
Combining Tasking and Transactions, Part II:
Open Multithreaded Transactions

Jörg Kienzle
Software Engineering Laboratory

Swiss Federal Institute of Technology
CH - 1015 Lausanne Ecublens

Switzerland
email: Joerg.Kienzle@epfl.ch

Alexander Romanovsky
Department of Computing Science

University of Newcastle
NE1 7RU, Newcastle upon Tyne

United Kingdom
email: Alexander.Romanovsky@newcastle.ac.uk

Abstract

This position paper is a follow-up paper of [1], pre-
sented at the last IRTAW workshop. The paper describes a
model for providing transaction support for concurrent
programming languages such as Ada 95. In order to
achieve smooth integration, the use of the concurrency fea-
tures provided by the Ada language should not be
restricted inside a transaction. A transaction model that
meets this requirement is presented. Tasks inside such a
transaction may spawn new tasks, but also external tasks
are allowed to join an ongoing transaction. A blocking
commit protocol ensures that no task leaves the transaction
before its outcome has been determined. Exceptions are
used to inform all participants in case a transaction aborts.
Possible interfaces for the Ada programmer are discussed.

1 Introduction

From the very beginning, computer scientists had to deal
with concurrency on different levels. Concurrency can be
located inside a single processor, such as SIMD processors
or super-scalar processors, it can be found in computers
with multiprocessor architectures, or it can take its rise
from distributed systems, where multiple individual com-
ponents communicate. Progress in all three fields, espe-
cially the recent explosion of distributed systems with the
advent of the Internet, shows that the importance of con-
currency is constantly increasing.

Ada 95 [2] reflects this trend, since it incorporates sup-
port for different forms of concurrency. It provides elabo-
rate lightweight concurrency features such as protected
types and tasks. Distribution of a single program on multi-
ple processing nodes is supported through the Distributed
Systems Annex. But among these active entities, concur-
rency control and synchronization is reduced to single
method, procedure or entry calls. These mechanisms do
not scale well. Complex systems often need more elaborate
features that can span multiple operations.

Transactions [3] have been used for many years to pro-
vide consistent access to databases. A transaction groups
an arbitrary number of simple actions together, making the
whole appear indivisible with respect to other concurrent
transactions. Using transactions, data updates that involve
multiple objects can be executed without worrying about
concurrency. If something unexpected happens during the
execution of a transaction that prevents the operation to
continue, the transaction can be aborted, which will undo
all state changes made on behalf of the transaction. The
ability of transactions to hide the effects of concurrency
and at the same time act as firewalls for failures makes
them appropriate building blocks for structuring reliable
distributed systems in general.

Ada has a strong reputation for its error-prevention qual-
ities, such as strong typing, modularity, and separate com-
pilation; it has been extensively used for the development
of mission-critical and safety-critical software. Support for
transactions in Ada 95 would be a powerful tool for a pro-
grammer of a fault-tolerant application.

2 Dealing with Concurrency

According to [4] concurrency comes in two flavors:com-
petitive andcooperative.

Competitive concurrencyexists when two or more active
components are designed separately, are not aware of each
other, but use the same passive components. Programmers
(would like to) live in an artificial world in which they do
not care about other concurrent activities. They access
objects as if they had them at their exclusive disposal. This
form of concurrency is used for example in databases.

Cooperative concurrencyexists when several compo-
nents cooperate, i.e. do some job together and are aware of
this. They can communicate by resource sharing or explic-
itly, but the important thing is that they have been designed
together so that they cooperate to achieve their joint goal
and use each other’s help and results.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The reasons for encountering concurrency in computing
systems are two-fold. In a distributed system, concurrency
is caused by the fact that the individual components are
active. They evolve independently and sometimes they
communicate with each other in order to synchronize or to
exchange data. Concurrency is an inherent part of a distrib-
uted system and cannot be avoided. But even centralized
problems that can be solved sequentially can benefit from
concurrency, for example for simulation purposes or to ele-
gantly handle sporadic incoming events, such as events
generated by user interfaces or network traffic.

