforms retain separability of the filtering
and subsampling operations. The analysis of regularity of the corresponding basis functions
is very complex and, here, we have shown that regularity within cosets is achievable.



Chapter 5

Non-linear Approximation and
Compression of Images using
Directionlets

5.1 Introduction

The main task of approximation is to represent a signal by a subset of transform coefficients,
while the rest of them is set to zero. The transform can be critically sampled (bases) or
oversampled (frames). The approximation with N retained transform coefficients is also
called N-term approximation. We distinguish between linear approximation (LA) and non-
linear approximation (NLA). In the first, the indexes of the retained coefficients are fixed,
whereas in the latter, they are adapted to the content of the signal.

Owing to truncation of the coefficients, the approximating signal does not match exactly
the original one. The quality of the approximation is commonly measured in terms of mean-
square error (MSE), that is, for a signal x and its N -term approximation x̂N , the MSE is
given by ‖x− x̂N‖2. Notice that, given a signal x and its transform y = F · x, where F is a
tight frame or an orthogonal basis, we have the following inequality

‖x− x̂N‖2 ≤ 1
A
‖y − ŷN‖2, (5.1)

where ŷN corresponds to the truncated version of y with N retained coefficients, the N -term
approximation x̂N is given by x̂N = A−1FT · ŷN , and A is the frame bound of F (for more
details see Appendix 5.A.1). Equality in (5.1) holds if the transform F is an orthogonal basis.

In the orthogonal case, the optimal strategy to minimize the MSE is to retain the largest-
magnitude transform coefficients [56]. Notice that the MSE decays as the number of retained
coefficients (approximants) N grows.

Compression using orthogonal transforms is an extension of NLA that consists of (a)
approximation, (b) indexing the retained coefficients, and (c) quantization of those coeffi-
cients.1 Thus, the MSE (in this case also called distortion) is affected by the two factors: (a)
truncation error due to NLA and (b) quantization error.

1Some algorithms merge quantization and NLA into a single operation producing an embedded bitstream, like

43
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The asymptotic rate of decay of the MSE, as N tends to infinity, is a fundamental ap-
proximation property of the transform and this value allows us to compare approximation
performance of different transforms. The higher the rate of decay, the more efficient the
transform is. Similarly, the rate of decay in compression is defined as the asymptotic be-
havior of the distortion D, as the bitrate R tends to infinity (this is frequently called R-D
behavior).

In the continuation we compute the rate of decay that can be achieved by directionlets.
Also, we present the optimization tool based on dynamic programming using the Lagrange
multipliers [6] applied in the compression algorithm. The algorithm described in the sequel
uses the embeeded zerotree structures of directionlets and it is a modification of the original
zerotree algorithm proposed in [81]. Finally, we show some experiments of compression of
synthetic and natural images.

5.2 Achievable Approximation and Compression Rate by
Directionlets

Mallat [56] and DeVore [26] showed that, for a 2-D piecewise C 2 smooth signal f(x1, x2)
with a 1-D C2 smooth discontinuity curve2 (which we call C2/C2 signal), the lower bound
of the MSE is given by O(N−2).

Notice that the standard wavelet transform (WT) is far from optimal since its rate of
decay for C2/C2 images is O(N−1) [35; 56]. Some other adaptive or non-adaptive methods
have been shown to improve substantially the approximation power. Curvelets [10; 9; 11]
and contourlets [27; 28] can achieve the rate O(N −2(log N)3), which is nearly optimal.
Furthermore, bandelets [64; 65; 66] and wedgelets [31; 74; 75; 108; 107] have been shown
to perform indeed optimally for the C 2/C2 class of images. However, notice that none
of these methods is based on critically sampled filter-banks, which are very convenient for
compression. Furthermore, a complex non-separable processing is sometimes required.

As we showed in Section 2 and 3, anisotropy and multi-directionality improve the ap-
proximation power of the WT while keeping separability, simplicity, and critical sampling.
However, the skewed fully separable WT (S-FSWT) cannot yield a high rate of decay since
it fails to provide a sparse representation of C 2/C2 images. On the other hand, the skewed
anisotropic WT (S-AWT) is capable of producing a compact representation, but it is still
sensitive to the choice of the transform and alignment directions.

Synthetic (including also C 2/C2) and natural images have geometrical features that vary
over space. Directionality, thus, can be considered as a local characteristic, defined in a small
neighborhood. This implies the necessity for spatial segmentation as a way of partitioning an
image into smaller segments with one or a few dominant directions per segment.

The S-AWT is applied on a segmented image, where the transform and alignment direc-
tions are chosen independently in each segment. The transform outperforms the standard
WT in both approximation and compression rate of decay of the MSE (i.e. distortion). The
following theorem gives the rate of decay for C 2/C2 images.

Theorem 5.1 Given a 2-D C2/C2 function f(x1, x2) and α = (
√

17− 1)/2 ≈ 1.562,

zero-trees [81] or SPIHT [79].
2C2 smoothness of both 1-D and 2-D functions means that the functions are twice continuously differentiable.
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Figure 5.1: An example of NLA of an image from the class C 2/C2. (a) An
image from the class C2/C2 is approximated using the standard WT and the S-
AWT(Λ,2,1) with spatial segmentation. (b) The MSE expressed in terms of PSNR
is significantly reduced in the case of the S-AWT(Λ,2,1).

(a) The N -term approximation by the S-AWT using spatial segmentation achieves

MSE = ‖f − f̂N‖2 = O
(
N−α

)
.

In that case the optimal anisotropy ratio is ρ∗ = α.

(b) Compression by the S-AWT, using spatial segmentation and using R bits for encoding,
can achieve the distortion D given by

D = O
(
R−α

)
.

The proof of the theorem is given in Appendix 5.A.2.
Notice that anisotropic segmentation is used here in the iteration, that is, an image is

partitioned into vertical strips of equal widths. The number of segmentation steps depends on
the anisotropy ratio, the number of approximants, the number of transform directions, and the
first derivative of the C2 curve (see the proof of Theorem 5.1). In particular, when the optimal
anisotropy ratio ρ∗ = α is used, the number of segmentation steps does not increase with the
number of approximants. However, in reality, because of the discreteness of the transform,
this anisotropy ratio cannot be exactly achieved and, in general, the number of segmentation
steps has to be increased with the number of approximants. Notice that the S-AWT(Λ,3,2)
approximates well the optimal transform3 while retaining iterative segmentation. It follows
from the proof of Theorem 5.1 that the number of required transform directions grows with
the number of segmentation steps as O(2βs). Table 5.1 gives the achievable approximation
and segmentation rates for the S-AWT(Λ,3,2) and different values of β.

3There are other possible transforms with the anisotropy ratio even closer to optimal but we choose this one for
the sake of simplicity.
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Table 5.1: Dependence of the approximation rate MSE=O(N −e∗
1 ) and the num-

ber of segmentation levels s = η 1 log2(N) on the growth rate of the number of
transform directions β in the case of the S-AWT(Λ,3,2).

β 2 1 0.5 0.25
η1 1/51 1/26 2/27 4/29
e∗1 1.55 1.50 1.41 1.24

Although the obtained approximation rate is slower than the ones obtained in [9; 10; 11;
27; 28; 31; 74; 75; 107; 108], we want to emphasize that the S-AWT(Λ,3,2) is critically
sampled and uses only separable processing. This is important for compression because, in
the case of orthogonal 1-D filter-banks, the Lagrangian optimization-based algorithms still
can be applied, making it easier to achieve very good compression.

In order to perform compression, the chosen transform directions in each segment have
to be encoded together with the indexes and quantized values of the retained transform coef-
ficients. The bitrate of this overhead information depends on the number of spatial segments
and allowed number of transform directions per segment. Recall from Appendix 5.A.2 that
the number of spatial segments is equal to 2s, whereas the number of bits needed to encode
the choice of directions in each segment behaves as O(log2(2βs))=O(βs). Thus, the number
of overhead bits is given by RH = O(βs · 2s). However, even though this number grows
exponentially with the number of segmentation steps s, the growth rate for the values of β
given in Table 5.1 is smaller than the growth rate of the number of indexing and quantization
bits and, thus, the dominant asymptotic behavior D(R) remains the same.

Recall also from Section 3.4 that the S-AWT(Λ,3,2) is applied in the | det(MΛ)| cosets
separately. The separate filtering and subsampling in the cosets affect the order of decay of
the MSE, but only up to a constant factor and, thus, the rate of decay remains the same.

Figure 5.1 illustrates the gain obtained by NLA using the S-AWT(Λ,2,1) with spatial
segmentation applied on an image from the class C 2/C2 when compared to the results of
NLA obtained using the standard WT. Furthermore, Figure 5.2 shows an example of the NLA
results with a natural image. The image Cameraman shown in Figure 5.2(a) is transformed
using the standard 2-D WT without segmentation and the S-AWT(Λ,2,1) with segmentation.
The MSE obtained by retaining a part of the transform coefficients is presented in Figure
5.2(b). The two reconstructions obtained with 0.98% of retained coefficients for the two
methods are shown in Figure 5.2(c) and (d). Finally, the segmentation and adaptation of
transform directions for the case in Figure 5.2(d) is illustrated in Figure 5.3.

Notice that a set of S-AWT built using more transform directions and applied on the whole
image (without spatial segmentation) yields an overcomplete representation, that is, a tight
frame. In this construction, each directionlet is still critically sampled, but overcompleteness
is caused by a concatenation of directionlets along more directions (similar to overcomplete-
ness of curvelets). Following the arguments given in [10; 28], we conclude that the best
transform in the overcomplete case is S-AWT(Λ,2,1) with the vertical alignment direction,
since the size of the corresponding directionlets satisfies the parabolic scaling law. How-
ever, unlike in [28], where the minimal distance between two transform directions is halved
each two scales, here the processing in each direction is made in parallel branches and the
number of transform directions must remain the same across scales. Since the redundancy
factor is equal to the number of transform directions, the minimal distance between two di-
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Figure 5.2: An example of NLA of a natural image. (a) The original image Cam-
eraman. The image is approximated using the standard WT and the S-AWT(Λ,2,1)
with spatial segmentation. (b) The PSNR of the approximated image is signifi-
cantly improved in the case of the anisotropic transform. (c) The reconstructed
image obtained using the standard WT for 0.98% retained coefficients and quality
of 13.93dB. (d) The reconstructed image obtained using directionlets with spatial
segmentation for the same number of retained coefficients and quality of 23.09dB.
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Figure 5.3: The transform directions are adapted to the dominant directions in each
segment of the image Cameraman shown in Figure 5.2(a).

rections cannot be arbitrarily small. Thus, the overcomplete directionlets do not provide a
good asymptotic order of approximation.

However, this oversampled method is still applicable in practice, when a discrete image
is processed. In that case the number of transform scales is finite and upper bounded. The
minimal distance between transform directions determines the redundancy factor. Then, the
required number of directionlets is used from the beginning and remains the same across
scales.

The critically sampled directionlets provide an efficient tool for compression of images.
Since the compression algorithm that we propose in this chapter is adaptive to the content of
images, it will involve adaptive spatial segmentation and tree pruning. Thus, we review the
standard Lagrangian optimization in the next section.

5.3 Lagrange Optimization

The optimization tool based on Lagrange multipliers is explained in details in [70]. Here, we
give a brief overview on the use of the tool in the compression algorithm.

The goal of the optimization process is to minimize the average distortion D of a set of
signal blocks subject to a total bitrate Rbudget assuming that the operational R-D curve4 is

4The R-D curve consists of the operational points in the R-D coordinate system that characterize a compression
system.
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independent for each signal block and the total bitrate and distortion is obtained as the sum
of the bitrates and distortions in each signal block. The second assumption holds only in the
case of orthogonal transforms applied in each signal block and, thus, this tool cannot be used
in the case of frames and is only approximately true for biorthogonal transforms.

For the ith signal block we denote the chosen quantizer as Q i and the obtained bitrate
and distortion as Ri(Qi) and Di(Qi). This problem is often called resource (bit) allocation,
but is more general (e.g. optimal segmentation, choice of different bases, etc.). The problem
of independent resource allocation is stated in the form of a constrained minimization, as
follows:

min
Qi

N∑

i=1

Di(Qi), such that
N∑

i=1

Ri(Qi) ≤ Rbudget. (5.2)

5.3.1 Equivalent Unconstrained Solution

The constrained optimization problem given by (5.2) can be shown to be equivalent to an
unconstrained problem given by [70; 82]

Ji(λ) = min
Qi

N∑

i=1

Di(Qi) + λRi(Qi). (5.3)

Now, the bitrate Ri and the distortion Di are incorporated into the Lagrangian cost J i

for a given Lagrange multiplier λ ≥ 0. The multiplier trades off distortion for rate. Notice
that, since at R-D optimality all signal blocks must operate at the same slope point λ on
their R-D curves,5 the minimization of the Lagrangian cost J i is performed independently in
each signal block. Thus, the optimization problem in (5.3) is unconstrained and substantially
simpler than the one in (5.2).

