
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Modeling Crosscutting Concerns using Software Connectors

Mohamed Mancona Kandé and Alfred Strohmeier

Swiss Federal Institute of Technology Lausanne (EPFL)
Software Engineering Laboratory

CH-1015 Lausanne EPFL, Switzerland

 Email: {mohamed.kande, alfred.strohmeier}@epfl.ch

1. Introduction

As communication between components (entire soft-
ware systems) becomes increasingly important, the
complexity of software connectors varies widely from
primitive units of associations supported by program-
ming languages, such as procedure calls, to sophisti-
cated communication mechanisms, such as those
supported by middleware platforms. Capturing various
kinds of architectural concerns that crosscut the bound-
aries of individual software components and reasoning
about their properties is a non-trivial task which needs
to be tackled.

To address these issues, researchers in the field of
software architecture have advocated the concept of a
software connector as a critical element in modeling
software architectures. A number of architecture
description languages (ADLs) and tools that support
those languages have been developed [13][8] [10].

In [13], Garlan and Shaw point out that a connector,
like a component, requires a specification that charac-
terizes its properties in various ways. They extensively
argue for the connector concept as a first-class model-
ing element that should be defined in any ADL.
According to [13], connectors mediate interactions
among components; that is, they establish the rules that
govern component interaction and auxiliary mecha-
nisms required. With this definition, the authors apply
the principle of separation of concerns in an advanced
form. They define software components and their inter-
connections (connectors) as two separate architectural
abstractions that are orthogonal to each other. We refer
to this as a way of using advanced separation of con-
cerns [16] [17][18] in software architecture.

As a result, an architect should be able to separate
the identification, representation and reasoning about
software concerns that can be localized on a single
component; from those that crosscut the boundaries of
individual components. Unfortunately, the software
architecture community has not defined the exact
nature of connectors [9].

Very recently, Medvidovic and his colleagues [9]
have proposed a classification framework based on the
above definition, which aims at providing a taxonomy
of connectors. The taxonomy enriches the set of
requirements defined in [13], and it shows relationships
among multiple kinds of software connectors and clas-
sifies them in service categories, connector types,
dimensions and values. Service categories represent the
interaction roles the connector fulfills, such as facilita-

tion, coordination, and communication. Connector
types distinguish different realizations of connectors,
such as, procedure call, event and data access. Dimen-
sions capture various kinds of details related to a con-
nector type. For instance, the event connector type can
have the dimensions delivery, priority, synchronicity,
etc. A dimension can be composed of other dimensions,
called sub-dimensions, and the taxonomy defines sev-
eral sub-dimensions for the delivery dimension, such
as: best effort, exactly one, at least one, etc. Lastly, each
dimension and sub-dimension can take one or more val-
ues.

This taxonomy facilitates better understanding of
software connectors by classifying results of many
research projects in an easy to understand framework.
However, it does not take into account how mecha-
nisms of advanced separation of concerns should drive
software architecture description, including connector
modeling.

This position paper is motivated by work on archi-
tectural modeling with UML [15] which has exposed
the need for connectors that support the definition of
complex transactions and that provide mechanisms for
maintaining information about the state of these trans-
actions. Also, as discussed in previous work [4], one
purpose of this paper is to show, by a concrete example,
how an extended UML can be used to model a complex
software connector. We believe that this is important,
since the standard UML [11] does not allow one to
specify “simple connectors” (interconnections between
two parts) as a separate model element that can stand
alone without the parts it interconnects; nor does UML
provide support for modularizing complex component
interactions. For example, model elements such as
associations, links, dependencies and communication
relationships cannot exist alone in a UML model.

The next section introduces the ConcernBASE1

approach [19] to connector modeling that adapts the
classification framework described above. We started
investigating the ConcernBASE approach two years
ago with two separate objectives: (1) definition of
"UML Profiles" that provide explicit support for archi-
tecture description, taking into account the multidimen-
sional nature of software architecture; (2) development
of a UML-based tool that supports concern-based mod-
eling using an architecture-centered software develop-

1.ConcernBASE stands for Concern-Based
and Architecture-centered Software Engineer-
ing

https://core.ac.uk/display/147904557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ment method.

