
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Enhancing OCL for Specifying
Pre- and Postconditions

Shane Sendall and Alfred Strohmeier

Swiss Federal Institute of Technology
Department of Computer Science
Software Engineering Laboratory

1015 Lausanne-EPFL
Switzerland

email: {Shane.Sendall, Alfred.Strohmeier}@epfl.ch

ABSTRACT This paper proposes a number of enhancements to UML’s Object Constraint
Language to improve its usability for specifying operations by pre- and postconditions. In
particular, we propose notational shortcuts and semantic modifications to OCL so that it
can be more effectively used by developers. Also, the paper discusses an approach for
specifying, in OCL, events and exceptions which are output and raised by an operation.

KEYWORDS Unified Modeling Language, Object Constraint Language, Pre- and Postcon-
dition, Declarative Operation Specification.

1 Introduction
OCL [11][5] can be used to describe pre- and postconditions of system1 operations. Pre- and
postconditions written in OCL allow developers to precisely express the behavior of a system
without necessarily expressing how the behavior is achieved in terms of object collaborations. In
this way, pre- and postconditions written in OCL offer an alternative to the graphical diagrams
of UML which tend to be solution-oriented.

Our approach for specifying pre- and postconditions of system operations uses OCL. A descrip-
tion of a single system operation is called an operation schema. It is a hybrid of formal
approaches such as Z [9] and VDM [3]: hybrid in the sense that they are based on their formal
counterparts but are targeted to developers that are more comfortable with procedural program-
ming languages rather than declarative languages. In [6], an approach for mapping use cases to
operation schemas has been proposed which highlights how use cases and operation schemas are
complementary in making a precise description of system behavior. Our approach has been suc-
cessfully taught to students and practitioners and used in a number of small-to-medium sized
projects.

We believe that OCL offers a notation that is more attractive to the developer in terms of usabil-
ity and readability when compared to more formal approaches such as Z, VDM, etc. It offers a
mathematically less-demanding set of operators and concepts, and it also has a query-like style
that is familiar to developers that are versed in database query languages.

The goal of this paper is to propose extensions to OCL that make writing pre- and postconditions
less laborious and that result in more readable specifications. We also propose an approach for
specifying events and exceptions that are output and raised by the operation. Finally, we propose
some guidelines for using OCL when specifying pre- and postconditions.

The paper has many sections, but there is a continuous thread of proposals for enhancements to
OCL throughout. Section 2 states our frame assumption which makes possible several of the

1. When we say system we could also be meaning component or subsystem.
Page 1 of 10

https://core.ac.uk/display/147904545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

syntactic shorthands. Section 3 proposes some shorthand notations that could be employed in
OCL to allow more concise conditions. Section 4 proposes a new approach for specifying
changes in sets from the pre-state to the post-state; a similar idea is also applied to object
attributes whose types are numbers. Section 5 proposes a declaration clause where all variables
that are used in a pre-/postcondition are declared. Section 6 proposes a new pseudo-value in
addition to undefined. Section 7 proposes an approach for specifying events and exceptions. Sec-
tion 8 poses some open questions. And finally, section 9 concludes the paper.

2 Frame Assumption
The frame of the specification is the list of all variables that can be changed by the operation [4].
Formal approaches such as Z, VDM, Larch, etc. explicitly state the variables that may possibly
change and in their postconditions they state what happens to each one of these variables—even
for those variables that stay unchanged. However, these approaches soon become cumbersome
to write, particularly for specifications that have complex conditional branches. One approach
that avoids this extra work is to imply a “... and nothing else changes” rule when dealing with
specifications [1]. This approach can significantly reduce the size of the specification and thus
increase its readability. However, stating “... and nothing else changes” is not sufficient in cer-
tain cases. For example, let’s consider a class model of a multi-cabin elevator control system, see
figure 1, which consists of a number of lift cabins and floors with two associations between
them, IsFoundAt and HasDestination.

Fig. 1. Partial Class Diagram for a Multi-Cabin Elevator Control System

If we wanted an operation to remove a cabin from service, we would write the following condi-
tion in the postcondition, where the context is the system object.

self.cabin = self.cabin@pre->excluding (cab)

The “... and nothing else changes” rule is not sufficient in this case because it would present the
following expansion:

self.cabin = self.cabin@pre->excluding (cab)

and IsFoundAt and HasDestination stays unchanged

These conditions are contradictory, however, because the last condition requires all associations
to stay unchanged, which is clearly not the case according to the first condition.

In the pursuit of practical convenience and in particular conciseness we keep the “... and nothing
else changes” rule, but we emphasize that this rule needs to be weakened in situations of implicit
removal (example shown above) and implicit override (not shown here).

