-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

On Persistent and Reliable Streaming in Ada

Jorg Kienzle Alexander Romanovsky
Software Engineering Laboratory Department of Computing Science
Swiss Federal Institute of Technology University of Newcastle
CH - 1015 Lausanne Ecublens NE1 7RU, Newcastle upon Tyne
Switzerland United Kingdom
email: Joerg.Kienzle@epfl.ch email: Alexander.Romanovsky@newcastle.ac.uk

Abstract. Saving internal program data for further use is one of the most useful
ideas in programming. Developing general features to provide such data saving/
restoring is a very active research area. There are two application areas for such
features we believe to be crucial: system fault tolerance and data persistence.
Our analysis shows that the features used in these areas have a lot in common:
they are to flatten data of different types and save them in a store which can be
used later on. The recent revision of the Ada language standard, Ada 95, intro-
duces a new mechanism called streams that allows structured data to be flat-
tened. Streams are sequences of elements comprising values from possibly
different types. Ada 95 allows programmers to develop their streams following
the standard abstract class interface. In this paper we show how to use the stream
concept for developing new features to provide internal program data saving
suitable for fault tolerance and persistence. A hierarchy of different storage
types, useful in different application domains, is introduced. The standard
stream interface is extended, making it possible for programmers to have a better
control of the way streams work by separating storage medium control from the
actual stream type using the design patterns. The convenience of this new inter-
face is demonstrated by developing a generic package allowing any non-limited
object to be written into a storage device. It can be used for providing data per-
sistence and as a state restoration feature in schemes used for tolerating software
design faults.

Keywords. Streams, Persistence, Stable Storage, Design Patterns, Ada 95,
Object-Oriented Programming, Fault Tolerance.

1 Introduction

Data are often kept in a secondary memory medium to be used in further program exe-
cution. It is not difficult to see that many modern services rely on saving data. Starting
with databases and sequential files programmers have been trying to develop useful
and general concepts in this area. How data are saved, what sort of API is provided,
what assumptions are made (e.g. fault assumptions), etc., depends on the characteris-
tics of the feature and on the application. In this paper we will concentrate on features
which are used for saving and restoring values of internal program data. There are two
main areas which require such features: developing fault tolerant systems and persis-
tent systems.

Two general types of recovery are used in building fault tolerant systems [1]: forward
and backward error recovery. When backward error recovery is used, the internal pro-
gram data are saved in a memory which will not be affected by the faults assumed.

https://core.ac.uk/display/147904536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Later on, should an error be detected, the program is returned into a previous correct
state by restoring its internal data. Depending on the fault assumptions and on the
recovery scheme used, the program can be either re-started (if we are dealing with
hardware crashes) or a diversely-designed program (alternate) can be tried (if a recov-
ery block scheme [2] is used to tolerate software design faults). The former approach is
often referred to as checkpointing. The features which are used for data saving and
restoring in the latter are often called state restoration features.

Data persistence [3, 4] relies on saving values of data from a program execution space
so that they can be used in a later execution: that is the values "persist" from one exe-
cution to another. There are many possible schemes for supporting persistence; for a
complete survey, the reader is referred to [5].

In our opinion fault tolerance and persistence are quite distinct program properties and
there are important differences in the way data saving is used in these two areas. Per-
sistence relies on saving data values to allow them to be used in a later execution. In
fault-tolerant systems the state of the whole program at some moments of time is saved
and stored in such a way that the same program can continue execution from one of
these states. This means in particular that these states must be consistent. Although
very often the designers of the persistence services cannot help extending them to
allow some simplified forms of error recovery, in our opinion it is important not to mix
them and separate them properly while building, for example, persistence services for
fault tolerant systems.

While implementing a persistence service, designers do not take into consideration
fault assumptions as this is not relevant. But when we save data for fault tolerance, we
should make sure that they will survive all assumed faults; this means for example that
for the recovery block scheme we can use main memory for data saving if we assume
only design faults. While developing error recovery features one should often take into
account that errors can be detected at any time: depending on the failure assumptions,
it may be the case that the program crashes and that it is not possible to do any data
saving after an error has been detected. Sometimes it should be possible to tolerate
media failures as well. When developing a persistence service one can basically
assume that the program works/finishes correctly and it can perform all actions
required for persistence any time it wants.

The definition of persistence is not specific about how the program finishes. This is
why several persistence services have been extended to provide some forms of fault
tolerance. Although, this is a reasonable approach for many practical reasons (e.g. per-
formance), generally speaking, these two services can be provided separately and we
believe that it is important to view them as such.