2. Connectors Modeling with Concern-
BASE

This section briefly presents the ConcernBASE
approach to connector modeling, using some extended
UML notation and the principle of multidimensional
separation of concerns (MDSOC) [14]. In particular, it
emphasizes support of architectural concerns that cross-
cut the boundaries of single components.

To help understand this approach, we apply it on the
case study described as follows: We consider an online
auction system, which enables multiple, geographically
distributed users to participate, simultaneously, in vari-
ous auctions via the Internet (we use here the English
Auction style only). Each auction has a duration that is
fixed in advance. The software allows users to sub-
scribe to the system for bidding on and selling of goods.
Successful subscription means that the user becomes a
customer of the system. A customer can browse the list
of current auctions, increase the credit of his/her
account with a certain amount of money, join an exist-
ing auction or start a new auction. Whenever a cus-
tomer wants to start an auction, s/he must indicate the
name of the auction and the opening price (the mini-
mum, acceptable price for the proposed item). A cus-
tomer can participate in any ongoing auction as a buyer,
but s/he must be registered in that auction. A customer
can log off and log into the system whenever s/he
wants. When logging in, a user is automatically
informed of the status of the auctions that s/he is
involved in. An auction closes when the specified auc-
tion period expires. The goods are only sold if at least
one valid bid has been placed before the auction ends.

At the end of an auction, the participant that has placed
the highest bid is declared the winner and the amount of
money corresponding to the value of the highest bid is
transferred from the winner’s account to the seller’s
account minus the commission charged by the auction-
ing body.

The software must also meet a number of other qual-
ity attributes or non-functional requirements, such as,
concurrent use of the system, reliability, persistence,
and fault tolerance.

The approach consists of the following steps:
• Define a concern space for connector modeling.
• Create different architectural views on software

connectors.
• Describe the connector along the dimensions of

the concern.

2.1. Define a Concern Space for Connector
Modeling

Using MDSOC, we regard a connector as a sphere of
interactions among software components. The connec-
tor construct that we propose aims at providing capabil-
ities that allow one to define a context for various kinds
of interactions, simultaneously. To capture the interac-
tion concerns embodied by the connector, we define a
structural concern space for connector modeling that
adapts the previously outlined taxonomy. For this pur-
pose, we identify all concerns of importance for con-
nector modeling, encapsulate the concerns using units
(UML elements or extensions), identify and manage
relationships between the concerns, and integrate the
concerns.

Figure 1 shows the structure of the space of connec-
tor concerns. It describes a UML-based instantiation of
the classification framework for software connectors.
The connector concern space organizes all the impor-
tant concerns that are required to model software con-
nectors. Although not shown here, this model
distinguishes between simple connectors, and complex
connectors (also referred to as higher-level connectors)
[4]. A simple connector type consists of one connection

role and two connection points. Each connection point
is characterized by the category of interaction service it
supports. Interaction services involve different kinds of
communications, such as streaming, operational, and
messaging. The types of connectors supported by these
three categories are streams, operational calls (includ-
ing object-oriented method and procedure calls) and
messages, respectively. A feature of these categories is
that when a component sends a stream, message or a

Mes sage

Messag ing

*

1

+type*

1

Stream

Streaming

*

1

+type*

1

Connector

OperationCall

Operational

*

1

+type*

1

LinkageDataAccess Arbitrator Distributor Adaptor

Crosscutting

*

1

+type *

1

*

1

+type *

1

*

1

+type *

1

*

1

+ type *

1

*

1

+type
*

1

UnitCompoundUnit

*

+values

*

ConnectionPoint

1

2..*

1

category category category category

1 0..*1

+elem ents

0..*ConnectionRole

1..*

1

+connectionRole 1..*

1

ConnectionProtoco l
0..*0..*

2..* +connectionPoint2..*

1.. *

1

1.. *+protocol

+duct

1

Figure 1. Structural Concern Space for Software
Connector Modeling

call event to another component, the receiver will have
to perform a certain computation, according to its spec-
ification. The computation the component performs is
localized within its boundary. In contrast, a common
characteristic of crosscutting interaction services is that
their behavior usually crosscuts the boundaries of indi-
vidual components. The connector types supported by
these categories are data access, arbitrator, linkage,
distributor and adaptor, which are defined in the con-
nector taxonomy. Data access connectors might be used
for communications between components (providing
access to data) or for transforming data being accessed
from one form into another when crossing the bound-
aries of multiple components (conversion).