Cabin Floor0..* 11..* 2..*IsFoundAt

<<System>>

0..* 0..1HasDestination

Multi_Cabin_Elevator_Control

cabsPresent

cabsDestined myDestination

currentFloor
Page 2 of 10

3 Shorthand Enhancements to OCL
Our proposals for shorthand enhancements to OCL are biased towards a procedural program-
ming language-like style, in the belief not only that developers are more familiar with such
styles but that it is in fact a more concise way of expressing conditions.

���������	
��
���

For case distinctions, we use if-then-else conditions, in contrast to many formal approaches
which prefer to use the implies construct. Without the frame assumption, we would have to
write:

if car.kind = #Ford then

john.carsInterestedIn = john.carsInterestedIn@pre + 1

else

john.carsInterestedIn = john.carsInterestedIn@pre

endif

Putting the frame assumption into practice, we are not required to state which objects and associ-
ations stay unchanged, and the else part is therefore always true:

if car.kind = #ford then

john.carsInterestedIn = john.carsInterestedIn@pre + 1

else

true

endif

Applying proposal 1, the else part can be made implicit:

if car.kind = #ford then

john.carsInterestedIn = john.carsInterestedIn@pre + 1

endif

An implicit else true promotes a smaller, more readable postcondition.

Thus, every time a postcondition has an if-then statement (without the else part), the expression
is of type boolean and an implicit else true is implied.

����������
���

When dealing with a large number of cases (case distinction), embedding if-then-else constructs
within another if-then-else construct can become problematic, in terms of notational clarity, as
the depth of embedding increases. Therefore, adding an elsif part to the if-then-else construct
becomes useful in such situations. The elsif addition is directly derivable from nested if-then-
else constructs, e.g.:

if condA then

A

elsif condB then

B

else

C

endif

is equivalent to:
Page 3 of 10

if condA then

A

else

if condB then

B

else

C

endif

endif

����������
��� !����������
���������������������������������

When writing a large pre-/postcondition, separating all expressions by logical “and” operators is
cumbersome and reduces the readability of the pre-/postcondition. We, thus, propose to use a
semi-colon as a boolean expression terminator. Although, we realize that this gives the condi-
tions a very procedural look, we believe that a semi-colon is less obtrusive for the specification
writer and has a more natural look, as shown by this simple example:

boolExprA

and if boolExprB then

boolExprC

and boolExprD

endif

and boolExprE

is equivalent to:

boolExprA;

if boolExprB then

boolExprC;

boolExprD;

endif;

boolExprE;

���������"
���#������

We propose the optional use of an Ada-style aggregate notation for denoting composite values.
The components of a record, the value attributes of an object, and the parameters of an event all
correspond to composite values.

An aggregate can be written using named associations, i.e. a value is associated with each com-
ponent denoted by its name, e.g. the attribute values of a company object:

(name => “Microsoft”, headquarters => “Richmond”, budget => 50.0E9)

Positional notation is also possible, but then the ordering of the components must be agreed
upon by some convention, e.g. alphabetical order of the attribute names for objects:

(50.0E9, “Richmond”, “Microsoft”)

It is perfectly possible to nest aggregates, e.g.:

(firstName => “Denis”, lastName => “Maillat”, birthday => (1940, 1, 9))
Page 4 of 10

The advantage of aggregates is that related values are kept together in one place. Moreover, it is
possible to check that values are defined for all components, e.g. in an expression like:

company = (name => “Microsoft”, headquarters => “Richmond”, budget => 50.0E9)

which is equivalent to:

company.name =“Microsoft”;

company.headquarters = “Richmond”;

company.budget = 50.0E9;

It is sometimes useful to be able to qualify an aggregate by its type, e.g. the record
type, the class name or the event type, yielding a so-called qualified aggregate. We
propose to use the Ada-like “tick” notation, i.e. the type name precedes the aggregate,
separated by an apostrophe, e.g.

Company’(50.0E9, “Richmond”, “Microsoft”)

���������$
�%������&�'�������������������������������������(������������������
���������������������#��������������������������������)�����������������������
�������������������

We propose to allow in the oclIsNew property a parameter that is an aggregate and that specifies
the values of all the value attributes of the object:

For example, a postcondition could state:

obj.oclIsNew (make => “Ford”, year => 2000);

which means that the object obj was created in the execution of the operation, and all its value
attributes, i.e., make and year, were given initial values, “Ford” and 2000, respectively.

The above expression is directly equivalent to:

obj.oclIsNew;

obj.make = “Ford”;

obj.year = 2000;

The proposed notation ensures that all attributes of a newly created object were initialized in a
single place, and none of them were forgotten.