Notice also that different values of the Lagrange multiplier λ correspond to different
points on the convex hull (see Figure 5.4). Therefore, λ taking values from 0 to∞ is equiva-
lent to the operating point sweeping the whole convex hull of the R-D curve. The following
theorem formalizes this property. The proof is provided in [82].

Theorem 5.2 If, given a fixed value λ, the quantizer Q∗
i is the solution to the unconstrained

problem of (5.3), then it is also the solution to the constrained problem of (5.2) for the par-
ticular case of Rbudget =

∑N
i=1 Ri(Q∗

i ).

Notice that, given a fixed value of λ, the solution to (5.3) is identical to the solution to
(5.2) only if they both use the same target Rbudget. In general, due to the discrete nature of
the bitrate, one has to use a convex hull approximation of R budget in the solution to (5.3).

Each value of the approximation of Rbudget used in (5.3) corresponds to a different value
of the multiplier λ. Given a target Rbudget, the optimal constant slope λ∗ is not known a
priori. However, even though the search for the corresponding λ ∗ increases the complexity
of the optimization algorithm, it can be found at a low computational cost using the bisection
algorithm [69; 71; 82], which we present briefly in the sequel.

5Otherwise, one can redistribute bits among signal blocks in such a way that the signal blocks with larger slope λ
gets more bits and, thus, contribute less to the total distortion. This redistribution can be continued until the optimum
is reached, that is, until all signal blocks work at the same slope λ.
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Figure 5.4: Typical R-D characteristic of a compression system. Locations of the
operating points depend on various system parameters, like transform choice, quan-
tizer choice, or entropy coder choice. The shown curve is the convex hull of the R-D
curve that consists of all optimal (in the R-D sense) operating points. Those points
can be reached using Lagrangian optimization techniques. However, some points,
which lie above the convex hull, may not be accessible by the fast Lagrangian meth-
ods.
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5.3.2 Finding the Optimal λ∗

We denote the bitrate and distortion corresponding to the optimal quantizer for the signal
block i, which solves the unconstrained optimization problem (5.3), as R ∗

i (λ) and D∗
i (λ),

respectively. The algorithm performs a binary search exploiting the monotonicity of R ∗
i (λ)

(recall that the bitrate R∗
i (λ) decreases as λ increases).

Assume that we have chosen two initial slopes λl and λu that satisfy the relation:

N∑

i=1

R∗
i (λu) ≤ Rbudget ≤

N∑

i=1

R∗
i (λl).

Notice that if such λl and λu do not exist, then the given problem is unsolvable, that is, the
given Rbudget is inconsistent for the given quantizers. A trivial choice for λ l and λu would
be λl = 0, λu = ∞. We present in Algorithm 5.1 the bisection algorithm in the form as
outlined in [70].

Algorithm 5.1 A binary search for the optimal λ∗ for a given Rbudget.

Step 1: Pick λl ≤ λu such that

N∑

i=1

R∗
i (λu) ≤ Rbudget ≤

N∑

i=1

R∗
i (λl).

If the inequality above is an equality for either slope value, stop. We have an exact solution.
Otherwise, proceed to Step 2.

Step 2: The slope is updated:

λnext ←−
∣∣∣∣∣

∑N
i=1 D∗

i (λl)−D∗
i (λu)

∑N
i=1 R∗

i (λl)−R∗
i (λu)

∣∣∣∣∣ + ε,

where ε is a vanishingly small positive number chosen to ensure that the lower bitrate point
is picked if λnext is a singular slope value (i.e. corresponds to a convex hull face slope).

Step 3: Solve (5.3) for λnext.

• If
∑N

i=1 R∗
i (λnext) =

∑N
i=1 R∗

i (λu), then stop; λ∗ = λu;

• else if
∑N

i=1 R∗
i (λnext) > Rbudget, λl ←− λnext; go to Step 2;

• else λu ←− λnext; go to Step 2.

5.4 Anisotropic Zerotree Compression Algorithm

The compression algorithm provided in this section exploits the idea of embedded zerotree
structures of coefficients of the standard 2-D WT originally proposed in [81]. However,
since the transforms constructed in Chapter 3 and applied in our compression algorithm are
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Figure 5.5: A typical transform coder consists of three blocks: transform, quantizer
and entropy lossless coder.

anisotropic, the equivalent zerotree structures have to be modified into anisotropic zerotrees.
In the sequel, we review the original zerotree-based algorithm and, then, we explain the con-
struction of the anisotropic zerotrees and the optimized compression algorithm that includes
spatial segmentation.

Notice that the original Shapiro’s zerotree-based compression algorithm is outperformed
by several more recent compression algorithms (for instance, SPIHT [79] and SFQ [113; 114]
achieve better results than the one presented in [81]). However, these algorithms are based
on similar multi-scale-space structures of wavelet coefficients and, therefore, the similar
anisotropic grouping can be applied. For that reason, we examine the improvement made
by the skewed anisotropic transforms over the standard 2-D WT only in the case of the em-
bedded zerotree algorithm. The work on the corresponding modifications in the SPIHT and
SFQ is left for future work.

5.4.1 Standard Embedded Zerotrees

The image coder proposed in [81] consists of three blocks: (1) the standard 2-D WT, (2)
quantization, and (3) lossless entropy compression (see Figure 5.5). The goal of the transform
implemented in the first block is to produce decorrelated coefficients. Additionally, the mean
of the pixels is removed from the original image, so that the transform coefficients can be
well modeled as zero-mean, independent.

The goal of quantization is to generate a low entropy stream of symbols so that the sym-
bols can be entropy-coded at some target low bitrate. The quantizers used in the quantization
block are symmetric, midtread, and non-uniform.

The total cost of encoding consists of two components: the cost of indexing significant
coefficients and the cost of quantization their magnitudes. As the target bitrate decreases,
the probability of appearance of insignificant coefficients increases, and the fraction of the
encoding cost attributed to the significance map increases.

To improve the efficiency of encoding the significance map of wavelet coefficients, a data
structure called zerotrees is introduced. A wavelet coefficient x is said to be insignificant
with respect to a given threshold T if |x| < T . The main hypothesis behind the zerotrees is
that if a wavelet coefficient at a certain scale is insignificant with respect to a given threshold
T , then all wavelet coefficients of the same orientation in the same spatial location at finer
scales are likely to be insignificant with respect to T .

Following this hypothesis, in a hierarchical subband system, with the exception of the
finest frequency subbands, every coefficient at a given scale can be related to a set of coef-
ficients at the next finer scale of the same orientation. The coefficient at the coarse scale is
called parent, and all coefficients corresponding to the same spatial location at the next finer
scale of the same orientation are called children. Given a parent, the set of all coefficients at
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Figure 5.6: Standard zerotrees of wavelet coefficients. Each coefficient, except the
ones in the finest subbands, have children - the coefficients at the next finer scale of
the same orientation in the same spatial location.

all finer scales of the same orientation corresponding to the same location are called descen-
dants. The zerotree structure built of coefficients obtained by the standard 2-D WT is shown
in Figure 5.6.

A scanning of the coefficients in the encoding process is performed in such a way that no
child is scanned before its parent. The scanning begins at the coarsest scale and progresses to
the finest scales (see Figure 5.7).

Given a threshold T a coefficient x is said to be an element of a zerotree if itself and all
of its descendants are insignificant with respect to T . An element of a zerotree for a threshold
T is a zerotree root if it is not the descendant of a previously found zerotree root for the
same threshold. The encoding of the significance of each coefficient is performed using the
three-symbol alphabet: (1) zerotree root, (2) isolated zero (the coefficient is insignificant, but
has some significant descendants), and (3) significant with respect to T . Finally, the string of
symbols is entropy coded. Notice that the encoding of the finest scale coefficients requires
only a 2-symbol alphabet, since the zerotree root symbol is not used.

In practice, to improve embedding, in addition to encoding the significance map, it is use-
ful to encode the sign of significant coefficients along with the significance map. Therefore,
four symbols are used: (1) zerotree root, (2) isolated zero, (3) positive significant, and (4)
negative significant. The corresponding flow chart is shown in Figure 5.8.

The coefficients that have been found to be significant are further quantized using a
successive-approximation quantization (SAQ) approach. The SAQ sequentially applies the
thresholds T0, . . . , TN−1 to determine significance, where the thresholds are chosen so that
Ti = Ti−1/2. The initial threshold T0 is chosen so that the magnitudes of all transform coef-
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Figure 5.7: The scanning order in the process of encoding the significance of coef-
ficients is made in such a way that no child is scanned before its parent.
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Figure 5.8: The flow chart of encoding a coefficient of the significance map.
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ficients are less than 2T0. Notice that the SAQ allows for embedded coding, where the quality
of image representation grows from coarse to fine when each encoding symbol is sent.

During both the encoding and decoding processes, two separate lists of wavelet coef-
ficients are maintained. The dominant list contains the coefficients that have not yet been
found to be significant. The coefficients are ordered following the order of scanning shown
in Figure 5.7, and within each subband, the set of coefficients is also ordered. Thus, all the
coefficients in a given subband appear in the dominant list prior to the coefficients in the next
subband. The subordinate list contains the magnitudes of those coefficients that have been
found to be significant. For each threshold, each list is scanned once.

During a dominant pass, coefficients in the dominant list are compared to the threshold
Ti to determine their significance. The significant map is then coded using the method shown
in Figure 5.8. Each significant coefficient is added to the end of the subordinate list, and the
corresponding magnitude in the zerotree of wavelet coefficients is reset to zero so that the
future occurrences of a zerotree in the next dominant passes are not prevented.

A dominant pass is followed by a subordinate pass in which all coefficients in the subordi-
nate list are scanned and the quantized values of their magnitudes are refined to an additional
bit of precision. In this way, the quantization step size, which defines the uncertainty interval,
is halved. The encoding is performed using 2 symbols, specifying if the quantized magni-
tudes fall in the upper or lower half of the previous uncertainty interval. The string of the
binary symbols is then entropy coded.

After scanning all the coefficients in the subordinate list, the entries are sorted in de-
scending order of the reconstruction values and the threshold is updated (halved) for the next
dominant pass. The process continues to alternate between dominant and subordinate passes
until some target criterion is met (the bitrate budget is exhausted or the maximal allowed
distortion is achieved).

Algorithm 5.2 summarizes the described encoding method presenting both dominant and
subordinate passes.

In the decoding process, each decoded symbol reduces the width of the uncertainty in-
terval. The reconstruction value is chosen to be in the center of the uncertainty interval
minimizing the MSE. Notice that the corresponding decoding algorithm is similar to Algo-
rithm 5.2 with two exceptions: the input and output streams of symbols are exchanged and
the reconstruction values have to take into account the sign of the decoded coefficients.

The encoding symbols are entropy coded, as depicted in Figure 5.5. The entropy arith-
metic coder is used because it is more efficient in the case of dictionary with small number
of symbols than the Huffman coder. The arithmetic coder and decoder are implemented as in
[111].

Notice also that the stream of encoding symbols can be stopped at any moment. All the
lower-rate encoding streams are embedded in the produced stream. Furthermore, the R-D
curve can be computed on-line at a high resolution. This property is very convenient for the
application in the Lagrangian optimization-based compression algorithm, as we explain in
Section 5.4.3.

5.4.2 Skewed Anisotropic Zerotrees

Zerotree structures proposed in [81] hierarchically order wavelet coefficients produced by the
standard 2-D WT. The main principle of grouping coefficients in a zerotree is that they have
to be located in the same spatial location and belong to subbands of the same orientation.
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Algorithm 5.2 Standard zerotree-based encoding algorithm proposed in [81].
Step 1: Apply the 2-D WT on the input image.

Step 2: Initialization

• T ←− maxi |xi|/2 + ε;

• Add all the coefficients in the LP subband and the coefficients in the subbands at scales
j = 1, . . . , J and orientations d = 1, 2, 3 to the dominant list in the defined order.

Step 3: Dominant pass
For each coefficient xi in the dominant list:

• If |xi| ≥ T , then:

◦ If |xi| ≥ 0, then send a positive symbol, otherwise send a negative symbol; stop
if the target condition is met;

◦ Append |xi| to the end of the subordinate list with the reconstruction value equal
to 1.5 · T ;

◦ Reset the magnitude of the corresponding wavelet coefficient to zero.

• Else, if the coefficient already belongs to a zerotree, then do not code it;

• Else, if the coefficient has significant descendants, then send an isolated zero symbol,
otherwise send a zerotree root symbol; stop if the target condition is met.

Step 4: Subordinate pass

• For each entry in the subordinate list:

◦ If the magnitude of the coefficient |xi| is larger than its reconstruction value, then
send 1 and add T/4 to the reconstruction value;

◦ Else send 0 and subtract T/4 from the reconstruction value;

◦ Stop if the target condition is met.

• Sort the subordinate list in descending order of the reconstruction values.

Step 5: T ←− T/2; go to Step 3.
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Figure 5.9: The subbands at the coarser scale j = J−1 are defined across the lattice
ΛJ−1 with the generator matrix MΛj−1 . Each coefficient has a set of children at the
next finer scale j = J . The children belong to the same orientation and coset as
their parent and are located in the parallelepiped around the spatial location of their
parent.

