
Concurrency Control in Transactional Drago?

M. Pati~no-Mart��nez1, R. Jim�enez-Peris1, J. Kienzle2, and S. Ar�evalo3

1 Technical University of Madrid (UPM), Facultad de Inform�atica,

E-28660 Boadilla del Monte, Madrid, Spain, frjimenez, mpatinog@�.upm.es
2 Swiss Federal Institute of Technology in Lausanne, Department of Computer

Science, Lausanne, Switzerland, Joerg.Kienzle@ep
.ch
3 Universidad Rey Juan Carlos, Escuela de Ciencias Experimentales, M�ostoles,

Madrid, Spain, s.arevalo@escet.urjc.es

Abstract. The granularity of concurrency control has a big impact on

the performance of transactional systems. Concurrency control granu-

larity and data granularity (data size) are usually the same. The e�ect

of this coupling is that if a coarse granularity is used, the overhead of

data access (number of disk accesses) is reduced, but also the degree

of concurrency. On the other hand, if a �ne granularity is chosen to

achieve a higher degree of concurrency (there are less con
icts), the cost

of data access is increased (each data item is accessed independently,

which increases the number of disk accesses). There have been some pro-

posals where data can be dynamically clustered/unclustered to increase

either concurrency or data access depending on the application usage of

data. However, concurrency control and data granularity remain tightly

coupled. In Transactional Drago, a programming language for building

distributed transactional applications, concurrency control has been un-

coupled from data granularity, thus allowing to increase the degree of

concurrency without degrading data access. This paper describes this

approach and its implementation in Ada 95.

Keywords: transactions, locking, distributed systems, databases.

1 Introduction

Transactions [GR93] were proposed in the context of database systems to pre-

serve the consistency of data in the presence of failures and concurrent accesses.

Transactions are also useful as a way of organizing programs for distributed sys-

tems. Their properties simplify the development of correct programs, hiding the

complexity of potential interactions among concurrent activities and the failures

that can occur in a distributed system. Transactions provide the so-called ACID

properties, that is, atomicity, consistency, isolation and durability. A transaction

is executed completely or its e�ect is as it never had been executed (atomicity).

If a transaction ends successfully (it commits), its e�ects will remain even in the

advent of failures (durability). If a transaction does not commit, it aborts. In case

? This research has been partially funded by the Spanish National Research Council,

CICYT, under grant TIC98-1032-C03-01.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of an abort, atomicity guarantees that all the e�ects of a transaction are undone,

as if it had never been executed. Consistency ensures that the application state

is updated in a consistent way. The e�ect of executing concurrent transactions

is as if they were executed sequentially in some order (serializability), that is, a

transaction does not see intermediate results from other transactions (isolation).

Concurrency control techniques are used to ensure the isolation property of

transactions. Read/write locking is one of the most popular concurrency control

techniques. Two locks con
ict if they are requested on the same data item, by two

di�erent transactions, and at least one is a write lock. A lock in the appropriate

mode must be requested before a data item is accessed by a transaction. Locks

are released when a transaction �nishes. More concurrency can be achieved by

de�ning locks on other operations instead of just read/write locks [BHG87].

The granularity of a data item is its relative size. The concurrency control

granularity is the unit to which concurrency control (locking) is applied. In

general, data granularity and lock granularity are the same. Data granularity

has a big impact on the performance of a transactional system. If a data item is

big (for instance, a �le), concurrency decreases since the probability of con
icts

is higher. That is, if two transactions write the same data item, one of them will

not be able to proceed even if they access di�erent parts of the data item. Since

transactions only lock those data items they access, more concurrency can be

achieved with a �ner granularity (for instance, records instead of �les). On the

other hand, the time taken to load a data item of size N from disk is less than

the time needed to load N data items of size 1. Therefore, performance decreases

as more disk accesses are needed to access several data items (records) of the

original data item (the �le). Locks in transactional languages are requested at

data item level. That means that the programmer must choose either a coarse

granularity to improve data access in detriment of transaction concurrency, or a

�ne granularity in detriment of data access eÆciency.