To handle this situation modern operating systems offer
two forms of concurrency support, threads and processes.
The former is supported in Ada through tasks and task
types. Communication between tasks can beasynchronous
(throughprotected types) or synchronous(through rendez-
vous). The latter is supported in Ada 95 by means of the
Ada Distributed Systems Annex. An Ada program can be
split into multiple partitions, which can be configured to
execute on different processing nodes. The communication
mechanism provided between partitions is synchronous or
asynchronous remote procedure call.

Complex systems often need more elaborate concur-
rency features than the ones mentioned in the two previous
paragraphs. Atomic units that encapsulate several opera-
tions, making the whole appear indivisible with respect to
other atomic units, have been widely used to simplify rea-
soning about concurrency in large-scale systems. This is
even more true when considering adding support for fault
tolerance.

Two different forms of atomic units have evolved:trans-
actionsand their derivatives which emphasize competitive
concurrency, andconversationsand their derivatives which
emphasize cooperative concurrency. The next subsections
will briefly introduce these two models, and then present
how they evolved to deal with the “other” aspect of concur-
rency.

Competitive Concurrency
Transactionsare the main approach to structuring competi-
tive systems. The notion of transaction has first been intro-
duced in database systems in order to correctly handle
concurrent updates of data and to provide fault tolerance
with respect to hardware failures [3]. A transaction groups
an arbitrary number of simple update operations on data
objects together, making the whole appear indivisible as far
as the application is concerned and with respect to other
concurrent transactions. At any time during the execution
of the transaction it canabort, which means that the state
of the system is restored to the state at the beginning of the
transaction (also calledroll back). Once a transaction has
completed successfully (iscommitted), the effects become
permanent and visible to the outside. The properties of

transactions are referred to as the ACID properties:Atom-
icity, Consistency, Isolation andDurability.

The basic transaction model, also calledflat transac-
tions, has been extended in order to provide more flexible
support for concurrency and recovery.Nested transactions
[5] allow transactions to startsubtransactions, thus creat-
ing a tree of transactions. A subtransaction can either com-
mit or roll back; its commit will not take effect (will not be
visible to the outside world), though, unless the parent
transaction commits. The advantage of nested transactions
is that they can abort independently without causing the
abortion of the whole transaction. Only the subtransaction
and all its child transactions are rolled back. Since updates
of a nested transaction to transactional objects are isolated
with respect to other sibling transactions, siblings can be
executed concurrently.

To cope with the problems of long-running transaction
as they are found in CAD/CAM, VLSI design and software
development applications several additional models have
been proposed. They all strive to increase concurrency
between transactions, mostly by relaxing the serializability
criterion such as it is done in theCooperative Transaction
model described in [6] or in theSAGASmodel found in [7].

Another possibility to increase concurrency between
transaction is to allow certain transactions to view the
results of other transactions before they commit / abort (as
done in theRecoverable Communicating Actionsmodel
[8], the Split Transactionmodel and theJoint Transaction
model [9]. Of course, this creates a certain dependency
between these transactions.

Cooperative Concurrency

Conversations
The concept of aconversationhas been introduced in [10]
in 1975. It allows a fixed number of processes to perform
an action together in an atomic way. Processes enter a con-
versation asynchronously; a recovery point is established
in each of them. They freely exchange information within
the conversation but cannot communicate with any outside
process (violations of this rule are calledinformation
smuggling). When all processes participating in the conver-
sation have come to the end of the conversation, their
acceptance tests are to be checked. If all tests have been
satisfied, the processes leave the conversation. Otherwise,
they restore their states from the recovery points and may
try and execute a differentalternate.

Atomic Actions
Later on, conversations have been enhanced with addi-
tional forward error recovery and exception resolution
[11], resulting in so-calledatomic actions[4]. This means
that an exception that has been raised in a process that is
part of an atomic action will be propagated to all other par-
ticipating processes of that action. Since multiple excep-

tions can be raised concurrently, an exception resolution
mechanism must be provided in order to determine the
final exception that will be propagated to all participants.
An Ada 95 framework consisting of programming guide-
lines and techniques for programming atomic actions is
presented in [12], and a complete discussion is given in
[13].

