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On Persistent and Reliable Streaming in Ada

Abstract. Saving internal program data for further use is one of the most useful
ideas in programming. Developing general features to provide such data saving/
restoring is a very active research area. There are two application areas for such
features we believe to be crucial: system fault tolerance and data persistence.
Our analysis shows that the features used in these areas have a lot in common:
they are to flatten data of different types and save them in a store which can be
used later on. The recent revision of the Ada language standard, Ada 95, intro-
duces a new mechanism called streams that allows structured data to be flat-
tened. Streams are sequences of elements comprising values from possibly
different types. Ada 95 allows programmers to develop their streams following
the standard abstract class interface. In this paper we show how to use the stream
concept for developing new features to provide internal program data saving
suitable for fault tolerance and persistence. A hierarchy of different storage
types, useful in different application domains, is introduced. The standard
stream interface is extended, making it possible for programmers to have a better
control of the way streams work by separating storage medium control from the
actual stream type using the design patterns. The convenience of this new inter-
face is demonstrated by developing a generic package allowing any non-limited
object to be written into a storage device. It can be used for providing data per-
sistence and as a state restoration feature in schemes used for tolerating software
design faults.

Keywords. Streams, Persistence, Stable Storage, Design Patterns, Ada 95,
Object-Oriented Programming, Fault Tolerance.

1 Introduction

Data are often kept in a secondary memory medium to be used in further program
cution. It is not difficult to see that many modern services rely on saving data. Star
with databases and sequential files programmers have been trying to develop u
and general concepts in this area. How data are saved, what sort of API is prov
what assumptions are made (e.g. fault assumptions), etc., depends on the chara
tics of the feature and on the application. In this paper we will concentrate on feat
which are used for saving and restoring values of internal program data. There are
main areas which require such features: developing fault tolerant systems and p
tent systems.
Two general types of recovery are used in building fault tolerant systems [1]: forw
and backward error recovery. When backward error recovery is used, the internal
gram data are saved in a memory which will not be affected by the faults assum
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Later on, should an error be detected, the program is returned into a previous co
state by restoring its internal data. Depending on the fault assumptions and on
recovery scheme used, the program can be either re-started (if we are dealing
hardware crashes) or a diversely-designed program (alternate) can be tried (if a r
ery block scheme [2] is used to tolerate software design faults). The former approa
often referred to as checkpointing. The features which are used for data saving
restoring in the latter are often called state restoration features.
Data persistence [3, 4] relies on saving values of data from a program execution s
so that they can be used in a later execution: that is the values "persist" from one
cution to another. There are many possible schemes for supporting persistence;
complete survey, the reader is referred to [5].
In our opinion fault tolerance and persistence are quite distinct program properties
there are important differences in the way data saving is used in these two areas
sistence relies on saving data values to allow them to be used in a later executio
fault-tolerant systems the state of the whole program at some moments of time is s
and stored in such a way that the same program can continue execution from o
these states. This means in particular that these states must be consistent. Alt
very often the designers of the persistence services cannot help extending the
allow some simplified forms of error recovery, in our opinion it is important not to m
them and separate them properly while building, for example, persistence service
fault tolerant systems.
While implementing a persistence service, designers do not take into consider
fault assumptions as this is not relevant. But when we save data for fault tolerance
should make sure that they will survive all assumed faults; this means for example
for the recovery block scheme we can use main memory for data saving if we ass
only design faults. While developing error recovery features one should often take
account that errors can be detected at any time: depending on the failure assump
it may be the case that the program crashes and that it is not possible to do any
saving after an error has been detected. Sometimes it should be possible to to
media failures as well. When developing a persistence service one can bas
assume that the program works/finishes correctly and it can perform all act
required for persistence any time it wants.
The definition of persistence is not specific about how the program finishes. Th
why several persistence services have been extended to provide some forms o
tolerance. Although, this is a reasonable approach for many practical reasons (e.g
formance), generally speaking, these two services can be provided separately a
believe that it is important to view them as such.
The remainder of this paper is organized as follows: the next section explains br
how Ada 95 streams work. Section 3 discusses our reasons for choosing the
implement persistence and fault tolerance. In the following section a flexible, stre
based approach which implements these properties is described. It allows, in pa
lar, the designers of stable storage to introduce new types of storage for keeping
Section 5 shows by an example how the persistent and reliable streams are
employed by the users. Section 6 looks at shared passive packages and the last s
outlines our plans for future research.