A connection role is an abstract representation of a
channel that carries information exchanged between
two interacting components and links the connection
points. A connection point represents the connector
interface. It defines the place at which a component
joins a connector to interact with another component.

A higher-level connector type is a composition of
two or more simple connector types. In addition to a set
of simple connector types, the specification of a higher-
level connector contains zero or more connection proto-
cols. These additional protocols might be used to link
connection points of different simple connectors in new
compositions. A connection protocol specifies a com-
munication pattern, which defines the ordering of the
flow of information and control between connection
points.

In this instantiation of the classification framework,
we decided not to use the notion of dimensions and sub-
dimensions. Instead, we use compound units and primi-
tive units, which can be composite or simple UML
model elements.

So far, the concern space is able to identify the con-
cerns that are significant to a connector and to show
their mutual relationships. Later on, we will discuss the
UML extensions that are needed to support this
approach. While some of the required model elements
have already been defined in the context of a UML pro-
file for architectural modeling [4], many of them need
to be refined in order to provide better support for
advanced separation of concerns. The resulting connec-
tor is in fact a multidimensional construct, i.e., an archi-
tectural modeling concept that provides capabilities for
identifying, encapsulating and integrating multiple
kinds (dimensions) of interaction concerns using exten-
sions of UML.

2.2. Create different architectural views on
software connectors

To understand and specify different aspects of a mul-
tidimensional concept of software architecture, differ-
ent architectural views are required. This enables one to
focus on different aspects of software connectors. In
this section, we create different architectural views of
the connector model, which describe the static struc-
ture, dynamic structure and configuration structure of
the online auction system. These structures will be
described by the following architectural views: static,

behavioral, and configuration. Each architectural view
represents a projection of a part of the structural con-
cern space from a particular perspective or viewpoint
[5].

2.3. Describe the connector along the dimen-
sions of the concern

This section describes how to specify various kinds
of component interaction concerns that pertain to the
static, behavioral, and configuration views using the
Auction case study.

Static View of the Auction system
The static view describes the static structure of the

connector model, using the example of the online auc-
tion system. The auction system is transaction-based
system that can be regarded as a complex, structured
collaboration. As a transaction-based system, the auc-
tion system presents many features, such as atomicity
and persistency, which are crosscutting concerns. To
allow modeling such concerns in UML, we extend the
notion of connection points, which was originally
defined in [4], by making a clear distinction between
interaction points and connection points. Interaction
points are part of the interface of a component whereas
connection points are part of the interface of a connec-
tor.

Figure 2 shows the static structure of the OnlineAuc-
tion connector. It consists of five different concerns:
concurrency control, persistence, resource manage-
ment, selling goods, and bidding for goods. The con-
currency control concern involves both coordination
and facilitation services. The type of connector needed
to represent it is an arbitrator connector because it arbi-
trates concurrent accesses to resources. The language
element used to describe it is the Tcontrol connection
point. Along similar lines of reasoning, we can derive
the following concern/connection points pairs: (persis-
tence, Persistency), (resource management, TResources),
(selling goods, Selling), and (bidding for goods, Bidding).

Figure 3 shows the details of some of the connection
points of the OnlineAuction Connector. Note that these
are not to be confused with simple, which make use of
both compartments to define two connection points that
are conjugates of each other.