The S-AWT proposed in Chapter 3 allows for similar zerotree structures. The main princi-
ple of grouping directionlets is retained, but, now, the number of children that each coefficient
can have may vary depending on the anisotropy ratio of the transform.

Since the S-AWT is defined using lattices, this concept is also convenient to define the
corresponding anisotropic zerotrees. Assume that the J-scale S-AWT(MΛJ ,n1,n2) is applied
on an image, where MΛJ = [d1,d2]T is given by (3.3). The transform is applied in each
of | det(MΛJ )| cosets independently. From the construction of the AWT, as explained in
Section 2.4, it follows that the number of HP subbands produced at each scale is 2 n1+n2 − 1.
Similarly to the case of the standard zerotrees, these subbands are said to have different
orientations. Therefore, given a S-AWT, there are 2n1+n2 − 1 orientations.

Consider two subbands of the same orientation at two consequent scales. We denote the
index of the coarser scale as j and that of the finer scale as j+1, where j = 1, . . . , J−1. The
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Figure 5.10: The hierarchical structure of the skewed anisotropic zerotrees is sim-
ilar to the standard structure shown in Figure 5.6. However, now, the number of
children that each parent can have depends on the anisotropy ratio of the applied
transform.
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two subbands are defined across the corresponding lattices given by the generator matrices

MΛj =
[

2(J−j+1)n1 · d1

2(J−j+1)n2 · d2

]
, and MΛj+1 =

[
2(J−j)n1 · d1

2(J−j)n2 · d2

]
.

Notice that the lattice Λj is a sublattice of the lattice Λj+1 and recall that the coefficients in
the two subbands are separated into | det(MΛJ )| cosets. A coefficient in the cth coset of the
subband at the coarser scale j is parent of a set of children that belong to the same coset c in
the subband at the next finer scale j + 1. The children are located within the parallelepiped
around the parent defined by

α1 · 2(J−j+1)n1 · d1 + α2 · 2(J−j+1)n2 · d2, for − 1
2
≤ α1, α2 <

1
2
.

The corresponding parent-children relation is illustrated in Figure 5.9 for the case of S-
AWT(MΛ,2,1), where the generator matrix MΛ is given by (3.3) for d1 = [2, 1] and d1 =
[−1, 1]. The corresponding hierarchical structure of subbands across scales is shown in Fig-
ure 5.10 for the same transform.

Notice that the standard zerotree structure is a special case of the skewed anisotropic
zerotree structure for MΛJ = I, where I is the identity matrix, and n1 = n2 = 1.

5.4.3 Optimized Compression Algorithm with Spatial Segmentation

In this section, we propose a compression algorithm based on the skewed anisotropic ze-
rotrees of directionlets and quad-tree spatial segmentation. The algorithm performs opti-
mization in the R-D sense using dynamic programming based on the Lagrangian multiplier
tool, as explained in Section 5.3.

The motivation for spatial segmentation, as mentioned in Section 5.2, is in the locality
of directionality in images. Transform and alignment directions are chosen adaptively to the
content of each spatial segment, resulting in a sparser representation of the whole image. In
this algorithm, the quad-tree segmentation is implemented, as explained in the sequel.

First, the input image is divided into four equally sized segments in a step of the quad-
tree spatial segmentation. The segmentation steps are iterated on each segment until the
predetermined maximal segmentation depth (or the minimal size of segments) is reached.
The iteration results in a full spatial quad-tree, as shown in Figure 5.11, where each node
represents a spatial segment. Notice that each node in the quad-tree have four children except
the nodes in the last level. The nodes without children are called leaves, whereas the ones
that have children are called parents. Notice also that other spatial segmentation methods are
possible, but we use the quad-tree segmentation as the simplest in terms of coding efficiency,
since 1 bit per node suffices to encode a path through the tree. The quad-tree segmentation
has already been used in other image compression techniques, like in [83; 113; 114]. Also, a
similar analysis of dynamic programming in the case of trees is given in [6]. The examination
of the impact of more complex segmentation methods on our compression algorithm is left
for future work. Some analysis of the multi-tree spatial segmentation can be found in [45;
46; 47].

The optimization process applied on the full spatial quad-tree is divided into 3 embedded
phases:

I Choosing the best length of the encoding bit stream for each node,
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Figure 5.11: The nodes in the full quad-tree represent spatial segments. Maximal
depth of the shown spatial quad-tree is 2.

II Exhaustive search for the best pair of transform and alignment directions for each node,

III Pruning the full spatial quad-tree.

In each phase, the Lagrangian cost is minimized for a given constant multiplier λ.
The S-AWT is applied on the spatial segments associated to each node in the full quad-tree

shown in Figure 5.11. The transform and alignment directions are combined from a prede-
termined set of directions in such a way that the corresponding lattice used in the transform
is of full rank (i.e. the vectors that approximate the chosen directions are linearly indepen-
dent; revisit Section 3.4 for more details on the construction of the S-AWT). Notice that a
set of D directions generates, in general, D(D − 1) different combinations for the S-AWT.
An exception happens in the case when an isotropic transform is applied (for the anisotropy
ratio ρ = 1) generating D(D − 1)/2 different combinations. Then, for each combination
of directions, the corresponding transform coefficients are encoded using the zerotree-based
encoding algorithm outlined in Algorithm 5.2. The encoding process terminates when the
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Figure 5.12: An example of a pruned quad-tree is shown. Children are pruned if
the sum of their Lagrangian costs is larger than the cost of their parent.
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length of the bit stream reaches the predetermined maximally allowed bit budget. For all
spatial segments and combinations of directions the maximal bit budget is the same in terms
of bits-per-pixel (bpp).

For each spatial segment and combination of directions, during the encoding process, the
distortion is simultaneously measured and the corresponding R-D curve is recorded. The
resolution of the measured R-D curve can be very high (in the extreme case, the distortion
can be measured for each bit added to the bit stream). However, in practice, the R-D curve is
not perfectly convex at this highest resolution. Since convexity of the curve is a condition for
a successful Lagrangian optimization, we measure the distortion at a lower resolution, that is,
after each 16 encoding bits.

In the optimization phase I, given a Lagrange multiplier λ, the operating point along the
R-D curve that minimizes the Lagrangian cost J = λR + D is chosen. The corresponding
optimal bitrate is the allowed target bitrate associated to the particular spatial segment and
combination of directions. Notice that a set of minimized Lagrangian costs corresponding to
each combination of directions used in the transform is associated to each spatial segment.

In the following phase II, for each spatial segment, the minimal cost in the set is chosen
and the winning transform and alignment directions and the corresponding optimal bitrate
are associated to the spatial segment. The minimal cost is said to be the cost of the segment
(i.e. of the node in the quad-tree).

Finally, in the optimization phase III, the full quad-tree is pruned according to the costs
of each node. Children of a node are pruned if [83]

Jp + J0 ≤
4∑

i=1

Jci + J1, (5.4)

where Jp is the cost of the parent, Jci are the costs of the children, and J0 and J1 represent
the costs of encoding the pruning decision (the messages: "prune“ and "retain“ the children,
respectively). In the particular case of the quad-tree, 1 bit per node is used to encode this
information and, thus, J0 = J1 = λ. If the children are pruned, then the cost of the parent is
updated by adding J0. Otherwise, if the children are retained, then the cost of the parent is
equal to the sum of the costs of the children and J1. The updated cost of the parent is used
further in pruning the nodes at upper levels. An example of a pruned quad-tree is shown in
Figure 5.12.

The whole encoding algorithm is summarized and outlined in Algorithm 5.3. Notice that,
given a Lagrange multiplier λ, the total bit budget is the sum of two components: (1) the
sum of the bitrates spent for zerotree encoding of the transform coefficients in leaves of the
quad-tree and (2) the bitrate allocated to encoding the quad-tree structure (i.e. the pruning
decisions). Since these bitrates depend on the R-D curves in nodes of the quad-tree, the total
bit budget is not known a priori. In order to reach the target total bit budget, the bisection
algorithm is applied, as explained in Section 5.3.2 and Algorithm 5.1.

5.5 Simulation Results

In this section, we explain the details of the implementation of the compression algorithm
outlined in Section 5.4.3. Then, we present some results of the compression of synthetic and
natural images.
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Algorithm 5.3 Optimized ansiotropic zerotree-based encoding algorithm with spatial seg-
mentation.
Step 1: Full quad-tree
If the current spatial segmentation level is less than maximally allowed, then:

• Divide into 4 equally sized segments;

• Repeat Step 1 for each segment.

Step 2: S-AWT
For all d1, d2 = 1, . . . , D, such that d1 
= d2, apply the S-AWT using d1th and d2th direction
from the predetermined set as the transform and alignment directions.

Step 3: Zerotree encoding - Phase I
For each node in the quad-tree generated in Step 1 and each transform from Step 2:

• Run the zerotree encoding algorithm (outlined in Algorithm 5.2) with anisotropic ze-
rotrees and the maximal bit budget specified as input;

• Record the operating points at the R-D curve after each 16 bits added to the output bit
stream;

• Compute the Lagrangian costs for each measured point at the R-D curve and find the
minimum;

• Associate the optimal bitrate and the minimal Lagrangian cost to the particular node
and transform.

Step 4: Best pair of directions - Phase II
For each node in the quad-tree:

• Choose the minimal Lagrangian cost among the costs associated to that node and all
transforms;

• Associate the winning pair of directions, the minimal cost, and the optimal bitrate to
the particular node.

Step 5: Pruning the quad-tree - Phase III

• If the current spatial segmentation level is less than maximally allowed, then repeat
Step 5 for each segment (child);

• Else, if (5.4), then prune the children and Jp ←− Jp + J0;

• Else Jp ←−
∑4

i=1 Jci + J1.

Step 6: Final encoding

• Encode the pruning decisions in the pruned quad-tree;

• For each leave encode the optimal transform and alignment directions and generate the
bit stream using the optimal bitrate as the target bit budget.
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5.5.1 Implementation Details

The source code that implements the skewed anisotropic zerotree-based compression of im-
ages is fully written in C. The code consists of 4 main parts: (1) transform block, (2) zerotree
coder, (3) optimization block, and (4) entropy coder.

(1) The S-AWT is performed for any rational slope direction. In the simulations, the hori-
zontal, vertical, and the two diagonal (along 45◦ and−45◦ degrees) directions are used
because the number of cosets in the corresponding lattices in these cases is small (2
cosets for the combination of the two diagonal directions, and 1 coset for the other com-
binations). Filtering is performed using the linear phase biorthogonal "9-7“ wavelet
filter-bank [2] and symmetric extension at the borders of the image to reduce the im-
pact of border effects [8]. The number of decomposition levels depends on the size of
the image and it is hand-optimized. The most frequently value used in the simulations
is 4.

(2) First, the wavelet coefficients produced by the transform are structured in the skewed
anisotropic zerotrees. Owing to the lattice-based subsampling, some coefficients at
certain scales "hang” without a parent in the corresponding spatial location. These co-
efficients are joined as children to the spatially closest coefficients at the next coarser
scale. Then, the zerotree coder performs the encoding process, as depicted in Algo-
rithm 5.2. The initial threshold T is chosen to be 1% larger than a half of the maximal
magnitude of all transform coefficients and that value is encoded at the beginning of
the bit stream assigned to the segment.

(3) The optimization process is embedded, as explained in Section 5.4.3. The correspond-
ing procedures are recursive and follow the three optimization phases in Algorithm
5.3. The mean value is computed and subtracted from pixels once for the whole image
and coded at the beginning of the total bit stream. Even though some spatial segments
might have a non-zero mean value, this approach is shown to be more efficient at low
bitrates for most images because it is too costly to encode all mean values of each
spatial segment separately.

(4) The implemented entropy coder is taken from [111]. The symbols produced during
dominant passes are entropy coded using 4 different histograms depending on the sig-
nificance of the previously scanned coefficient and the parent (see also [81]). The
binary symbols generated in subordinated passes are coded using 1 histogram. For all
histograms, the maximal frequency is set to 256, since, for that value, the entropy coder
shows the best performance in experiments.

5.5.2 Experiments

First, we show the results of compressing a toy example - a bilevel image that contains a
circle (see Figure 5.13(a)). The image is compressed using the isotropic transforms built
along directions chosen from the set {0◦, 90◦, 45◦,−45◦} and the results are compared to
the results of the standard zerotree-based compression algorithm at different bitrates. The
comparison is shown in Figure 5.13(b). The optimal spatial segmentation and choice of
directions for each segment are illustrated in Figure 5.14. Notice that, for each segment,
the chosen transform and alignment directions are well adapted to the dominant directions of
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arcs of the circle. The "empty“ segments (that is, the segments with a constant magnitude) are
not further segmented as it would involve an additional cost for encoding the segmentation
decisions and chosen directions. The corresponding reconstructions of the circle for the two
transforms at the same bitrate R = 0.0378bpp are shown in Figure 5.15(a) and (b). The
resulting distortions are expressed in terms of peak-signal-to-noise-ratio (PSNR) factor equal
to 20 log10(255/σe), where σe is the standard deviation of the error and they are equal to
32.79dB for the standard WT and 34.35dB for the optimized M-DIR transforms. Not only
the distortion of the reconstruction using the M-DIR transforms is smaller, but also the visual
quality of the image is improved, since the arc of the circle is sharper. A part of the arc in
both reconstructed images is magnified and shown in Figure 5.16(a) and (b).

