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ABSTRACT The purpose of the paper is to present our approach for specifying system
behavior. Our approach is based on operation schemas and a system interface protocol
(SIP). Operation schemas describe the functionality of system operations by pre- and post-
conditions; they are written in the Object Constraint Language (OCL), as defined by the
Unified Modeling Language (UML). A SIP describes the temporal ordering of the system
operations by a UML protocol statemachine. Operation schemas are hybrids of formal
specifications approaches such as Z and VDM : hybrid in the sense that they are based on
their formal counterparts but are targeted to developers that are more comfortable with
procedural programming languages rather than declarative languages. 

Our approach offers a middle ground between the informal descriptions of use cases and
the solution-oriented models of object interaction in UML. We believe that declarative
behavioral specification techniques, like the one proposed in this paper, lead to more con-
fidence in the quality of the software because they allow one to reason about system prop-
erties. 

KEYWORDS Unified Modeling Language (UML), Object Constraint Language (OCL),
Precondition, Postcondition, Formal Specification, Object-Oriented Software Develop-
ment.

1 Introduction
Our increasing reliance on software intensive systems in everyday life is forcing us to re-evalu-
ate the importance of producing software that functions correctly. The development of this soft-
ware infrastructure will require us to take more care in assuring that high-quality software is
produced and put in place [20]. We believe that raising the quality of software can be facilitated
by better descriptions of system behavior. We identified the following criteria for evaluating
behavioral descriptions for their effectiveness within a context of main-stream software develop-
ment:

 • The descriptions should be compatible with industry practices and standards. 

 • The descriptions should be targeted towards the ease of use by the developer, i.e. it should be
simple, concise, understandable, modular, malleable, etc.

 • The description should be precise so that it can be used as a clear and unambiguous contract
for later activities.

 • The time needed to develop the description should not compromise the cycle time of the
development process, i.e., the description should not be heavy in comparison to the other
models of development. 

 • The description should be scalable to manage large problems, and it should be possible to
focus just on the essential problem without getting caught up on less essential details, thus
allowing one to manage complexity and size.
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 • The description should be conducive to verification and validation of the end-product.
Clearly, the level of analysis should be relative to how critical the correct functioning of the
software is within its environment.

 • The description should clarify “quantifiable” non-functional requirements of the system in
an integrated and traceable way, such as performance constraints. 

 • The description should be capable of capturing inherent concurrent properties of the system
and quality of service properties as found when modeling continuous streams in multimedia
systems.

At the end of 1997, the Unified Modeling Language (UML) was standardized by the Object
Management Group (OMG) [19]. UML is an informally founded language that offers a rich set
of notations for modeling both the static and dynamic aspects of an object-oriented system under
development. Currently in industry much of what would be loosely classified as system specifi-
cation is performed with use cases. Use cases are an excellent tool for capturing behavioral
requirements of software systems. They are informal descriptions, almost always written in nat-
ural language, and consequently they lack rigor and a basis to reason about system properties. 

On the other hand, formal specification approaches such as Z [16] and VDM [8] propose declar-
ative specifications of system behavior by pre- and postconditions. They provide the capability
to reason about system properties, and they promote rigor and precision. They define the system
behavior by stating changes of the system on a conceptual model. Use cases, alternatively,
define the interactions between the system and external actors, in terms of actor goals, stake-
holder concerns and system responsibilities. Formal specifications also normally require a high-
level of mathematical maturity to read and understand, and therefore are not primarily targeted
towards stakeholder comprehension, as is the case for use cases.

Our approach uses operation schemas and a system interface protocol (SIP), which are comple-
mentary to use cases [15]. Operation schemas describe the functionality of system1 operations
by pre- and postconditions; they are written in the Object Constraint Language (OCL), as
defined by the Unified Modeling Language (UML) specification. An SIP describes the temporal
ordering of the system operations with a UML protocol statemachine. Our approach can be used
as a middle ground in UML between the informal descriptions of use cases and the solution-ori-
ented models of object interaction.

Operation schemas are hybrids of formal specifications approaches such as Z and VDM: hybrid
in the sense that they are based on their formal counterparts but are targeted to developers that do
not necessarily have a strong background in mathematics and are more comfortable with proce-
dural programming languages rather than declarative languages. Operation schemas allow one
to precisely describe the services provided by the system and due to their declarative nature are
less likely to embody premature design decisions. They allow one to formalize business rules
and reason about system properties. 

