
Integrating Object-Oriented Programming and
Protected Objects in Ada 95

A. J. WELLINGS

University of York

B. JOHNSON and B. SANDEN

Colorado Technical University

J. KIENZLE and T. WOLF

Swiss Federal Institute of Technology in Lausanne

and

S. MICHELL

Maurya Software

Integrating concurrent and object-oriented programming has been an active research topic since
the late 1980’s. There is now a plethora of methods for achieving this integration. The majority
of approaches have taken a sequential object-oriented language and made it concurrent. A few
approaches have taken a concurrent language and made it object-oriented. The most important
of this latter class is the Ada 95 language, which is an extension to the object-based concurrent
programming language Ada 83. Arguably, Ada 95 does not fully integrate its models of concur-
rency and object-oriented programming. For example, neither tasks nor protected objects are
extensible. This article discusses ways in which protected objects can be made more extensible.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Concurrent programming structures and inheritance

General Terms: Languages

Additional Key Words and Phrases: Concurrency, concurrent object-oriented programming, in-
heritance anomaly, Ada 95

This article extends and unifies the approaches described in Kiddle and Wellings [1998], Michell
and Lundqvist [1999], and Johnson [2000].
Author’s addresses: A. J. Wellings, Dept. of Computer Science, University of York Heslington,
York, YO10 5DD, UK; B. Johnson and B. Sanden, Colorado Technical University, 4435 N. Chest-
nut Street, Colorado Springs, CO 80907; J. Kienzle and T. Wolf, Software Engineering Laboratory,
Swiss Federal Institute of Technology in Lausanne CH – 1015 Lausanne EPFL, Switzerland; S.
Michell, Maurya Software, 29 Maurya Court, Ottawa, Ontario, Canada, K1G5S3.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2000 ACM 0164-0925/00/0500-0506 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000, Pages 506–539.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 507

1. INTRODUCTION

Ada 95 is the only international standard programming language that supports
object-oriented real-time distributed systems. However, it has been argued [Atkin-
son and Weller 1993; Wellings et al. 1996; Burns and Wellings 1998] that the lan-
guage does not have a well-integrated set of facilities for concurrent object-oriented
programming. The object-oriented mechanisms are built around the concept of
tagged types and take their inspiration from Oberon’s type extensibility model
[Wirth 1988]. Unfortunately, neither tasks types (the unit of concurrency) nor
protected types (essentially monitors) are extensible.

The purpose of this article is to discuss ways in which the Ada 95 concurrency
model can be better integrated with its object-oriented programming facilities. The
article is structured as follows. Section 2 introduces the main problems associated
with the integration of object-oriented and concurrent programming. Section 3
then describes the main features of the Ada 95 language that are relevant to this
work. Section 4 argues that Ada 95 does not have a well-integrated object-oriented
concurrency model. To achieve better integration, Section 5 proposes that Ada’s
protected type mechanism be made extensible and discusses the main syntactic and
semantic issues. Section 6 then considers how extensible protected types integrate
with Ada’s general model of abstraction and inheritance. Sections 7 and 8 discuss
how the proposals address the inheritance anomaly and how they can be used in
conjunction with the current object-oriented mechanisms. Section 9 presents some
extended examples, and Section 10 draws conclusions from this work.

2. CONCURRENT OBJECT-ORIENTED PROGRAMMING

Integrating concurrent and object-oriented programming has been an active re-
search topic since the late 1980’s. There is now a plethora of methods for achieving
this integration (see Wyatt et al. [1992] or Briot[1998] for a review). The majority
of approaches have taken a sequential object-oriented language and made it concur-
rent (for example, the various versions of concurrent Eiffel [Meyer 1993; Caromel
1993; Karaorman and Bruno 1993]). A few approaches have taken a concurrent
language and made it object-oriented. The most important of this latter class is
the Ada 95 language which is an extension to the object-based concurrent program-
ming language Ada 83. A full discussion of this language will be given in the next
section.