The remainder of this paper is organized as follows: the next section explains briefly
how Ada 95 streams work. Section 3 discusses our reasons for choosing them to
implement persistence and fault tolerance. In the following section a flexible, stream-
based approach which implements these properties is described. It allows, in particu-
lar, the designers of stable storage to introduce new types of storage for keeping data.
Section 5 shows by an example how the persistent and reliable streams are to be
employed by the users. Section 6 looks at shared passive packages and the last section
outlines our plans for future research.

2 Streams in Ada 95

Ada 95 [6], the recent revision of the Ada standard, does not have elaborate features
for backward error recovery or data persistence. This is why many attempts have been
made to extend the language, for example, a recovery block scheme in [7], and two
approaches for persistent Ada [8, 9]. We believe that extending the language is for
many reasons not practical; in this paper we rely on standard Ada 95 only.

Among many other new features, Ada 95 introduces a new concept called streams. A
stream is a sequence of elements comprising values from possibly different types. The
values stored in a stream can only be accessed sequentially. Ada streams can be seen as
one of the first incarnations of th®erializerdesign pattern described in [10]. The
CORBA externalizatiorservice [11] and the Jav@erializationpackage [12] are other
examples that implement tiSerializerpattern.

This pattern allows programmers to efficiently stream objects into data structures of
their choice, as well as create objects from such data structures. The pattern can be
used whenever objects are written to or read from flat files, relational database tables,
network transport buffers, etc. The participants of the patternReadefiVriter and
ConcreteReadéConcreteWriter the Serializable interface, ConcreteElementand
Backend

The Readerand Writer part declare protocols for reading and writing objects. These
protocols consist of read respectively write operations for every value type, including
composite types, array types and object references .Reselerand Writer hide the
Backendand the external representation format from the serializable ob{ecteret-
eReadeandConcreteWriteimplement theReaderandWriter protocols for a particu-

lar backend and external representation format. Beeializableinterface defines
operations that acceptReadeifor reading and &Vriter for writing. It also should pro-

vide aCreate operation that takes a class identifier as an argument and creates an
instance of the denoted clag®oncreteElemens an object implementing th@erializ-
ableinterface, which allows it to read and write its attributes. Bagkends a partic-

ular backend, such as a storage device, a relational database front-end or a network
buffer. A ConcreteReadé&ConcreteWriterreads from/writes to its backend using a
backend specific interface.

The structure of th8erializerpattern is shown in the following UML class diagram:

<<Interface>> ST T T STt TTTTTTTTmomTmmmmmmmmmm
Serializable Nt .
<<call>> H \4
readFrom(Reader) |& - - - - - - Reader Writer
writeTo(Writer) L - - - - - -
<<call>> read operations for write operations for
A every value type every value type
r—= - - L - i
L L
ConcreteElementl ConcreteElement2 | |
ConcreteReaderl ConcreteReader2
ConcreteWriterl ' | concretewriter2

\
\ \
<<call>> <<call>> <kcall>> <<c\vd|>>

2 v
Backend1 Backend2

v

Figure 1: TheSerializerPattern Structure

When invoked by a client, ReadefWriter hands itself over to the serializable object.
The serializable object makes use of its protocol to read/write its attributes by calling
the read/write operations provided by tReadefWriter. This results in a recursive
back-and-forth interplay between the two parties.

We will now show how Ada 95 streams implement Berializerpattern. The standard
packageAda.Streams defines the interface for streams in Ada 95 [6, 13.13.1]. It
declares an abstract typeot_Stream_Type , from which all other stream types must
derive.

Every concrete stream type must override Bead and Write operations, and may
optionally define additional primitive subprograms according to the functionality of
the particular stream. Obviously, the root stream type playfeéedefWVriter role in

the Serializer pattern. Derivations of the root stream type incarnate Gloacrete-
ReadefConcreteWriterand the backend interface.

In Ada 95, the pre-defined attribut®gite and’Output are used to write values to a
stream, thus converting them into a flat sequence of stream elements. Reconstructing
the values from a stream is done with the pre-defined attribRtes and 'Input

They make dispatching calls on th&sad and Wiite procedures of the
Root_Stream_Type . When usingwrite and’Read , neither array bounds nor tags of
tagged types are written to or read from the stre@utput and’lnput must be used

for that purpose.