An SIP is a UML protocol statemachine that focuses on the temporal ordering of the system
operations only, and therefore the usage of the UML state diagram notation is very specific, and
only a limited use is made of the notation. Whereas operation schemas describe the services
offered by the system, the SIP describes the allowable sequencing of these services. The two are
refined from use cases and they combine to define a precise specification of system behavior. An
approach for mapping use cases to operation schemas has been proposed in [15]. To see how this
work fits into a software development “analysis” activity, the reader is referred to [14].

1.  A system in this sense could as well be a subsystem in a larger system.
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This paper puts particular focus on defining the operation schema, covering its syntax, informal
semantics, and basic guidelines for use, and shortly describes the SIP. We illustrate the use of our
approach with an example of an elevator control system. 

The paper is composed in the following way: section 2 describes the elevator control system
example that is used in varies places throughout the paper; section 3 provides an introduction to
operation schemas and OCL and shows an operation schema for the elevator control system;
section 4 goes further into the style and semantics of operation schemas; section 5 describes the
system interface protocol; section 6 provides a discussion on current and future work; section 7
discusses related work; and finally section 8 concludes the paper.

2 Elevator Control Example
For illustrating our approach, we will describe an elevator control system. The system controls
multiple lift cabins that all service the same floors of a building. There is only one button on
each floor to request a lift cabin. Inside each cabin, there is a series of buttons, one for each floor.
The arrival of the cabin at a floor is detected by a sensor. The system may ask an cabin to go up,
go down or stop. In this example, we assume that an elevator cabin’s braking distance is negligi-
ble. The system may ask an elevator to open its door, and it receives a notification when the door
is closed; the door closes automatically after a predefined amount of time, when no more people
get on or off at a floor. However, neither the automatic closing of an elevator door nor the pro-
tection associated with the door closing, stopping it from squashing people, are part of the sys-
tem to realize. 

A scenario of how the user goes from one floor to another with a lift could be: A user calls the
lift. An available lift comes to the floor of the requesting user to pick him/her up. The lift stops
and opens its door. The user gets in and requests a destination floor. The lift closes its door and
goes to the destination corresponding to the request made by the user. The lift stops and opens it
door. The user leaves the lift at the destination floor.

Fig. 1. Elevator Control System Context Model

The system operations for the elevator control system are derived from use case descriptions of
the system. How this mapping activity is achieved is not discussed in this paper. Interested read-
ers are referred to [15]. The result of this mapping activity from a use case that describes a user
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taking the lift from one floor to another is shown in figure 1. The System Context Model shows
four different input events: externalRequest, internalRequest, doorIsClosed, and atFloor, and
eight different types of output events: AckExtRequest, AckIntRequest, ServicedExtRequest, Ser-

vicedIntRequest, OpenDoor, GoUp, GoDown, and Stop. 

The model also shows that there is some form of communication between the User actor type
and the external request indicator (ExtRequestIndicator) and internal request indicator (IntRe-

questIndicator) to clarify that the requests originally come from the user. Although we admit this
may not be valid UML, strictly speaking, we think showing external communication paths often
clarifies the consistent overall working of a system.

The analysis-level class model for the elevator control system is shown in figure 2. It shows all
the domain concepts and relationships between them. Inside the system there are five domain
classes, Cabin, Floor, Request, IntRequest, and ExtRequest, and outside six actor classes, Motor,
Door, IntRequestIndicator, ExtRequestIndicator, User, and Sensor. The system has five associa-
tions: IsFoundAt links a cabin to its current floor, HasIntRequest links a collection of internal
requests to a particular cabin, HasCurrentRequest links a cabin to its current request, hasExtRe-

quest models the collection of all external requests issued by users, and HasTargetFloor links
requests to their target floor (source of call or destination). Finally, an <<id>> stereotyped associ-
ation means that the system can identify an actor starting from an object belonging to the system,
e.g., given a Cabin, cab, we can find its corresponding motor via the HasMotor association,
denoted in OCL by cab.movedBy. The reason for the <<id>> stereotyped association is that the
system can only send an event to an actor that can be identified. Identifying an external actor
form inside the system, will be the only use of <<id>> stereotyped associations.