Combining Cooperative and Competitive Concurrency
Recently, some transaction models have evolved to allow
cooperative concurrency inside a transaction. The C++
extension Arjuna [14] for instance allows different threads
to work on behalf of the same transaction, but without
really defining a clear model. One thread starts a transac-
tion, and may communicate its identity to other threads.
These can then also perform work on behalf of the same
transaction. Finally, one of the threads will abort or commit
the transaction. This technique is very general as it leaves
complete freedom to the transaction programmer, but from
our point of view it is exactly this freedom that can be dan-
gerous. It takes very careful programming to still guarantee
the ACID properties of such transactions. Threads can
decide to leave the transaction and communicate some of
its results to the outside world before the outcome of the
transaction has been determined (information smuggling).
Transactional objects might not be aware of the intra-trans-
action concurrency and hence won’t guarantee consistent
execution of concurrent operations. The same sort of trans-
actions are also described in the CORBA transaction ser-
vice specification [15].

[16] describes a model calledMultithreaded Transac-
tions. A multithreaded transaction has precise semantics:
Once a task (themain task) has started a transaction, it can
fork new tasks that work on behalf of it to take advantage
of concurrency. Before the main task can commit or abort
the transaction, these forked tasks must all run to comple-
tion. The same model is also used inCooperative Transac-
tional Object Groups presented in [17, 18].

The atomic action concept has also been extended. The
Coordinated Atomic Actionmodel [19] allows the partici-
pants of an action, which want to be isolated from the out-
side world, to also access external objects. Updates to these
objects have transactional semantics with respect to other
concurrently running coordinated atomic actions.

In both the multithreaded transaction and the coordi-
nated atomic action models, cooperation is supported for
participants in the inside of an atomic unit, and competitive
concurrency is supported between different atomic units
that run in parallel. Coordination is supported for a known
set of participants, and all other concurrency is considered
to be of competitive nature.

3 Open Multithreaded Transactions

As we have seen in the previous section, the classic trans-
action model has been extended in many ways to satisfy
the requirements of different application domains. When
introducing transactions into a concurrent programming
languages such as Ada, it is important to support concur-
rency inside a transaction in a natural way. In particular, the
use of the concurrency constructs provided by the language
should not be restricted inside a transaction, if possible.

The multithreaded transaction model [16, 17] comes
closest to what we need. One drawback however is that the
only way of having concurrency inside a transaction is to
start a transaction in one task, and then spawn new tasks
inside the transaction. These spawned tasks must run to
completion before the transaction can be committed. Cre-
ation and deletion of tasks can be very time-consuming and
programmers try to avoid it whenever possible. Process
control and especially real-time systems tend to use a static
number of tasks, created once and for all during the initial-
ization of the system. A transaction model for concurrent
object-oriented languages should allow existing tasks to
join an ongoing transaction. Therefore the multithreaded
transaction model [21, 17] cannot be used as it does not
allow already existing tasks come together and decide to
perform a job on a set of objects in a transactional manner.

On the other hand we don’t want to forbid spawning
new tasks inside a transaction. This would exclude the use
of the coordinated atomic action [19] model, since it
requires the number of participants to be fixed in advance.

The kind of collaboration we are looking for is also dif-
ferent from that in the coordinated atomic action model.
Participants of a coordinated atomic action collaborate
closely; they rely on each other. This is possible, for they
know the identity of the other participants and are assured
of their presence. They have been designed together and
hence are tightly coupled, communicating explicitly or
through shared local resources. The collaboration we want
to achieve in transactions is somehow different, less entan-
gling. Communication between tasks will be done exclu-
sively through transactional objects. The number of
participant tasks will not be fixed in advance, since at the
beginning of a transaction it may sometimes not even be
foreseeable how many tasks will participate. An example
of such a system is an online auction system, where the
individual auctions are structured using transactions. There
will always be a vendor task and maybe some accounting
system that will participate in such a transaction, but the
number of bidder tasks is not known in advance. A bidder
might also want to join an already ongoing auction.

The rest of this section presents a new transaction model
named Open Multithreaded Transactionsthat fits our
needs. The model allows tasks to be created, to run to com-

pletion, or to join an ongoing transaction at any time. There
are only two rules that restrict task behavior:

• A task created outside of an open multithreaded trans-
action cannot terminate inside this transaction.

• A task created inside an open multithreaded transac-
tion must also terminate inside this transaction.