��������� *
� %��� ���&�'��� �������� ���� ��� �������� �� ����������+� �� ���� �,��� ���
��)�������������������������������
�������������������

We propose to allow the creation of a collection of objects by introducing the oclIsNew property
for collections, where the oclIsNew property takes as parameter the number of elements to be
created. For example, a postcondition could state (assuming colX: Collection (X)):

colX.oclIsNew (n);

which is equivalent to:

colX->forall (x: X | x.oclIsNew);

colX->size = n;

Both conditions state that there were n objects of class X created with the execution of the oper-
ation and these objects are members of the collection colX.
Page 5 of 10

4 OCL Operators
In OCL, when describing a change to the contents of a set in the postcondition, one is often
forced to state the contents of a set in the post-state in relation to its contents in the pre-state,
e.g.:

john.myFavoriteStamps = john.myFavoriteStamps@pre -> including (stamp345);

This approach has two disadvantages: it is not very concise when dealing with sets that are con-
structed by association traversal (imagine an expression that traverses two or more associations
to form the set), and it does not offer incremental addition/removal of elements, i.e., we are
forced to state in one place what happens to the set. We propose to apply the idea of the minimal
set condition to OCL postcondition semantics. For each class and each association, we will con-
sider their sets of instances and links, and claim that these are all minimal sets after execution of
the operation. Otherwise stated, if C is a class, if Set(C)@pre is its set of its instances before the
execution of the operation, and Set(C) is its set of its instances after the execution of the opera-
tion, then Set(C) is the minimal set containing Set(C)@pre and fulfilling the postcondition. Intu-
itively, Set(C) can be constructed by adding to Set(C)@pre all instances of C created by the
operation. The same kind of idea can be applied to the links of an association A: Set(A) is then
the minimal set containing Set(A)@pre and fulfilling the postcondition. The rule must hold for
all classes and associations. There is a slight problem when we allow for the destruction of
objects or removal of association links. For defining the semantics of the operation schema, the
idea is then to gather the deleted entities into a temporary set, and rephrase the rule in the follow-
ing way: let C be a class, let’s denote by Minus(C) the set of instances of C destroyed by the
operation, then Set(C) Ç Minus(C) is empty, and Set(C) È Minus(C) is the minimal set contain-
ing Set(C)@pre.

Moreover, and as already stated in the frame assumption, if an object is destroyed during the
execution of an operation, i.e. the postcondition states that the object is destroyed, then all the
association links it participates in are destroyed too, without having to say it explicitly in the
postcondition!

���������-
���./0��������������

The minimum set principle can be shown on the elevator example of figure 1. For example, a
postcondition may state that a cabin has been added to the system’s set of cabins:

self.cabin->includes (cab);

this condition is therefore equivalent to the following:

self.cabin = self.cabin@pre->including (cab);

this is due to the fact that no other statements have been made about the state of self.cabin. Min-
imum sets can be very useful for stating postconditions incrementally, i.e., the final state of the
set is the set in its pre-state with the addition of all the elements that were mentioned in includes/
includesAll and the difference of all the elements that were mentioned in excludes/excludesAll.
For example, we could define a fragment of the postcondition of an imagined operation called
updateCabinsOnline, which adds and removes cabins to the system’s set of cabins.
Page 6 of 10

if currentMode = #maintenance then

self.cabin->includes (serviceLift);

endif;

if allRequests->exists (r | r.status = #late) then

self.cabin->includes (reservedLift);

endif;

self.cabin->excludes (cabPriority);

Clearly, this would be much harder to state using only set equalities. Also, when using equalities,
it may happen that several exist in the postcondition that make an assertion about the same set,
and then they are either equivalent, or they are inconsistent. Inconsistency cannot result from
incremental modifications of a set, and we believe therefore that this approach is easier to use.

���������1
�&�������������������!��23 �������3 !������������#����������������!
�����������������������4����!�������!����5!���������������������������������������
������

Similarly to the idea of minimum sets, we can reuse the same idea for object attributes that are
number types. We propose to use the operators, “+=” and “-=”. Thus, the value of the object
attribute in the post-state is equivalent to the value in the pre-state plus all the right-hand sides of
all “+=” operators used in the postcondition that refer to the object attribute, and minus all the
right-hand sides of all “-=” operators that refer to the object attribute. For example,

x += 5;

x -= 4;

is equivalent to:

x = x@pre + 1;

Such a notation is especially useful when there are many case distinctions.

Unfortunately, the facility cannot be extended to more complex expressions (e.g. multiplication)
because it relies on the commutativity of additions and subtractions.