Fig. 2. Elevator Control System Class Model

3 Operation Schemas and OCL
An operation schema describes the effect of the operation on an abstract state representation of
the system and by events sent to the outside world. It is written in a declarative form that
abstracts from the object interactions inside the system which will eventually realize the opera-
tion. It describes the assumed initial state by a precondition, and the change in system state after
the execution of the operation by a postcondition. Operation schemas use UML’s OCL formal-
ism, which was built with the purpose of being writable and readable by developers. Operation
schemas as we define them here specify operations that are assumed to be executed atomically. 
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The system model is reactive in nature and all communication with the environment is achieved
by asynchronous input/output events, termed signals in UML1. All system operations are trig-
gered by input events, normally of the same name as the triggered operation.

The change of state resulting from an operation’s execution is described in terms of objects,
attributes and association links, which are themselves described in the system class mode
(fig. 2). The postcondition of the system operation can assert that objects are created, attribute
values are changed, association links are added or removed, and certain events are sent to out-
side actors. The association links between objects act like a network, guaranteeing that one can
navigate to any state information that is required by an operation.

The class model is used to describe all the concepts and relationships in the system, and all
actors that are present in the environment. Therefore, the class model as we define it here is not a
design class model. Classes and associations model concepts of the problem domain, not soft-
ware components. Objects and association links hold the system state. Classes do not have
behavior; the decision to allocate operations or methods to classes is deferred until design.

The standard template for an operation schema is shown in figure 3. The various subsections of
the schema were defined by the authors, and are not part of the OCL. However, all expressions
are written in OCL. Each clause is optional except the first. Pre and Post clauses that are not
included default to true and an omitted Scope clause defaults to the operation’s context, which is
the system.

Fig. 3. Operation Schema Format

3.1  Presentation of OCL

UML [19] defines a navigation language called the Object Constraint Language (OCL) [17], a
semi-formal language for writing expressions whose principles are based on set theory. OCL can
be used in various ways to add precision to UML models beyond the capabilities of the graphical
diagrams. Two common uses of OCL are the definition of constraints on class models and the
statement of system invariants. As we will see, it can also be used to define pre- and postcondi-
tions for operations. 

1.  According to UML, use cases use signals for the communication between the system and actors.

Operation: This clause displays the system name followed by the operation name and parameter list. 
Description: This clause provides a concise description of the operation written in natural language.
Notes: This clause provides additonal comments.
Use Cases: This clause contains cross-references to superordinate use case(s).
Scope: This clause declares the classes and associations of the class model that are used in the schema. 
Declares: This clause provides declarations of all constants and variables designating objects, 
datatypes, object collections, and datatype collections used in the Pre and Post clauses. 
Sends: This clause specifies which kinds of events are sent to which actor types. It is also possible to 
declare event instances and event collections.
Event Order: This clause defines constraints on the order of events output by the operation.
Pre: This clause is the operation’s precondition, written in OCL. It contains a boolean expression. The 
precondition cannot refer to parameters of the operation.
Post: This clause is the operation’s postcondition, written in OCL. It contains a boolean expression. If 
the precondition is true, then the operation terminates and the postcondition is true after the execution 
of the operation; if the precondition is false, the behavior of the operation is not defined by the schema. 
This is also the only clause that uses the notation @pre for referring to the state preceding the operation 
invocation.
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OCL is a declarative language. An OCL expression has no side effects, i.e. an OCL expression
constrains the system by observation rather than simulation of the system. When describing
operations, an OCL expression is evaluated on a consistent system state, i.e. no system changes
are possible while the expression is evaluated. OCL is a typed language; it provides elementary
types, like Boolean, Integer, etc., includes collections, like Set, Bag, and Sequence, and has an
assortment of predefined operators on these basic types. It also allows user-defined types which
can be any type defined in a UML model, in particular classes. OCL uses an object-oriented-like
notation to access properties, attributes, and for applying operators. 

We now highlight the atFloor operation schema, shown in figure 4. The atFloor operation schema
describes the atFloor system operation. The atFloor system operation occurs as a consequence of
a floor sensor detecting the arrival of an elevator cabin at a floor. The system must decide at this
point whether there are any requests for the floor; if so, it will drop off and/or pick up the user(s),
otherwise the system will let the lift continue to its destination.

The Declares clause defines a local boolean variable, makeStop, which results in true if there is
an internal request or external request (that is requesting the same direction as the lift is currently
going) for the supplied floor f. The Sends clause shows that instances of the event types Stop,
GoUp, GoDown, OpenDoor, ServicedExtRequest, ServicedIntRequest may be sent to the indi-
cated actors and that Stop and OpenDoor have named instances. The Event Order clause defines
a sequencing constraint on the output events that states that the two event instances are delivered
to their respective actors in the order stop followed by open. The Pre clause states that the cabin
cab has a currentRequest, i.e., cab is currently servicing a request, and cab is moving.