The individual tasks inside an open multithreaded trans-
action collaborate loosely. They evolve independently,
besides when exchanging data with other task that work on
behalf of the transaction through transactional objects. In
that case they have to be synchronized with respect to other
participating tasks in order to guarantee the consistency of
the accessed data.

The following paragraphs describe the rules for open
multithreaded transactions. Tasks working on behalf of an
open multithreaded transaction are referred to aspartici-
pants. External tasks that join an open multithreaded trans-
action are calledjoined participants; task created inside an
open multithreaded transaction by a participant are called
spawned participants:

Starting Open Multithreaded Transactions

• Any task can start an open multithreaded transaction.
This task will be the firstjoined participantof the
transaction. A newly started transaction isopen.

• Open multithreaded transactions can benested. A
participant of an open multithreaded transaction that
starts a new open multithreaded transaction will start
a nested transaction. Sibling transactions can execute
concurrently.

Joining Open Multithreaded Transactions

• A tasks can join an open multithreaded transaction is
it is still open, thus becomingjoined participantsof
the transaction.

• A task can join a top-level open multithreaded trans-
action if and only if it does not yet participate in any
other transaction. To join a nested transaction, a task
must be a participant of the parent transaction. A task
can only participate in one sibling transaction at a
time.

• Tasks spawned by participants will automatically
becomespawned participantsof the transactions in
which the spawning task participates. Spawned par-
ticipants are allowed to join a nested transaction. If
they do so, they are considered joined participants of
the nested transaction.

• A participant of an open multithreaded transaction
can decide toclosethe transaction at any time. Once
the transaction is closed, no new task can join the
transaction anymore. If no participant closes the
transaction explicitly, it closes once all participants
have given their vote.

Concurrency Control in Open Multithreaded
Transactions

• Accesses to transactional objects are isolated with
respect to other open multithreaded transactions. The
only visible information that is available to the out-
side world is the existence of the transaction.

• Accesses of child transactions are isolated with
respect to their parent transaction.

• Classic consistency techniques (i.e. protected types)
are used to guarantee consistent updating of the state
of transactional objects by participants of the same
transaction.

Ending an Open Multithreaded Transactions

• All participants must vote on the outcome of the
transaction. Possible votes arecommit or abort.

• The open multithreaded transaction commits if and
only if all participants votedcommit. In that case, the
changes made to transactional objects on behalf of the
transaction are made visible to the outside world. If
any of the participants votesabort, the transaction
aborts. In that case, all changes made to transactional
objects on behalf of the transaction are undone.

• Once a spawned participant has given its vote, it ter-
minates immediately.

• Joined participants are not allowed to leave the trans-
action (they are blocked) until the outcome of the
transaction has been determined. This means in par-
ticular that all joined participants of an open multi-
threaded transaction that commits exit synchronously.
Only then, the changes made to transactional objects
are made visible to the outside world. If the transac-
tion is aborted, the joined participants may exit asyn-
chronously, once changes made to the transactional
objects have been undone.

Figure 1 depicts a non-nested open multithreaded transac-
tion with 6 participants. Task C starts the transaction, task
A, B and D join it later on. During the transaction, task C
forks a new task, task C’. This spawned participant per-
forms some work on behalf of the transaction and then ter-
minates after having given its vote on the outcome of the
transaction. The same is true for task B’. In this example,
all tasks votecommit. The joined participants A, C, and D
are therefore blocked until the last participant, here Task B,
has finished its work and given its vote.

Exception Handling in Open Multithreaded
Transactions

Transactions are atomic units of system structuring that
move the system from a consistent state to some other con-
sistent state if the transaction commits. Otherwise the state
remains unchanged. The exception mechanism is typically
used to signal unforeseen events such as situations in
which a desired operation could not be performed as
requested. Exceptions are events that must be handled in

order to guarantee correct results. If such a situation is not
handled, the application data might be left in an inconsis-
tent state. Aborting the transaction and thus restoring the
application state to the state that was valid before the
beginning of the transaction will guarantee correct behav-
ior. For this reason, and following the ideas of [17], we
have decided that unhandled exceptions crossing the trans-
action boundary result in aborting the open multithreaded
transaction. If this happens all participants must be notified
of the abortion of the transaction.