In this paper we present the approach adopted in Transactional Drago [PJA98].

Transactional Drago is an Ada extension for programming distributed transac-

tional applications. Transactional Drago o�ers a locking scheme where locking

and data granularity have been uncoupled. With this locking scheme the pro-

grammer �rst chooses the data granularity to improve data access. Then, she/he

decides the locking granularity for that data item. Locking granularity can vary

from the coarsest level (the whole data item) to the �nest (each indivisible com-

ponent of a data item). Although some transactional programming languages

also allow changes in the locking granularity (see Section 6), programmers must

program the concurrency control, and in some cases they also have to program

the recovery mechanism needed to provide the atomicity property of transac-

tions. In Transactional Drago none of these error-prone tasks needs to be done.

The granularity of concurrency control is declarative, and programmers just de-

cide where locks are applied.

The paper also describes how Transactional Drago is translated into Optima

[KJRP01], the evolution of the Ada transactional framework TransLib [JPAB00].



Additionally, the Optima facilities for concurrency control and the implementa-

tion of lock-based concurrency control in Ada 95 are presented.

This paper is structured as follows. First of all, we present a brief description

of Transactional Drago. In Section 3 we present how the granularity of locks

is de�ned. The translation of Transactional Drago into Optima is presented in

Section 4. Some details about the implementation of the concurrency control

in Optima are given in Section 5. Finally, we compare our work with other

approaches in Section 6 and present our conclusions in Section 7.

2 Transactional Drago

Transactional Drago [PJA98] is an extension to Ada [Ada95] for programming

distributed transactional applications. Programmers can start transactions us-

ing the begin-end transaction statement or transactional block. Transactional

blocks are similar to block statements in Ada. They have a declarative section, a

body and can have exception handlers. The only di�erence is that the statements

inside the block are executed within a transaction.

All data used in transactional blocks are subject to concurrency control (in

particular, locks) and are recoverable. That is, if the corresponding transaction

aborts, data will be restored to the value they had before executing that trans-

action. Data items can be volatile or non-volatile (persistent).

A transactional block can be enclosed within another transactional block,

leading to a nested transaction structure. A transaction that is nested within

another transaction (parent transaction) is called a subtransaction [Mos85].

Transactional Drago implements group transactions [PJA01], a new trans-

action model. One of the novel aspects of the model is that transactions can be

multithreaded, i.e., a transaction can have several threads (tasks) that run in

parallel. As a result it is possible to take advantage of the multiprocessor and

multiprogramming capabilities. Threads working of behalf of the same transac-

tion can cooperate by accessing the same data, i.e., they are not isolated from

each other. Since locking is only intended for inter-transactional concurrency

(logical consistency), latches [MHL+98] are used to provide intra-transactional

concurrency control (physical consistency) in the presence of concurrent accesses

from threads of the same transaction. Latches provide short-term concurrency

control (they last for a single operation) in contrast with locks that are long-term

concurrency control (they are not released until the transaction �nishes).

In Transactional Drago both concurrency control mechanisms are implicitly

handled by the run-time system, hiding all the complexity from the application

programmer. Programs access transactional data (atomic data) just as regu-

lar non- transactional data. Programmers do not set and free neither locks nor

latches. The underlying system is in charge of ensuring the isolation and atom-

icity properties and the physical consistency of the data.



3 Lock Granularity

Although programmers do not explicitly request neither locks nor latches, Trans-

actional Drago allows them to specify concurrency control for each data item

separately, thus increasing concurrency among transactions.