2 Streams in Ada 95

Ada 95 [6], the recent revision of the Ada standard, does not have elaborate fea
for backward error recovery or data persistence. This is why many attempts have
made to extend the language, for example, a recovery block scheme in [7], and
approaches for persistent Ada [8, 9]. We believe that extending the language i
many reasons not practical; in this paper we rely on standard Ada 95 only.
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Among many other new features, Ada 95 introduces a new concept called stream
stream is a sequence of elements comprising values from possibly different types
values stored in a stream can only be accessed sequentially. Ada streams can be
one of the first incarnations of theSerializerdesign pattern described in [10]. The
CORBA externalizationservice [11] and the JavaSerializationpackage [12] are other
examples that implement theSerializer pattern.
This pattern allows programmers to efficiently stream objects into data structure
their choice, as well as create objects from such data structures. The pattern c
used whenever objects are written to or read from flat files, relational database ta
network transport buffers, etc. The participants of the pattern are:Reader/Writer and
ConcreteReader/ConcreteWriter, the Serializable interface, ConcreteElementand
Backend.
The ReaderandWriter part declare protocols for reading and writing objects. The
protocols consist of read respectively write operations for every value type, includ
composite types, array types and object references. TheReaderandWriter hide the
Backendand the external representation format from the serializable objects.Concret-
eReaderandConcreteWriterimplement theReaderandWriter protocols for a particu-
lar backend and external representation format. TheSerializable interface defines
operations that accept aReaderfor reading and aWriter for writing. It also should pro-
vide aCreate operation that takes a class identifier as an argument and create
instance of the denoted class.ConcreteElementis an object implementing theSerializ-
able interface, which allows it to read and write its attributes. TheBackendis a partic-
ular backend, such as a storage device, a relational database front-end or a ne
buffer. A ConcreteReader/ConcreteWriterreads from/writes to its backend using
backend specific interface.
The structure of theSerializer pattern is shown in the following UML class diagram:

When invoked by a client, aReader/Writer hands itself over to the serializable objec
The serializable object makes use of its protocol to read/write its attributes by ca
the read/write operations provided by theReader/Writer. This results in a recursive
back-and-forth interplay between the two parties.
We will now show how Ada 95 streams implement theSerializerpattern. The standard
packageAda.Streams defines the interface for streams in Ada 95 [6, 13.13.1].
declares an abstract typeRoot_Stream_Type , from which all other stream types mus
derive.

readFrom(Reader)
writeTo(Writer)

<<Interface>>
Serializable

Reader Writer

read operations for
every value type

write operations for
every value type

ConcreteWriter1

ConcreteElement2ConcreteElement1

ConcreteWriter2

ConcreteReader2ConcreteReader1

Backend1 Backend2

<<call>> <<call>> <<call>> <<call>>

<<call>>

<<call>>

Figure 1: TheSerializer Pattern Structure
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Every concrete stream type must override theRead and Write operations, and may
optionally define additional primitive subprograms according to the functionality
the particular stream. Obviously, the root stream type plays theReader/Writer role in
the Serializer pattern. Derivations of the root stream type incarnate theConcrete-
Reader/ConcreteWriter and the backend interface.
In Ada 95, the pre-defined attributes’Write and’Output are used to write values to a
stream, thus converting them into a flat sequence of stream elements. Reconstr
the values from a stream is done with the pre-defined attributes’Read and ’Input .
They make dispatching calls on theRead and Write procedures of the
Root_Stream_Type . When using’Write and ’Read , neither array bounds nor tags o
tagged types are written to or read from the stream.’Output and’Input must be used
for that purpose.
All non-limited types have default implementations of the stream attributes, henc
non-limited types implement theSerializableinterface and are thereforeConcrete Ele-
ment. It is possible to replace the default implementation of the stream attributes
any type via an attribute definition clause. In order to write a value of a limited type
a stream, such an attribute definition clause is even mandatory. Any procedure h
one of the predefined signature shown in [6, 13.13.2] can replace the default im
mentation. The following example shows how to replace the predefined impleme
tion of ’Write  for an integer type:

type  My_Integer is new  Integer;

procedure  My_Write (Stream : access  Ada.Streams.Root_Stream_Type’ Class ;
 Item : My_Integer);

for  My_Integer’Write use  My_Write;

The only concrete stream implementation that is defined in the language standa
Stream_IO [6, A.12], a child package ofAda.Streams . It provides stream-based
access to files.Stream_IO offers also file manipulation operations such asCreate ,
Open, Close , Delete , etc. The following example shows how to write values of el
mentary types, array types and tagged types to a stream and how to reconstruct
again:

3 Our Intentions

Ada streams are a very powerful and universal object-oriented mechanism; our in
tion is to use them for developing fault tolerance and persistence features. Thi
exactly the underlying idea behind Ada streams, which is that programmers
develop their own stream subclasses by inheriting from the given abstract class. T

with  Ada.Streams.Stream_IO; use
Ada.Streams.Stream_IO;

--  writing
declare

My_File: File_Type;
S : Stream_Access;
I : Integer;
My_String : String := “Hello”;
T : A_Tagged_Type’ Class  := … ;

begin

Create (My_File “file_name”);
S := Stream (My_File);

--  do some work
Integer’ Write  (S, I);
String’ Output  (S, My_String);
A_Tagged_Type’ Class ’ Output  (S, T);
Close (My_File);

end ;

--  reading
declare

My_File : File_Type;
S : Stream_Access;
I : Integer;

begin

Open (My_File, “file_name”);
S := Stream (My_File);
Integer’ Read (S, I);

declare
My_String: String :=

String’ Input  (S);
T : A_Tagged_Type :=

A_Tagged_Type’ Class ’ Input  (S);
begin

--  do some work
end ;

Close (My_File);
end ;
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streams can be suitable for different purposes, media, data, applications, assump
etc. To the best of our knowledge there has been no research reported along this
This approach has many advantages. It allows us to stay within the standard Ada
guage, which makes our approach useful for any settings and platforms which
standard Ada compilers and run-times. Although proposals discussing various
extensions are of great importance for the future language standards, there are u
from the point of view of practitioners designing systems now.
We perfectly realize that the features we intend to develop do not meet all requirem
of theorthogonal persistence[4], but paper [9] clearly demonstrates that it is imposs
ble to develop it within standard Ada 95. Our intention is to stay within the stand
and develop data saving mechanisms as elaborate as Ada allows.
Although, as we have explained before, we treat backward error recovery and pe
tence as different properties, our analysis shows that a general approach suitab
both areas can be developed, as they share common demands. Our approach will
porate a class hierarchy of different streams which are intended for saving data so
it can be used for both purposes.
Streams only develop their full potential in the context of different streaming backe
such as flat files, relational database tables or network transport buffers. We have
that in spite of the fact that Ada streams are a very general and powerful concep
Ada.Streams package does not well separate different forms of streams, e.g. buffe
streams, from different streaming backends. This separation and the provision of
tional backend control are vital for applying streams for developing backward e
recovery and persistence features in Ada.
In the following part of the paper we will discuss a general extensible object-orien
data saving mechanism suitable for developing reliable and persistent systems.
mechanism will be flexible enough to allow transparent changes of the media and
rely on standard Ada features only.