As mentioned above, tasks inside an open multithreaded
transaction cooperate loosely. Each participant task has its
own local exception context, and must handle its excep-
tions separately. Unlike [17, 19] we have decided against
some form of coordinated exception resolution for multiple
reasons. Firstly, the number of participants of an open mul-
tithreaded transaction is not determined in advance, and
hence any form of error handling that depends on the pres-
ence of participants other than the one that raised the
exception can be error-prone. Secondly, exceptions defined
in one participant task might have no meaning or even be
undefined in some other participant. Thirdly, we would not
like to impose any unnecessary synchronization because
participants do not cooperate tightly; we would like to
allow them to act as independent as possible. Finally, con-
current and potentially distributed exception resolution can
be very time-consuming and difficult to program.

The following rules summarize exception handling in
open multithreaded transactions:

• Each participant has a set of internal exceptions that it
can handle inside a transaction and a set of external
exceptions that it can signal outside. An additional
external exceptionTransaction_Abort is always
included in the set of external exceptions.

• Internal exceptions raised in a participant of an open
multithreaded transaction are not propagated to other
participants.

• The termination model of exceptions [20] is adhered
to: after an internal exception has been raised in a par-
ticipant a corresponding handler is called to handle
the exception and to complete the participant activity
within the transaction. The handler can decide to sig-
nal an external exception to the outside in case it is
not able to handle the exception properly. The default
handler for internal exceptions is to raise the external
exceptionTransaction_Abort .

• Each joined participant of a transaction has a contain-
ing exception context associated with the containing
transaction.

• When an external exception is signaled by a joined
participant, it is propagated to its containing context
and the transaction aborts. When a spawned partici-
pant signals an external exception, the exception is
lost since the task terminates immediately after vot-
ing, but it still results in transaction abort.

• If joined participants raise external exceptions con-
currently, the transaction is aborted and the external
exceptions are propagated to the corresponding con-
texts of the participants that raised them.

• When the transaction aborts, all joined participants
that have not raised an external exception are notified
of abort by means of theTransaction_Abort
exception as soon as possible1.

An obvious problem that has not been discussed yet are
deserters, i.e. tasks participating in an open multithreaded
transaction that suddenly disappear without voting on the

Figure 1: An Open Multithreaded Transaction

Tasks are blocked until the outcome of
the transaction is known

Task A

Task B

Task C

Task D

Task C’

Task B’

Task C starts
the transaction

1. Depending on performance considerations it might be
preferable to do this at once, on the next invocation of
an operation of a transactional object, or at the very
end of the transaction, once the participant votes on
its outcome.

outcome of the transaction. This can happen if a task is
explicitly killed1, or when the process of a participant task
dies incidentally (e.g. due to a system crash). We view such
deserter tasks as a fault, and a reason for transaction abort.

A framework providing support for open multithreaded
transactions has been designed and implemented in form of
a library [21]. It makes heavy use of design patterns in
order to maximize modularity and flexibility. The follow-
ing section examines different interfaces to the framework.

4 Transaction Support Interface

We want to provide transaction support at the program-
ming language level, without modifying the language in
any way. For this reason, approaches such as [17] are not
possible, since they augment the language and hence must
modify the compiler or provide a preprocessor to recognize
the additional keywords.

Similar to [13], we want to provide a framework or pro-
gramming guidelines that must be used to access our trans-
action support. The elegance of the interface depends on
the features of the programming language. Fortunately Ada
offers some special features that allow us to help the appli-
cation programmer by enforcing certain rules and hiding
most parts of the transaction management when accessing
transactional objects.

Transaction Identifier Management
Once a task is part of a transaction, it can invoke operations
on transactional objects. The recovery and lock manager
must know on behalf of which transaction the operation is
executed. Most systems therefore need to pass a transac-
tion identifier as a parameter to every operation of a trans-
actional object.

The Systems Programming Annex of the Ada Standard
offers the possibility to declare data structures for which
there is a copy for each task in the system by means of the
generic packageAda.Task_Attributes . Using this
package, the transaction identifier can be linked to each
participant task once it joins the transaction. When calling
an operation of a transactional object, the runtime support
can retrieve the transaction identifier using the function
Task_Attributes.Value . This means that for the
application programmer there is no difference in calling a
transactional object or calling a normal object.