In general, there are two main issues for concurrent object-oriented programming:

—the relationship between concurrent activities and objects: here the distinction
is often between the concept of an active object (which by definition will execute
concurrently with other active objects, for example Maio et al[1989], Mitchell and
Wellings [1996], and Newman [1998]) and where concurrent execution is created
by the use of asynchronous method calls (or early returns from method calls)
[Yonezawa et al. 1986; Yokote and Tororo 1987; Corradi and Leonardi 1990]

—the way in which concurrent activities communicate and synchronize (and yet
avoid the so-called inheritance anomaly [Matsuoka and Yonezawa 1993]): see
Mitchell and Wellings [1996] for a summary of the various proposals.

Perhaps the most interesting recent development in concurrent object-oriented
programming is Java [Lea 1997; Oaks and Wong 1997]. Here we have, notionally, a

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

508 · A. J. Wellings et al.

new language which is able to design a concurrency model within an object-oriented
framework without worrying about backward compatibility issues. The Java model
integrates concurrency into the object-oriented framework by a form of active ob-
jects. All descendants of the predefined class Thread have the predefined methods
run and start. When start is called, a new thread is created, which executes
run. Subclassing Thread and overriding the run method allows an application to
express active objects. (It is also possible to obtain run by implementing the inter-
face Runnable.) Other methods available on the Thread class allow for a wide range
of thread control. Communication and synchronization are achieved by allowing
any method of any object to be specified as “synchronized”. Synchronized meth-
ods execute with a mutual exclusion lock associated with the object. All classes in
Java are derived from the Object class that has methods which implement a simple
form of condition synchronization. A thread can, therefore, wait for notification of
a single event. When used in conjunction with synchronized methods, the language
provides the functionality similar to that of a simple monitor [Hoare 1974].

Arguably, Java provides an elegant, although simplistic, model of object-oriented
concurrency.

3. THE ADA 95 PROGRAMMING LANGUAGE

The Ada 83 language allowed programs to be constructed from several basic build-
ing blocks: packages, subprograms (procedures and functions), and tasks. Of these,
only tasks were considered to be types and integrated with the typing model of the
language. Just as with any other type in Ada; many instances of a task type can
be declared; tasks can be placed in arrays and records, and pointers to tasks can
be declared and created. Tasks can encapsulate data objects as well as other tasks.
They communicate synchronously through entries and provide capabilities to con-
trol that communication by selection and acceptance of entry calls. In conclusion,
Ada 83 fully integrated its concurrency model into the sequential components of
the language. They are built using a consistent underlying type model.

3.1 Data-Oriented Synchronization: Protected Types

Ada 95 extends the facilities of Ada 83 in areas of the language where weaknesses
were perceived. One of the innovations was the introduction of data-oriented com-
munication and synchronization through protected types.

Instances of a protected type are called protected objects; they are basically
monitors [Hoare 1974] but avoid the disadvantages associated with the use of low-
level condition variables. Instead, protected types may have guarded entries similar
to those provided by conditional critical regions [Brinch-Hansen 1972].

A protected type in Ada 95 encapsulates some data items, which can only be
accessed through the protected type’s operations. It is declared as shown in the
following example:

protected type Shared_Int is
-- Public operations
procedure Set (Val : in Integer);
function Get return Integer;
entry Wait_Until_Zero;

private

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 509

-- Encapsulated data
Current : Integer := 0;
-- Private operations might follow here

end Shared_Int;

The operations of this protected type are implemented in a corresponding body:

protected body Shared_Int is
procedure Set (Val : in Integer) is
begin

Current := Value;
end Set;

function Get return Integer is
begin

return Current;
end Get;

entry Wait_Until_Zero
when Current = 0 is -- Entry barrier (guard)

begin
null ;

end Wait_Until_Zero;
end Shared_Int;

Instances of this protected type, i.e., protected objects, can be declared just like
any other variable:

X : Shared_Int; -- A protected object named ’X’

Operations on this shared object can be invoked in the following way:

X.Set(42);
Some_Variable := X.Get;
X.Wait_Until_Zero;

Calls to the operations of a protected type are so-called protected actions and guar-
antee mutually exclusive access to a protected object with the usual semantics of
multiple readers (function calls, which are read-only) or one writer (procedure and
entry calls).