Then, the anisotropic transforms S-AWT(MΛ,2,1) are applied along the directions chosen
from the same set. In Figure 5.13(c), the results of the compression using the anisotropic
transform with the optimal segmentation and the choice of directions, the standard WT, and
the anisotropic transforms along the standard directions are shown. The anisotropic M-DIR
transform outperforms the others. Moreover, a comparison between the optimal isotropic and
anisotropic transforms is illustrated in Figure 5.13(d). The anisotropic transform achieves
better compression at very low bitrates, but it is overtaken by the isotropic transform at higher
bitrates. The reason for a worse performance of the anisotropic transform at higher bitrates
lies in a stronger border effect obtained using the elongated basis functions in small sized
segments. Furthermore, isotropy of the compressed object also suggests that the isotropic
transform provides a better compression results.

Recall that the S-AWT(MΛ,3,2) is shown in Section 5.2 to have better approximation
performance than the S-AWT(MΛ,2,1). However, even though it provides a faster asymptotic
approximation rate, the support of the corresponding basis functions of the S-AWT(M Λ,3,2)
is too large for an efficient implementation in the zerotree-based compression method. The
depth of the zerotree structures is limited to a small number of scales and, therefore, the
multi-scale dependence of the coefficients is not properly captured. The smaller size of the
support of the basis functions of the S-AWT(MΛ,2,1) allows for a larger number of iteration
steps of the transform and, thus, for a "deeper“ and more efficient zerotree structures. This is
why we rather use the S-AWT(MΛ,2,1) in the experiments than the S-AWT(MΛ,3,2).

Next, we present the compression results of another synthetic, but more complex im-
age. An image from the class C 2/C2 shown in Figure 5.17(a) is compressed using the
isotropic and anisotropic transforms with spatial segmentation and directions chosen from
the set {0◦, 90◦, 45◦,−45◦}. A comparison of the results obtained by the optimized method
using the isotropic transforms and the standard WT is shown in Figure 5.17(b). The isotropic
transform is constantly better than the standard WT for a wide range of bitrates. However,
for this image that contains an anisotropic object, the optimized method using the anisotropic
transform S-AWT(MΛ,2,1) is substantially better than both methods that use the standard
WT and the isotropic transforms, as can be seen in Figure 5.17(c). A comparison between
the optimal results using the isotropic and anisotropic transforms is illustrated in Figure
5.17(d). The optimal segmentation and the choice of transform and alignment directions
for this image is shown in Figure 5.18. Notice that the transform directions follow the dom-
inant directions of the edge in each segment that contains a sharp transition. A significant
difference in the quality of the reconstructed images obtained using the standard WT and the
S-AWT(MΛ,2,1) is noticeable in Figure 5.19. These reconstructions are made at the same
bitrate R = 0.0263bpp and the resulting distortions are D = 26.33 dB in the case of the
standard WT and D = 38.62dB in the case of the anisotropic transform.
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Figure 5.13: Synthetic image with a circle and compression efficiency of various
schemes. (a) A bilevel image with a circle. (b) A comparison between the com-
pression methods using the standard WT and the M-DIR isotropic transforms with
the optimal spatial segmentation and the optimal choice of directions from the set
{0◦, 90◦, 45◦,−45◦}. The optimized method outperforms the method that uses the
standard WT. (c) A comparison between the compression methods using the stan-
dard WT, the anisotropic S-AWT(MΛ,2,1) with the standard directions, and the
same anisotropic transform with the optimal segmentation and choice of directions.
The performance of the optimal anisotropic transform is the best. (d) The best
anisotropic transform from (c) outperforms the best isotropic transform from (b) at
very low bitrates. However, the isotropic transform is better at higher bitrates as a
consequence of a stronger border effect in the case of the anisotropic transform.
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Figure 5.14: The optimal segmentation and the choice of transform and alignment
directions for the simple image shown in Figure 5.13(a) in the case of the optimized
compression method using the isotropic transform.

(a) (b)

Figure 5.15: Two reconstructed images of the circle shown in Figure 5.13(a) using
(a) the standard WT and (b) the isotropic transform with the optimal segmentation
and choice of directions at the bitrate R = 0.0378bpp. The resulting distortions are:
(a) D = 32.79dB and (b) D = 34.35dB.
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(a) (b)

Figure 5.16: The two reconstructed images shown in Figure 5.15 are magnified and
the arc of the circle is shown for (a) the standard WT and (b) the isotropic transform
with the optimal segmentation and choice of directions. The ringing around the arc
is more significant in the case of the standard WT.

Finally, we show the results of the optimized compression algorithm applied on natural
images, in particular on Lena, Barbara and Goldhill. These images and the corresponding
results are shown in Figures 5.20-5.22 for the standard WT and the optimized method using
the anisotropic transforms. The results of the standard method coincide well with the results
provided in [81]. Notice that the gain obtained using the optimized method over the standard
method is much smaller than in the case of synthetic images. In particular, the new method
significantly outperforms the standard at a high compression rate, that is, for the low bitrate.
The results of compression of the image Lena are shown in Figure 5.23, where the comparison
from Figure 5.20(b) is zoomed in and the two reconstructed images are shown for the bitrate
R = 0.0395bpp. The PSNR factor of the second reconstruction is better than the same in the
case of the standard WT.

The compression efficiency of the optimized method applied on natural images is limited
by the border effect produced by wrapping the filters around the borders of the image. In
general, the extension pixels that are artificially generated are not smooth with respect to
the order of vanishing moments of the HP filters and, thus, the HP filtering across them
produces large magnitude transform coefficients. Therefore, a region around the borders of
image that contains these coefficients requires many bits for encoding the significance map
and quantization.

In order to improve the efficiency of the zerotree-based compression methods the number
of decomposition levels in the transform is required to be large so that the prediction of
locations of low-magnitude coefficients across scales is more efficient and the number of
coding symbols is decreased. On the other hand, in order to reduce the impact of the border
effect, the 1-D filters used in the transform are required to be shorter so that the area of image
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Figure 5.17: An image from the class C 2/C2 and the compression efficiency of
various schemes. (a) An image from the class C 2/C2. (b) A comparison between
the compression methods using the standard WT and the M-DIR isotropic trans-
forms with the optimal spatial segmentation and the optimal choice of directions
from the set {0◦, 90◦, 45◦,−45◦}. The optimized method outperforms the standard
method constantly for a wide range of bitrates. (c) A comparison between the com-
pression methods using the standard WT, the anisotropic S-AWT(MΛ,2,1) with the
standard directions, and the same anisotropic transform with the optimal segmenta-
tion and choice of directions. The optimized method using the anisotropic transform
is significantly better than the method using the standard transform. (d) The perfor-
mance of the anisotropic transform is better than that of the isotropic transform. The
anisotropic basis functions are better adapted to the anisotropic object in this image
providing a sparser representation and better compression efficiency.
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Figure 5.18: The optimal segmentation and the choice of transform and alignment
directions for the image shown in Figure 5.17(a) in the case of the S-AWT(MΛ,2,1).
The longer lines determine the transform direction in each segment, whereas the
shorter lines represent the alignment directions.

(a) (b)

Figure 5.19: Two reconstructed images of the image shown in Figure 5.17(a) using
(a) the standard WT and (b) the anisotropic transform S-AWT(MΛ,2,1) with the
optimal segmentation and choice of directions at the bitrate R = 0.0263bpp. The
anisotropic transform substantially outperforms the standard WT in both the numer-
ical result and visual quality of the reconstructions. The resulting distortions are:
(a) D = 26.33dB and (b) D = 38.62dB.
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Figure 5.20: A natural image and the compression efficiency. (a) The standard test
image Lena. (b) The compression results of Lena using the standard WT in the
zerotree-based compression method and the anisotropic transforms in the optimized
zerotree-based method.
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Figure 5.21: A natural image and the compression efficiency. (a) The standard test
image Barbara. (b) The compression results of Barbara using the standard WT in the
zerotree-based compression method and the anisotropic transforms in the optimized
zerotree-based method.
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Figure 5.22: A natural image and the compression efficiency. (a) The standard
test image Goldhill. (b) The compression results of Goldhill using the standard
WT in the zerotree-based compression method and the anisotropic transforms in the
optimized zerotree-based method.

affected by the border effect is smaller. Recall that the support of the equivalent 1-D filters
at coarser scales is longer. Therefore, these two requirements are in contradiction, that is, the
more decomposition levels are applied in the transform, the wider the area affected by the
border effect is. Furthermore, even though spatial segmentation contributes to sparsity of the
transform allowing for adaptation of transform and alignment directions in each segment, it
enlarges the total size of the region affected by the border effect in the image because the
extension pixels are generated for each segment independently.

Notice that the large magnitude coefficients generated by filtering across the extension
pixels are aligned with the borders of segments, which are, in turn, horizontal and verti-
cal. This is the reason why, in the case of natural images, the transform along these two
standard directions provides often the best compression results in the sense of Lagrangian
optimization. As a consequence, spatial segmentation does not reduce the cost of encoding
and, therefore, the optimization compression method reduces to the standard zerotree-based
algorithm. However, in the case of synthetic images, the optimal method does not coincide
with the standard algorithm because it is much easier to have extension pixels that do not
generate a significant border effect.

Several extension methods that perform minimization of the border effect in the case of
both 1-D and 2-D signals have been previously proposed. For instance, in boundary wavelets,
the filters that are wrapped around the border of signal are modified so that their support is
completely inside the signal, while orthogonality is preserved [42; 43]. In [63; 94], the
extension pixels are computed so that the square norm of the distance to the first sample in
the original support of the signal is minimized. A more general analysis of linear smooth
extensions yielding non-expansive transforms is given in [29].

In our work, we use the symmetric extension that has been shown to outperform the pe-
riodic extension in terms of the energy in the HP subbands, while retaining critical sampling
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Figure 5.23: The results of compression of the image Lena at low bitrate. (a)
Magnified comparison of the two methods shown in Figure 5.20(b). (b) Recon-
struction of the image compressed using the standard method at R = 0.0395bpp
and D = 23.51dB. (c) Reconstruction of the image compressed by the optimized
method at the same bitrate R = 0.0395bpp and D = 26.07dB.
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in the case of biorthogonal symmetric filters [8]. However, the symmetric extension is not
efficient enough in compression of natural images because the impact of border effects is still
too large.

Even though the boundary wavelets provide an elegant way to prevent the border effect
in the case of the 1-D or the standard 2-D WT, they are not applicable in the case of the
lattice-based transforms. Recall from Chapter 3 and Figure 3.4 that the lengths of lines and
the subsampling shifts can vary across the image domain depending on the transform and
alignment directions. However, the construction of the 1-D boundary wavelets is constrained
only on even shifts of subsampling, which makes the method too complex for the use in
practice.

On the other hand, adding extension pixels causes oversampling in general (with an ex-
ception in the case of symmetric or periodic extension). Notice that minimization of the
impact of border effects in one scale of the transform is equivalent to minimization of the
energy of the HP response that corresponds to filtering across the extension pixels. However,
even though the energy of this HP border response can be made arbitrarily small in the case
of the biorthogonal "9-7“ HP filter, the corresponding LP response blows up. That leads to a
very inefficient compression in the case of the iterated transform. Furthermore, a constrained
minimization of the energy of the HP output with upper-bounded energy in the LP subband
is shown to be too complex for implementation in practice. For that reason and the reason of
critical sampling, we retain the symmetric extension in the applications of the compression
method.

Recall that there exist newer and more efficient compression algorithms based on the WT
than the one proposed in [81]. However, in these algorithms, similar structures of wavelet
coefficients are built. These structures can be modified in a similar manner as proposed in
this chapter using anisotropic grouping of coefficients. For that reason we do not compare
our results to the compression results given in, for instance, [79; 113; 114].

5.6 Conclusions

In this chapter, we have shown that directionlets with spatial segmentation outperform the
standard WT in terms of asymptotic behavior in NLA and compression of C 2/C2 images.
Furthermore, the performance of the zerotree-based compression algorithm using direction-
lets applied on C2/C2 images is substantially better when compared to the standard method.
However, the success of compression using directionlets is limited in the case of natural im-
ages because of the border effect. The further improvements in this case are left for future
work.

5.A Proofs

5.A.1 Proof of Equation 5.1

Assume that, given a frame F ∈ �m×n, the vector y ∈ �m is defined as y = Fx for any x ∈
�

n. Here m ≥ n. Recall that the pseudo-inverse transform is given by x = (FTF)−1FT · y
[56]. Recall also that if the frame F is tight, then ‖y‖22 = A‖x‖22, where A is called the frame
bound. This is equivalent to

FT ·F = AIn, (5.5)
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where In is the n× n identity matrix. In that case, the inverse transform is simplified and it
is given by x = A−1FT · y.