Handling Transactions

Procedural Interface
The most commonly used interface to transactions is the
procedural interface. In the open multithreaded transac-
tions model we need four procedures. Again we can get rid
of the transaction identifier parameter using task attributes.

• procedure Begin_Transaction;

• procedure Join_Transaction
(T : Task_ID);

• procedure Commit_Transaction;

• procedure Abort_Transaction;

This procedural interface is flexible, but has some draw-
backs. It is possible to start or join a transaction, but forget
to vote on its outcome, which results in blocking all other
participants that behave correctly. But what’s even more
annoying is that using the procedural interface we can not
guarantee that an unhandled exception crossing the trans-
action boundary will abort the transaction as required. In
order to guarantee this, the programmer must use a con-
struct such as:

begin
Begin_Transaction;
-- perform work
Commit_Transaction;

exception
when ...

-- handle internal exceptions
Commit_Transaction;

when ...
Abort_Transaction;
-- raise an external exception

when others =>
Abort_Transaction;
raise ;

end ;

Using Controlled Types
To avoid forgetting to vote on the outcome of a transaction,
one could imagine offering a controlled typeTransac-
tion :

declare
T : Transaction;

begin
-- perform work
Commit_Transaction;

exception
-- handle internal exceptions
Commit_Transaction;

end ;

What is interesting here is that the Ada block construct is at
the same time the transaction and the exception context.
Declaring the transaction object calls theInitialize
procedure of the transaction type, which on its part calls
the transaction support and start a new transaction. The
transaction identifier is associated with the calling task.
The task can now work on behalf of the transaction, and if
everything goes fineCommit_Transaction must be
called before exiting the block. If a programmer forgets to
commit the transaction, or if an unhandled exception
crosses the block boundary, the transaction object is final-1. Using for instance the Adaabort statement.

ized. The Finalize procedure can then call
Abort_Transaction . Note that in this case it is not pos-
sible to raise the exceptionTransaction_Abort , since
raising exceptions inside of theFinalize procedure is
considered a bounded error.

Transactions As Objects
Based on the ideas of [22, 13], we can also develop an
object-oriented approach to open multithreaded transac-
tions:

The packageOpen_Multithreaded_Transaction
declares an abstract tagged typeTransaction_Type . A
concrete transaction must derive from this type and add
code for each participant by adding primitive operations. A
task that wants to work on behalf of the transaction will
simply call the corresponding primitive operation.

package Open_Multithreaded_Transaction is

type Transaction_Type is abstract
tagged limited private ;

-- add code for each participant
-- using primitive operations

private

procedure Start_Or_Join_Transaction
(T : in out Transaction_Type);

procedure Abort_Transaction
(T : in out Transaction_Type);

procedure Commit_Transaction
(T : in out Transaction_Type);

end Open_Multithreaded_Transaction;

A primitive operation must follow the following program-
ming conventions:

procedure Participant_Code
(T : in out Transaction_Type) is

begin
Start_Or_Join_Transaction (T);
-- perform work on behalf of the
-- transaction
Commit_Transaction (T);

exception
when ... =>
-- handle internal exceptions
when others =>

Abort_Transaction (T);
end Participant_Code;

The call to the private procedureStart_Or_Join_
Transaction starts a new transaction, or join the ongo-
ing transaction if it has already been started by some other
participant. Apart from this call, the structure resembles
the one used in the procedural interface. This time the pro-
cedure construct provides the transaction and exception
context.

It is not possible to provide default implementations for
participant operations, since we don’t know in advance

how many there will be. A possible solution might be to
provide only one primitive operation
Execute_Participant , that takes as a parameter an
access to subprogram value which will point to the actual
participant code. This way the programmer can not forget
the call toStart_Or_Join_ Transaction and the call
to Abort_Transaction in case of unhandled excep-
tions. On the other hand, using access to subprogram types
is not very elegant and complicates parameter passing.