All non-limited types have default implementations of the stream attributes, hence all
non-limited types implement th@erializableinterface and are therefo@oncrete Ele-

ment It is possible to replace the default implementation of the stream attributes for
any type via an attribute definition clause. In order to write a value of a limited type to
a stream, such an attribute definition clause is even mandatory. Any procedure having
one of the predefined signature shown in [6, 13.13.2] can replace the default imple-
mentation. The following example shows how to replace the predefined implementa-
tion of Write for an integer type:

type My_Integer isnew Integer;

procedure My_Write (Stream : access Ada.Streams.Root_Stream_Type’ Class ;
Item : My_lInteger);
for My_Integer'Write use My_Write;

The only concrete stream implementation that is defined in the language standard is
Stream 10 [6, A.12], a child package ofda.Streams . It provides stream-based
access to filesStream_10 offers also file manipulation operations suchGsate |,

Open, Close , Delete , etc. The following example shows how to write values of ele-
mentary types, array types and tagged types to a stream and how to reconstruct them

again:
with Ada.Streams.Stream_|O; use -- reading
Ada.Streams.Stream_|O; declare
- writing My_File : File_Type;
declare S-: Streanj_Access;
My_File: File_Type; bel .ir:nteger,
S : Stream_Access; 9 I .
I : Integer; Open (My_File, “file_name”);
My_String : String := “Hello”; S := Stream (My_File);
T:A _Tagged_Type' Class :=...; Integer’ Read (S, I);
begin declare

My_String: String :=
String’ Input (S);
T:A_Tagged_Type :=

Create (My_File “file_name”);
S := Stream (My_File);

-- do some work)) .
nteger Write (S, 1) begié_Tagged_Type Class ' Input (S);
String’ Output (S, My_String); _- do some work
A_Tagged_Type’ Class ' Output (S, T); end:
Close (My_File); Close (My_File);

end; end: -

3 Our Intentions

Ada streams are a very powerful and universal object-oriented mechanism; our inten-
tion is to use them for developing fault tolerance and persistence features. This fits
exactly the underlying idea behind Ada streams, which is that programmers can
develop their own stream subclasses by inheriting from the given abstract class. These

streams can be suitable for different purposes, media, data, applications, assumptions,
etc. To the best of our knowledge there has been no research reported along this line.

This approach has many advantages. It allows us to stay within the standard Ada lan-
guage, which makes our approach useful for any settings and platforms which have
standard Ada compilers and run-times. Although proposals discussing various Ada
extensions are of great importance for the future language standards, there are useless
from the point of view of practitioners designing systems now.

We perfectly realize that the features we intend to develop do not meet all requirements
of the orthogonal persistenci], but paper [9] clearly demonstrates that it is impossi-
ble to develop it within standard Ada 95. Our intention is to stay within the standard
and develop data saving mechanisms as elaborate as Ada allows.

Although, as we have explained before, we treat backward error recovery and persis-

tence as different properties, our analysis shows that a general approach suitable for
both areas can be developed, as they share common demands. Our approach will incor-
porate a class hierarchy of different streams which are intended for saving data so that

it can be used for both purposes.

Streams only develop their full potential in the context of different streaming backends
such as flat files, relational database tables or network transport buffers. We have found
that in spite of the fact that Ada streams are a very general and powerful concept, the
Ada.Streams package does not well separate different forms of streams, e.g. buffered
streams, from different streaming backends. This separation and the provision of addi-
tional backend control are vital for applying streams for developing backward error
recovery and persistence features in Ada.

In the following part of the paper we will discuss a general extensible object-oriented
data saving mechanism suitable for developing reliable and persistent systems. This
mechanism will be flexible enough to allow transparent changes of the media and will
rely on standard Ada features only.

4 Ada Streams Revisited

This section presents a flexible approach to streaming which can be used for develop-
ing both backward error recovery and persistence features.

First we introduce a separation of buffered and non-buffered streams. We believe that
these are essentially different and that it is important to introduce this difference on an
abstract level. The two main reasons for this decision are:

« the stream control is different for buffered/non-buffered streams

« very often programmers can make performance optimizations because they know
the peculiarities of the application with respect to buffering, size of data, phases of
the program execution, characteristics of the media which stores the data, etc.

In the first subsection, an extended stream interface is proposed to allow an additional
control related to buffered streaming. Secondly, we develop a type hierarchy which
includes different storage typaslatile, non-volatile stableandnon-stable

4.1 Buffered Streams

The Ada Reference Manual states that streams can be implemented in various ways,
providing access to external sequential files, internal buffers or even network channels
[6, 13.13]. The language manual provides an interface for streams by defining an
abstract root type in the packagéda.Streams from which concrete implementations
must derive. The only concrete implementation that is defined in the language standard
is the stream type that provides sequential file access mentioned in the previous sec-

tion. We have seen already that in addition to the operations defined for all stream
types, the streams in the packageam_ 10 provide file manipulation operations such
asCreate , Open, Close , Delete , and stream-related operations suclflash . Calling

Flush will actually write the data that has been previously written to the stream out to
the file.Flush is an operation that takesFle as a parameter, but from our point of
view, Flush should be an operation of the stream itself. Whenever streams are used to
access storage devices, it is not always a good idea to write the data to the device on
every call towrite or'Output . At what time the data should be written to the device

is largely device dependent. Disk devices for example are usually accessed in fixed-
sized chunks of data called blocks. In this case, too many individual write accesses can
result in considerable performance loss. It is much more efficient to buffer the data.