The dot notation usually results in a set of objects or values, including the special cases of a sin-
gle element or an empty set. For instance, self.cabin is the set of all cabins in the system, self

denoting the system instance. When navigating on association links, the dot notation is used
together with the role name, e.g. cab.currentFloor. If there is no explicit role name, then the name
of the target class is used as an implicit role name. For example, self.extRequest denotes the set
of external requests that can be reached by navigating from self (the system instance) on the
hasExtRequest association.

The arrow operator is used only on collections, in postfix style. The operator following the
arrow is applied to the previous “term”. For instance, dropOffRequest ->union (pickUpRequest)

results in a set consisting of the union of the two sets dropOffRequest and pickUpRequest.

The first line of the Post clause states that the cabin is now found at floor f. The next (com-
pound) expression states that if the lift has a request for this floor, then the cabin’s motor was
told to stop, the cabin’s door was told to open, the state attributes of the cabin were updated, and
the requests that were serviced by this stop were removed from the system. Note that the expres-
sion, self.request->excludesAll (reqsForThisFloor), not only removes the serviced request objects
from the set of Request instances, but deletes also all the association links targeting one of these
objects from the associations IntRequest, ExtRequest and CurrentRequest. An explanation of
our frame assumption for operation schemas which explains this sort of implicit removal is pro-
vided in section 4. Also, the & operator used throughout the schema is a shorthand for logical
“and”. In the Post clause, sending events is described by stating that an event instance was deliv-
ered to the appropriate actor instance. For example, the third line of the postcondition states that
the actor instance cab.movedBy, denoting a navigation from the cabin to its motor via the Has-

Motor association, has had an event instance called stop placed in its events queue. Looking fur-
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ther at the OCL notation, an expression, such as cab.doorState = #open, means that the attribute,
doorState, of the object cab has the value open (the ‘#’ indicates an enumerated type value) after
the execution of the operation.

Fig. 4. atFloor Operation Schema for Elevator Control System

4 Style and Semantics of Operation Schemas
The state of the system is defined by the system class model. It is defined by the states of all
instances of all classes and all association links. In addition to the production of output events,
an operation schema describes, by pre- and postconditions, how the system state is changed by
the execution of the operation. An implementation of the operation must, therefore, obey the

Operation: ElevatorControl::atFloor (cab: Cabin, f: Floor)
Description: The cabin has reached a particular floor, it may continue or stop depending on its
destination and the requests for this floor.
Notes: The system can receive many atFloor events at any one time, each for a different cabin.
Use Case(s): TakeLift;
Scope: Cabin; Floor; Request; IntRequest; ExtRequest; HasIntRequest; HasExtRequest; Has-
CurrentRequest; HasTargetFloor; IsFoundAt;
Declares:

directionHeading: Direction ::= if self.externalRequest->includes (cab.currentRequest) then
cab.currentRequest.direction else cab.movement endif; 

dropOffRequest: Set (IntRequest) ::= cab.intRequests->select (r | r.targetFloor = f);
pickUpRequest: Set (ExtRequest) ::= self.extRequest->select (r | r.targetFloor = f &

r.direction = directionHeading);
reqsForThisFloor: Set (Request) ::= dropOffRequest->union (pickUpRequest);
makeStop: Boolean ::= reqsForThisFloor->notEmpty;

Sends:
Motor::{Stop, GoUp, GoDown}, Door::{OpenDoor},
ExtRequestIndicator::{ServicedExtRequest}, IntRequestIndicator::{ServicedIntRequest};
stop: Stop, open: OpenDoor; 

Event Order:
Sequence {stop, open}; -- the output events are sent in the order stop followed by open

Pre:
cab.currentRequest->notEmpty & -- cab was going somewhere
cab.movement <> #stopped -- cab was moving

Post:
cab.currentFloor = f & -- new current floor for the cabin
if makeStop then -- someone to drop off or pick up

(cab.movedBy).events->includes (stop) & -- stop sent to cab motor

cab.movement = #stopped &
(cab.myDoor).events->includes (open) & -- open sent to door
cab.doorState = #open &
self.request->excludesAll (reqsForThisFloor) & -- removed request(s) for this floor
if pickUpRequest->notEmpty then 

(self.extReqIndicator).events->includes (ServicedExtRequest' (
callingFlr => pickUpRequest.targetFloor, dir => pickRequest.direction))

endif &
if dropOffRequest->notEmpty then 

(self.intReqIndicator).events->includes (ServicedIntRequest' (
destFlr => dropOffRequest.targetFloor))

endif
endif
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postcondition; otherwise the implementation has incorrect behavior. However, if the implemen-
tation of the operation is doing more than what is strictly needed to satisfy the postcondition, e.g.
creating some additional objects, or changing the states of some objects which are outside the
frame of the operation, then it would also satisfy the postcondition. We will discuss this issue in
subsection 4.1.