When an entry is called, and its barrier is false, the call is queued, and the
calling task is blocked until the call has been finally executed. Otherwise, the call
is accepted and executed in a protected action. At the end of each procedure or
entry call, the barriers of all entries are examined. If a barrier has become true,
a possibly queued call is then executed as part of the same protected action, i.e.,
without relinquishing the mutual exclusion in between. This servicing of entry
queues is repeated until either there are no more queued calls or until all their
barriers are false. The protected action then terminates.

The following example illustrates the use of entries with a simple bounded buffer,
where items can only be taken from the buffer when it is not empty, and items can
be put into it only when it is not full.

protected type Integer_Bounded_Buffer is
entry Put (I : in Integer);
entry Get (I : out Integer);

private

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

510 · A. J. Wellings et al.

Buffer : array (1 .. 10) of Integer;
First, Last : Natural := 1;
Nof_Items : Natural := 0;

end Integer_Bounded_Buffer;

protected body Integer_Bounded_Buffer is
entry Put (I : in Integer)

when Nof_Items < Buffer’Length is
begin

Buffer (Last) := I;
Last := Last mod Buffer’Length + 1;
Nof_Items := Nof_Items + 1;

end Put;
entry Get (I : out Integer)

when Nof_Items > 0 is
begin

I := Buffer(First);
First := First mod Buffer’Length + 1;
Nof_Items := Nof_Items - 1;

end Get;
end Integer_Bounded_Buffer;

If Get is called when Nof Items is zero, the caller is queued. When another task
calls Put, Nof Items will be incremented. When the entry queues are serviced after
the call to Put has finished, the barrier of Get is now true, and the queued call is
allowed to proceed, thus unblocking the task that made that call.

A requeue statement of the form

requeue Target_Entry;

allows an entry to put a call, which it has already begun processing, back on the
same or some other entry queue. A requeue immediately leaves the current entry,
requeues the call, and then initiates entry queue servicing. Once the requeued call
has been executed, control is returned to the task that made the original call. A
caller is typically requeued if, after consulting the parameters, it is found that the
request could not be immediately met. Requeue is also used when a caller must be
made to wait for the result of a request. For example, a protected entry may issue
a hardware command then requeue the caller until an interrupt arrives indicating
that the command has been performed. An example of the requeue statement can
be found in Section 9.2.

Within the operations of a protected type, the attribute E’Count represents the
number of calls in the queue of entry E.

Potentially blocking calls, in particular entry calls, are forbidden within a pro-
tected action. This language rule helps avoid deadlocks due to the nested monitors
problem and avoids a possible unbounded priority inversion that might otherwise
occur. This means that a procedure of a protected type may call other procedures
or functions of the same or some other protected object, but not entries. Functions
of a protected type may only call other protected functions of the same protected
object to avoid circumventing the read-only restriction. However, they may call
both protected functions and procedures of other protected objects. Entries may
call procedures or functions, but not other entries; they may only requeue to another
entry.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 511

3.2 Object-Orientation: Tagged Types

One of the other main extensions to Ada 83 was the introduction of object-oriented
programming facilities. Here the designers of Ada 95 were faced with a dilemma.
Ada 83’s facility for encapsulation was the package. Unfortunately, packages (unlike
tasks) were not fully integrated into the typing model: there were no package types.
Rather than introduce a class-like construct into the language (as had been done
by almost all other object-oriented languages), Ada 95 followed the Oberon [Wirth
1988] approach and achieved object-orientation by type extension. The designers
argued that Ada 83 already had the ability to derive types from other types and
override their operations. Consequently, object-orientation was achieved via the
introduction of “tagged types”.