We have therefore defined a packaggeams that provides two stream types,

Stream_Type and Buffered Stream Type , both descendants oAda.Streams.
Root_Stream_Type
with Ada.Streams; use Ada.Streams;
with Buffer_Types; use Buffer_Types;
package Streams is
type Stream_Type (Storage : access Storage_Type' Class)
is new Ada.Streams.Root_Stream_Type with private
procedure Read (Stream : inout Stream_Type;
Item :out Stream_Element_Array;
Last : out Stream_Element_Offset);
procedure Write (Stream : inout Stream_Type;
Item : in Stream_Element_Array);
type Buffered_Stream_Type (Buffer : access Buffer_Type’ Class)
isnew Ada.Streams.Root_Stream_Type with private
procedure Read (Stream : inout Buffered_Stream_Type;
Item :out Stream_Element_Array;
Last : out Stream_Element_Offset);
procedure Write (Stream : inout Buffered_Stream_Type;
Item : in Stream_Element_Array);
procedure Flush (Stream : inout Buffered_Stream_Type);

end Streams;

This allows the user to choose between a normal stream (one that writes the data to the
storage medium on evelyrite) and a buffered stream (one that buffers the data until
the user call§lush). The type of storage that will be used for the stream must be cho-
sen at instantiation time through an access discriminant (see section 4.2). This tech-
nigue is described in [13] as tB¢rategypattern.

The participants of th&trategypattern are th&trategy the ConcreteStrateggnd the
Context The pattern defines a family of algorithms, encapsulates each one, and makes
them interchangeable. It lets the algorithm vary independently from clients that use it.
The most important participant is tistrategywhich declares an interface common to

all supported algorithms (in our case the storage deviceshcreteStrategymple-

ments a concrete algorithm using tB&rategyinterface. FinallyContextis configured

with a ConcreteStrategpbject, and uses the interface definedSiyategyto call the
algorithm.

An application programmer can instantiate a stream by passing the desired storage
type as a parameter:

S : Stream_Ref := new Stream_Type (Instance_Of_Storage_Type);

4.2 The Storage Hierarchy

As shown in the previous subsection, a user starts by creating an instance of a storage
type in order to instantiate a stream. The UML class diagram shown in figure 2 illus-
trates the hierarchy of storage types and the role they play 8tritegypattern.

We split the storage hierarchy intmlatile storage anchon-volatile storage. Data
stored in the volatile storage do not survive program termination, hardware crashes or
transient errors. A volatile storage can for example be implemented using conventional
computer memory. Once an application terminates or crashes, its memory is usually
freed by the operating system, and therefore all internal program data are lost. On the
other hand, data stored in non-volatile storage remain intact even when the program
terminates. Databases or disk storage are commonly used for implementing non-vola-
tile storage. Among the different types of non-volatile storage, we distingiiaiie
andnon-stableones. Data written into non-stable storage may get corrupted when the
system fails (for instance, during the write operation). Stable storage ensures that the
data that has been written on it will never be corrupted, even in the presence of applica-
tion crashes and other failures [14]. If a crash occurs during the write operation, the
previously valid state can still be retrieved. Features of this type are used in atomic
transactions [15] to guarantee the durability of the database systems.

Strategy Context
<<Interface>> Storage_Type
Serializable
Read
readFrom(Reader) Write
write To(Writer) Get_Current_Size
Volatile_Storage_Type Non_Volatile_Storage_Type
Open

Close
Delete

L
I |

Memory_Storage_Type Non_Stable_Storage_Type Stable_Storage_Type

&

| | :Storage_Type _ ! o Iclon_VoIatiIe_Storage_Type

File_Storage_Type Remote_Storage:Type Mirrored_Storage_Type

Create

Create Create Create

Figure 2: The Storage Type Hierarchy and SeategyPattern

The only two concrete storage types currently implemented are volatile memory and
non-volatile, non-stable disk storage. The generic cReasote_Storage Type allows

any storage to be called remotely using the Ada Distributed Systems Annex, thus
transforming the storage into a non-volatile storage. There are also two generic classes
that allow to create stable storage based on non-stable stovagesd Storage

_Type andReplicated_Storage Type (not shown in the figure due to space reasons).