Operation schemas have a procedural programming-like style, which is above and beyond the
operational style of OCL. The following list displays the additions to OCL that lead to a proce-
dural style; some are notational shorthands, others are more semantics enhancements:

 • Frame assumption – We use a pragmatic frame assumption, discussed in section 4.1.

 • Branching – Case distinction is realized by if-then-else conditions rather than implies condi-
tions. The usefulness of this choice becomes evident when schemas have a large number of
case distinctions. Also, our pragmatic frame assumption allows the use of if-then conditions,
and we also allow if-then-elsif conditions.

 • Aggregate notation – We allow the use of an Ada-style aggregate notation for denoting com-
posite values. The set of components of a record, the value attributes of an object, and the
parameters of an event all correspond to composite values. An aggregate can be written
using named associations, i.e. a value is associated with each component denoted by its
name, e.g. the attribute values of a cabin object:
(doorState => #closed, movement => #stopped)

 • Incremental operators – We apply the principle of minimal sets to postconditions and also
propose a similar principle for “incremental” numerical operations. These principles and
notations are discussed in section 4.2.

 • Structuring mechanism – To better support readable schemas and to provide encapsulation
of commonly recurring conditions, we use parameterized predicates. Parameterized predi-
cates can be seen as a parameterized piece of the postcondition. Consequently, parameter-
ized predicates can use the suffix ‘@pre’. 

4.1  Frame Problem

The frame of the specification is the list of all variables that can be changed by the operation
[11]. The postcondition of a specification describes all the changes to the frame variables, and
since the specification is declarative, the postcondition must also state all the frame variables
that stay unchanged. The reason is simple: if the unchanged frame variables are left unmen-
tioned, they are free to be given any value and the result will still conform to the specification.

Formal approaches such as Z, VDM, Larch, etc. explicitly state what happens to each one of
these frame variables—even for those variables that stay the same. These approaches soon
become cumbersome to write and error-prone, particularly for specifications that have complex
case distinctions. One approach that avoids this extra work is to imply a “... and nothing else
changes” rule when dealing with specifications [2]. This means that the specification implies
that the frame variables are changed according to the postcondition with the unmentioned frame
variables being left unchanged. This approach reduces the size of the specification, thus
increases its readability, and makes the activity of writing specifications less error prone. How-
ever, this assumption does not work in the cases of implicit removal and implicit override.
Implicit removal is applied to preserve the consistency of the class model. E.g. when an object is
removed from the system state, all association links it participates in must also be removed.
Without the “implicit removal” hypothesis, it would be necessary to explicitly state all these sys-
tem changes. For an example, let’s consider the following, very simple postcondition:

self.cabin = self.cabin@pre->excluding (cab)
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If we strictly apply the frame assumption “... and nothing else changes”, the result would be an
inconsistent system state whenever cab has association links to requests, floors etc.; the respec-
tive associations must therefore be changed.

Taking this into account, we modify our frame assumption to “... and nothing else changes,
except in the case of an implied removal or implied override”. In these two cases we need to
loosen the assumption to allow the implicit update of the corresponding associations.

4.2  Principle of Minimal Set

We propose to define the semantics of an operation schema by applying the idea of the minimal
set condition. For each class and each association, we will consider their sets of instances and
links, and claim that these are all minimal sets after execution of the operation. Otherwise stated,
if C is a class, if Set(C)@pre is its set of its instances before the execution of the operation, and
Set(C) is its set of its instances after the execution of the operation, then Set(C) is the minimal
set containing Set(C)@pre and fulfilling the postcondition. Intuitively, Set(C) can be constructed
by adding to Set(C)@pre all instances of C created by the operation. The same kind of idea can
be applied to the links of an association A; Set(A) is then the minimal set containing Set(A)@pre
and fulfilling the postcondition. The rule must hold for all classes and associations. As explained
in the previous section, there is a slight problem when we allow for the destruction of objects or
removal of association links. For defining the semantics of the operation schema, the idea is then
to gather the deleted entities into a temporary set, and rephrase the rule in the following way: let
C be a class, let’s denote by Minus(C) the set of instances of C destroyed by the operation, then
Set(C) Ç Minus(C) is empty, and Set(C) È Minus(C) is the minimal set containing Set(C)@pre.

