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Exception Handling in
Open Multithreaded Transactions

Abstract. This paper describes a model for providing transaction support for object-oriented concurrent pro-
gramming languages. In order to achieve seamless integration, the use of the concurrency features provided by
the programming language should not be restricted inside a transaction. A transaction model that meets this
requirement is presented. Threads inside such a transaction may spawn new threads, but also external thread
are allowed to join an ongoing transaction. A blocking commit protocol ensures that no thread leaves the trans-
action before its outcome has been determined. Exceptions are used to inform all participants in case a transac
tion aborts.

Keywords. Cooperative Concurrency, Competitive Concurrency, Transactions, Open Multithreaded Transac-
tions, Exceptions, Fault Tolerance.

1 Introduction

From the very beginning, computer scientists had to deal with concurrency on different levels. Concurren
be located inside a single processor, such as SIMD processors or super-scalar processors, it can be found
puters with multiprocessor architectures, or it can take its rise from distributed systems, where multiple indi
components communicate. Progress in all three fields, especially the recent explosion of distributed syste
the advent of the Internet, shows that the importance of concurrency is constantly increasing.

Modern object-oriented programming languages such as Java [1] or Ada 95 [2] reflect this trend, since they
porate support for different forms of concurrency. They provide more or less elaborate concurrency feature
as active objects and monitors to the application programmer. Distribution of a single program on multipl
cessing nodes is also often supported. But most of the time, concurrency control and synchronization is red
single method or procedure calls. Unfortunately, these mechanisms do not scale well. Complex system
need more elaborate features that can span multiple operations.

Transactions [3] have been used for many years to provide consistent access to databases. A transaction g
arbitrary number of simple actions together, making the whole appear indivisible with respect to other conc
transactions. Using transactions, data updates that involve multiple objects can be executed without w
about concurrency. If something unexpected happens during the execution of a transaction that prevents t
ation to continue, the transaction can be aborted, which will undo all state changes made on behalf of the t
tion. The ability of transactions to hide the effects of concurrency and at the same time act as firewalls for f
makes them appropriate building blocks for structuring reliable distributed systems in general.

These observations have lead us to analyze the problems of providing transaction support for concurrent
oriented programming languages. This paper concentrates on choosing an appropriate transaction mode
purpose. Section 2 gives an overview of concurrency in general, looks at some of the concurrency feature
in modern object-oriented programming languages and then presents different sorts of transaction m
section 3 introduces a new transaction model called Open Multithreaded Transactions that suits our
section 4 looks at exception handling in Open Multithreaded Transactions and the last section draws some
sions and presents future work.

2 Dealing with Concurrency

According to [4] concurrency comes in two flavors:competitive andcooperative.

Competitive concurrencyexists when two or more active components are designed separately, are not aw
each other, but use the same passive components. Programmers (would like to) live in an artificial world in
they do not care about other concurrent activities. They access objects as if they had them at their exclus
posal. This form of concurrency is used for example in databases.

Cooperative concurrencyexists when several components cooperate, i.e. do some job together and are aw
this. They can communicate by resource sharing or explicitly, but the important thing is that they have
designed together so that they cooperate to achieve their joint goal and use each other’s help and results
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The reasons for encountering concurrency in computing systems are two-fold. In a distributed system, c
rency is caused by the fact that the individual components are active. They evolve independently and som
they communicate with each other in order to synchronize or to exchange data. Concurrency is an inheren
a distributed system and cannot be avoided. But even centralized problems that can be solved sequent
benefit from concurrency, for example for simulation purposes or to elegantly handle sporadic incoming e
such as events generated by user interfaces or network traffic.

To handle this situation modern operating systems offer two forms of concurrency support. Processes (orheavy-
weightconcurrency) are programs that usually execute in separate address spaces on a computer system.
execute concurrently, and the processing power of the system is assigned to the processes following d
scheduling policies and priorities. Threads and semaphores make concurrency possible inside a single
(lightweightconcurrency). Here again, the processing power of the system is split up among the thread
cesses and threads may take advantage of multi-processor systems.