Tagged types in Ada 95 are record types that can be extended. Thus a class in
Ada is represented by the following:

package Objects is
type Class is tagged record

-- data attributes of the class
end record ;

-- the following are the primitive operations of the type
procedure Method1 (O: in Class; Params: Some_Type);
procedure Method2 (O: in out Class; Params : Some_Type);

end Objects;

The data attributes of the class in the above example are directly visible to users
of the class. Ada 95 also allows these attributes to be fully encapsulated by using
private types:

package Objects is
type Class is tagged private ;

-- the following are the primitive operations of the type
procedure Method1 (O: in Class; Params: Some_Type);
procedure Method2 (O: in out Class; Params : Some_Type);

private
type Class is tagged record

-- data attributes of the class
end record ;

end Objects;

Objects of the class can be created and used by

with Objects; use Objects;
...
Object: Class;
Params: Some_Type;

....
begin

Method1(Object, Params);
end ;

Contrast this to a call to an object’s method in the more typical object-oriented
paradigm where the call is of the form: Object.Method1(Params). The difference
is purely syntactical; both forms have the same expressive power and denote the

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

512 · A. J. Wellings et al.

same language construct, namely, a call to a primitive operation of a tagged type
or a call of a method of a class, respectively.

Inheritance in Ada 95 is achieved by extending the parent type and overriding
the primitive operations.

with Objects; use Objects;
package Extended_Objects is

type Extended_Class is new Class with
-- new data attributes

end record ;

-- overridden primitive operations
procedure Method1 (O: in Extended_Class; Params: Some_Type);
procedure Method2 (O: in out Extended_Class; Params : Some_Type);

-- new primitive operation
procedure Method3 (O: in out Extended_Class; Params : Some_Type);

end Extended_Objects;

Polymorphism in Ada 95 is achieved by the use of class-wide types or pointers to
class-wide types. It is possible, for example, to declare a pointer to a hierarchy
of tagged types rooted at a place in the tree of type extensions. This pointer
can then reference any object in the type hierarchy. When a primitive method is
called passing the dereferenced pointer, run-time dispatching occurs to the correct
operation:

type Pointer is access Object.Class’Class;
-- ’Class indicates a class-wide type

Ap: Pointer := new ...; -- some object derived from Object.Class;

...

Method1(Ap. all , Param); -- dispatches to appropriate method

In Ada 95, dispatching only occurs when the actual parameter of a call to a primitive
operation is of a class-wide type. This contrasts with some other object-oriented
programming languages where dispatching is the default (e.g., Java). In order to
force dispatching in Ada, the parameter must be explicitly converted to a class-
wide type when invoking the primitive operation. This situation often occurs when
one primitive operation of an object wants to dispatch to some other primitive
operation of the same object. This is called redispatching and can be achieved by
converting the operand to a class-wide type, as shown in the following example:

type T is tagged record ...;

procedure P (X: T) is ...;
procedure Q (X: T) is
begin

...
P(T’Class(X)); -- redispatch
...

end Q;

type T1 is new T with record ...;

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 513

procedure P (X: T1);

A1: T1;

Here, procedure Q does a redispatch, by explicitly converting the parameter X to
a class-wide type before invoking P. If this conversion had been omitted and Q
just called P(X), then the call would be statically bound to the procedure P of T,
regardless of what actual parameter was passed to Q.

It should be noted that Ada allows calls to overridden operations to be stat-
ically bound from outside the defining tagged type. For example, although the
Extended Objects package (defined earlier) has extended the Class tagged type
and overridden Method1, it is possible for a client to write:

Eo: Extended_Class;
...

Method1(Class(Eo), ...);

and call the overridden method explicitly. Arguably this has now broken the
Extended Class abstraction, and perhaps should be disallowed. Such explicit con-
versions can only be safely done from within the overridden method itself when it
wishes to call its parent method.

3.3 Child Packages

Child packages are another extension to Ada 83. Their main motivation is to add
more flexibility to the single-level packaging facility. With Ada 83, changes to a
package which resulted in modifications to the specification required recompilation
of all clients using that package. This is at odds with object-oriented programming
which facilitates incremental changes. Furthermore, extending private tagged types
is not feasible without further language additions, as access to data in private types
can only be made from within the package body.