The interface of the top-levetorage_Type is given below:

with Ada.Streams; use Ada.Streams;
with Ada.Finalization; use Ada.Finalization;
package Storage_Types is
type Storage_Type (<>) is abstract tagged limited private ;

type Storage_Ref is access all Storage_Type’ Class ;
procedure Read (Storage : inout Storage_Type;

Item : out Stream_Element_Array;

Last : out Stream_Element_Offset) is abstract ;
procedure Write (Storage inout Storage_Type;

Item :in Stream_Element_Array) is abstract ;

function Get_Current_Size (Storage : in Storage_Type)
return Stream_Element_Count is abstract ;

private
type Storage_Type isnew Limited_Controlled with null record
end Storage_Types;

Storage_Type is privately derived froniimited_Controlled in order to allow con-

crete storage implementations to perform automatic initialization and finalization, if
necessary. Disk files for instance should always be closed, network ports should be
freed, etc.Storage_Type is limited, so it can store, if necessary, other limited data,
such as for example file descriptors. Finally, the public viewsiofage Type has
unknown discriminants. That way the user of a storage type is forced to call one of the
constructor functions of a concrete storage type; he can not just declare an instance of
the type and thereby bypass correct initialization.

The operations provided Itorage Type areRead, Write andGet_Current_Size

TheRead andwiite procedures are equivalent to the ones required for the stream type.
Actually, theRead andWrite procedures of the stream type are just call-though proce-
dures to the associated storage device. GhieCurrent_Size function returns the
current length of the data associated with the storage in stream elements. This function
has been introduced to simplify buffer management.

4.3 The Buffer Hierarchy

It is not difficult to see that to declare an Buffer_Type
instance of a buffered stream the user of the —
new Streams package (section 4.1) must first Write
instantiate a buffer. Buffers here come in two Flush
flavors, unbounded and bounded. Z}
The package describing the abstract buffer [|
type is shown below: Bounded_Buffer_Type Unbounded_Buffer_Type
with Ada.Streams; use Ada.Streams;
f,”g‘;‘ Aﬁﬁiﬂ;ﬁ‘;‘;ﬁ‘;‘ﬁ” ’ Figure 3: The Buffer Type Hierarchy
with Storage_Types; use Storage_Types;
package Buffer_Types is
type Buffer_Type (Storage : access Storage_Type' Class)
is abstract new Limited_Controlled with private ;
type Buffer_Ref is access all Buffer_Type' Class ;
procedure Read (Buffer : inout Buffer_Type;
Item : out Stream_Element_Array;
Last : out Stream_Element_Offset) is abstract ;
procedure Write (Buffer : inout Buffer_Type;
Item : in Stream_Element_Array) is abstract ;
procedure Flush (Buffer : inout Buffer_Type) is abstract
private
type Buffer_Type (Storage : access Storage_Type' Class)
is abstract new Limited_Controlled with null record ;
procedure Finalize (Buffer : inout Buffer_Type);

end Buffer_Types;

When using buffered streams, the user must first decide what kind of buffer he wants to
use, instantiate it and pass the reference to the buffered stream. When instantiating a
buffer, a storage device must be passed as a discriminant.

The buffer type is derived fromamited_Controlled in order to perform proper final-
ization of the associated storage device. Rhad andWrite operations of the buffered
stream will call theRead andWrite operations of the buffer type. In thirite proce-

dure, the data is first written into a memory buffer, and only wHesh is called, the

data is written out to the corresponding storagmad does the inverse, that is it will try

and read all the data or as much data as fits from the storage device into the buffer upon
the first call to read. Subsequent calls can then be served without accessing the storage.

When implementing the unbounded buffer class, it was possible to use an instance of
the volatile memory storage type to buffer the data. This illustrates the increased possi-
bilities of reuse.

4.4 Non-Volatile Storage

Compared to volatile storage, data stored in non-volatile storage will survive program
termination. It is therefore necessary to provide housekeeping operations similar to the
ones provided byAda.Streams.Stream_10 for files. These include above all opera-
tions for creation and destruction of such non-volatile data. The non-volatile storage
type provides three new operations for this purpose:

procedure Open (Storage : inout Non_Volatile_Storage_Type) is abstract
procedure Close (Storage : inout Non_Volatile_Storage_Type) is abstract
procedure Delete (Storage : inout Non_Volatile_Storage_Type) is abstract

Open allows the user to establish a connection between already existing data on the
device and the storage type. This is for instance needed for files, but also for network
sockets or databases. Thivse operation severs the association again, leaving the
data on the deviceDelete is used to definitively remove the data from the storage
device.