Behavioral View of the Auction system
This architectural view emphasizes the behavioral

aspects of the OnlineAuction Connector. It allows one to
better understand and describe the crosscutting struc-

«connector»
OnlineAuction

«operation»
TControl

«operation»
Persistency

«operation»
TResources

operation»
Bidding

«operation»
Selling

Figure 2. Static Structure of the OnlineAuction
Connector

tures and the dynamic aspects of component interac-

tions. Figure 4 shows a scenario in which three
activities crosscut the boundaries of several compo-
nents. Jim (the seller) using the TControl connection
point starts the auction, resulting in a new transaction,
T1, and a new auction is created (through the TResources
connection point) then inserted into the list of curren-
tAuctions (Selling connection point). At a certain point in
time, another participant, John, joins the auction and
consequently the transaction T1. The action of placing a
bid (Bidding connection point) starts a new (sub-) trans-
action T1.1. From within the sub-transaction T1.1, the
bid amount is withdrawn from John’s account (Selling
connection point). Since he has sufficient funds the
withdrawal is successful and it is announced to the
other participants. Another participant, Jack, decides to
make a bid with the system and consequently a new
sub-transaction is created, T1.2. The new bid is
announced, consequently T1.1 is aborted (TControl con-
nection point). The withdrawal from John’s account is
rolled back. Jack is declared the winner of the auction.

Figure 4 shows the calls made by the three partici-
pants, where the black dots indicate the calling points
and the white dots indicate the reception points. This
illustrates the idea behind connection points pairs, con-
jugates of each other. The consistency between the
static view and the behavioral view can be fulfilled by
mapping a set of calling and reception points to corre-
sponding connection points, which in turn are grouped
to form the interface of the connector. This is a power-
ful mechanism that allows us to distinguish between the
interface of the components (interaction points) and the

interface of the connector (connection points). There-
fore, it allows us to separate calls, as defined in connec-
tion points, from signatures of operations, as defined in
interaction points.

Configuration View of the Auction system
The configuration view describes the decomposition

of a system in terms of component and connector
instances and the corresponding constraints on and
between them. It specifies the rules and guidelines for
creating instances of connection points and attaching

Figure 3. Connections Points for the

<<operational>>
TControl

Provides
start()
commit()
abort()
join()

Requires

<<operational>>
TResources

Provides
prepare()
commit()
rollback()

Requires

<<operational>>
Bidding

Provides

Requires
placeBid(..)
withdraw(..)
deposit(..)
getCurrentBid(..)
getStatus(..)

<<operational>>
Selling

Provides

Requires
insert(..)
withdraw(..)
deposit(..)
addToHistory(..)

<<operational>>
TControl

Provides
start()
commit()
abort()
join()

Requires

<<operational>>
TControl

Provides
start()
commit()
abort()
join()

Requires

<<operational>>
TResources

Provides
prepare()
commit()
rollback()

Requires

<<operational>>
TResources

Provides
prepare()
commit()
rollback()

Requires

<<operational>>
Bidding

Provides

Requires
placeBid(..)
withdraw(..)
deposit(..)
getCurrentBid(..)
getStatus(..)

<<operational>>
Bidding

Provides

Requires
placeBid(..)
withdraw(..)
deposit(..)
getCurrentBid(..)
getStatus(..)

<<operational>>
Selling

Provides

Requires
insert(..)
withdraw(..)
deposit(..)
addToHistory(..)

<<operational>>
Selling

Provides

Requires
insert(..)
withdraw(..)
deposit(..)
addToHistory(..)

Jim’s SellingJohn’s Bidding Jack’s Bidding

{new}
auction:Auction

systemAccount:
Account

jim:Member

currentAuctions
:Auctions

currentAuctions
:Auctions

jacksAcc:
Account

JimsAcc:
Account

JohnsAcc:
Account

Crosscutting Structures

create(...)
insert(...)

getCurrentBid()
withdraw(...)placeBid(..)

withdraw(...)
placeBid(...)

getStatus(...)

getCurrentBid(..)

getStatus(...)

getStatus(...)

deposit(...)
deposit(...)

addToHistory(...)

T1

T1.2

T1.1

Figure 4. Behavioral Structure for the OnlineAuction Connector

them to the components.

Figure 5 shows three component instances: user,
onlineAuction, and ots. It illustrates a possible instantia-
tion of the OnlineAuction connector and its composition.
This view describes the organization of the system in
terms of component instances that are interconnected
by an instantiation of the OnlineAuction connector. This
example shows an instantiation of each connection
point defined in Figure 5 and the way they are plugged
into the component instances. Simple connectors con-
sist of two ports, which are dynamically created and
plugged into the interacting components; they are con-
jugates of each other. Conjugated ports are shown with
the tilde symbol ‘~’.