Let us illustrate this mechanism with a simple example. From now on we

assume all data are persistent (non-volatile). For instance, if we have the (per-

sistent) array declaration on Fig. 1(a), in transactional languages, locks are ap-

plied to the whole array. So, if two transactions update a component of the

array, no matter whether they access the same or di�erent components, one of

the transactions would be blocked until the other one �nishes. By default, this

is the semantics of Transactional Drago. However, in Transactional Drago the

programmer can de�ne the granularity of locks to be array components (thereby

uncoupling data granularity and locking granularity). In this case two transac-

tions updating di�erent components can be executed concurrently. The resulting

e�ect is just as if each component of the array were separate data items. Trans-

actional Drago goes even further by allowing concurrency control to be applied

at each �eld of the record inside the array. Therefore, two transactions can up-

date di�erent �elds of the same component concurrently. This 
exibility does

not induce a penalty in data access as it does in other approaches: the array

does not have to be split in smaller pieces.

type mytype is atomic array

(Array_Index_Type) of

record

a: integer;

b: float;

end record;

(a) array level locking

type mytype is array

(Array_Index_Type) of

atomic record

a: integer;

b: float;

end record;

(b) record level locking

type mytype is array

(Array_Index_Type) of

record

a: atomic integer;

b: atomic float;

end record;

(c) Field level locking

Fig. 1. Di�erent locking granularities

The de�nition of the locking granularity is declarative in Transactional Drago.

The programmer simply speci�es locking granularity just using the keyword

atomic. This keyword is used in the data item type declaration before the type

declaration where locks are applied. In the previous example, if the keyword is

used at the beginning of the array de�nition (Fig. 1(a)), locks will apply to the

whole array. Because this is the normal behavior in transactional languages, the

keyword can be omitted. Locking granularity at record level for variables of the

mytype type is de�ned using the keyword atomic just before the de�nition of

each component of the array (Fig. 1(b)). Field level locking is speci�ed using the

keyword atomic before the type of each �eld (Fig. 1(c)).

The Transactional Drago compiler checks for each data item (variable) whether

the locking granularity has been appropriately de�ned by applying the following

rules:



{ The atomic keyword has not been used in the type declaration. By default,

locking granularity is set to the whole data item (the coarsest granularity).

{ The atomic keyword is used. The keyword should be found once and only

once in each path from the leaves to the root of the type tree.

A type tree is built upon the type declaration of a variable. Each node in the

tree is a type. The root is the type of the variable and its children are the types

this type is made of. For instance, the di�erent trees associated with the mytype

type are shown in Fig. 2(a). If the keyword is placed before the array or record

keywords (Fig. 2(b)), it cannot be placed anywhere else. All the paths from the

leafs to the root will contain the keyword exactly once. If the keyword is placed

before the integer type, it must also be placed before the 
oat type (Fig. 2(c)).

Locks and latches in Transactional Drago are requested implicitly by the

system in the appropriate mode and automatically released when the transaction

�nishes. To change the granularity of locks, only the type de�nition must be

changed, since locking in Transactional Drago is speci�ed in a declarative way.

There is no need to modify any application code.

Pointers are considered like any other simple type (integer, boolean...), that

is, they always have read/write locks. Dynamic data also have concurrency con-

trol, which is speci�ed in the same way than for static data.

4 Transactional Drago Translation

Transactional Drago can be translated into Ada 95 and invocations to either

TransLib [JPAB00] or its evolution Optima [KJRP01], two adaptable OO li-

braries supporting transactions. Both libraries provide user-de�ned commuta-

tive locking. With commutative locking [GM83] two operations con
ict if they

do not commute. For instance, let's consider the set abstract data type with the

following operations: Insert(x), adds x to the set, Remove(x), extracts an ele-

ment from the set, and the membership test for x, IsIn(x). The corresponding

commutativity or con
ict table is:

Insert(x) Remove(x) IsIn(x)

Insert(y) Yes x 6= y x 6= y

Remove(y) x 6= y Yes x 6= y

IsIn(y) x 6= y x 6= y Yes

Using commutative locking, pairs of the same operation always commute

(e.g., Insert/Insert), and pairs of di�erent operations commute if they have

di�erent parameters (e.g., Insert(5)/Remove(7)). That is, it does not matter

the order in which two concurrent transactions perform insert operations, the

operations commute and the �nal value of the set will be the same. On the

other hand, if a transaction performs an insert and a concurrent one a remove

operation, the operations commute if the parameters are di�erent. Otherwise,

the operations do not commute and the �nal value of the set depends on the order

of execution of the two operations. Using read/write locks, the only compatible

operations would be pairs of IsIn operations. Therefore, commutative locking



signi�cantly reduces the number of con
icts by taking advantage of semantic

information.