For example, if we state in the postcondition the condition,

self.extRequest->includes (f)

it is equivalent to:

self.extRequest = self.extRequest@pre->including (f)

at least as long as no other statements have been made about the state of self.extRequest. 

Minimal sets can be very useful for stating postconditions incrementally. For example, we could
define a fragment of an imagined operation called swapFloors, which exchanges one floor with
another in the association ExtRequest:

self.extRequest->includes (f) &

self.extRequest->excludes (g)

Clearly, this would be much harder to state if we had to write a single equality. Minimal sets, in
this context, have a similar effect to re-dashing of schemas when composing them in Z [13]. The
minimal set principle has been used in the atFloor operation schema shown in figure 4.

We can use an idea similar to minimal sets for object attributes that are of a number type. We
propose to use the operators, “+=” and “-=”. Thus, the value of the object attribute in the post-
state is equivalent to the value in the pre-state plus all the right-hand sides of all “+=” operators
used in the postcondition that refer to the object attribute, and minus all the right-hand sides of
all “-=” operators that refer to the object attribute. For example:

x += 5 &

x -= 4

is equivalent to:

x = x@pre + 1

Such a notation is especially useful when there are many case distinctions.
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Unfortunately, the facility cannot be extended to more complex expressions (e.g. multiplication)
because it relies on the commutativity of additions and subtractions.

5 System Interface Protocol
The System Interface Protocol (SIP) defines the temporal ordering of system operations. An SIP
is described with a UML state diagram. A transition in the SIP is triggered by an input event
only if the SIP is in a state to receive it, i.e., there exists an arc with the name of the input event.
If not, the input event that would otherwise trigger the operation is ignored. A transition from
one state to another that has an event as label indicates the execution of the system operation
with the same name as the input event.

The Elevator Control SIP is shown in figure 5. It consists of two parallel substates. The top-most
substate models the activity of processing external requests. The dashed line shows that it works
in parallel with the lift activities.

Fig. 5. Elevator Control System Interface Protocol

The Lift submachine, the bottom-most state, is an auto-concurrent statemachine, indicated by a
multiplicity of many (‘*’) in the upper right hand corner. There is a statemachine for each lift but
their number is not predefined, hence the multiplicity many. A Lift submachine consists itself of
two parallel submachines. The submachine, on the left, models the activity of processing inter-
nal requests for the lift. The submachine, on the right, models the functioning of the lift cabin
itself. 

The SIP complements the operation schema descriptions because it describes the temporal
ordering of the system operations. The SIP offers two complementary features in addition to
operation schemas. Firstly, it acts as a guard to the operation, i.e., the SIP must be in a correct
state for the operation to have permission to execute. Secondly, the SIP allows one to state all
possible operation sequences, which allows one to test for valid and invalid operation sequences.
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Also, the SIP can be useful for describing performance constraints. For example, we could
attach a real-time constraint on the Lift submachine which states that a lift is not allowed to have
its door open for more than 5 seconds. This could be specified by placing a constraint on the
Door Open state, which places a 5 second deadline on a doorIsClosed event after an atFloor
event enters the Door Open state. Further investigation of the SIP’s ability to model performance
constraints is current work. We also hope to take into account such performance constraints
when architecting the system solution [10].

6 Discussion of Current and Future Work
The ultimate aim of this work is a modeling technique capable of specifying distributed systems
and their components. In this section, therefore, we discuss our initial ideas on how to use oper-
ation schemas for modeling mutually concurrent operations and blocking calls to other actors or
subsystems.

6.1  Modeling Blocking Calls

Figure 6 shows two approaches for servicing a particular request from an actor. The two
approaches produce the same result. The first approach (top) shows a blocking call from
requestingActor to subsystemA. During the execution of this operation, subsystemA executes a
blocking call to subsystemB. Once the call returns, subsystemA returns the result of the request
to requestingActor. The second approach (bottom) achieves the same result by asynchronous
events. Consequently two operation calls are made to subsystemA, as opposed to a single one in
the first approach. 

The question is what granularity of description is more natural. We believe that both possibilities
are important, although we stress that care should be taken not to have too coarse grained sche-
mas. Clearly, a pre- and postcondition description of a single operation for the whole system
would not be very enlightening.