4 Ada Streams Revisited

This section presents a flexible approach to streaming which can be used for dev
ing both backward error recovery and persistence features.
First we introduce a separation of buffered and non-buffered streams. We believe
these are essentially different and that it is important to introduce this difference o
abstract level. The two main reasons for this decision are:
 • the stream control is different for buffered/non-buffered streams
 • very often programmers can make performance optimizations because they

the peculiarities of the application with respect to buffering, size of data, phase
the program execution, characteristics of the media which stores the data, etc

In the first subsection, an extended stream interface is proposed to allow an addit
control related to buffered streaming. Secondly, we develop a type hierarchy w
includes different storage types:volatile, non-volatile, stable andnon-stable.

4.1 Buffered Streams

The Ada Reference Manual states that streams can be implemented in various
providing access to external sequential files, internal buffers or even network chan
[6, 13.13]. The language manual provides an interface for streams by definin
abstract root type in the packageAda.Streams from which concrete implementations
must derive. The only concrete implementation that is defined in the language stan
is the stream type that provides sequential file access mentioned in the previous
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tion. We have seen already that in addition to the operations defined for all str
types, the streams in the packageStream_IO provide file manipulation operations such
asCreate , Open, Close , Delete , and stream-related operations such asFlush . Calling
Flush will actually write the data that has been previously written to the stream ou
the file.Flush is an operation that takes aFile as a parameter, but from our point o
view, Flush should be an operation of the stream itself. Whenever streams are us
access storage devices, it is not always a good idea to write the data to the devi
every call to’Write or ’Output . At what time the data should be written to the devic
is largely device dependent. Disk devices for example are usually accessed in fi
sized chunks of data called blocks. In this case, too many individual write accesse
result in considerable performance loss. It is much more efficient to buffer the dat
We have therefore defined a packageStreams that provides two stream types
Stream_Type and Buffered_Stream_Type , both descendants ofAda.Streams.
Root_Stream_Type .

with  Ada.Streams; use  Ada.Streams;
with  Buffer_Types; use  Buffer_Types;

package Streams is

type  Stream_Type (Storage : access  Storage_Type’ Class )
is new  Ada.Streams.Root_Stream_Type with private ;

procedure  Read (Stream : in out  Stream_Type;
 Item : out  Stream_Element_Array;
 Last : out  Stream_Element_Offset);

procedure  Write (Stream : in out  Stream_Type;
 Item : in  Stream_Element_Array);

type  Buffered_Stream_Type (Buffer : access  Buffer_Type’ Class )
is new Ada.Streams.Root_Stream_Type with private ;

procedure  Read (Stream : in out  Buffered_Stream_Type;
 Item : out  Stream_Element_Array;
 Last : out  Stream_Element_Offset);

procedure  Write (Stream : in out  Buffered_Stream_Type;
 Item : in  Stream_Element_Array);

procedure  Flush (Stream : in out  Buffered_Stream_Type);

end  Streams;

This allows the user to choose between a normal stream (one that writes the data
storage medium on every’Write ) and a buffered stream (one that buffers the data un
the user callsFlush ). The type of storage that will be used for the stream must be c
sen at instantiation time through an access discriminant (see section 4.2). This
nique is described in [13] as theStrategy pattern.
The participants of theStrategypattern are theStrategy, theConcreteStrategyand the
Context. The pattern defines a family of algorithms, encapsulates each one, and m
them interchangeable. It lets the algorithm vary independently from clients that us
The most important participant is theStrategy, which declares an interface common t
all supported algorithms (in our case the storage devices).ConcreteStrategyimple-
ments a concrete algorithm using theStrategyinterface. Finally,Contextis configured
with a ConcreteStrategyobject, and uses the interface defined byStrategyto call the
algorithm.
An application programmer can instantiate a stream by passing the desired st
type as a parameter:

S : Stream_Ref := new Stream_Type (Instance_Of_Storage_Type);