To support lightweight concurrency, typical object-oriented concurrent programming languages offer the po
ity to declare some sort of active object (such as Java [1] threads or Ada [2] tasks), which, once activated,
their main method concurrently with the main method of the application. Communication between these o
can beasynchronousor synchronous. Asynchronous communication is achieved by sending messages o
exchanging data through passive objects. To guarantee consistent updates to such shared data structures
of monitors are usually provided by the language (for example Java classes withsynchronizedmethods or the
more elaborate Adaprotected types, objects that offer mutual exclusive operations and guarded operations
wait-for queues). Some languages also offer synchronous communication mechanisms between active
(such as the Adarendez-vousconstruct), where both the caller and the receiver are blocked during data exch
Often the language also provides a mechanism to assign different priorities to the active objects running i
program.

Distribution, or heavyweight concurrency, is also more and more supported by object-oriented programmin
guages (for example Java RMI or the Ada Distributed Systems Annex). The communication mechanism u
provided between the distributed processes is synchronous or asynchronous remote procedure call or
method invocation.

Complex systems often need more elaborate concurrency features than the ones mentioned in the two
paragraphs. Atomic units that encapsulate several operations, making the whole appear indivisible with re
other atomic units, have been widely used to simplify reasoning about concurrency in large-scale systems
even more true when considering adding support for fault tolerance.

Two different forms of atomic units have evolved:transactionsand their derivatives which emphasize competitiv
concurrency, andconversationsand their derivatives which emphasize cooperative concurrency. The autho
[5] name the formerObject and Actionmodel and the latterProcess and Conversationmodel. They claim that the
two models are duals of each other, and provide a mapping from one model to the other. Using this mappin
show that mechanisms used in one model can have interesting counterparts in the other model.

The next subsections will briefly introduce these two models, and then present how they evolved to deal w
“other” aspect of concurrency.

2.1 Competitive Concurrency

Transactionsare the main approach to structuring competitive systems. The notion of transaction has firs
introduced in database systems in order to correctly handle concurrent updates and to provide fault toleran
respect to hardware failures [3]. A transaction groups an arbitrary number of simple actions together, mak
whole appear indivisible as far as the application is concerned and with respect to other concurrent trans
At any time during the execution of the transaction it canabort, which means that the state of the system will b
restored to the state at the beginning of the transaction (also calledroll back). Once a transaction has complete
successfully (iscommitted), the effects become permanent. The properties of transactions are referred to
ACID properties:Atomicity, Consistency, Isolation andDurability.

The basic transaction model, also calledflat transactions, has been extended in order to provide more flexible su
port for concurrency and recovery.Nested transactions[6] allow transactions to startsubtransactions, thus creat-
ing a tree of transactions. A subtransaction can either commit or roll back; its commit will not take effect (wi
be visible to the outside world), though, unless the parent transaction commits. The advantage of nested
tions is that they can abort independently without causing the abortion of the whole transaction. Only th
transaction and all its child transactions are rolled back. Since updates of a nested transaction to trans
objects are isolated with respect to other sibling transactions, siblings can be executed concurrently.

To cope with the problems of long-running transaction as they are found in CAD/CAM, VLSI design and
ware development applications several additional models have been proposed. They all strive to increase
rency between transactions, mostly by relaxing the serializability criterion such as it is done in theCooperative
Transaction model described in [7] or in theSAGAS model found in [8].

Another possibility to increase concurrency between transaction is to allow certain transactions to view the
of other transactions before they commit / abort. Of course, this creates a certain dependency between the
actions.
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TheRecoverable Communicating Actionsmodel described in [9] for instance allows a transaction (the sender
communicate with another transaction (the receiver), by sending results of operations, inducing an abort
dency of the receiver on the sender. If the sender aborts, then the receiver must abort as a result of the dep
Likewise, in order for the receiver transaction to commit, the sender transaction must commit, too.

TheSplit Transactionmodel [10] allows a user to dynamically split a transaction into two or more smaller tra
actions and commit / abort them independently. At the time of the split, the operations invoked so far by the
action must be divided and assigned to the new transactions, making each responsible for some subs
operations. This allows to make partial results visible to other transactions and hence has the potential to i
concurrency. In theJoint Transactionmodel [10], it is possible for one transaction, instead of committing
aborting, to join another transaction, releasing its objects to the joint transaction. The effects of the joining
action are committed only if the joint transaction commits.