Optima provides the Lock Type abstract class to support user-de�ned com-

mutative locking. It de�nes two abstract functions IsCompatible and IsModifier.

A concrete subclass must be derived from this Lock Type class for every data

item that is accessed from within a transaction. The class must provide a means

to store all the information that is necessary to determine whether two opera-

tions invoked on the data item con
ict or not. In the set example the kind of

operation, i.e., Insert(x), Remove(x) or IsIn(x), and the parameter x must

be stored. Based on this information and the commutativity table shown above,

the IsCompatible function is able to detect con
icts. The IsModifier function

returns true if the operation modi�es the state of the object.

package Locks is

type Lock_Type is abstract tagged private;

type Lock_Ref is access all Lock_Type'Class;

function Is_Modifier (Lock : Lock_Type) return Boolean is abstract;

function Is_Compatible (Lock : Lock_Type; Other_Lock : Lock_Type)

return Boolean is abstract;

private

type Lock_Type is abstract tagged null record;

end Locks;

The power and 
exibility of commutativity locking can be used to implement

the user-de�ned locking granularity of Transactional Drago. The mapping from

Transactional Drago data items to Optima commutative data items is performed

as follows. For each data item a locking scheme must be de�ned. A locking scheme

is de�ned by providing a concrete Lock Type class. The constructor of the con-

crete Lock Type class always has a boolean parameter which indicates whether

it is a read or a write lock. The compatibility function is automatically generated

and considers two lock values as compatible according to the following rules: (1)

the constructors of the two locks have been called with di�erent parameters; (2)

the constructors of the two locks have been called with the same parameters,

but both are read locks.

The array level locking type tree for the array example is shown in Fig. 2(a).

For this type tree, a Lock Type class with one constructor (Array Lock(Boolean))

is generated. The Boolean parameter indicates whether it is a read or a write

lock. Such a lock is equivalent to traditional read/write locks for that type.

atomic

array

record

integer float

(a) array-level

locking

array

atomic

record

integer float

(b) record-level

locking

array

record

atomic atomic

integer float

(c) field-level

locking

Fig. 2. Type trees for di�erent locking granularities



If the granularity of locks is set at record level (Fig. 2(b)), a constructor with

an additional parameter is generated, Record Lock(Boolean, Array Index Type).

The new parameter is the array index. In this case, accesses (reads or writes)

to di�erent elements of the array will be compatible. Two locks only con
ict if

they refer to the same array component and one of them is a write lock.

Finally, the type tree shown in Fig. 2(c) illustrates locking at �eld level.

The constructor, Field Lock(Boolean,Array Index Type,Positive), has an

additional parameter that represents the declaration order of the �eld in the

record. The following code shows the subclass that is created for the type tree

in Fig. 2(c).

package Locks.FieldLocks is

type Field_Lock_Type is new Lock_Type with private;

function Field_Lock (Modifier : Boolean; Index : Array_Index_Type;

Field_Position : Positive) return Field_Lock_Type;

function Is_Modifier (Lock : Field_Lock_Type) return Boolean;

function Is_Compatible (Lock : Field_Lock_Type;

Other_Lock : Field_Lock_Type) return Boolean;

private

type Field_Lock_Type is new Lock_Type with record

Modifier : Boolean;

Index : Array_Index_Type;

Field_Position : Positive;

end record;

end Locks;

The Field Position parameter of the constructor Field Lock represents

the declaration order of the �eld in the record. The constructor creates a new

Field Lock Type instance and assigns the parameters to the corresponding

record �elds. The Is Modifier function simply returns the value stored in

Modifier. The Is Compatible function is implemented as follows:

function Is_Compatible (Lock : Field_Lock_Type;

Other_Lock : Field_Lock_Type) return Boolean is

begin

return (Lock /= Other.Lock) or else

(not Lock.Modifier and not Other_Lock.Modifier);

end Is_Compatible;

In general, a parameter (the array index or �eld position) is added to the

constructor of the corresponding lock for each array/record found in the path

from the root of the type tree to each node tagged atomic (not including it).