Consider the following example given in the previous section:

package Objects is
type Class is tagged private ;

-- the following are the primitive operations of the type
procedure Method1 (O: in Class; Params: Some_Type);
procedure Method2 (O: in out Class; Params : Some_Type);

private
type Class is tagged record

-- data attributes of the class
end record ;

end Objects;

To extend this class and have visibility of the parent data attributes, would require
the package to be edited.

A child package has direct access to the private sections of its parents and grand-
parents without going through their interfaces. Hence, we have

package Objects.Extended_Objects is
-- "." indicates that package Extended_Objects is a child of Objects

type Extended_Class is new Class with private ;

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

514 · A. J. Wellings et al.

-- overridden primitive operations
procedure Method1 (O: in Extended_Class; Params: Some_Type);
procedure Method2 (O: in out Extended_Class; Params : Some_Type);

-- new primitive operation
procedure Method3 (O: in out Extended_Class; Params : Some_Type);

private

type Extended_Class is new Class with private ;
-- new data attributes

end record ;
end Extended_Objects;

allows the implementation of the new and overridden primitive operations to have
access to the original class’s data attributes.

3.4 Object-Oriented Programming and Concurrency

Although task types and protected types are fully integrated into the typing model
of Ada 95, it is not possible to create a tagged protected type or a tagged task type.
The designers shied away from this possibility partly because they felt that fully in-
tegrating object-oriented programming and concurrency was not a well-understood
topic and, therefore, not suitable for an ISO standard professional programming
language. Also, there were inevitable concerns that the scope of potential language
changes being proposed was too large for the Ada community to accept.

In spite of this, there is some level of integration between tagged types and tasks
and protected objects. Tagged types after all are just part of the typing mechanism
and, therefore, can be used by protected types and tasks types in the same way
as other types. Indeed paradigms for their use have been developed (see Burns
and Wellings[1998], chapter 13). However, these approaches cannot get around the
basic limitation that protected types and task types cannot be extended.

4. MAKING ADA 95 CONCURRENT PROGRAMMING MORE OBJECT-ORIENTED

Now that the dust is beginning to settle around the Ada 95 standard, it is im-
portant to begin to look to the future. The object-oriented paradigm has largely
been welcomed by the Ada community. Even the real-time community, which was
originally sceptical of the facilities and worried about the impact they would have
on predictability, is beginning to see some of the advantages. Furthermore, as peo-
ple become more proficient in the use of the language, they begin to realize that
better integration between the concurrency and object-oriented features would be
beneficial. The goal of this article is to continue the debate on how best to achieve
full integration in any future version of the language.

There are the following classes of basic types in Ada:

—scalar types, such as integer types, enumeration types, real types, etc.
—structured types, such as record types and array types
—protected types
—task types
—access types
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 515

Access types are special as they provide the mechanism by which pointers to the
other types can be created. Note that, although access types to subprograms (pro-
cedures and functions) can be created, subprograms are not a basic type of the
language.

With tagged types, Ada 95 provides a mechanism whereby a structured type can
be extended. It should be stressed, though, that only record types can be extended,
not array types. This is understandable, as the record is the primary mechanism
for grouping together items which will represent the heterogeneous attributes of the
objects. Furthermore, variable-length array manipulation is already catered for in
the language. Similarly, scalar types can already be extended using subtypes and
derived types.

Allowing records to be extended thus is consistent with allowing variable-length
arrays, subtypes, and derived types.

A protected type is similar to a record in that it groups items together. (In the
case of a protected type, these items must be accessed under mutual exclusion.) It
would be consistent, then, to allow a protected type to be extended with additional
items. The following sections will discuss some of the issues in allowing extensible
protected types. The issues associated with extensible task types are the subject
of on-going research.