4.5 Identifying Non-Volatile Data

Since the actual data stored on non-volatile storage will survive the lifetime of the
object instance that represents it during program execution, there must be some means
to uniquely identify the data
order to be able to manipulate

Storage_Params_Type

data again on subsequent run String, To. Storage_Params
the application. Files usua Storage_Params_To_String

have file names associated v [F
them, but other storage types n I I

u.se dlﬁ:erent Identlflc.atlon t.ec Volatile_Params_Type Non_Volatile_Params_Type
niques. Data stored in persist

. . Open_Storage
memory for instance can be id«
tified using addresses. In orde 4
provide correct identification fi [1
each Storage type, a hlerarch) Non_Stable_Params_Type Stable_Params_Type

storage parameter objects

been introduced. The class ¢ . . :
gram in figure 4 shows the strt Figure 4: The Storage Parameter Hierarchy

ture of the storage parameter hierarchy. It is identical to the one for storage types.

The first functionCreate_Storage , allows a user to create an instance of the storage
type that corresponds to the supplied storage parameters. This technique is known as
the Factory Methodpattern. A concreteCreate_Storage ~ will call the appropriate

Create function of the storage tyﬁe The second functionString_To_Storage

_Params, is provided to ease the creation of storage parameters. Strings can provide a

1. Remember that the storage type has unknown disciminants, and therefore the user
can not declare an instance of the type without using this constructor function.

common way to identify data, regardless on what actual type of storage device the data
is stored on. Using th8tring_to_Storage_Params function and its inverse function
Storage_Params_To_String it is also possible to identify data that moves from one
storage device to another one using the same string.

For the same reasons as the non-volatile storage type, non-volatile storage parameters
offer a new functiorOpen_Storage that looks for already existing data on the storage
device, creates an instance of the corresponding storage type and establishes a connec-
tion between the device and the instance.

5 Example

In this section we demonstrate how the new stream interface proposed in section 4 can
be used for developing a generic package which can be used to make any non-limited
tagged type persistent. The specification of this package is as follows:

with Ada.Streams; use Ada.Streams;
with Ada.Finalization; use Ada.Finalization;
with Streams; use Streams;
with Storage_Types.Non_Volatile; use Storage_Types.Non_Volatile;
with Storage_Params.Non_Volatile; use Storage_Params.Non_Volatile;
generic
type Base_Type istagged private
package Persistent_Object_G is
type Persistent_Type (<>) isnew Base_Type with private ;
type Persistent_Ref is access all Persistent_Type' Class ;
function Create (Storage_Params : in Non_Volatile_Params_Type' Class)
return Persistent_Ref;
function Restore (Storage_Params : in Non_Volatile_Params_Type' Class)
return Persistent_Ref;
procedure Save (Object : inout Persistent_Type' Class);
private
type Persistent_Data_Type isnew Controlled with record
Storage_Stream : Stream_Ref;
endrecord
procedure Finalize (S : inout Persistent_Data_Type);
procedure My_Write (Stream : access Ada.Streams.Root_Stream_Type' Class ;
Item : in Persistent_Data_Type);
for Persistent_Data_Type' Write use My_Write;
procedure My_Read (Stream : access Ada.Streams.Root_Stream_Type' Class ;
Item : out Persistent_Data_Type);
for Persistent_Data_Type' Read use My_Read;
type Persistent_Type isnew Base_Type with record
Data : Persistent_Data_Type;
endrecord

end Persistent_Object_G;

As you can see, mix-in inheritance is used to add three new operations to the base type:
Create , Restore and Save. Since the persistent object type has unknown discrimi-
nants,Create andRestore must be used to declare an instance of a persistent object.
Create will create a new instance from scratch, wherRastore will try and read the
contents of the instance from the storage device identified by the storage parameters,
assuming that the object has been previously saved to the dssieeis the operation

that must be called to store the contents of the object onto the associated storage.

To create persistent objects, the generic package must be instantiated:

with My_Types;
with Persistent_Object_G;
package Persistent_Integer is
new Persistent_Object_G (My_Types.My_Integer_Type);

The following lines of code illustrate how an instance of such a persistent integer type
can be saved to a file on disk:

with Storage_Params.Non_Volatile.Non_Stable.File_Storage_Params;

use Storage_Params.Non_Volatile.Non_Stable.File_Storage_Params;

declare

S : Persistent_Integer.Persistent_Ref;
P : File_Storage_Params_Type := String_To_Storage_Params (“filename”);

begin
S := Persistent_Integer.Create (P);
S.l:=..;
Save (S. all);
end;
Let's take a look at the implementation of this generic pack®gesistent Type
adds a controlled component call@drsistent Data Type to Base Type . This

Persistent_Data_Type contains a reference to a stream. The following lines of code
show how this stream is allocated during a cadlrtate :

function Create (Storage_Params : in Non_Volatile_Params_Type' Class)
return Persistent_Ref is
Result : Persistent_Ref := new Persistent_Type;

begin
Result.Data.Storage_Stream := new

Stream_Type (Non_Volatile_Storage_Ref (Create_Storage (Storage_Params)));
return Result;

end Create;

To create a stream, we need a storage object. To instantiate the storage we call the fac-
tory methodCreate_Storage , passing as an argument the given storage parameters.