5 Declarations
Currently, OCL only supports let statements for declaring variables that are used in pre- and
postconditions. However, we believe that defining a single declaration clause for a pre- and post-
condition pair is cleaner than possibly many let clauses that are dispersed within the conditions
themselves.

���������6
����������������7�����������������������������������)���!�������������������
#���

Our proposal for a separate declaration clause is in line with the proposal of Cook et al. [2]. The
clause uses the keyword Declares to indicate the start of the declaration. The declaration states
all objects, collections and data values that are used in the pre- and postconditions. For example,

Declares:

objX: X;

setY: Set (Y);

Each entity declaration may be associated with a value expression, e.g.,
Page 7 of 10

Declares:

atBottom: Boolean ::= true;

objX: X ::= setX->select (x: X | x.id = 34);

setY: Set (Y) ::= self.allMyYs;

A description of the grammar and usage of our approach (operation schemas) can be found here
[10].

6 OCL Undefined
In OCL, a declared entity can be undefined in a number of different situations, e.g., type mis-
match, improper expression, etc. It is also undefined in situations when no object reference
exists, e.g.,

objY: Y ::= setOfYs->select (y: Y | y.id = 36)

The object objY is undefined if the select operator applied to the set setOfYs results in an empty
set. However, we often find in our approach that we would like to differentiate between an
expression that is not well-formed and one that just has a void reference. We propose, therefore,
to introduce a new pseudo-value for void references. In this situation, the entity will have a
NULL value. And thus we can test for this value in a postcondition.

���������	8
�&�����������������#����!�����������������������!��������'900����������
���������������������������)���#��������������#��������������

Elaborating on the previous example, if the result of the select operation (RHS) evaluates to a
single element then the declaration is well-formed and objY is an instance of Y that is present in
the set setOfYs. However, if the RHS expression evaluates to more than one element then the
declaration is type inconsistent, thus it is undefined. Otherwise if the RHS evaluates to an empty
set then our proposal is that the declaration is still well-formed, i.e., it is not undefined, but objY
has a NULL reference value.

The justification for differentiating the two cases is that we often want to throw an exception
(discussed in the next section) if the object is NULL, but if the expression is undefined then the
specification is invalid or incorrect.

7 Output Events and Exceptions
In our approach, we specify in the postcondition not only the changes to the system state, but
also the events that are output with the execution of the operation. All output events are sent to
actor instances. An event is a UML signal that is either normal or exceptional according to the
value of its tagged value. Therefore in our approach, an exception is simply a kind of event
which is output to an actor(s).

Declaration of output events are written in a separate clause called the Sends clause. The Sends
clause is broken up into three (optional) sub-clauses: actor types together with the event types
that they may receive, named event occurrences, and any sequencing constraints on named event
occurrences.

For example, a sends clause could look like:

Sends:

Motor::{Stop}, Door::{Open};

stopLift: Stop, openLiftDoor: Open;

Sequence {stopLift, openLiftDoor};
Page 8 of 10

The first line declares that the actor classes Motor and Door are allowed to be sent events of type
Stop and Open, respectively. The second line declares two event occurrences. And the third line
is a sequencing constraint which states that the event stopLift is sent before the event openLift-
Door.

The basic rule is that if there is no explicit ordering constraint between two events, then they are
produced by the operation in any order. We do not state ordering constraints inside the postcon-
dition, because there is no ordering between the conditions forming the postcondition.

The sending of events in the postcondition is declaratively described by stating that the event
occurrence was placed on the event queue of the target actor instance. The underlying semantic
implications of this can be found elsewhere [7].

Fig. 2. A partial class diagram for the multi-cabin elevator control system which shows the traversable
associations (stereotyped <<id>>) between the system and its actors

For example, in a postcondition one could write (according to figure 2):

if shouldStopLift then

(cab.myMotor).events->includes (stopLift);

(cab.myDoor).events->includes (openLiftDoor);

endif;

This example states that if shouldStopLift is true then the event instances stopLift and openLift-
Door are sent to the actor instances cab.myMotor and cab.myDoor. These actor instances are
defined by traversing from the cab object to the Motor/Door actor instances via the HasMotor/
HasDoor associations.

���������		
�%���������������#���������./0���������������������#����������������
�#��������������������������#���:����4�5�

8 Open Questions
OCL was created with the main purpose of providing navigation of UML models and conse-
quently it is asymmetric with respect to associations. OCL’s style of navigation has quite some
advantages, e.g. there are not too many operators and they are easy to understand, but there are
also some serious drawbacks.