5. EXTENSIBLE PROTECTED TYPES

To make protected types more integrated with the object-oriented programming
model requires modifications to the Ada 95 syntax and semantics. The modifi-
cations center around the notion of an extensible (tagged) protected type. The
requirements for extensible protected types are easy to articulate. In particular,
they should allow

—new data fields to be added,
—new functions, procedures, and entries to be added,
—functions, procedures, and entries to be overridden, and
—class-wide programming to be performed.

These simple requirements raise many complex semantic issues. Furthermore,
any proposed extensions should be fully integrated with the Ada model of object-
oriented programming.

5.1 Declaration and Primitive Operations

For consistency with the usage elsewhere in Ada, the word “tagged” indicates that
a protected type is extensible. As described in Section 3.1, a protected type encap-
sulates the operations that can be performed on its protected data. Consequently,
the primitive operations of a tagged protected type are, in effect, already defined.
They are, of course, similar to primitive operations of other tagged types in spirit
but not in syntax, since other primitive operations are defined by being declared in
the same package specification as a tagged type.

Consider the following example:

protected type T is tagged -- new proposed syntax
procedure W (...);

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

516 · A. J. Wellings et al.

function X (...) return ...;
entry Y (...);

private
-- data attributes of T

end T;

O : T;

W, X, and Y can be viewed as primitive operations on T. Interestingly, the call O.X
takes a syntactic form similar to that in most object-oriented languages. Indeed,
Ada’s protected object syntax is in conflict with the language’s usual representation
of an “object” (see Section 3.2).

5.2 Inheritance

Tagged protected types can be extended in the same manner as tagged types.
Hence,

protected type T1 is new T with
procedure W (...); -- override T.W
procedure Z (...); -- a new method

private
-- new attributes of T1

end T1;

The issue of overriding protected entries will be considered in Section 5.4.
One consideration is whether or not private fields in the parent type (T) can be

seen in the child type (T1). In protected types, all data have to be declared as
private so that they cannot be changed without first obtaining mutual exclusion.
There are four possible approaches to this visibility issue:

(1) Prevent a child protected object from accessing the parent’s data. This would
limit the child’s power to modify the behavior of its parent object, it only being
allowed to invoke operations in its parent.

(2) Allow a child protected object full access to private data declared in its parent.
This would be more flexible but has the potential to compromise the parent
abstraction.

(3) Provide an additional keyword to distinguish between data that are fully private
and data that are private but visible to child types. This keyword would be
used in a similar way to private (much like C++ uses its keyword “protected”
to permit descendent classes direct access to inherited data items).

(4) Allow child protected types to access private components of their parent pro-
tected type if they are declared in a child of the package in which their parent
protected type is declared. This would be slightly inconsistent with the way
protected types currently work in Ada because protected types do not rely on
using packages to provide encapsulation.

The remainder of this article will assume the second method, as it provides the
most flexibility and requires no new keywords. It is also consistent with normal
tagged types.

If a procedure in a child protected type calls a procedure or function in its parent,
it should not have to wait to obtain the lock on the protected object before entering
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 517

the parent; otherwise deadlock would occur. There is one lock for each instance of
a protected type, and the same lock should be used when the protected object is
converted to a parent type. This is consistent with the current Ada approach when
one procedure/function calls another in the same protected object.

5.3 Dispatching and Redispatching

Given a hierarchy of tagged protected types, it is possible to create class-wide types
and access types to class-wide types, e.g.,

type Pt is access protected type T’Class;
P: Pt := new . . .; -- some type in the hierarchy

P.W(...); -- dispatches to the appropriate protected object.

Of course from within P.W, it should be possible to convert back to the class-wide
type and redispatch to another primitive operation. Unfortunately, an operation
inside a tagged protected type does not have the option of converting the object
(on which it was originally dispatched) to a class-wide type because this object is
passed implicitly to the operation. There are two possible strategies which can be
taken:

(1) make all calls to other operations from within a tagged protected type dispatch-
ing or

(2) use some form of syntactic change to make it possible to specify whether to
redispatch or not.