4.2 The Storage Hierarchy

As shown in the previous subsection, a user starts by creating an instance of a st
type in order to instantiate a stream. The UML class diagram shown in figure 2 il
trates the hierarchy of storage types and the role they play in theStrategy pattern.
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We split the storage hierarchy intovolatile storage andnon-volatile storage. Data
stored in the volatile storage do not survive program termination, hardware crash
transient errors. A volatile storage can for example be implemented using convent
computer memory. Once an application terminates or crashes, its memory is us
freed by the operating system, and therefore all internal program data are lost. O
other hand, data stored in non-volatile storage remain intact even when the pro
terminates. Databases or disk storage are commonly used for implementing non-
tile storage. Among the different types of non-volatile storage, we distinguishstable
andnon-stableones. Data written into non-stable storage may get corrupted when
system fails (for instance, during the write operation). Stable storage ensures tha
data that has been written on it will never be corrupted, even in the presence of app
tion crashes and other failures [14]. If a crash occurs during the write operation
previously valid state can still be retrieved. Features of this type are used in ato
transactions [15] to guarantee the durability of the database systems.

The only two concrete storage types currently implemented are volatile memory
non-volatile, non-stable disk storage. The generic classRemote_Storage_Type allows
any storage to be called remotely using the Ada Distributed Systems Annex,
transforming the storage into a non-volatile storage. There are also two generic cl
that allow to create stable storage based on non-stable storage,Mirrored_Storage
_Type andReplicated_Storage_Type (not shown in the figure due to space reasons
The interface of the top-levelStorage_Type is given below:

with  Ada.Streams; use  Ada.Streams;
with  Ada.Finalization; use  Ada.Finalization;

package  Storage_Types is

type  Storage_Type (<>) is abstract tagged limited private ;

type  Storage_Ref is access all  Storage_Type’ Class ;

procedure  Read (Storage : in out  Storage_Type;
 Item : out  Stream_Element_Array;
 Last : out  Stream_Element_Offset) is abstract ;

procedure  Write (Storage : in out  Storage_Type;
 Item : in  Stream_Element_Array) is abstract ;

readFrom(Reader)
writeTo(Writer)

<<Interface>>
Serializable

Storage_Type

Read
Write
Get_Current_Size

Strategy Context

Non_Volatile_Storage_TypeVolatile_Storage_Type

Open
Close
Delete

Memory_Storage_Type Non_Stable_Storage_Type Stable_Storage_Type

Create

File_Storage_Type

Create

Figure 2: The Storage Type Hierarchy and theStrategy Pattern

Remote_Storage_Type

Create

Storage_Type

Mirrored_Storage_Type

Create

Non_Volatile_Storage_Type
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function  Get_Current_Size (Storage : in  Storage_Type)
return  Stream_Element_Count is abstract ;

private

type  Storage_Type is new  Limited_Controlled with null record ;

end  Storage_Types;

Storage_Type is privately derived fromLimited_Controlled in order to allow con-
crete storage implementations to perform automatic initialization and finalization
necessary. Disk files for instance should always be closed, network ports shou
freed, etc.Storage_Type is limited, so it can store, if necessary, other limited dat
such as for example file descriptors. Finally, the public view ofStorage_Type has
unknown discriminants. That way the user of a storage type is forced to call one o
constructor functions of a concrete storage type; he can not just declare an instan
the type and thereby bypass correct initialization.
The operations provided byStorage_Type areRead, Write andGet_Current_Size .
TheRead andWrite procedures are equivalent to the ones required for the stream t
Actually, theRead andWrite procedures of the stream type are just call-though proc
dures to the associated storage device. TheGet_Current_Size function returns the
current length of the data associated with the storage in stream elements. This fun
has been introduced to simplify buffer management.

4.3 The Buffer Hierarchy

It is not difficult to see that to declare an
instance of a buffered stream the user of the
new Streams package (section 4.1) must first
instantiate a buffer. Buffers here come in two
flavors, unbounded and bounded.
The package describing the abstract buffer
type is shown below:

with  Ada.Streams; use  Ada.Streams;
with  Ada.Finalization;
use  Ada.Finalization;
with  Storage_Types; use  Storage_Types;

package  Buffer_Types is

type  Buffer_Type (Storage : access  Storage_Type' Class )
is abstract new  Limited_Controlled with private ;

type  Buffer_Ref is access all  Buffer_Type' Class ;

procedure  Read (Buffer : in out  Buffer_Type;
 Item : out  Stream_Element_Array;
 Last : out  Stream_Element_Offset) is abstract ;

procedure  Write (Buffer : in out  Buffer_Type;
 Item : in  Stream_Element_Array) is abstract ;

procedure  Flush (Buffer : in out  Buffer_Type) is abstract ;

private

type  Buffer_Type (Storage : access  Storage_Type' Class )
is abstract new Limited_Controlled with null record ;

procedure  Finalize (Buffer : in out  Buffer_Type);

end  Buffer_Types;