Fig. 6. Blocking Call versus Non-Blocking Events

In situations like the one shown in figure 6, blocking calls are more natural and therefore we
propose to introduce them into operation schemas. We propose to model blocking calls in a sim-
ilar way to asynchronous events: the calls are sent to actors as events, but in addition the output
event is associated to a result event—the reply. This proposal assumes reliable communication
between the system and the actors, and also that the actor will respond, i.e., is not down.

subsystemA

subsystemBrequestingActor

1: request 1.1: makeAQuery

subsystemA

subsystemBrequestingActor

1: request 1.1: makeAQuery

2: replyToQuery2.1: replyToRequest

Versus
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We propose to specify a blocking call by stating in the postcondition that the event was sent to an
actor and that the system received a reply event. Also, the reply event must be related to the orig-
inal event by a predefined association that can be traversed with the role name result. And there-
fore the results returned from the call can be accessed directly from the reply event.

For example, a piece of a postcondition that states that a blocking call occurred during execution
could be:

actorA.events->includes (blockingEvent) &

objX.addr = blockingEvent.result.param1 -- the event result has possibly many return parameters

The first line states that the event blockingEvent has been sent to actorA. The second line states
that the datatype attribute addr of objX has the value of the first parameter of the result. Implic-
itly, all blocking calls have an associated result, which is itself an event that can have any num-
ber of parameters (modeled as attributes). 

6.2  Modeling Concurrent Operations by Schemas

We propose to release the interference-free constraint on operations and to allow the specifica-
tion of operations that execute concurrently1—operations that are possibly changing the state of
the system in parallel. The rely/guarantee conditions of Cliff Jones [9] allow one to state under
what conditions the postcondition makes sense in the presence of concurrency. If an operation is
invoked in a situation when the precondition is false, or if during the execution of the operation
the rely condition becomes false, then the specification does not state what the outcome should
be. Otherwise the postcondition will be true at the end of the execution and the guarantee condi-
tion will have been maintained throughout. More specifically, the conditions have the following
meaning in a specification:

Rely: All changes to system state performed concurrently by other operations must satisfy the
rely condition (i.e., it is a requirement on the outside world).

Guarantee: All changes to system state performed by this operation satisfy the guarantee
condition (i.e., an invariant that holds during the execution of the operation).

To deal with concurrent access to the system state, we propose an additional clause in the
schema that is used to state which variables require mutual exclusion. This clause is called
Mutex. We also propose to only state mutual exclusion constraints on the variables that are
changed by the operation. We therefore postpone the decision which synchronization policy to
use. For example, one such policy could be many readers/one writer with writer priority. Taking
this simple view on operation synchronization allows one to postpone the issues of fairness and
liveliness to later stages of development.

When writing operation schemas for concurrent operations, the easiest way to formulate the
postcondition is to write it like we would do it were no interference by other concurrent opera-
tions. Unfortunately, this is not possible when describing changes to a shared variable. Indeed,
such a variable can be changed by a concurrent operation, and the meaning of @pre is therefore
undefined, and should be avoided. In the endeavor to make as few changes as possible to the
interference-free style of writing schemas, we propose to use functions that are not bound to the
state at time @pre. For example, instead of x = x@pre + 5, we propose to use x += 5, with the
meaning that x has a value of 5 greater than it was before the addition. Similarly, we overload the
definition of the other incremental operators.

1.  Clearly, this will require us think about how this affects our notion of blocking calls.
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Taking into account the previous proposals, we will show as an example the transfer operation of
a banking system, shown in figure 7. The transfer operation schema specifies that the system
takes a specified amount from a source account and places it on a specified destination account.
To allow concurrent execution, we specify the rely and guarantee conditions and state mutual
exclusion constraints: both src.balance and dest.balance must be updated in mutual exclusion. 

Fig. 7. A possible specification of a transfer for a banking system

The Rely clause states that during the whole execution of this operation the balance of the
source account never goes below amount and that the state of the bank is continually in a state
that allows deposits and withdrawals. The Guarantee clause states that the balance of the source
account will not go below zero if the precondition and the rely condition hold. The Post clause
states that the balance of the source account has the amount less on it than it had before the sub-
traction was executed; it also states that the balance of the destination account has the amount in
addition to what it had before the addition was executed; and finally it states that an output event
was sent to a certain actor (inferred by the comment, not included for reasons of conciseness).