3. Summary

The main contribution of this paper was a proposal
for a connector model that provides UML support for
modeling a sphere of component interactions, and that
takes into account concerns that crosscut the boundaries
of individual architectural software components. The
paper applied our ideas to an auction case study, and
showed how our proposed connector model helped to
understand some issues about architectural concern
modeling. In our approach, we advocated advanced
separation of concerns that, we believe, will help deal
with many architectural modeling issues in general, and
particularly in the context of UML.

4. References

[1] Allen R. A Formal Approach to Software Architec-
ture. Ph.D. Thesis, Carnegie Mellon University,
School of Computer Science, available as TR#
CMU-CS-97-144, May (1997).

[2] Bass L., Clements P., and Kazman R. Software
Architecture in Practice. Addison-Wesley 1998.

[3] Garlan D., Monroe R., and Wile D. ACME: An
Architecture Description Interchange Language.
Proceedings of CASCON '97 (1997).

[4] Kande M., Strohmeier, A. Towards an UML Pro-
file for Software Architecture Descriptions.

UML'2000 - The Unified Modeling Language:
Advancing the Standard, Third International Con-
ference, York, UK, October 2-6, 2000, Kent, S.,
Evans, A., Selic, B. (Ed.), LNCS (Lecture Notes in
Computer Science)

[5] Kande M., Strohmeier, A. On The Role of Multi-
Dimensional Separation of Concerns in Software
Architecture. Position paper for the OOPSLA'2000
Workshop on Advanced Separation of Concerns.
(On-line at http://lglwww.epfl.ch/~kande/Publica-
tions/role-of-mdsoc-in-swa.pdf)

[6] Kienzle J., Romanovsky A., and Strohmeier A.
Open Multithreaded Transactions: Keeping
Threads and Exceptions under Control. 6th Inter-
national Workshop on Object-Oriented Real-Time
Dependable Systems, Italy, January 2001.

[7] Kienzle J. Open Multithreaded Transactions: A
Transaction Model for Concurrent Object-Ori-
ented Programming. Ph.D. Thesis EPFL-DI, no
2393, Swiss Federal Institute of Technology in
Lausanne, Software Engineering Lab., 2001.

[8] Medvidovic N., and Taylor R. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on
Software Engineering, Vol. 26, No.1, January
2000.

[9] Mehta N., Medvidovic N., and Phadke S. Towards
a Taxonomy of Software Connectors. Proceedings
of the International Conference on Software Engi-
neering - ICSE'00 (2000).

[10] Moriconi M., Riemenschneider R. Introduction to
SADL 1.0. SRI Computer Science Laboratory
Technical Report SRI-CSL-97-01, March 1997.

[11] OMG Unified Modeling Language Revision Task
Force. OMG Unified Modeling Language Specifi-
cation. Version 1.4 draft, February 2001. http://
www.celigent.com/omg/umlrtf/

[12] Selic B., Gullekson G., and Ward, P. Real-Time
Object-Oriented Modeling. Wiley, 1994.

[13] Shaw M., and Garlan, D. Software Architecture -
Perspectives on an Emerging Discipline. Prentice-
Hall, New Jersey (1996).

[14] P. Tarr and H. Ossher. Multi-Dimensional Separa-
tion of Concerns and The Hyperspace Approach.
In Proceedings of the Symposium on Software
Architectures and Component Technology: The
State of the Art in Software Development. Kluwer,
2000. (To appear.)

[15] Weigert O. (moderator). Panel: Modeling of
Architectures with UML. In UML 2000 — The
Unified Modeling Language: Advancing the Stan-
dard, Third International Conference, S. Kent and
A. Evans (Ed.), LNCS, York, UK, October 2-6,
2000.