Now, assume that a non-linear operator (e.g. NLA, thresholding, etc.) T : �m → �
m is

applied on y yielding ŷ, that is, ŷ = T (y). Thus, x̂ = (FT F)−1FT · ŷ.
The MSE in the original domain is defined as ‖x − x̂‖22 and, similarly, the MSE in the

transform domain is given by ‖y− ŷ‖22. Assuming that the frame F is tight we can write

‖x− x̂‖22 = ‖ 1
A

FT · (y − ŷ) ‖22 ≤
1

A2
‖FT ‖22 · ‖y− ŷ‖22,

where equality holds when F is orthogonal.
From [59], we have that ‖FT‖22 = ‖F‖22 = A. Hence, the MSE in the original and

transform domains are related as

‖x− x̂‖22 ≤
1
A
‖y − ŷ‖22.

5.A.2 Proof of Theorem 5.1

Recall first that a C2 curve can be locally represented by the Taylor series expansion, that is,
by a quadratic polynomial

y(x) = ax2 + bx + c, (5.6)

where a and b are related to the second and first derivative of the curve (curvature and linear
component), respectively. Without loss of generality, we assume that the C 2 discontinuity
curve is Horizon [31] on the unit square [0, 1]2.

Since the smooth regions of the function f(x1, x2) are C2, assume that the 1-D filters used
in the S-AWT are orthogonal and have at least two vanishing moments. Let the transform be
applied along the class of straight lines defined by

{y(x) = rx + d : d ∈ �}. (5.7)

Here, the slope r determines the transform direction, whereas the alignment direction is ver-
tical. Equalizing (5.6) and (5.7) we can write

d(x) = ax2 + (b− r)x + c.

The transform coefficients of the S-AWT that intersect the discontinuity curve are called
E-type coefficients. The number of the E-type coefficients at the scale j is given by N

(0)
e (j) =

O(2n2j∆d). Here, n2 is the number of transforms applied along the vertical direction, ∆ d =
max0≤x≤1 d(x)−min0≤x≤1 d(x) is the width of the strip along the transform direction that

contains the curve (see Figure 5.24), and zero in the superscript of N
(0)
e (j) denotes that no

segmentation has been applied yet. The transform direction with the slope

r = a + b (5.8)

minimizes the width ∆d (and, thereof, N
(0)
e (j)) on the unit square. In that case the number

of the E-type coefficients is given by

N (0)
e (j) = O

(a

4
2n2j

)
.
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Figure 5.24: The 2-D function f(x1, x2) is C2 smooth on the unit square away from
a C2 discontinuity curve. The curve can be locally approximated by a quadratic
polynomial y(x) = ax2 + bx + c. The E-type transform coefficients intersect the
curve and have a slower decay of magnitudes across scales than the S-type coef-
ficients, which correspond to the smooth regions. (a) The S-AWT produces the
E-type coefficients within the strip along the slope r. (b) The width of the strip ∆ d

is minimized for r = a + b.

Notice that an increment in the scale index j is equivalent to a step to a finer scale.
The transform coefficients of the S-AWT, which do not intersect the discontinuity curve

are called S-type coefficients. The number of the S-type coefficients depends on the number
of transforms n1 and n2 at a scale along the transform and vertical directions, respectively, as

N (0)
s (j) = 2(n1+n2)j −N (0)

e (j) = O
(
2(n1+n2)j − a

4
2n2j

)
.

An anisotropic spatial segmentation is applied on the unit square. It partitions the unit
square into vertical strips using the dyadic rule, that is, there are 2 s vertical strips at the sth
level of segmentation, where the width of each is 2−s (Figure 5.25). The optimal transform
direction, according to (5.8), is chosen for each segment independently. Since each segment
is rescaled again to the unit square, the number of the E-type transform coefficients in a
segment is reduced and is given by

O
(a

4
2n2j · 2−2s

)
.

The total number of the E-type coefficients is given by the sum across all the segments, that
is,

Ne(j, s) =
2s−1∑

k=0

O
(a

4
2n2j−2s

)
= O

(a

4
2n2j−s

)
. (5.9)
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Figure 5.25: Anisotropic segmentation partitions the unit square into 2 s equally
wide vertical strips. After rescaling, the curvature parameter a (related to the second
derivative of the C2 curve) is reduced in each segment by the factor 22s. Since
there are 2s segments that intersect the discontinuity, the total number of the E-type
transform coefficients is reduced by 2s. At the same time, the total number of the
S-type coefficients is increased by the same factor.

Similarly, the total number of the S-type coefficients is given by

Ns(j, s) =
2s−1∑

k=0

O
(
2(n1+n2)j − a

4
2n2j−2s

)
= O

(
2(n1+n2)j+s − a

4
2n2j−s

)
. (5.10)

Notice that the exact number of the two types of coefficients given by (5.9) and (5.10)
depends on the length of the 1-D filters used in the transform. However, the dependence is
only up to a constant and, thus, the order of growth of these numbers across scales remains
the same.

The magnitudes |we(j)| of the E-type coefficients decay across scales as

O
(
2−(n1+n2)j/2

)
.

The S-type coefficients correspond to the smooth regions of the function f(x 1, x2) and their
magnitudes |ws(j)| are upper bounded by O(2−n3j/2). Notice that, since the 1-D HP filters
have vanishing moments, the decay of the magnitudes of the S-type coefficients is faster than
the one of the E-type coefficients, that is, n3 > n1 + n2.

We estimate n3 considering that the applied 1-D wavelets have at least two vanishing
moments. It is shown in [56] that, the decay of the magnitudes |w s(j)| in a smooth region
after two consecutive transforms with alternated transform directions is 2−3. Therefore, the
decay rate n3 is given by

n3 = 6 ·min (n1, n2) + |n2 − n1| =
{

n1 + 5n2, n1 ≥ n2

5n1 + n2, n1 ≤ n2
. (5.11)

To approximate the function f(x1, x2), we keep all the coefficients with the magnitudes
larger than or equal to the threshold 2−m, where m ≥ 0, and discard (set to zero) the others.
The retained coefficients can be divided into two groups:
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(1) The E-type coefficients at the scales 0 ≤ j ≤ 2m/(n1 + n2),

(2) The S-type coefficients at the scales 0 ≤ j ≤ 2m/n3.

From (5.9), (5.10) and decays of the magnitudes across scales, we compute the order of
the total number of retained coefficients N(m, s) and the MSE. The number N(m, s) is the
sum of the retained E and S-type coefficients:

N(m, s) =
2m/(n1+n2)∑

j=0

Ne(j, s) +
2m/n3∑

j=0

Ns(j, s)

= O
(
2

2n2
n1+n2

m−s
)

+ O

(
2

2(n1+n2)
n3

m+s

)
. (5.12)

The MSE is given by

MSE(m, s) =
+∞∑

j=2m/(n1+n2)+1

Ne(j, s)|we(j)|2 +
+∞∑

j=2m/n3+1

Ns(j, s)|ws(j)|2

= O
(
2−

2n1
n1+n2

m−s
)

+ O

(
2−

2(n3−n1−n2)
n3

m+s

)
. (5.13)

Assuming that the number of segmentation levels depends on the exponent m of the
threshold as s = ηm, where the segmentation rate η ≥ 0, we distinguish the two cases, as
follows:

(1) The terms in (5.12) and (5.13) produced by the E-type coefficients dominate, in which
case we have

η ≤ η∗ =
n2

n1 + n2
− n1 + n2

n3
=

1
ρ + 1

− ρ + 1
ρ + 5

,

where ρ = n1/n2 ≥ 1. Then the MSE decays as

MSE = O
(
N−e1

)
, where e1 =

2n1 + η(n1 + n2)
2n2 − η(n1 + n2)

=
2ρ + η(ρ + 1)
2− η(ρ + 1)

.

(2) The terms in (5.12) and (5.13) produced by the S-type coefficients dominate, that is,
η ≥ η∗ and

MSE = O
(
N−e2

)
, where e2 =

2(n3 − n1 − n2)− ηn3

2(n1 + n2) + ηn3
=

8− η(ρ + 5)
2(ρ + 1) + η(ρ + 5)

.

Plugging (5.11) in the relations above and knowing that the segmentation rate η is a non-
negative value, we obtain the maximal decay rate MSE= O(N −α), with α = (

√
17−1)/2 ≈

1.562. The optimal rate is attained for the anisotropy ratio ρ∗ = n1/n2 = α ≈ 1.562 and the
segmentation rate η∗ = 0.

Notice that the analysis above is based on two assumptions: (a) the optimal transform
direction given by (5.8) is chosen and (b) the C 2 curve is globally represented by a quadratic
polynomial given by (5.6). Here, we address these two assumptions showing that they do not
constrain severely the approximation rate.
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(a) Assume that the transform direction is given by the suboptimal slope r = a + b + ε,
where |r| ≤ 1. Then it can be shown that ∆d = a/4+|ε|/2+ε2/4a = O(a) for |ε| ≤ a
and ∆d = |ε|+ o(ε) for |ε| > a. Furthermore, assume that ε decays exponentially with
the number of segmentation steps, that is, ε � 2−βs, where β > 0. If β < 2, then
the expression of Ne(j, s) given by (5.9) becomes O(2n2j−(β−1)s) and the optimal
segmentation rate η∗ is multiplied by the factor 2/β. In that case the exponent e1 is
given by

e1 =
2ρ + (β − 1)η(ρ + 1)
2− (β − 1)η(ρ + 1)

,

whereas the exponent e2 is unchanged. However, even though some of these param-
eters are changed, the optimal approximation rate remains the same, that is, MSE=
O(N−α) if ρ∗ = α and η∗ = 0. On the other hand, now the required number of
transform directions is finite and behaves as 1/|ε| � 2βs.

(b) The analysis that leads to the approximation rate holds only for the case when the slope
of the tangent direction (or, equivalently, the first derivative) of the C 2 curve is in the
interval [−1, 1]. However, the first derivative of a general C 2 curve is not constrained
on that interval and, therefore, the optimal approximation rate cannot be achieved in
the same way as in the case of a quadratic polynomial. In order to be able to achieve
the same rate we need to introduce an initial number of segmentation steps prior to
the iteration. Recall that one step of anisotropic segmentation attenuates twice the first
derivative of the C2 curve.6 Thus, it suffices to apply enough segmentation steps so
that the maximal magnitude of the first derivative is less than or equal to 1. Then, the
iterated segmentation and transform are continued on each of these initial segments
and this construction results in the same optimal approximation rate. Notice that the
necessity for reducing the magnitude of the first derivative below 1 is caused by the
assumption that the C2 curve is Horizon. However, if this assumption is not satisfied,
then an appropriate combination of initial segmentation steps and transposition of the
axes can rescale the curve so that each segment of the curve is Horizon. Therefore, the
optimal approximation rate can be achieved in the case of a general C 2 curve.

For the compression application, the retained coefficients have to be indexed and quan-
tized. For a given MSE (or distortion) each of these operations carries a cost in terms of the
required bits.

The N retained S-AWT coefficients within a spatial segment can be organized in an em-
bedded tree-structure, similar to the structures produced by the standard WT and exploited in
the other compression algorithms (zero-trees [81], SPIHT [79], SFQ [113; 114]). The main
difference between the tree-structures of the standard WT and S-AWT is in the number of
descendants of each transform coefficient. While this number is fixed in the standard WT, it
depends on the number of transform steps applied at each scale in the S-AWT. However, the
S-AWT tree-structure allows also for indexing the retained coefficients using approximately
1 bit per transform coefficient.

A variable length coding scheme allocates l bits to encode coefficients with magnitudes
in the interval [2−m2l−1, 2−m2l). Thus, using (5.12) and the optimal choice for n 1, n2, n3,

6One step of the anisotropic segmentation is equivalent to stretching the abscissa by the factor 2 and, therefore,
the equivalent first derivative of the curve is also attenuated by 2.



80 Non-linear Approximation and Compression of Images using Directionlets

and η, the total number of encoding bits R is given by:

R(m) = N(m, 0) +
∞∑

l=1

N(m− l, 0)

= O
(
2

α
2 m

)
+

∞∑

l=1

2
α
2 (m−l) = O

(
2

α
2 m

)
. (5.14)

The distortion D consists of two components: (a) the MSE resulting from the truncation
of small coefficients in the approximation given by (5.13), and (b) distortion caused by the
quantization of the retained coefficients. The second component is given by N(m, 0) · 2 −2m

and, thus, the total distortion is

D(m) = MSE(m, 0) + N(m, 0) · 2−2m = O
(
2−

α2
2 m

)
. (5.15)

The R-D behavior follows from (5.14) and (5.15) and it is given by

D(R) = O
(
R−α

)
.



Chapter 6

Denoising of Images using
Directionlets

6.1 Introduction

The goal of image denoising is to reconstruct an original image from an observation corrupted
by noise. The statistical model for both the noise and original image is the key to achieving a
good quality of reconstruction.

However, an image is a complex signal and, thus, finding a good statistical model is a
non-trivial task. In order to simplify the statistical modeling, two assumptions are usually
made:

(1) Pixels obey a local Markov model, that is, the probability structure is defined locally,
on a set of neighbor pixels and it is independent of the pixels out of the neighborhood.

(2) The distribution of values in a neighborhood is space invariant, that is, it does not
depend on the absolute spatial location of the pixel.