Now we also understand why the persistent data type must be controlled. It is impor-
tant to free the memory associated with the stream and release the storage device once
the object no longer exists. The implementatioBast is also quite straightforward:

procedure Save (Object : inout Persistent_Type' Class) is
begin

Persistent_Type' Class ' Output (Object.Data.Storage_Stream, Object);
end Save;

The contents of the object are output to the stream usingCk®s'Output attribute.
TheRestore function can then read the object back in ugbfegs’Input

6 Shared Passive Partitions and Data Saving

Besides Ada streams, there is another standard Ada API that could be used for provid-
ing data persistence. The Distributed Systems Annex (Annex E) of the Ada 95 Refer-
ence Manual [6] defines so callesthared passive partitionmtended for providing
access to global data shared between different partitions in a distributed system. Dur-
ing the configuration of a distributed Ada program, passive partitions are mapped to
processing nodesr storage nodesAny access of an active partition to a variable
declared in a shared passive partition will then automatically be translated into an
access to the designated processing node or storage node. A typical example of a
shared passive partition is shared memory in a multiprocessor environment.

The Ada standard does not address the questions of whether the data kept in a shared
passive partition survive program termination. If a shared passive partition is mapped
to a non-volatile storage, such as files for example, the data stored in it may do so. The
Ada standard does not require this as it does not impose any links between persistence
or fault tolerance, on the one hand, and distribution in general, on the other.

Starting with version 3.12, the GNAT compiler [16] has allowed non-distributed Ada
programs to use shared passive partitions. The compiler maps each variable declared in
a shared passive partition to a file named after the expanded variable name. In subse-
guent application runs, the contents of these variables are automatically initialized
with the contents stored in the files.

Although shared passive partitions providing automatic data persistence are easier for
the application programmer to use, we have decided against using them for many rea-
sons:

« Although shared passive partitions are defined in the Ada standard, they are part of
the Distributed Systems Annex, and therefore a standard Ada compiler is not
required to support them. Even if shared passive partitions are supported, no guar-
antees can be given regarding data persistence, since the Ada Reference Manual
does not address persistence at all.

« Which kind of storage is to be used for a particular object is decided at configura-
tion time, and is therefore compiler-dependent. It is also less flexible as it is not
possible to change the storage of an object during run-time.

» Using shared passive partitions makes adding support of new storage media diffi-
cult as the interface becomes compiler-dependent.

» Storage control is less explicit because data saving will occur automatically during
every assignment to a variable that has been declared in a shared passive partition.

« Using shared passive partitions can cause a decrease in performance when fault tol-
erance features are implemented on top of persistence because, to provide fault tol-
erance, only state that is considered tabasistenshould be saved to storage. For
example, intransactionsdata stored in transactional objects are written to stable
storage only when a transaction commits.

Nevertheless, we have contacted the authors of GLADE [17], the implementation of
the Distributed Systems Annex of the GNAT compiler, to evaluate the possibility of
using shared passive partitions as an interface to our storage hierarchy. A standard
interface between the compiler and the storage hierarchy must be defined and the con-
figuration language will have to be extended in order to allow programmers to choose
the desired storage.

7 Conclusions and Future Work

In this paper we propose a general approach to developing flexible features for reliable
and persistence streaming in Ada. Fault tolerance (via backward error recovery) and
persistence supports can be developed using this approach. Our approach uses standard
Ada features only and can therefore be used with any standard Ada compiler and run-
time system. The approach heavily relies on the peculiarities of object-oriented pro-
gramming: we propose a class hierarchy of the storages of different types suitable for
achieving fault tolerance and data persistence; the resulting approach promotes re-use
and object-oriented programming. Our approach uses basic ideas of Ada streams for
flattening data of different types and adds the ability to keep the flattened data on dif-
ferent storage devices depending on the application requirements.

We have found that the standard Ada 95 stream interface does not separate sufficiently
the different streaming backends from the actual streams. For this reason, a new inter-
face for streams based on tBérategypattern has been designed and implemented.
The example of a generic package providing object persistence demonstrates the use-
fulness of this new interface.