2.2 Cooperative Concurrency

Conversations

The concept of aconversationhas been introduced in [11] in 1975. It allows several processes to perform
action together in an atomic way. Processes enter a conversation asynchronously; a recovery point is est
in each of them. They freely exchange information within the conversation but cannot communicate with an
side process (violations of this rule are calledinformation smuggling). When all processes participating in th
conversation have come to the end of the conversation, their acceptance tests are to be checked. If all te
been satisfied, the processes leave the conversation. Otherwise, they restore their states from the recove
and may try and execute a differentalternate. The occurrence of an error in a process inside a conversa
requires the rollback of all (and only) the processes in the conversation to the checkpoint established upo
ing the conversation. Conversations may be nested freely.

Atomic Actions

Later on, conversations have been enhanced with additional forward error recovery and exception resolutio
resulting in so-calledatomic actions[4]. This means that an exception that has been raised in a process that i
of an atomic action will be propagated to all other participating processes of that action. Since multiple exce
can be raised concurrently, an exception resolution mechanism must be provided in order to determine t
exception that will be propagated to all participants.

2.3 Combining Cooperative and Competitive Concurrency

Recently, some transaction models have evolved to allow cooperative concurrency inside a transaction. T
extension Arjuna [13] for instance allows different threads to work on behalf of the same transaction, but w
really defining a clear model. One thread starts a transaction, and may communicate its identity to other t
These can then also perform work on behalf of the same transaction. Finally, one of the threads will abort o
mit the transaction. This technique is very general as it leaves complete freedom to the transaction progr
but from our point of view it is exactly this freedom that can be dangerous. It takes very careful programm
still guarantee the ACID properties of such transactions. Threads can decide to leave the transaction and
nicate some of its results to the outside world before the outcome of the transaction has been determined
mation smuggling). Transactional objects might not be aware of the intra-transaction concurrency and
won’t guarantee consistent execution of concurrent operations. The same sort of transactions are also des
the CORBA transaction service specification [14].

[15] describes a model calledMultithreaded Transactions. The same model is also used inCooperative Transac-
tional Object Groupspresented in [16, 17]. A multithreaded transaction has precise semantics: Once a threa
main thread) has started a transaction, it can fork new threads that work on behalf of it to take advantage
currency. Before the main thread can commit or abort the transaction, these forked threads must all run to c
tion.

The atomic action concept has also been extended. TheCoordinated Atomic Actionmodel [18] allows the partici-
pants of an action, which want to be isolated from the outside world, to also access external objects. Upd
these objects have transactional semantics with respect to other concurrently running coordinated atomic

In both the multithreaded transaction and the coordinated atomic action models, cooperation is supported
ticipants in the inside of an atomic unit, and competitive concurrency is supported between different atomi
that run in parallel. Coordination is supported for a known set of participants, and all other concurrency is c
ered to be of competitive nature.

3 Open Multithreaded Transactions

As we have seen in the previous section, the classic transaction model has been extended in many ways t
the requirements of different application domains. When introducing transactions into concurrent program
languages, it is important to support concurrency inside a transaction in a natural way. In particular, the
concurrency constructs provided by the language should not be restricted inside a transaction, if possible

The multithreaded transaction model comes closest to what we need. One drawback however is that the o
of having concurrency inside a transaction is to start a transaction in one thread, and then spawn new
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inside the transaction. Also, these spawned threads must run to completion before the transaction can be
ted. The multithreaded transaction model therefore cannot be used to deal with the situation where several
existing threads come together and decide to perform a job on a set of objects in a transactional manner.

Unfortunately, creation and deletion of threads can be a complicated task and often programmers try to a
whenever possible. Process control and especially real-time systems tend to use a static number of thre
ated once and for all during the initialization of the system.