When using buffered streams, the user must first decide what kind of buffer he wan
use, instantiate it and pass the reference to the buffered stream. When instantia
buffer, a storage device must be passed as a discriminant.
The buffer type is derived fromLimited_Controlled in order to perform proper final-
ization of the associated storage device. TheRead andWrite operations of the buffered
stream will call theRead andWrite operations of the buffer type. In theWrite proce-

Buffer_Type

Read
Write
Flush

Bounded_Buffer_Type Unbounded_Buffer_Type

Figure 3: The Buffer Type Hierarchy
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dure, the data is first written into a memory buffer, and only whenFlush is called, the
data is written out to the corresponding storage.Read does the inverse, that is it will try
and read all the data or as much data as fits from the storage device into the buffer
the first call to read. Subsequent calls can then be served without accessing the st
When implementing the unbounded buffer class, it was possible to use an instan
the volatile memory storage type to buffer the data. This illustrates the increased p
bilities of reuse.

4.4 Non-Volatile Storage

Compared to volatile storage, data stored in non-volatile storage will survive prog
termination. It is therefore necessary to provide housekeeping operations similar t
ones provided byAda.Streams.Stream_IO for files. These include above all opera
tions for creation and destruction of such non-volatile data. The non-volatile stor
type provides three new operations for this purpose:

procedure  Open (Storage : in out  Non_Volatile_Storage_Type) is abstract ;

procedure  Close (Storage : in out  Non_Volatile_Storage_Type) is abstract ;

procedure  Delete (Storage : in out  Non_Volatile_Storage_Type) is abstract ;

Open allows the user to establish a connection between already existing data on
device and the storage type. This is for instance needed for files, but also for net
sockets or databases. TheClose operation severs the association again, leaving t
data on the device.Delete is used to definitively remove the data from the storag
device.

4.5 Identifying Non-Volatile Data

Since the actual data stored on non-volatile storage will survive the lifetime of
object instance that represents it during program execution, there must be some m
to uniquely identify the data in
order to be able to manipulate the
data again on subsequent runs of
the application. Files usually
have file names associated with
them, but other storage types may
use different identification tech-
niques. Data stored in persistent
memory for instance can be iden-
tified using addresses. In order to
provide correct identification for
each storage type, a hierarchy of
storage parameter objects has
been introduced. The class dia-
gram in figure 4 shows the struc-
ture of the storage parameter hierarchy. It is identical to the one for storage types

The first function,Create_Storage , allows a user to create an instance of the stora
type that corresponds to the supplied storage parameters. This technique is kno
the Factory Methodpattern. A concreteCreate_Storage will call the appropriate
Create function of the storage type1. The second function,String_To_Storage
_Params , is provided to ease the creation of storage parameters. Strings can prov

1. Remember that the storage type has unknown disciminants, and therefore the
can not declare an instance of the type without using this constructor function.

Storage_Params_Type

Create_Storage
String_To_Storage_Params
Storage_Params_To_String

Volatile_Params_Type Non_Volatile_Params_Type

Open_Storage

Non_Stable_Params_Type Stable_Params_Type

Figure 4: The Storage Parameter Hierarchy
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common way to identify data, regardless on what actual type of storage device the
is stored on. Using theString_to_Storage_Params function and its inverse function
Storage_Params_To_String it is also possible to identify data that moves from on
storage device to another one using the same string.
For the same reasons as the non-volatile storage type, non-volatile storage param
offer a new functionOpen_Storage that looks for already existing data on the storag
device, creates an instance of the corresponding storage type and establishes a c
tion between the device and the instance.