These two assumptions result in a Markov random field.
Statistical modeling of images is substantially simplified by transforming the image into

a new representation. Nowadays, in image denoising, the implemented transforms perform
image decomposition into a multiscale and multi-directional (M-DIR) representation. These
transforms share some properties with neural responses in the primary visual cortex of mam-
mals, which are very important in efficient representation of visually relevant features of
images [109].

In the recent literature, the marginal distributions among the transform coefficients are
often modeled as Gaussian or generalized Gaussian [2]. However, the transform coefficients
of natural images have marginal distributions with heavier tails than the generalized Gaussian
and, thus, the generalized Gaussian does not describe efficiently these local statistics. A better
modeling has been achieved by hidden Markov models, where a simple parametric model is
influenced by a set of hidden random variables. Now, even the generalized Gaussian random
variable can be used as the parameter, but the equivalent marginal distributions have heavier
tails and model well the distributions of the transform coefficients [22; 73]. Here, we use a
version of the hidden Markov model called Gaussian scale mixtures (GSM) [1].

81
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In this chapter, we review the definition and properties of the GSM estimation model
when applied along with a multiscale M-DIR transform representation of images, as ex-
plained in [68]. Then, we describe the denoising method that uses the GSM model and the
undecimated version of directionlets. Finally, we show the experimental results obtained
using the denoising method applied on different natural images.

6.2 Gaussian Scale Mixtures Estimation Model

Gaussian scale mixtures have been successfully used to describe statistical properties of
wavelet coefficients [105; 106]. This model represents well the heavy tailed marginal dis-
tribution of the coefficients in the wavelet domain and the strong correlation between the
amplitudes of neighbor coefficients.

Here, we review the single-step least square optimal Bayesian estimator proposed in [68].
The estimator computes the optimal estimation of the reference coefficient from the neighbor
coefficients in the transform domain. The neighborhood of a referent coefficient consists of
the coefficients in the neighbor spatial locations at the same scale and the parent coefficient,
that is, the coefficient in the same spatial location, but at the next coarser scale. A typical
neighborhood used in [68] is illustrated in Figure 6.1.

6.2.1 Image Model

The transform coefficients of an image are modeled as GSM vectors, where, for each coef-
ficient, the coefficients from the corresponding neighborhoods form the vector, as shown in
Figure 6.1. The coefficients at the coarsest scale are an exception because the corresponding
neighborhoods do not contain the parents.

In general, a random vector x is a GSM if and only if it can be expressed as the product of
a zero-mean Gaussian vector u and an independent positive scalar random variable

√
z [1],

that is,
x =
√

zu, (6.1)

where the equality holds in distribution. The variable z is called the multiplier. The vec-
tor x is, thus, an infinite mixture of Gaussian vectors, whose density is determined by the
covariance matrix Cu of the vector u and the mixing density pz(z) as

px(x) =
∫

p(x|z)pz(z)dz =
∫ exp

(
−xT (zCu)−1x

2

)

(2π)N/2|zCu|1/2
pz(z)dz, (6.2)

where N is the dimensionality of x and u. Without loss of generality, one can assume
E{z} = 1, which implies equality of the covariance matrices Cx and Cu.

The GSM random vectors include both the generalized Gaussian and the α-stable family
of random variables. The probability density of GSM is symmetric and zero-mean, and has
heavier tails than the Gaussian marginal densities. A key property of GSM is that the density
of px(x|z) is Gaussian as well as the normalized vector x/

√
z.

The probability density pz(z) of the multiplier has to be specified a priori. Among several
choices proposed in [68] we use the non-informative prior (see also [5]) because it shows the
best performance in the denoising experiments.
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Figure 6.1: Neighborhood around a referent coefficient consists of the coefficients
in the neighbor spatial locations at the same scale j and the coefficient in the same
spatial location as the referent coefficient, but at the next coarser scale j − 1, which
is called parent.
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The non-informative prior is convenient for the application in denoising of general images
because it does not require the fitting of any parameter to the noisy observation. The most
common solution is known as Jeffrey’s prior and it has also been used in [39] to define
marginal priors for image denoising. In this case, the probability density p z(z) is estimated
as

pz(z) ∝
√

I(z), (6.3)

where I(z) is the Fisher information matrix given by

I(z) = E

{
−∂2 log p(x|z)

∂z2

}
.

For the GSM model, it follows from (6.1) and (6.2) that

−∂2 log p(x|z)
∂z2

=
∂2

∂z2

[
1
2

(
N log(z) + log |Cu|+ xT C−1

u x
z

)]

=
N

2z2
+

xT C−1
u x

2z3
. (6.4)

Computing (6.3) and using the fact that E{xT C−1
u x} = z, we obtain Jeffrey’s prior

pz(z) ∝ 1
z
, (6.5)

which corresponds to a constant function on log(z). Notice that, even though this is an im-
proper probability density, it is common to ignore that fact as long as it does not create com-
putational problems. In the implementation, we set the prior to zero in the interval [0, z min],
where zmin is a small positive constant.

6.2.2 Noise Model

The noise added to the pixels in the original image domain is assumed to be iid additive white
Gaussian. The standard deviation σ of the noise is either known a priori or can be estimated
using the robust estimator [14; 15; 20; 30; 32]

σ̂ =
Median (|y(n, m)|)

0.6745
, (6.6)

where the coefficients y(n, m) are taken from the finest subband of the wavelet transform.
In the transform domain, the corresponding coefficients produced by the transform of the

noise are correlated, since a non-orthogonal transform is used. We assume a local Markov
model, that is, the referent transform coefficient is correlated only with the transform co-
efficients in the closest spatial neighborhood at the referent and the next coarser scale, as
illustrated in Figure 6.1.

The covariance of the corresponding transform coefficients in the neighborhood is es-
timated by decomposing a delta function σ

√
NM · δ(n, m) into the transform subbands,

where (N, M) are the image dimensions. This signal has the same power spectrum as the
noise, but it is free from random fluctuations. For each subband, elements of the covariance
matrix are computed directly by averaging the products of pairs of coefficients over all the
neighborhoods in the subband.
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6.2.3 Estimation of Image in Noise

The task of the least square optimal Bayesian estimator is to estimate the original transform
coefficients from a noisy observation. The observation vector y corresponding to a neighbor-
hood of N observed transform coefficients can be expressed as

y = x + w =
√

zu + w, (6.7)

where x and w are neighborhoods of the signal and noise transform coefficients, respectively
and x is given by (6.1). Notice that the three random variables on the right-hand side of (6.7)
are independent and both u and w are zero-mean Gaussian random vectors, with associated
covariance matrices Cu and Cw. The density of the observed neighborhood vector condi-
tioned on z is zero-mean Gaussian, with the covariance Cy|z = zCu + Cw, and can be
expressed as

p(y|z) =
exp

(
−yT (zCu+Cw)−1y

2

)

√
(2π)N |zCu + Cw|

. (6.8)

Given Cw, the covariance Cu can be computed from the observation covariance Cy. We
compute Cy from Cy|z by taking expectations over z, that is,

Cy = E{z}Cu + Cw.

Setting E{z} = 1, we obtain
Cu = Cy −Cw. (6.9)

For the reasons of numerical imprecisions, some eigenvalues of Cu might be negative. We
set them to zero forcing Cu to be positive semidefinite.

For each neighborhood, we estimate the reference transform coefficient x c at the center
of the neighborhood using the Bayes least square estimation from the neighborhood vector
y. The Bayes least square estimation is the conditional mean, that is, it is given by

E{xc|y} =
∫

xcp(xc|y)dxc =
∫ ∫ ∞

0

xcp(xc, z|y)dzdxc

=
∫ ∫ ∞

0

xcp(xc|y, z)p(z|y)dzdxc =
∫ ∞

0

E{xc|y, z}p(z|y)dz, (6.10)

where we assume uniform convergence in order to exchange the order of integration. Thus,
the solution is the average of the Bayes least squares estimate of xc when conditioned on z,
weighted by the posterior density p(z|y). We now analyze each of the two components in the
integral in (6.10).

The first component E{xc|y, z} is the local Wiener estimate as the neighborhood vector
x is Gaussian when conditioned on z. The estimate for the full neighborhood vector x is
given by

E{x|y, z} = zCu (zCu + Cw)−1 y. (6.11)

We diagonalize the matrix zCu + Cw in order to simplify the dependence of E{x|y, z}
on the multiplier z. Let S be the symmetric square root of the positive definite matrix Cw,
that is, Cw = SST . Furthermore, let {Q,Λ} be the eigenvector/eigenvalue expansion of the
matrix S−1CuS−T . Then

zCu + Cw = zCu + SST = S
(
zS−1CuS−T + I

)
ST

= SQ (zΛ + I)QTST . (6.12)
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Now the expectation in (6.11) becomes

E{x|y, z} = zCuS−T Q (zΛ + I)−1 QTS−1y

= zSS−1CuS−T Q (zΛ + I)−1 QTS−1y

= zSQΛ (zΛ + I)−1 QTS−1y = zMΛ (zΛ + I)−1 v, (6.13)

where M = SQ, and v = M−1y. Finally, we restrict the estimate to the reference coefficient
xc, as needed for the solution of (6.10), that is, we compute

E{xc|y, z} =
N∑

n=1

zmcnλnvn

zλn + 1
, (6.14)

where mi,j represents an element of the matrix M in the ith row and jth column, λn are
the diagonal elements of Λ, vn are the elements of the vector v, and c is the index of the
reference coefficient within the neighborhood vector.

The second component in the integral in (6.10) is distribution of the multiplier z condi-
tioned on the observed neighborhood vector y. According to the Bayes’ rule, we have

p(z|y) =
p(y|z)pz(z)∫ ∞

0
p(y|α)pz(α)dα

. (6.15)

The conditional probability density p(y|z) in (6.15) is given by (6.8). After the simplification
using (6.12) and using the Jeffrey’s prior given by (6.5), p(y|z) becomes

p(y|z) =
exp

(
− 1

2

∑N
n=1

v2
n

zλn+1

)

√
(2π)N |Cw|

∏N
n=1(zλn + 1)

. (6.16)

Finally, we are able to compute numerically the integral in the Bayes least square estima-
tion given by (6.10).

6.2.4 Image Denoising Algorithm

The image denoising algorithm that uses the GSM model, as proposed in [68], consists of
three main parts: (1) transform of the image, (2) denoising of each subband, except the
low-pass (LP) residual, and (3) inverse transform of the denoised coefficients. The steerable
pyramids explained in [85] are used as the transform in this method.

The complete GSM-based denoising algorithm proposed in [68] is summarized in Algo-
rithm 6.1.

6.3 Directionlets-based Image Denoising

Oversampled transforms have been shown to lead to better denoising performance than crit-
ically sampled transforms [20]. For that reason, the denoising algorithm we propose in this
chapter is based on the undecimated directionlets. Oversampling is imposed in the same way
as in the case of the undecimated wavelet transform, that is, by discarding the subsamplers
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Algorithm 6.1 GSM-based denoising algorithm proposed in [68].
Step 1: Forward transform
Decompose the image into subbands.

Step 2: Estimation
For each subband, except the LP residual:

• Compute the neighborhood noise covariance Cw from the standard deviation in the
original domain calculated using (6.6);

• Estimate noisy neighborhood covariance Cy;

• Estimate Cu from Cw and Cy using (6.9);

• Compute Λ and M;

• For each neighborhood:

◦ For each value z in the integration range:

- Compute E{xc|y, z} using (6.14);

- Compute p(y|z) using (6.16);

◦ Compute p(z|y) using (6.15) and (6.5);

◦ Compute E{xc|y} numerically using (6.10);

Step 3: Inverse transform
Reconstruct the denoised image from the processed subbands and the LP residual.
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in the filter-banks [32; 101]. Therefore, all the transform subbands have the same number of
coefficients as in the original domain.

The GSM estimation outlined in Algorithm 6.1 is applied on these transform coefficients.
However, the shape of the neighborhoods is changed in our method. We distinguish between
two types of denoising in the method:

(1) The denoising performed by estimation from an isotropic neighborhood of the coeffi-
cients obtained using the isotropic WT (which we call smooth denoising),

(2) The denoising performed by estimation from an anisotropic neighborhood of the coef-
ficients obtained using the anisotropic WT, where both the transform and neighborhood
have the same orientation (which we call oriented denoising).

Intuitively, oriented denoising achieves a good estimation in the regions of images with a
strong directionality matched with the orientation of the transform and neighborhood. The
oriented neighborhoods capture more efficiently the oriented features in images that consist
of pixels with similar statistical properties aligned along the dominant direction. Similarly,
smooth denoising performs better in smooth regions without a clear dominant direction.

In the sequel, we first explain the construction of both the isotropic and anisotropic neigh-
borhoods. Then, we present some details on the smooth and oriented denoising methods with
denoised versions of a toy example image. Finally, we show a denoising method based on the
linear combination of the smooth and oriented denoised versions in the original pixel domain
and experiments with some natural images.