5 Locking Implementation

This section presents how the advanced concurrency features of Ada 95 have

been used to implement long-term and short-term concurrency control in the

Optima framework.

In Optima, the Lockbased Concurrency Control protected type implements

lock-based concurrency control. One object of this type is associated to each data



item during the translation of Transactional Drago. This protected type pro-

vides four operations, Pre Operation, Post Operation, Commit Transaction

and Abort Transaction. When translating Transactional Drago code, every ac-

cess to a data item is automatically surrounded by calls to Pre Operation and

Post Operation of its associated concurrency control. Obviously, several Ada

tasks might attempt to call these operations simultaneously. To handle this sit-

uation correctly, the concurrency control has been implemented in the form of a

protected type as shown in Fig. 3. Since Pre Operation has to be able to suspend

the calling task in case of con
icts, the operation is implemented as an entry.

The private part of the speci�cation contains three private entries and some at-

tributes, e.g. the list of currently active locks named My Locks, and a boolean

and a natural variable that are used to implement the multiple readers/single

writer paradigm.

protected type Lockbased_Concurrency_Control is

entry Pre_Operation (Lock : Lock_Ref; Trans : Trans_Ref);

procedure Post_Operation;

procedure Transaction_Commit (Trans : Trans_Ref);

procedure Transaction_Abort (Trans : Trans_Ref);

private

entry Waiting_For_Transaction (Lock : Lock_Ref; Trans : Trans_Ref);

entry Waiting_For_Writer (Lock : Lock_Ref; Trans : Trans_Ref);

entry Waiting_For_Readers (Lock : Lock_Ref; Trans : Trans_Ref);

My_Locks : Lock_List_Type;

Currently_Writing : Boolean := False;

Currently_Reading : Natural := 0;

To_Try : Natural := 0;

end Lockbased_Concurrency_Control;

Fig. 3 Lock based concurrency control

Before a data item is accessed from within a transaction, a Lock Type object

instance is created as described in the previous section, and Pre Operation of

the associated concurrency control is called, passing the transaction context and

a reference to the Lock Type object as parameters. The Pre Operation code

is shown in Fig. 4. First, long-term concurrency control must be handled. To

guarantee isolation, the concurrency control must determine if the operation to

be invoked con
icts with other invocations made by still active transactions.

This check is performed in the Is Compatible function of the Lock List Type

( 1 ). Successively, the new lock is compared to all previously granted locks by

calling the Is Compatible function of the new lock. If a con
ict has been de-

tected, the calling task is suspended by requeuing the call on the private entry

Waiting For Transaction until the transaction having executed the con
ict-

ing operation ends ( 2 ). If, on the other hand, the access does not create any

con
ict, then the new lock is inserted into the list of granted locks ( 3 ), and

the short-term concurrency control phase is initiated by requeuing on the pri-

vate entry Waiting For Writer ( 4 ). The two entries Waiting For Writer and



Waiting For Readers implement the multiple readers/single writer paradigm.

Starvation of writers is prevented by keeping readers and writers on a single

entry queue. Requests are serviced in FIFO order. Inside Waiting For Writers,

the nature of the operation, i.e. read or write, is determined by calling the

Is Modifier ( 6 ) operation of the new lock. Read operations are allowed to

proceed, until a write operation is encountered. If there are still readers using

the data item, then the writer is requeued to the Waiting For Readers entry

( 7 ). This closes the barrier of the Waiting For Writer entry, since the latter

requires the Waiting For Readers queue to be empty ( 5 ). After the invoca-

tion of the actual operation on the data item, the run-time automatically calls

Post Operation, which decrements the number of readers or unsets the writer


ag.