In the future, we intend to gain more experience by implementing different kinds of
storages, e.g. interfaces to databases, and by using complex realistic case studies. We

will use the new stream interface to add persistence to our shared recoverable objects
described in [18], and provide an automatic restore capability after crash failures. Our
plans are then to implement some kind of concurrent transactional service built upon
these abstractions. Another promising directions of the research is to implement state
restoration features which can be used in the Ada recovery block scheme (the chal-
lenging task here is to facilitate state restoration and make it transparent for the users
as much as possible).

8 Acknowledgements

Alexander Romanovsky has been partially supported by EPSRC/UK DISCS ("Diver-
sity in Safety Critical Software") Project.

9 References

[1] Lee, P. A.; Anderson, T.: “Fault Tolerance - Principles and PracticeDén
pendable Computing and Fault-Tolerant Systewmdume 3, Springer Verlag,
2nd ed., 1990.

[2] Randell, B.: “System structure for software fault tolerandEEE Transactions
on Software Engineerinf2), pp. 220 — 232, 1975.

[3] Atkinson, M. P.; Buneman, O. P.: “Types and Persistence in Database Program-
ming Languages’ACM Computing Surveyi$(2), pp. 105 — 190, June 1987.

[4] Atkinson, M. P.; Bailey, P. J.; Chisholm, K. J.; Cockshott, W. P.; Morrison, R.:
“An Approach to Persistent Programmin@omputer Journa26(4), pp. 360 —
365, 1983.

[5] Atkinson, M. P.; Morrison, R.: “Orthogonally Persistent Object Systems”.
VLDB Journal4(3), pp. 319 — 401, 1995.

[6] ISO: International Standard ISO/IEC 8652:1995(E): Ada Reference Manual
Lecture Notes in Computer Scierit24§ Springer Verlag, 1997; 1SO, 1995.

[71 Kermarrec, Y.; Nana, L.; Pautet, L.: “Providing fault-tolerant services to distrib-
uted Ada 95 applications”. IiRI-Ada’'96 conferengep. 39 — 47, ACM Press,
December 1996.

[8] Crawley, S.; Oudshoorn, M.: “Orthogonal Persistence and AdéPraceedings
of TRI-Ada'94, Baltimore, Maryland, USA, November 1994. 298 — 308,
ACM Press, 1994,

[9] Oudshoorn, M. J.; Crawley, S. C.: “Beyond Ada 95: The Addition of Persistence
and its Consequences”. Reliable Software Technologies - Ada-Europe’96
volume 1088 ofLecture Notes in Computer Scienggp. 342 — 356, Springer
Verlag, 1996.

[10] Riehle, D.; Siberski, W.; Baumer, D.; Megert, D.; Zullighoven, H.: “Serializer”.
In Pattern Languages of Program Design (. 293 — 312, Addison Wesley,
1998.

[11] Object Management Group, In&xternalization Service SpecificatidDecem-
ber 1998.

[12] Sun Microsystemslava Object Serialization Specificatiddovember 1998.

[13] Gamma, E.; Helm, R.; Johnson, R.; Vlissides,Design PatternsAddison
Wesley, Reading, MA, 1995.

[14] Lampson, B. W.; Sturgis, H. E.: “Crash Recovery in a Distributed Data Storage
System”.Technical report XEROX Research, Palo Alto, June 1979.

[15] Gray, J.; Reuter, ATransaction Processing: Concepts and Techniqis -
gan Kaufmann Publishers, San Mateo, California, 1993.

[16] Banner, B.; Schonberg, E.: “The Structure of the GNAT CompilerRiaceed-
ings of TRI-Ada’'94, Baltimore, Maryland, USA, November 1993 48 — 57,
ACM Press, 1994,

[17] Pautet, L.; Tardieu, S.: “Inside the Distributed Systems Annex'Rétiable
Software Technologies - Ada-Europe, @8lume 1411 of ecture Notes in Com-
puter Sciencepp. 65— 77, 1998.

[18] Kienzle, J.; Strohmeier, A.: “Shared Recoverable Objects”. In Harbour, M. G.;
de la Puente, J. A. (Edslpternational Conference on Reliable Software Tech-
nologies - Ada-Europe’99, Santander, Spain, June 7-11 1888me 1622 of
Lecture Notes in Computer Scienpp. 397 —411, 1999.

	On Persistent and Reliable Streaming in Ada
	1 Introduction
	2 Streams in Ada 95
	3 Our Intentions
	4 Ada Streams Revisited
	4.1 Buffered Streams
	4.2 The Storage Hierarchy
	4.3 The Buffer Hierarchy
	4.4 Non-Volatile Storage
	4.5 Identifying Non-Volatile Data

	5 Example
	6 Shared Passive Partitions and Data Saving
	7 Conclusions and Future Work
	8 Acknowledgements
	9 References