[16] Tarr P., Ossher H., Harrison W., and Sutton S. Jr.
N-Degrees of Separation: Multi-Dimensional Sep-
aration of Concerns. Proceedings of the Interna-

<< computational >>
/ots:TransactionSupport

<< computational >>
/onlineAuction

:AuctionApplication

/ tc:TControl~
/ seller:Selling

Base operational port

Conjugated operational portConjugated operational port

Legend:
Call connectorCall connector

<< computational >>
/user:ClientComponent

/ bidder:Bidding~

/ seller:Selling~

/ tc:TControl

/ tr:TResources~

/ tr:TResources

/ bidder:Bidding

Figure 5. Configurati
on View for the Auction System

tional Conference on Software Engineering -
ICSE'99 (May 1999).

[17] S. Clarke, W. Harrison, H. Ossher, P. Tarr. Subject-
Oriented Design: Towards Improved Alignment of
Requirements, Design and Code. In proceedings of
Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA) Denver, Col-
orado U.S., November 1999.

[18] G. Kiczales et al. Aspect-Oriented Programming.
In ECOOP'97 proceedings. Finland.

[19] V. Crettaz, M. M. Kandé, S. Sendall and A. Stro-
hmeier. Integrating the ConcernBASE Approach
with SADL. To appear in UML 2001 Proc. Martin
Gogolla (Ed.), LNCS (Lecture Notes in Computer
Science).

	Mohamed Mancona Kandé and Alfred Strohmeier
	Email: {mohamed.kande, alfred.strohmeier}@epfl.ch
	1. Introduction
	2. Connectors Modeling with ConcernBASE
	2.1. Define a Concern Space for Connector Modeling
	Figure 1. Structural Concern Space for Software Connector Modeling

	2.2. Create different architectural views on software connectors
	2.3. Describe the connector along the dimensions of the concern
	Figure 2. Static Structure of the OnlineAuction Connector
	Figure 3. Connections Points for the OnlineAuction Connector
	Figure 4. Behavioral Structure for the OnlineAuction Connector
	Figure 5. Configurati on View for the Auction System

	3. Summary
	4. References
	[1] Allen R. A Formal Approach to Software Architecture. Ph.D. Thesis, Carnegie Mellon University...
	[2] Bass L., Clements P., and Kazman R. Software Architecture in Practice. Addison-Wesley 1998.
	[3] Garlan D., Monroe R., and Wile D. ACME: An Architecture Description Interchange Language. Pro...
	[4] Kande M., Strohmeier, A. Towards an UML Profile for Software Architecture Descriptions. UML'2...
	[5] Kande M., Strohmeier, A. On The Role of Multi- Dimensional Separation of Concerns in Software...
	[6] Kienzle J., Romanovsky A., and Strohmeier A. Open Multithreaded Transactions: Keeping Threads...
	[7] Kienzle J. Open Multithreaded Transactions: A Transaction Model for Concurrent Object-Oriente...
	[8] Medvidovic N., and Taylor R. A Classification and Comparison Framework for Software Architect...
	[9] Mehta N., Medvidovic N., and Phadke S. Towards a Taxonomy of Software Connectors. Proceedings...
	[10] Moriconi M., Riemenschneider R. Introduction to SADL 1.0. SRI Computer Science Laboratory Te...
	[11] OMG Unified Modeling Language Revision Task Force. OMG Unified Modeling Language Specificati...
	[12] Selic B., Gullekson G., and Ward, P. Real-Time Object-Oriented Modeling. Wiley, 1994.
	[13] Shaw M., and Garlan, D. Software Architecture - Perspectives on an Emerging Discipline. Pren...
	[14] P. Tarr and H. Ossher. Multi-Dimensional Separation of Concerns and The Hyperspace Approach....
	[15] Weigert O. (moderator). Panel: Modeling of Architectures with UML. In UML 2000 — The Unified...
	[16] Tarr P., Ossher H., Harrison W., and Sutton S. Jr. N-Degrees of Separation: Multi-Dimensiona...
	[17] S. Clarke, W. Harrison, H. Ossher, P. Tarr. Subject- Oriented Design: Towards Improved Align...
	[18] G. Kiczales et al. Aspect-Oriented Programming. In ECOOP'97 proceedings. Finland.
	[19] V. Crettaz, M. M. Kandé, S. Sendall and A. Strohmeier. Integrating the ConcernBASE Approach ...