Due to the dynamic nature of problems it is sometimes not even foreseeable at the beginning of a transacti
many threads will participate. An example of such a system is an online auction system, where the individu
tions are structured using transactions. There will always be a vendor thread and maybe some accounting
that will participate in such a transaction, but the number of bidder threads is not known in advance. A
might also want to join an already ongoing auction. This dynamic behavior also excludes the use of the c
nated atomic action model, that works with a fixed number of participants.

In order to overcome these limitations, a new transaction model namedOpen Multithreaded Transactionshas
been defined. Lightweight and heavyweight concurrency are treated orthogonally with respect to transa
The model allows threads to be created, to run to completion, or to join an ongoing transaction at any time

The following description describes the rules for open multithreaded transactions. Threads working on be
an open multithreaded transaction are referred to asparticipants:

Starting Open Multithreaded Transactions
 • Any thread can start an open multithreaded transaction. This thread will be the first participant of the tr

tion.
 • Open multithreaded transactions can benested. A participant thread that starts a new open multithread

transaction will start a nested transaction. Sibling transactions can execute concurrently.

Joining Open Multithreaded Transactions
 • Zero or more threads can join an open multithreaded transaction, thus becoming participants of the t

tion, if and only if they do not yet participate in any other transaction. To join a nested transaction, a t
must first join all parent transactions. A thread can only participate in one sibling transaction at a time.

 • Threads spawned by participants will automatically become participants of all the transactions in whi
spawning thread participates.

Concurrency Control in Open Multithreaded Transactions
 • Accesses to transactional objects are isolated with respect to other open multithreaded transactions. T

visible information that is available to the outside world is the existence of the transaction.
 • Classic consistency techniques (i.e. monitors) are used to guarantee consistent updating of the objects

participants.

Ending an Open Multithreaded Transactions
 • All participants must vote on the outcome of the transaction. Possible votes arecommit or abort.
 • The open multithreaded transaction commits if and only if all participants votedcommit. If any of the partici-

pants votesabort, the transaction aborts.
 • Participants are not allowed to leave the transaction (they are blocked) until the outcome of the transact

been determined. This means in particular that all participants of an open multithreaded transaction tha
mits exit synchronously. Only then, the changes made to transactional objects are made visible to the
world.

The following figure depicts a non-nested open multithreaded transaction with 6 participants:

Figure 1: Open Multithreaded Transactions

Threads are blocked until the outcome of
the transaction is known

Thread A

Thread B

Thread C

Thread D

Thread C’

Thread B’

Thread C starts
the transaction
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Thread C starts the transaction, thread A, B and D join it later on. During the transaction, thread C forks
thread, thread C’. This thread performs some work on behalf of the transaction and then terminates after
given his vote on the outcome of the transaction. Thread B also forks a thread, thread B’, but this thread w
tinue to run after the transaction. In this example, all threads votecommit, and are therefore blocked until the las
participant, here Thread B’, has finished its work and given its vote.

An obvious problem that has not been discussed yet aredeserters, i.e. threads participating in an open multi
threaded transaction that suddenly disappear without voting on the outcome of the transaction. This can h
a thread is explicitly killed1, or when the process of a participant thread dies incidentally.

Different solutions are possible:
 • Participant threads that terminate without voting on the outcome of the transaction cause the transa

abort. The advantage in this scenario is that if the thread terminated due to some unknown failure, the a
tion state remains consistent, since it is restored to the state that was valid before the beginning of the t
tion.

 • The disappearance of participant threads causes the transaction to abort, except for participant thre
have been spawned by some other participant thread. This rule also makes sense, since such pa
threads can be considered auxiliary threads of the parent participant thread, and it is the parent that w
on the outcome of the transaction.

4 Exceptions in Open Multithreaded Transactions

We haved faced several problems while extending the open multithreaded transaction model with excepti
dling. Coordinated atomic actions provide coordinated exception handling. A set of internal and external
tions is associated here with each action. Each participant has a set of handlers for some or all of the
exceptions. When an exception is raised in any participant, the appropriate handlers are executed in all
pants. This allows the participants to cooperate not only during normal execution of the action, but also whe
dling abnormal situations. A coordinated atomic action can either terminate normally, or by signalling an ex
exception.