As seen on this example, an operation is just a series of accesses and atomic update operations at
a finer level of granularity. This leads us to the fact that the enforcement of the rely condition
during the whole execution of the operation may be a constraint too strong in certain cases. For
example, one could imagine a scenario where during the transfer operation the balance of the
source account may in fact go below amount (and therefore falsify the condition), but just before
the debit is executed another operation puts the source account’s balance above amount. Clearly
this scenario is valid behavior that is not allowed by the schema. This is a consequence of stating
concurrency constraints at a coarse grain, in a top-down approach.

7 Related Work
The idea of operation schema descriptions comes from the work on the Fusion method by Cole-
man et al. [5]. They took many ideas for operation schemas from formal notations, in particular,
Z and VDM. The operation schema notation that we present here has a similar goal to the origi-
nal proposal, but we have made notable changes to the style and format of the schema. Several
proposals for formalizing Fusion models with Z and variants of Z have been proposed [1] [3].

Operation: Bank::transfer (src:Account, dest:Account, amount: Money)
Description: The system takes amount from the source account and places it on the destina-
tion account, iff the source account has sufficient funds.
Notes: This operation may execute concurrently with other operations that also work on
accounts.
Mutex: -- proposed additional clause

mutex{src.balance, dest.balance}; 
Pre:

src.balance >= amount 
Rely: -- proposed additional clause

src.balance >= amount &
self.state = #deposit_withdraw_possible 

Guarantee: -- proposed additional clause

src.balance >= 0 
Post: -- we specifically propose a post that is very similar to the one that 

-- would have been written for a sequential system 
src.balance -= amount & 
dest.balance += amount
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The advantage of these approaches is that they can draw upon already existing analysis tools for
Z.

An approach to unite the use case descriptions with formal specifications, allowing first the cap-
ture of the functional requirements by use cases and then making them more precise by formal
specification and possible refinement afterwards, has been proposed by Petre et al. [12].

Z [16] and VDM [8] are both rich formal notations but they suffer from the problem that they are
very costly to introduce into software development environments, as is the case with most for-
mal methods, because of their high requirements for mathematical maturity on the user. On the
other hand, OCL, the language used in operation schemas, has the advantage of being a rela-
tively small and mathematically less-demanding language that is targeted at developers. One of
the secrets of OCL’s simplicity is that it uses navigation and operators manipulating collections
rather than relations. Also, OCL was created for the distinct and sole purpose of navigating
UML models, making it ideal for describing constraints and expressing predicates when a sys-
tem is modeled with the UML.

The Catalysis approach [7], developed by D’Souza and Wills, provides action specifications
which, of all related work, is the closest to ours. Catalysis defines two types of actions: localized
and joint actions. Localized actions are what we would term operations in our approach and joint
actions are related to use cases. In the endeavor to support controlled refinement by decomposi-
tion through a single mechanism, Catalysis defines actions, which can be decomposed into sub-
ordinate actions, at a lower-level of abstraction, or composed to form a superordinate action, at a
higher-level of abstraction. Furthermore, Catalysis defines joint actions to describe multi-party
collaborations, and localized actions to describe strictly the services provided by a type. How-
ever, joint actions lack the ability of goal-based use cases to describe stakeholder concerns due
to the focus of pre- and postconditions on state changes and not the goals and obligations of the
participants/stakeholders. The activity of assuring stakeholder concerns, when writing use cases,
is often a source for discovering new business rules. It was for these reasons that we preferred to
separate use case descriptions from pre- and postcondition descriptions of operations. 

Tool support for OCL is becoming more prevalent. A full list of tool support for OCL can be
found at [18].

8 Conclusion
The goal of this paper was to show how the combination of operation schemas and an SIP can be
used to provide a precise specification of system behavior by using the UML. When designing
the style of operation schemas, we defined a list of criteria, section 1, to measure such an
approach. Currently, our approach does not fulfil all the criteria mentioned, in particular the last
three criteria are the focus of current/future work. However, we hope that we were able to show
that the semantics of operation schemas are well defined, and that usability does not necessarily
have to be traded-in against rigor. For example, we believe that the application of the minimal
set principle and our frame assumption makes easier the formulation of correct postconditions.

Our approach has been successfully taught to students and practitioners and used in a number of
small-to-medium sized projects. This leads us to believe that operation schemas based on OCL,
in particular, are not only a powerful, but indeed a usable mechanism for describing precisely
system-level operations.
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