5 Example

In this section we demonstrate how the new stream interface proposed in section
be used for developing a generic package which can be used to make any non-li
tagged type persistent. The specification of this package is as follows:

with  Ada.Streams; use  Ada.Streams;
with  Ada.Finalization; use  Ada.Finalization;
with  Streams; use  Streams;
with  Storage_Types.Non_Volatile; use  Storage_Types.Non_Volatile;
with  Storage_Params.Non_Volatile; use  Storage_Params.Non_Volatile;

generic

type  Base_Type is tagged private ;

package  Persistent_Object_G is

type  Persistent_Type (<>) is new  Base_Type with private ;

type  Persistent_Ref is access all  Persistent_Type' Class ;

function  Create (Storage_Params : in  Non_Volatile_Params_Type' Class )
return  Persistent_Ref;

function  Restore (Storage_Params : in  Non_Volatile_Params_Type' Class )
return  Persistent_Ref;

procedure  Save (Object : in out  Persistent_Type' Class );

private

type  Persistent_Data_Type is new  Controlled with record
Storage_Stream : Stream_Ref;

end record ;

procedure  Finalize (S : in out  Persistent_Data_Type);

procedure  My_Write (Stream : access Ada.Streams.Root_Stream_Type' Class ;
 Item : in  Persistent_Data_Type);

for  Persistent_Data_Type' Write use  My_Write;

procedure  My_Read (Stream : access Ada.Streams.Root_Stream_Type' Class ;
 Item : out  Persistent_Data_Type);

for  Persistent_Data_Type' Read use  My_Read;

type  Persistent_Type is new  Base_Type with record
Data : Persistent_Data_Type;

end record ;

end  Persistent_Object_G;

As you can see, mix-in inheritance is used to add three new operations to the base
Create , Restore and Save. Since the persistent object type has unknown discrim
nants,Create andRestore must be used to declare an instance of a persistent obj
Create will create a new instance from scratch, whereasRestore will try and read the
contents of the instance from the storage device identified by the storage param
assuming that the object has been previously saved to the device.Save is the operation
that must be called to store the contents of the object onto the associated storage
To create persistent objects, the generic package must be instantiated:

with  My_Types;
with  Persistent_Object_G;

package  Persistent_Integer is
new Persistent_Object_G (My_Types.My_Integer_Type);
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The following lines of code illustrate how an instance of such a persistent integer
can be saved to a file on disk:

with  Storage_Params.Non_Volatile.Non_Stable.File_Storage_Params;
use  Storage_Params.Non_Volatile.Non_Stable.File_Storage_Params;

declare

S : Persistent_Integer.Persistent_Ref;
P : File_Storage_Params_Type := String_To_Storage_Params (“filename”);

begin

S := Persistent_Integer.Create (P);
S.I := …;
Save (S. all );

end ;

Let’s take a look at the implementation of this generic package.Persistent_Type
adds a controlled component calledPersistent_Data_Type to Base_Type . This
Persistent_Data_Type contains a reference to a stream. The following lines of co
show how this stream is allocated during a call toCreate :

function  Create (Storage_Params : in  Non_Volatile_Params_Type' Class )
return  Persistent_Ref is

Result : Persistent_Ref := new Persistent_Type;

begin

Result.Data.Storage_Stream :=  new
Stream_Type (Non_Volatile_Storage_Ref (Create_Storage (Storage_Params)));
return  Result;

end  Create;

To create a stream, we need a storage object. To instantiate the storage we call th
tory methodCreate_Storage , passing as an argument the given storage paramete
Now we also understand why the persistent data type must be controlled. It is im
tant to free the memory associated with the stream and release the storage devic
the object no longer exists. The implementation ofSave is also quite straightforward:

procedure  Save (Object : in out  Persistent_Type' Class ) is

begin

Persistent_Type' Class ' Output  (Object.Data.Storage_Stream, Object);

end  Save;

The contents of the object are output to the stream using the’Class’Output attribute.
TheRestore  function can then read the object back in using’Class’Input .