In the cooperative transactional object groups model [17], exceptions raised concurrently in threads partic
in a multithreaded transaction are first resolved locally, and then a distributed resolution algorithm is initia
the resolved exception can not be handled and crosses the transaction boundary, then the transaction is 

From our point of view, the fact that unhandled exceptions crossing the transaction boundary result in abort
transaction is a good idea. Transactions are atomic units of system structuring that move the system from a
tent state to some other consistent state if the transaction commits. Otherwise the state remains unchan
exception mechanism is typically used to signal unforeseen events such as situations in which a desired o
could not be performed as requested. Exceptions are events that must be handled in order to guarante
results. If such a situation is not handled, the application data might be left in an inconsistent state. Abort
transaction and thus restoring the application state to the state that was valid before the beginning of the
tion will guarantee correct behavior. If this happens, it is of course important that all participants are notifi
the abortion of the transaction.

On the other hand it is not clear if exception resolution and coordinated exception handling among particip
necessary, or even feasible due to multiple reasons. Firstly, concurrency in open multithreaded transac
dynamic, that is participants can join transactions at any time. Due to this asynchronous entering, a particip
not really rely on the presence of some other participant, especially for exception handling. The thread tha
the transaction might cause an exception to be raised even before any other participant has a chance to
transaction. Secondly, an exception declared in one participant might have no meaning in some other par
since they might have been designed separately, cooperating only through shared data objects. Thirdly, co
(and potentially distributed) exception resolution can be very time consuming and should therefore be avoid
is not absolutely necessary.

These reasons led us to define the following rules for exception handling in open multithreaded transactio

Exception Handling in Open Multithreaded Transactions
 • Each participants has a possibly distinct set of associated internal exceptions that it can handle. Th

interface exceptions of an open multithreaded transaction is also distinct for each participant. It is com
of the exceptions that can be raised inside the participant and are not handled there augmented by
defined interface exceptionTransaction_Abort .

 • Exceptions raised in a participant of an open multithreaded transaction are not propagated to other
pants. They can be handled locally by this thread.

 • Unhandled exceptions of a participant that cross the transaction boundary will cause the transaction to
The exception will be propagated to the calling environment of the participant. Concurrent exceptions cr
the transaction boundary are allowed. Participant threads that did not raise an exception will be inform

1. Most concurrent programming languages offer such features, e.g. the Javastop method or theabort

statement of Ada.



saction,

rform-
ction;
not

eption Y

ges. A
ral
ide the
ongoing
as been
d. Excep-

multi-
of the

velop-

,

be
ry
the abort of the transaction as soon as possible1. They will propagate the exceptionTransaction_Abort to the
calling environment.

Figure 2 depicts an open multithreaded transaction with three participant threads. Thread A starts the tran
Thread B joins it, and at some point Thread A spawns Thread A’. Thread A’ performs some work, and votescom-
mit; it is blocked until the outcome of the transaction is known. Thread A generates an exception while pe
ing its work, but the exception is handled locally. It therefore does not affect the outcome of the transa
Thread A also votescommit. Unfortunately Thread B has generated an exception, exception Y, that it could
handle locally. It crosses the transaction boundary, and therefore causes the transaction to abort. The exc
is propagated to the calling environment of Thread B; in all other participants the exceptionTransaction_Abort
is generated,

5 Conclusions and Future Work

This paper has highlighted the needs of providing transaction support in concurrent programming langua
new transaction model,Open Multithreaded Transactions, has been defined. It supports concurrency in a natu
way, for it does not restrict the use of concurrency constructs provided by typical concurrent languages ins
transaction. Threads inside a transaction can spawn new threads, but also external threads can join an
transaction. A blocking commit protocol ensures that no thread leaves the transaction before its outcome h
determined. Unhandled exceptions that cross the transaction boundary cause the transaction to be aborte
tions are also used to inform all participants in case a transaction aborts.
We are currently investigating the different ways of integrating a transaction support based on the open
threaded transaction model into object-oriented concurrent programming languages. An implementation
transaction support for the Ada 95 programming language based on the design of TransLib [17] is in de
ment.
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