6.3.1 Isotropic and Anisotropic Neighborhoods

Isotropy and orientation of neighborhoods are chosen in such a way that the transform coef-
ficients with similar statistical characteristics are grouped together and centered around the
referent coefficient. Furthermore, all neighborhoods, except the ones at the coarsest scale,
include the parent coefficient, that is, the coefficient at the next coarser scale in the same
spatial location as the referent coefficient. Experiments in [68] and in Section 6.4 show that
this inclusion contributes to better denoising performance.

Recall that the filters used in the undecimated WT are upsampled across scales. Thus, if
the LP filter H0(z) is used in the corresponding 1-D wavelet filter-bank, then the equivalent
LP filter at the jth scale is H0(zJ−j), where j = J, . . . , 1 corresponds to the scale index
sweeping from the finest to the coarsest scale. Notice that, since the subsamplers are dis-
carded in the undecimated WT, the transform coefficients in the neighbor spatial locations
are highly correlated. Therefore, estimation based on the closest neighborhood is not too
efficient. For that reason, we choose sparser neighborhoods, that is, the neighborhoods of
coefficients with the relative coordinates to the coordinate of the referent coefficient scaled
by the distance factor

δ = 2J−j , (6.17)

while the dimensionality of the neighborhood is retained the same.
The isotropic neighborhood is used along with the isotropic WT in smooth denoising.

The neighborhood around the referent coefficient in the spatial location (c 1, c2) consists of
the parent and the coefficients at the same scale in the spatial locations (c ′

1, c
′
2) (see Figure

6.2(a)), where
c′1 = c1 + nδ, c′2 = c2 + mδ, n, m ∈ {−1, 0, 1}, (6.18)
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Figure 6.2: Two types of neighborhood used in the estimation method. (a) The
isotropic neighborhood used along with the isotropic WT in smooth denoising.
The neighborhood is centered around the referent coefficient in the spatial loca-
tion (c1, c2) and includes the coefficients in the spatial locations (c1 ± δ, c2 ± δ),
where δ is the distance factor given by (6.17), and the corresponding parent. (b)
The anisotropic neighborhood is used along with the anisotropic WT in oriented
denoising. The orientation of the neighborhood is matched with the orientation of
the transform. The included coefficients are located in the closest integer coordi-
nates to the coordinates in the rotated system for 7 centered coefficients along the
dominant direction and 3 coefficients in the next parallel lines. The shown example
is constructed for the values θ = −45◦ and δ = 2.
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Here, δ is given by (6.17).
The anisotropic neighborhood used in oriented denoising have the orientation matched

with the orientation of the WT. Given the orientation θ of the transform, the neighborhood
around the coefficient in the location (c1, c2) is defined as the union of the corresponding
parent and the set of the coefficients at the same scale in the locations (c ′

1, c
′
2), where

c′1 = [(c1 + nδ) cos θ − (c2 + mδ) sin θ]
c′2 = [(c1 + nδ) sin θ + (c2 + mδ) cos θ], (6.19)

for n ∈ {−3, · · · , 3} if m = 0, and n ∈ {−1, 0, 1} if m ∈ {−1, 1}. Here, [x] stands for the
closest rounded integer to x.

Notice that the rounding functions used in (6.19) ensure that the coordinates of the neigh-
bor coefficients are integers. In general, there are 13 coefficients at the same scale and 1
parent coefficient in an anisotropic neighborhood. However, for some values of θ, two or
more coefficients defined by (6.19) might overlap generating a smaller neighborhood. The
anisotropic neighborhood for the case of δ = 2 and θ = −45 ◦ is illustrated in Figure 6.2(b).

6.3.2 Smooth Denoising

Smooth denoising is performed by estimation using the GSM model in the transform domain,
where the undecimated isotropic transforms are applied. In the experiments in Section 6.4
the S-AWT(I,1,1) and S-AWT(Q,1,1) are used, where I is the identity matrix and

Q =
(

1 1
−1 1

)
.

Notice that these two transforms correspond to the standard undecimated 2-D WT along the
standard (0◦/90◦) and diagonal (45◦/− 45◦) directions.

The isotropic neighborhood of transform coefficients is used in estimation in the case of
both transforms. The smooth denoised output is obtained as the mean of the two reconstructed
images.

Since the estimation of referent coefficients is based on the statistical characteristics of
the coefficients in a neighborhood without a dominant orientation, smooth denoising achieves
better performance in the case of smooth regions in images. On the other hand, the coeffi-
cients around edges are estimated from the neighborhoods that consist of coefficients from
both sides of the edges with significantly different statistics. Therefore, the quality of estima-
tion is reduced and visual artifacts appear around edges.

An example is shown in Figure 6.3, where a piecewise smooth image is denoised by
smooth denoising. The numerical comparisons of the images to the original version are given
in terms of peak-signal-to-noise-ratio (PSNR) factor equal to 20 log 10(255/σe), where σe

is the standard deviation of the error. The reconstructed image is efficiently denoised in the
smooth regions, but the artifacts around the edges are noticeable, as shown in Figure 6.3(c).

6.3.3 Oriented Denoising

In oriented denoising, the orientation of neighborhoods is matched with the orientation of
the transform. In this way, edges are better preserved in the denoised images. Some other
denoising methods also perform the edge-preservation processing [54; 115].
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(a) (b)

(c) (d)

Figure 6.3: A synthetic image and the efficiency of smooth denoising. (a) Original
piecewise smooth image with linear discontinuities. (b) A noisy version of the im-
age with σ = 50, i.e. PSNR= 14.12dB. (c) Smooth denoised output obtained by
estimation using the isotropic neighborhoods and the isotropic undecimated trans-
forms S-AWT(I,1,1) and S-AWT(Q,1,1) that correspond to the standard undeci-
mated 2-D WT along the standard and diagonal directions. The smooth regions are
denoised efficiently, but the regions around edges contain significant visual artifacts.
The numerical quality of the denoised image is PSNR=32.93dB. (d) The denoised
version obtained by the linear combination of the smooth and oriented denoised out-
puts. The numerical quality is PSNR=33.57dB. The visual quality of the edges is
improved.
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In the experiments a set of four anisotropic transforms S-AWT(M i,2,1) is used, for i =
1, 2, 3, 4. The corresponding generator matrices are defined as

M1 =
(

1 0
0 1

)
,M2 =

(
1 1
−1 1

)
,M3 =

(
0 1
1 0

)
,M4 =

( −1 1
1 1

)
. (6.20)

Notice that the anisotropic transforms used in the experiments are oriented along 0 ◦, 45◦,
90◦, and −45◦, respectively.

The oriented denoised outputs achieve better results around edges with orientation close
to the orientation of the transform. The reason for this good performance is in an efficient
capturing of the coefficients with similar statistical characteristics in a neighborhood used in
estimation. However, the denoising results in smooth regions are not as good as in the case
of smooth denoising.

The oriented denoised outputs of the piecewise smooth image shown in Figure 6.3(a) are
presented in Figure 6.4. Notice that even though the numerical results of the denoised images
are weaker when compared to that in the case of smooth denoising, the visual artifacts around
edges are suppressed.

Notice also that we use only 4 directions here. Recall that the construction of directionlets
allows for more transform directions, but with increasing computational complexity. For that
reason, we retain only 4 transform directions as a good trade-off between complexity and
denoising efficiency.

6.3.4 Combined Smooth and Oriented Denoising

As shown in Sections 6.3.2 and 6.3.3, smooth denoising achieves good results in smooth
regions without edges, whereas oriented denoising dominates in the regions around edges.
Furthermore, oriented denoising is better in the case of matching (exact or approximate)
between the dominant direction in the image and the transform direction. In this section, we
combine these two types of denoised outputs in the pixel domain to exploit the advantages of
both.

The key point to improve the denoising results by the combination of the two denoising
methods is an efficient detection of local directionality in the image. For each pixel, we
determine if it belongs to a smooth or edge region, and, in the latter case, the dominant
direction from a predetermined set.

Recall that 4 oriented denoised outputs along the directions 0◦, 90◦, 45◦, and −45◦ are
generated in the experiments in Section 6.3.3. We call them yd1 , yd2 , yd3 , and yd4 , respec-
tively. In order to determine the directionality of each pixel, we filter each oriented output
ydi along the matched direction di by the upsampled version H1(z4) of the high-pass (HP)
filter H1(z) from the "9-7“ filter-bank. The 4 produced subbands we denote as ŷ di , for
i = 1, . . . , 4. This upsampling factor for the HP filter is hand-optimized as a good trade-off
between locality of the directionality information and strong correlation among neighbor pix-
els in images. The results of the HP filtering along the 4 directions for the toy image shown
in Figure 6.3(a) is presented in Figure 6.5.

The dominant direction ddom(n, m) for a pixel in the location (n, m) is the transform
direction that minimizes the magnitudes of the coefficients ŷdi(n, m), that is,

ddom(n, m) = arg min
di

|ŷdi(n, m)|. (6.21)
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(a) (b)

(c) (d)

Figure 6.4: Oriented denoised outputs of the noisy image shown in Figure 6.3(b)
obtained using anisotropic transforms and anisotropic neighborhoods with matched
directions along (a)0◦, (b) 90◦, (c) −45◦, and (d) 45◦. The PSNR factors are: (a)
30.74dB, (b) 30.16dB, (c) 30.47dB, and (d) 29.56dB. Even though the numerical
results are weaker than the results obtained in smooth denoising, the visual arti-
facts around the edges with matched directions are reduced. This happens because
the coefficients with similar statistical characteristics are grouped in the estimation
phase.
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(a) (b)

(c) (d)

Figure 6.5: The oriented denoised outputs shown in Figure 6.4 are filtered using the
HP filter H1(z4) along 4 directions. The magnitudes of the coefficients are shown
for (a) 0◦, (b) 90◦, (c) −45◦, and (d) 45◦. For each spatial location, the minimal
magnitude indicates the dominant direction.
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Figure 6.6: The oriented denoised outputs are filtered using the upsampled HP fil-
ters to determine if each pixel belongs to a smooth or edge region and its dominant
direction. The typical fluctuations of the energy of the HP coefficients across di-
rections are shown for the case of a smooth and edge pixel. The fluctuation in the
case of smooth pixels is significantly smaller than in the case of edge pixels. The
small difference ∆(n, m) defined by (6.22) for the function shown by the dotted
line indicates that the pixel belongs to a smooth region.

Since the coefficients in ŷdi are produced by HP filtering, the local neighborhood around
the location (n, m) is the smoothest along the direction ddom(n, m) and, thus, this direction
approximates best the local dominant direction in the location (n, m).

Notice that ddom(n, m) can be also determined for the pixels in smooth regions because
of small fluctuations of the denoised outputs across directions (see Figure 6.6 for the com-
parison between these functions in a smooth and edge region). Since these pixels are better
denoised by the smooth denoised output, the detection of dominant direction in this case is
not valuable. In order to distinguish between the smooth and edge regions, we measure these
fluctuations by computing the difference between the mean and minimum of the magnitudes
across directions for each pixel, that is, we compute

∆(n, m) =
1
4

4∑

i=1

|ŷdi(n, m)| − |ŷddom(n,m)(n, m)|. (6.22)

A small difference ∆(n, m) indicates that the location (n, m) belongs to a smooth region,
whereas a large value implies an edge region. Since the value of ∆(n, m) is influenced
by very complex interdependencies among pixels in images, there does not exist an exact
threshold which determines if a location belongs to a smooth or edge region. For that reason,
we use a soft transition between smooth and edge regions introducing a linear combination
of the smooth denoised pixels ys and the best (in the sense given by (6.21)) oriented denoised
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pixels yddom(n,m). The final denoised pixel in the location (n, m) is defined by

y(n, m) = α(n, m)ys(n, m) + (1− α(n, m))yddom(n,m)(n, m), (6.23)

where 0 ≤ α(n, m) ≤ 1. The coefficient α(n, m) is defined by

α(n, m) =

{ 1 ∆(n, m) ≤ 1,
− 1

14∆(n, m) + 15
14 1 ≤ ∆(n, m) ≤ 15,

0 ∆(n, m) ≥ 15
. (6.24)

The threshold values 1 and 15 used in (6.24) are hand-optimized. Notice that the thresholds,
like 3σ or the universal threshold [32], that are obtained by minimization of the impact of
the noise are not appropriate in our case because the pixels are already denoised and the
distribution of the retained noise is not Gaussian anymore. That makes very difficult to have
an efficient optimization of the thresholds in (6.24). Fortunately, the result of denoising is not
too sensitive to the choice of these thresholds.

The choice of denoised pixels is shown in Figure 6.7 for the piecewise smooth image from
Figure 6.3(a). The 4 gray-level images in Figure 6.7(a)-(d) related to the oriented denoised
outputs represent the magnitude of the inverse coefficient 1−α, whereas the image in Figure
6.7(e) related to the smooth denoised output illustrates the magnitude of the coefficient α.

The denoised image produced by the linear combination is shown in Figure 6.3(d). The
PSNR factor is improved and is equal to 33.57dB. The visual quality of the edges in the
denoised version is also improved comparing to the smooth denoised version of the toy ex-
ample.

The whole denoising algorithm is outlined in Algorithm 6.2.

6.4 Numerical Experiments

We perform the denoising experiments on the same natural images that have been used in
[68] and we compare the obtained results to those in [68].