entry Pre_Operation (Lock : Lock_Ref; Trans : Trans_Ref) when True is

begin

if not Is_Compatible (My_Locks, Lock, Trans) then 1

requeue Waiting_For_Transaction with abort;
2

else

Insert (My_Locks, Lock, Trans); 3

requeue Waiting_For_Writer with abort;
4

end if;

end Pre_Operation;

entry Waiting_For_Writer (Lock : Lock_Ref; Trans : Trans_Ref)

when not Currently_Writing and Waiting_For_Readers'Count = 0 is 5

begin

if Is_Modifier (Lock.all) then 6

if Currently_Reading > 0 then

requeue Waiting_For_Readers with abort; 7

else

Currently_Writing := True;

end if;

else

Currently_Reading := Currently_Reading + 1;

end if;

end Waiting_For_Writer;

entry Waiting_For_Readers (Lock : Lock_Ref; Trans : Trans_Ref)

when Currently_Reading = 0 is

begin

Currently_Writing := True;

end Waiting_For_Readers;

procedure Post_Operation is

begin

if Currently_Writing then

Currently_Writing := False;

else

Currently_Reading := Currently_Reading - 1;



end if;

end Post_Operation;

Fig. 4 Implementation of lock based concurrency control

Now let us go back to the �rst phase and see what happens to the calls queued

on the Waiting For Transaction entry. Tasks queued here have requested to

execute an operation that con
icts with an operation already executed on be-

half of a still active transaction. Each time a transaction ends, this situation

might change. When a transaction aborts, the operations executed on behalf of

the transaction are undone, and hence the acquired locks can be released. This

is illustrated in Fig. 5. Transaction Abort calls the Delete operation of the

granted lock list ( 1b ), which results in removing all operation information of

the corresponding transaction from the list. The same is done upon commit of

a top level transaction ( 1a ). If the commit involves a subtransaction, then the

locks held so far by the subtransaction must be passed to the parent transaction.

This is achieved by calling the Pass Up operation of the Lock List Type ( 2 ). In

any case, the auxiliary variable To Try is set to the number of tasks waiting in

the queue of the entry Waiting For Transaction ( 3a and 3b ). As a result, all

queued tasks are released and requeued to Pre Operation, thus getting another

chance to access the data item.

entry Waiting_For_Transaction (Lock : Lock_Ref; Trans : Trans_Ref)

when To_Try > 0 is

begin

To_Try := To_Try - 1;

requeue Pre_Operation with abort;

end Waiting_For_Transaction;

procedure Transaction_Commit (Trans : Trans_Ref) is

begin

if Is_Toplevel (Trans.all) then

Delete (My_Locks, Trans);1a

else

Pass_Up (My_Locks, Trans, Get_Parent(Transaction.all));2

end if;

To_Try := Waiting_For_Transaction'Count;3a

end Transaction_Commit;

procedure Transaction_Abort (Trans : Trans_Ref) is

begin

Delete (My_Locks, Trans);1b

To_Try := Waiting_For_Transaction'Count;
3b

end Transaction_Abort;

Fig. 5 Implementation of lock based concurrency control



6 Related Work

Argus [LS83,Lis88] was the �rst programming language providing transactional

semantics. It provided a set of atomic types and mutexes. Atomic types have

prede�ned concurrency control and recovery. Hence, the granularity of locks for

these data types cannot be changed. Programmers can de�ne new data types

based on atomic types to increase concurrency, uncoupling data and concurrency

control granularity. However, they have to implement concurrency control (using

mutexes and atomic types) for those new types, which it is not a trivial task.

Hybrid atomicity [LMWF94] is used in Avalon [EMS91] for concurrency con-

trol to increase the degree of concurrency. However, the programmer has to

program both the concurrency control and the recovery of the new type. This

increases dramatically the complexity of programming.

In Arjuna [PSWL95] the granularity of locks applies to objects. Hence, to

increase eÆciency (decreasing the number of disk accesses) the state of an object

should be big, but in order to increase concurrency, objects should be decom-

posed into smaller objects, which implies changing the code of all the applications

that use the original object. [WS94] proposes a run-time clustering-declustering

support for the Arjuna system where data granularity can be changed at run-

time. However, a change in data granularity provokes a change in locking gran-

ularity.

Transactional C [Tra95] is the programming language provided by the Encina

transaction processing monitor. Latches (or mutexes in the Transactional C ter-

minology) and locks are explicitly set in Transactional C, which complicates

programmers' task. Latches are only valid within the scope of a transaction.