Joining Tasks Created Inside a Transaction
The open multithreaded transaction model allows tasks to
be created inside a transaction. These tasks must be regis-
tered as spawned participants of the transaction. Unfortu-
nately we could not find a way to do this automatically in
Ada. One might think that using a controlled task attribute
would allow us to callJoin_Transaction from within
the Initialize procedure. Unfortunately this is not pos-
sible, since task attributes are not required to exist once a
task is created, but only when they are associated a value
different than the default value. This implies that even if a
task attribute is a controlled type, theInitialize proce-
dure will not automatically be called upon every task cre-
ation.

An additional problem is that it is unfortunately not pos-
sible using standard Ada to obtain the creator, parent or
master task of a newly created task. We therefore can not
implement a procedure that automatically joins the transac-
tion of the creator task. The only solution is to pass the
task ID to the new task using a rendez-vous, through a pro-
tected object or by means of a discriminant. The new task
then has to callJoin_Transaction just as any other
external task that wants to join the transaction.

Detecting Deserters
Deserters are participant tasks that terminate abnormally
inside a transaction without previously voting on its out-
come, for instance because they have been aborted by some
other task, or because they encountered an exception that
they could not handle. It is important to detect these desert-
ers, or else all other participants will have to wait forever.
Ada allows us to detect them by using a controlled task
attribute. Once the task runs to completion, theFinalize
procedure will be called. Using the transaction identifier
stored in the task attribute, the transaction support is noti-
fied and can take the appropriate measures.

5 Conclusions

This paper has presented a possible way of providing trans-
action support in a concurrent programming languages
such as Ada 95. A new transaction model,Open Multi-
threaded Transactions, has been defined. It supports con-
currency in a natural way, for it does not restrict the use of
the concurrency constructs provided by Ada inside the

transaction. Tasks inside a transaction can spawn new
tasks, but also external tasks can join an ongoing transac-
tion. A blocking commit protocol ensures that no task
leaves the transaction before its outcome has been deter-
mined. Unhandled exceptions that cross the transaction
boundary cause the transaction to be aborted. Exceptions
are also used to notify all participants in case a transaction
aborts.

In the second part of the paper we have concentrated on
providing an elegant interface to the transaction support
library for Ada programmers. Advanced features of Ada
such as the packageAda.Task_Attributes have
proven to be very useful in order to ease the task of the
application programmer. Transaction ID management can
be hidden completely when accessing transactional
objects. Unfortunately it was not possible to provide auto-
matic joining of newly created tasks due to two reasons: it
is neither possible in standard Ada to react to each task cre-
ation in the system nor to find the creator task of a newly
created task. Due to the restriction that forbids raising an
exception during finalization of an object, controlled types
can not be used to raise an exception when exiting a block
or procedure construct.

6 Acknowledgements

Jörg Kienzle has been partially supported by the Swiss
National Science Foundation project FN 2000-
057187.99/1. Alexander Romanovsky has been partially
supported by the EC IST RTD Project on Dependable Sys-
tems of Systems (DSoS).

7 References

[1] J. Kienzle: “Combining Tasking and Transactions”. InPro-
ceedings of the 9th International Real-Time Ada Workshop,
Wakulla Springs Lodge, Tallahassee FL, USA, March 1999,
pp. 49 – 53, Ada LettersXIX(2), June 1999, ACM Press,
1999.

[2] ISO: International Standard ISO/IEC 8652:1995(E): Ada
Reference Manual, Lecture Notes in Computer Science
1246, Springer Verlag, 1997; ISO, 1995.

[3] J. Gray and A. Reuter:Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, San Mateo,
California, 1993.

[4] P. A. Lee and T. Anderson: “Fault Tolerance - Principles and
Practice”. In Dependable Computing and Fault-Tolerant
Systems, volume 3, Springer Verlag, 2nd ed., 1990.

[5] J. E. B. Moss:Nested Transactions, An Approach to Reliable
Computing. Ph.D. Thesis, MIT, Cambridge, April 1981.

[6] H. Korth, W. Kim, and F. Bancilhon: “On Long-Duration
CAD Transactions”.Information Sciences46(1-2), pp. 73 –
107, October - November 1988.