6 Shared Passive Partitions and Data Saving

Besides Ada streams, there is another standard Ada API that could be used for pr
ing data persistence. The Distributed Systems Annex (Annex E) of the Ada 95 Re
ence Manual [6] defines so calledshared passive partitionsintended for providing
access to global data shared between different partitions in a distributed system.
ing the configuration of a distributed Ada program, passive partitions are mappe
processing nodesor storage nodes. Any access of an active partition to a variabl
declared in a shared passive partition will then automatically be translated into
access to the designated processing node or storage node. A typical example
shared passive partition is shared memory in a multiprocessor environment.
The Ada standard does not address the questions of whether the data kept in a s
passive partition survive program termination. If a shared passive partition is map
to a non-volatile storage, such as files for example, the data stored in it may do so
Ada standard does not require this as it does not impose any links between persis
or fault tolerance, on the one hand, and distribution in general, on the other.
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Starting with version 3.12, the GNAT compiler [16] has allowed non-distributed A
programs to use shared passive partitions. The compiler maps each variable decla
a shared passive partition to a file named after the expanded variable name. In s
quent application runs, the contents of these variables are automatically initial
with the contents stored in the files.
Although shared passive partitions providing automatic data persistence are easi
the application programmer to use, we have decided against using them for many
sons:
 • Although shared passive partitions are defined in the Ada standard, they are p

the Distributed Systems Annex, and therefore a standard Ada compiler is
required to support them. Even if shared passive partitions are supported, no
antees can be given regarding data persistence, since the Ada Reference M
does not address persistence at all.

 • Which kind of storage is to be used for a particular object is decided at config
tion time, and is therefore compiler-dependent. It is also less flexible as it is
possible to change the storage of an object during run-time.

 • Using shared passive partitions makes adding support of new storage media
cult as the interface becomes compiler-dependent.

 • Storage control is less explicit because data saving will occur automatically du
every assignment to a variable that has been declared in a shared passive pa

 • Using shared passive partitions can cause a decrease in performance when fa
erance features are implemented on top of persistence because, to provide fau
erance, only state that is considered to beconsistentshould be saved to storage. Fo
example, intransactionsdata stored in transactional objects are written to stab
storage only when a transaction commits.

Nevertheless, we have contacted the authors of GLADE [17], the implementatio
the Distributed Systems Annex of the GNAT compiler, to evaluate the possibility
using shared passive partitions as an interface to our storage hierarchy. A sta
interface between the compiler and the storage hierarchy must be defined and the
figuration language will have to be extended in order to allow programmers to cho
the desired storage.

7 Conclusions and Future Work

In this paper we propose a general approach to developing flexible features for rel
and persistence streaming in Ada. Fault tolerance (via backward error recovery)
persistence supports can be developed using this approach. Our approach uses s
Ada features only and can therefore be used with any standard Ada compiler and
time system. The approach heavily relies on the peculiarities of object-oriented
gramming: we propose a class hierarchy of the storages of different types suitab
achieving fault tolerance and data persistence; the resulting approach promotes
and object-oriented programming. Our approach uses basic ideas of Ada stream
flattening data of different types and adds the ability to keep the flattened data on
ferent storage devices depending on the application requirements.
We have found that the standard Ada 95 stream interface does not separate suffic
the different streaming backends from the actual streams. For this reason, a new
face for streams based on theStrategypattern has been designed and implemente
The example of a generic package providing object persistence demonstrates th
fulness of this new interface.
In the future, we intend to gain more experience by implementing different kinds
storages, e.g. interfaces to databases, and by using complex realistic case studi
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will use the new stream interface to add persistence to our shared recoverable o
described in [18], and provide an automatic restore capability after crash failures.
plans are then to implement some kind of concurrent transactional service built u
these abstractions. Another promising directions of the research is to implement
restoration features which can be used in the Ada recovery block scheme (the
lenging task here is to facilitate state restoration and make it transparent for the
as much as possible).
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