First of all, the addition of a new link between two objects can be easily misinterpreted. For
example, an expression like the following (see figure 1),

cab.cabsDestined->includes (groundfloor);

Cabin

1 1

1..*

HasDoor

<<System>>
Multi_Cabin_Elevator_Control

myDoorDoor

Motor

<<id>>

1 1HasDoor
myDoor

<<id>>
Page 9 of 10

which means there is a new link between cab and groundfloor, can be easily misinterpreted as
being a unidirectional link from cab to groundfloor, whereas the condition is strictly equivalent
to:

groundfloor.myDestination->includes (cab);

More seriously, it is impossible to use the navigational notation for higher-order associations,
and at least awkward to use it for handling association classes.

One solution to this problem would be to handle associations like sets of tuples (what they really
are). The previous example could then be rewritten (where self is the system object, an instance
of Multi_Cabin_Elevator_Control):

self.hasDestination->includes ((cab, groundfloor));

But, we are not sure whether this is possible in OCL, i.e., is it possible to traverse from a com-
posite to an association in OCL?

9 Conclusion
This paper proposed a number of enhancements to UML’s Object Constraint Language to
improve its usability for defining pre- and postcondition of operations. In particular, we pro-
posed notational shortcuts and semantic modifications to OCL so that it can be more effectively
used by developers. Also, the paper discussed an approach for specifying events and exceptions
in an OCL postcondition.

For examples of our approach applied to several small case studies see [8].

References
[1] A. Borigda, J. Mylopoulos and R. Reiter. On the Frame Problem in Procedure Specifications. IEEE

Transactions on Software Engineering, Vol. 21, No. 10: October 1995, pp. 785-798.
[2] S. Cook, A. Kleppe, R. Mitchell, J. Warmer, A. Wills. Defining the Context of OCL Expressions. Sec-

ond International Conference on the Unified Modeling Language: UML'99, Fort Collins, USA, 1999.
[3] C. Jones. Systematic Software Development Using VDM. Prentice Hall, 1986.
[4] C. Morgan. Programming from Specifications. Second Edition, Prentice Hall 1994.
[5] OMG Unified Modeling Language Specification, Version 1.3, June 1999; published by the OMG Uni-

fied Modeling Language Revision Task Force on its WEB site: http://uml.shl.com/artifacts.htm
[6] Shane Sendall and Alfred Strohmeier. From Use Cases to System Operation Specifications. UML 2000

— The Unified Modeling Language: Advancing the Standard, Third International Conference, Stuart
Kent and Andy Evans (Ed.), LNCS, York, UK, October 2-6, 2000.

[7] Shane Sendall and Alfred Strohmeier. Specifying System Behavior in UML. Technical Report 2000/
???, Swiss Federal Institute of Technology in Lausanne, Switzerland, 2000 (submitted for publication).

[8] Shane Sendall. Specification Case Studies. Electronic Resource available at
http://lglwww.epfl.ch/~sendall/case-studies/

[9] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.
[10] Alfred Strohmeier and Shane Sendall. Operation Schemas. Electronic Resource available at

http://lglwww.epfl.ch/~sendall/operation-schemas/
[11] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling With UML. Addison-

Wesley 1998.
Page 10 of 10

	1 Introduction
	2 Frame Assumption
	Fig. 1. Partial Class Diagram for a Multi-Cabin Elevator Control System

	3 Shorthand Enhancements to OCL
	4 OCL Operators
	5 Declarations
	6 OCL Undefined
	7 Output Events and Exceptions
	Fig. 2. A partial class diagram for the multi-cabin elevator control system which shows the trave...

	8 Open Questions
	9 Conclusion
	[1] A. Borigda, J. Mylopoulos and R. Reiter. On the Frame Problem in Procedure Specifications. IE...
	[2] S. Cook, A. Kleppe, R. Mitchell, J. Warmer, A. Wills. Defining the Context of OCL Expressions...
	[3] C. Jones. Systematic Software Development Using VDM. Prentice Hall, 1986.
	[4] C. Morgan. Programming from Specifications. Second Edition, Prentice Hall 1994.
	[5] OMG Unified Modeling Language Specification, Version 1.3, June 1999; published by the OMG Uni...
	[6] Shane Sendall and Alfred Strohmeier. From Use Cases to System Operation Specifications. UML 2...
	[7] Shane Sendall and Alfred Strohmeier. Specifying System Behavior in UML. Technical Report 2000...
	[8] Shane Sendall. Specification Case Studies. Electronic Resource available at http://lglwww.epf...
	[9] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.
	[10] Alfred Strohmeier and Shane Sendall. Operation Schemas. Electronic Resource available at htt...
	[11] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling With UML. Addison-...