[7] H. Garcia-Molina and K. Salem: “SAGAS”. In U. Dayal and
I. Traiger (Eds.),Proceedings of the SIGMod 1987 Annual
Conference, pp. 249 – 259, San Francisco, Ca, May 1987,
ACM, ACM Press.

[8] S. Vinter, K. Ramamritham, and D. Stemple: “Recoverable
Actions in Gutenberg”. InThe 6th International Conference
on Distributed Computing Systems, pp. 242 – 249, Los
Angeles, Ca., USA, May 1986, IEEE Computer Society
Press.

[9] C. Pu, G. E. Kaiser, and N. C. Hutchinson: “Split-Transac-
tions for Open-Ended Activities”. In F. Bancilhon and D. J.
DeWitt (Eds.),Fourteenth International Conference on Very
Large Data Bases, pp. 26 – 37, Los Angeles, California,
1988, Morgan Kaufmann.

[10] B. Randell: “System structure for software fault tolerance”.
IEEE Transactions on Software Engineering1(2), pp. 220 –
232, 1975.

[11] R. H. Campbell and B. Randell: “Error Recovery in Asyn-
chronous Systems”.IEEE Transactions on Software Engi-
neering (SE)SE-12(8), August 1986.

[12] A. Romanovsky, S. E. Mitchell, and A. J. Wellings: “On
Programming Atomic Actions in Ada 95”. InReliable Soft-
ware Technologies - Ada-Europe ’97, volume 1251 ofLec-
ture Notes in Computer Science, pp. 254 – 265, Springer
Verlag, June 1997.

[13] A. Romanovsky: “A Study of Atomic Action Schemes
Intended for Standard Ada”.Journal of Systems and Soft-
ware43(1), pp. 29 – 44, October 1998.

[14] G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and
M. C. Little: “The Design and Implementation of Arjuna”.
In USENIX (Ed.), Computing Systems, Summer, 1995.,
volume 8, pp. 255 – 308, Berkeley, CA, USA, Summer
1995, USENIX.

[15] Object Management Group, Inc.:Object Transaction Ser-
vice, August 1994.

[16] N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles, and
J. M. Wing: “Composing First-Class Transactions”.ACM
Transactions on Programming Languages and Systems
16(6), pp. 1719 – 1736, Nov 1994.

[17] M. Patiño-Martinez, R. Jiménez-Peris, and S. Arevalo:
“Integrating Groups and Transactions: A Fault-Tolerant
Extension of Ada”. InReliable Software Technologies - Ada-
Europe’98, volume 1411 ofLecture Notes in Computer Sci-
ence, pp. 78 – 89, 1998.

[18] R. Jiménez-Peris, M. Patiño-Martinez, and S. Arevalo:
“TransLib: An Ada 95 Object-Oriented Framework for
Building Transactional Applications”.Computer Systems:
Science & Engineering Journal15(1), 2000.

[19] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J.
Stroud, and Z. Wu: “Fault Tolerance in Concurrent Object-
Oriented Software through Coordinated Error Recovery”. In
FTCS-25: 25th International Symposium on Fault Tolerant
Computing, pp. 499 – 509, Pasadena, California, 1995.

[20] J. B. Goodenough: “Exception Handling: Issues and a Pro-
posed Notation”.Communications of the ACM18(12),
pp. 683 – 696, December 1975.

[21] J. Kienzle, R. Jiménez-Peris, A. Romanovsky, and
M. Patiño-Martinez: “Transaction Support for Ada”.Submit-
ted to International Conference on Reliable Software Tech-
nologies - Ada-Europe’2001, Leuven, Belgium, May 14-18,
2001, Lecture Notes in Computer Science, 2001.

[22] A. Wellings and A. Burns: “Implementing Atomic Actions
in Ada 95”. IEEE Transactions on Software Engineering
23(2), pp. 107 – 123, February 1997.

	Combining Tasking and Transactions, Part II: Open Multithreaded Transactions
	1 Introduction
	2 Dealing with Concurrency
	Competitive Concurrency
	Cooperative Concurrency
	Combining Cooperative and Competitive Concurrency

	3 Open Multithreaded Transactions
	Exception Handling in Open Multithreaded Transactions

	4 Transaction Support Interface
	Handling Transactions

	5 Conclusions
	6 Acknowledgements
	7 References