The results of denoising of the test image Barbara are presented in Figures 6.8 and 6.9.
The image Barbara is corrupted by the additive white Gaussian noise with different input
noise powers σ2 (or the corresponding PSNR factors). The denoising method based on di-
rectionlets is compared to the method that uses the standard undecimated 2-D WT and the
steerable pyramids [68]. The results are shown in Figure 6.8. The original and noisy version
of the image are shown in Figure 6.9(a) and (b) for PSNR=8.13dB. The two reconstructed
versions made by the standard undecimated 2-D WT and directionlets are presented in Fig-
ure 6.9(c) and (d) for PSNR=21.66dB and PSNR=22.06dB, respectively. Notice that the
denoised image using directionlets has sharper edges than the one denoised by the standard
transform because the pixels in the regions around edges are obtained by oriented denoising.

The numerical results of the denoising methods based on directionlets and steerable pyra-
mids applied on all the test images used in [68] are outlined in Table 6.1. Notice that the
numerical results obtained by the steerable pyramids are slightly better than the results based
on directionlets. However, the transform in the case of directionlets is computationally sim-
pler than the steerable pyramids. Recall that, in directionlets, only the separable filtering
using the 1-D filter-banks is taking place, unlike in the case of steerable pyramids, where 2-D
directional filter-banks are used [85].
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(a) (b) (c)

(d) (e)

Figure 6.7: The best oriented denoised pixels are chosen from the directional sub-
band ŷddom

that minimizes the magnitude of the HP coefficient for each spatial
location (n, m). These pixels are linearly combined with the pixels in the smooth
denoised output ys using the coefficient α. The coefficient α is computed using a
soft function of the difference between the mean and minimum of the HP energy
across directions in the oriented denoised outputs, as given by (6.24). The values of
α are in the interval [0, 1]. The inverse values 1−α are shown in gray-scale images
for the oriented denoised outputs along (a) 0◦, (b) 90◦, (c) −45◦, (d) 45◦. (e) The
magnitudes of α for the smooth denoised output.
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Algorithm 6.2 Combined denoising algorithm using smooth and oriented denoising outputs.
Step 1: Smooth denoising

• Compute S-AWT(I,1,1) and S-AWT(Q,1,1);

• Apply GSM estimation outlined in Algorithm 6.1 using the isotropic neighborhoods;

• Compute the inverse S-AWT(I,1,1) and S-AWT(Q,1,1);

• Compute ys as the mean of the two reconstructions.

Step 2: Oriented denoising

• Compute S-AWT(Mi,2,1), for i = 1, . . . , 4, where Mi are given by (6.20);

• Apply GSM estimation outlined in Algorithm 6.1 using the anisotropic neighborhoods;

• Compute ydi as the inverse S-AWT(Mi,2,1), for i = 1, . . . , 4.

Step 3: Combined denoising
For each spatial location (n, m):

• Filter ydi in the direction di using the filter H1(z4);

• Compute ddom(n, m) using (6.21);

• Compute ∆(n, m) using (6.22);

• Compute α(n, m) using (6.24);

• Compute the final denoised pixel y(n, m) using (6.23).
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Figure 6.8: The test image Barbara is corrupted by the additive white Gaussian
noise with different power of the noise. The image is denoised using the estimation
in the transform domain of three transforms: the standard undecimated 2-D WT, the
steerable pyramids, and directionlets. The method based on directionlets outper-
forms the method that uses the standard undecimated 2-D WT, but it is weaker than
the steerable pyramids. However, the separable filtering used in the case of direc-
tionlets yields a lower computational complexity than in the case of non-separable
2-D filtering used in the steerable pyramids.



100 Denoising of Images using Directionlets

(a) (b)

(c) (d)

Figure 6.9: The test image Barbara is corrupted by the additive white Gaussian
noise. The noisy image is denoised by estimation in the transform domain, where
the two transforms are applied: the standard undecimated 2-D WT and directionlets.
Both the numerical and visual quality of the denoised version obtained by direction-
lets is better than the version obtained by the standard transform. (a) Original image.
(b) Noisy version at PSNR=8.13dB. (c) Denoised image obtained by the standard
undecimated WT at PSNR=21.66dB. (d) Denoised image obtained by directionlets
at PSNR=22.06dB.
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Table 6.1: Denoising results expressed in terms of PSNR. The results are shown
for two methods based on directionlets and steerable pyramids. The latter method
is explained in [68].

Directionlets
σ / PSNR Lena Barbara Boats Fngrprnt House Peppers

1 / 48.13 48.46 48.38 48.40 48.38 48.91 48.46
2 / 42.11 43.26 43.33 43.00 42.84 44.16 43.14
5 / 34.15 38.40 37.66 36.98 36.17 38.59 37.51
10 / 28.13 35.22 33.70 33.38 31.61 35.07 33.59
15 / 24.61 33.31 31.39 31.31 29.22 33.27 31.35
20 / 22.11 31.91 29.76 29.86 27.62 31.86 29.72
25 / 20.17 30.80 28.46 28.76 26.46 30.77 28.40
50 / 14.15 27.59 24.74 25.71 23.15 27.37 25.13
75 / 10.63 26.01 22.97 24.10 21.36 25.76 23.56
100 / 8.13 24.94 22.05 23.17 20.14 24.27 22.22

Steerable pyramids
σ / PSNR Lena Barbara Boats Fngrprnt House Peppers

1 / 48.13 48.46 48.37 48.44 48.46 48.85 48.38
2 / 42.11 43.23 43.29 42.99 43.05 44.07 43.00
5 / 34.15 38.49 37.79 36.97 36.68 38.65 37.31
10 / 28.13 35.61 34.03 33.58 32.45 35.35 33.77
15 / 24.61 33.90 31.86 31.70 30.14 33.64 31.74
20 / 22.11 32.66 30.32 30.38 28.60 32.39 30.31
25 / 20.17 31.69 29.13 29.37 27.45 31.40 29.21
50 / 14.15 28.61 25.48 26.38 24.16 28.26 25.90
75 / 10.63 26.84 23.65 24.79 22.40 26.41 24.00
100 / 8.13 25.64 22.61 23.75 21.22 25.11 22.66
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The denoising results obtained using directionlets are also competitive to the other state-
of-the-art denoising results, like the ones obtained by curvelets [87] and contourlets [23].
However, similarly to the case of the steerable pyramids, these transforms are computation-
ally more complex than directionlets because of non-separable 2-D filtering.

6.5 Conclusions

In this chapter, we have shown that the undecimated directionlets are very efficient tool for
image denoising. The GSM-based estimation model in the transform domain achieves the
denoising results competitive to the state-of-the-art results, while the complexity of the trans-
form is lower because of the use of separable filter-banks.



Chapter 7

Conclusion

7.1 Summary

In this thesis, we have analyzed the problem of efficient representation of geometrical fea-
tures in images that are highly anisotropic and have certain orientations, in general, different
from horizontal and vertical. The representation of these features provided by the standard
2-D wavelet transform is non-sparse since they intersect with many wavelets producing high
magnitude transform coefficients. We have proposed an integer lattice-based transform con-
struction that leads to anisotropic basis functions with directional vanishing moments in arbi-
trary directions. We call these critically sampled basis functions directionlets. We have shown
that directionlets achieve better non-linear approximation and compression performance than
the standard method and are comparable to the other oversampled transforms. We have also
presented an efficient image denoising method based on the undecimated version of direc-
tionlets. The main contributions of the thesis are summarized as follows.

Skewed anisotropic transform constructions
In Chapters 2 and 3, we have studied the limits of the standard 2-D wavelet transform in pro-
viding an efficient representation of images with elongated objects, like edges and contours,
in different directions, not only horizontal and vertical. We have proposed two new lattice-
based anisotropic transforms, which are called skewed fully separable and skewed anisotropic
wavelet transforms. These transforms lead to basis functions, which we call directionlets.
The transforms retain the simplicity of separable filtering and subsampling from the standard
2-D wavelet transform, while imposing directional vanishing moments in directionlets along
two arbitrary directions with rational slopes. The directional vanishing moments allow for an
efficient capturing of the geometrical features in images.

General multi-directional transforms
In Chapter 4, we have presented the construction of a general multi-directional transforms.
These transforms retain separability of the standard 2-D wavelet transform and allow the
corresponding basis functions to have directional vanishing moments along arbitrary set of
directions. The analysis of regularity of these general basis functions is a difficult task and
we have shown that the basis functions obtained in the two-directional and unbalanced con-
structions are regular within cosets.
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Non-linear approximation and compression of images
In Chapter 5, we have investigated the applications of directionlets in non-linear approxi-
mation and compression of images. We have shown that, allowing for spatial segmentation
and choosing transform directions in each segment independently, directionlets outperform
the standard 2-D wavelet transform in terms of asymptotic behavior of the mean-square er-
ror in non-linear approximation of C 2/C2 images. Furthermore, we have demonstrated that
directionlets can improve substantially the performance of the zerotree-based compression
algorithms, where they substitute the standard 2-D wavelet transform.

Denoising of images
In Chapter 6, we have presented a novel denoising algorithm based on the undecimated ver-
sion of directionlets. The method uses the Gaussian scale mixture model to estimate the trans-
form coefficients from a noisy observation. The denoising results achieved by this method
are comparable to the current state-of-the-art results, while having lower complexity because
of the separable filtering operations.

7.2 Future Work

Sparse representation of geometrical features in images, as very important visual perception
elements, has been a topic of high interest in the last decade. During the research work on
directionlets, several questions have been arisen and left for future work due to the complexity
of the problems.

On the other hand, directionlets provide a much wider framework for an efficient descrip-
tion of multi-dimensional signals. Thus, the signals like video sequences or sets of images or
video sequences of the same physical scene recorded in separate cameras have high correla-
tion among samples that can be exploited by appropriate methods. Investigation of the role
of directionlets in these methods will be a topic of future work.

Thus, several topics are of interest as extension of this work and they are listed as follows.

Regularity of general multi-directional bases
Importance of regular basis functions in image compression has been emphasized in Section
4.3. However, it has been shown that neither cyclic nor unbalanced construction achieve
regularity in general. It is of great interest to propose a construction method that can lead
to regular orthogonal multi-channel filter banks and impose directional vanishing moments
in the corresponding basis functions, while discarding the constraint of separable filtering.
These truly 2-D filter-banks, although requiring substantially more complex design, would
provide a powerful toolbox for an efficient image representation.

Compression and denoising of images
The compression methods that are based on optimal spatial-frequency quantization use the
standard 2-D wavelet transform or wavelet packets. The general multi-directional wavelet
transforms are convenient for the applications in these compression algorithms because of
critical sampling. However, search for optimal values of a number of parameters in the
compression method is a very challenging task, since the global optimization process has
an exponential complexity. The goal of the future work is to propose an efficient (”smart“)
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optimization that still has a non-exponential complexity.
A more complex (non-quadtree) spatial segmentation is capable of extracting more flex-

ibly dominant directions in images than the isotropic segmentation. However, such segmen-
tation methods are more costly in terms of encoding the corresponding segmentation tree. In
the future work on the compression algorithm, we aim at an efficient trade-off between the
representation sparsity and coding efficiency.

Truly 2-D multi-channel filter-banks that impose directional vanishing moments along
more than two directions provide an efficient denoising tool. These filter-banks would be
able to capture local coherence in images across space, directions, and scales better than the
separable schemes. However, the 2-D filtering requires a higher computational complexity.
The goal is to present an efficient trade-off between the properties of the filter-banks and
complexity of the processing in the future work.

Video coding
The state-of-the-art video coding algorithms are based on motion compensation, and they are
more efficient if the decorrelation processing applied within a frame or across frames pro-
vides a sparser representation. The goal is to propose an efficient video coding algorithm
based on multi-resolution multi-directional anisotropic transforms that can capture geometri-
cal features and motion (across space and time) in video sequences.

Distributed still image and video coding
Images of the same scene recorded from different spatial locations (multiple camera systems)
are strongly correlated. The goal in distributed coding is to make an optimal use of the cor-
relation structure across images while minimizing the amount of communication. Similarly,
frames in a video sequence have high redundancy across space and time. This can be ex-
ploited by algorithms based on distributed principles (Wyner-Ziv) in which the transmission
bitrate is reduced and the complexity is moved from the encoder to the decoder.

Besides the redundancy within one video sequence, two sequences of the same scene
generated from two separated cameras at certain relative spatial distance and angle (stereo
video) are also redundant. In addition, distributed coding techniques allow for an increase in
resilience since the motion compensation takes place at the decoder.
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[99] V. Velisavljević, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti. Directionlets:
Anisotropic multi-directional representation with separable filtering. IEEE Trans. Im-
age Processing, to appear.
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32. Cristescu, Răzvan. Efficient Decentralized Communications in Sensor Networks. EPFL
2952(2004), March 2004.

33. Shukla, Rahul. Rate-Distortion Optimized Geometrical Image Processing. EPFL
2992(2004), May 2004.



34. Viste, Harald. Binaural Localization and Separation Techniques. EPFL 3043(2004),
June 2004.

35. Faller, Christof. Parametric Coding of Spatial Audio. EPFL 3062(2004), July 2004.
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