If a thread starts a subtransaction, the physical consistency of the data is not

guaranteed.

7 Conclusions

We have presented the mechanisms for controlling the concurrency control gran-

ularity in Transactional Drago. The main contribution of this paper is that

concurrency control granularity has been uncoupled from data granularity. This

enables to increase the transaction concurrency without introducing any penalty

on data access and/or recovery.

This approach contrasts with other approaches where an increase in con-

currency penalizes data access and/or recovery. Furthermore, the approach of

Transactional Drago is declarative, thus easy to use for programmers. They sim-

ply specify the data and concurrency control granularity separately. Changing

the locking granularity of a data item is therefore straightforward, and does not

require changing the code of the program that uses the data item.

Finally, we have shown how to map the locking granularity of Transactional

Drago to the locks provided by Optima, an Ada transactional library, and pre-

sented how the implementation of Optima that handles these locks takes advan-

tage of the advanced concurrency features o�ered by Ada 95.



References

[Ada95] Ada 95 Reference Manual, ISO/8652-1995. Intermetrics, 1995.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control

and Recovery in Database Systems. Addison Wesley, 1987.

[EMS91] J. L. Eppinger, L. B. Mummert, and A. Z. Spector, editors. Camelot and

Avalon: A Distributed Transaction Facility. Morgan Kaufmann, 1991.

[GM83] H. Garc��a-Molina. Using Semantic Knowledge for transaction processing in

a distributed database. ACM Transactions on Database Systems, 8(2):186{

213, June 1983.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, 1993.

[JPAB00] R. Jim�enez-Peris, M. Pati~no-Mart��nez, S. Ar�evalo, and F.J. Ballesteros.

TransLib: An Ada 95 Object Oriented Framework for Building Dependable

Applications. Int. Journal of Computer Systems: Science & Engineering,

15(1):113{125, January 2000.

[KJRP01] J. Kienzle, R. Jim�enez-Peris, A. Romanovsky, and M. Pati~no-Mart��nez.

Transaction Support for Ada. In Proc. of Int. Conf. on Reliable Software

Technologies, LNCS 2043, pages 290{304. Springer, 2001.

[Lis88] B. Liskov. Distributed Programming in Argus. cacm, 31(3):300{312, 1988.

[LMWF94] N. Lynch, M. Merrit, W. E. Weihl, and A. Fekete. Atomic Transactions.

Morgan Kaufmann, 1994.

[LS83] B. Liskov and R. Schei
er. Guardians and Actions: Linguistic Support for

Robust, Distributed Programs. ACM TOPLAS, 5(3):382{404, 1983.

[MHL+98] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES:

A Transaction Recovery Method Supporting Fine-Granularity Locking and

Partial Rollbacks Using Write-Ahead Logging. In Recovery Mechanisms in

Database Systems, pages 145{218. Prentice Hall, 1998.

[Mos85] J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed

Computing. MIT Press, 1985.

[PJA98] M. Pati~no-Mart��nez, R. Jim�enez-Peris, and S. Ar�evalo. Integrating Groups

and Transactions: A Fault-Tolerant Extension of Ada. In Proc. of Int. Conf.

on Reliable Software Technologies, LNCS 1411, pages 78{89. Springer, 1998.

[PJA01] M. Pati~no-Mart��nez, R. Jim�enez-Peris, and S. Ar�evalo. Group Transactions:

An Integrated Approach to Transactions and Group Communication (in

press). In Concurrency in Dependable Computing. Kluwer, 2001.

[PSWL95] G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C. Little.

The Design and Implementation of Arjuna. USENIX Computing Systems

Journal, 8(3):255{308, 1995.

[Tra95] TransArc Corporation, Pittsburgh, PA 15219. Encina Transactional-C Pro-

grammers Guide and Reference, 1995.

[WS94] S. M. Wheater and S. K. Shrivastava. Exercising Application Speci�c Run-

time Control Over Clustering of Objects. In Proc. of the Second Interna-

tional Workshop on Con�gurable Distributed Systems , March 1994.