The first strategy is not ideal because it is often useful to be able to call an op-
eration in the same type or a parent type without redispatching. In addition, the
first strategy is inconsistent with ordinary tagged types where redispatching is not
automatic.

The second strategy uses calls of the form type.operation, where type is the
type to which the implicit protected object should be converted. The following is
an example of this syntax for a redispatch:

protected body T is
...
procedure P (...) is
begin

. . .
T’Class.Q (...);
. . .

end P;
end T;

T’Class indicates the type to which the protected object (which is in the hierarchy
of type T’Class but which is being viewed as type T) that was passed implicitly
to P should be view converted. This allows it to define which Q procedure to call.
This syntax is also necessary to allow an operation to call an overridden operation
in its parent, e.g.,

protected body T1 is -- an extension of T
...
procedure W (...) is -- overrides the W procedure of T

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

518 · A. J. Wellings et al.

begin
. . .
T.W(...); -- calls the parent operation
. . .

end W;
end T1;

This new syntax does not conflict with any other part of the language because it
is strictly only a type that precedes the period. If it could be an instance of a
protected type then the call could be misinterpreted as an external call: the Ada
Reference Manual [Taft and Duff 1997] distinguishes between external and internal
calls by the use, or not, of the full protected object name [Burns and Wellings 1998].
The call would then be a bounded error.

Requeuing can also lead to situations where redispatching is desirable. Just as
with procedures, redispatching would only occur when explicitly requested, so, for
example, in a protected type T, requeue E would not dispatch whereas requeue
T’Class.E would. Requeuing to a parent entry would require barrier reevaluation.
Requeues from other protected objects or from accept statements in tasks could
also involve dispatching to the correct operation in a similar way.

5.4 Entry Calls

Allowing entries to be primitive operations of extensible protected types raises many
interrelated complex issues. These include:

(1) Can a child entry call its parent’s entry? From an object-oriented perspective,
it is essential to allow the child entry to call its parent. This is how reuse is
achieved. From the protected-object perspective, calling an entry is a poten-
tially suspending operation, and these are not allowed within the body of a
protected operation (see Section 3.1). It is clear that a compromise is required
and that a child entry must be able to extend the facilities provided by its
parent.

(2) What is the relationship, if any, between the parent’s barrier and the child’s
barrier? There are three possibilities: no relationship; the child can weaken
the parent’s barrier; or the child can strengthen the parent’s barrier. Frølund
[1992] suggests that as the child method extends the parent’s method, the child
must have more restrictive synchronization constraints, in order to ensure that
the parent’s state remains consistent.1 However, he also indicates that if the
behavior of the child method totally redefines that of the parent, it should be
possible to redefine the synchronization constraints. Alternatively, it can also be
argued that the synchronization constraints of the child should weaken those of
the parent, not strengthen them, in order to avoid violating the substitutability
property of subtypes [Liskov and Wing 1994].

(3) How many queues does an implementation need to maintain for an overridden
entry? If there is no relationship between the parent and the child barrier, it is
necessary to maintain a separate entry queue for each overridden entry. If there

1Where the child has access to its parent’s state, barrier strengthening is not a sufficient condition
to ensure the consistency of that state, as the child can make the barrier false before calling the
entry. See also the discussion in Section 5.4.1.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 519

is more than one queue, the ’Count attribute should reflect this. Hence ’Count
might give different values when called from the parent or when called from the
child. A problem with using separate entry queues with different barriers for
overridden and overriding entries is that it is harder to theorize about the
order of entries being serviced. Normally, entries are serviced in first-in, first-
out (FIFO) order, but with separate queues, each with a separate barrier, this
might not be possible. For example, a later call to an overridden entry will
be accepted before an earlier call to an overriding entry if the barrier for the
overridden entry becomes true with the overriding entry’s barrier remaining
false.

(4) What happens if a parent entry requeues to another entry? When an entry call
requeues to another entry, control is not returned to the calling entry but to
the task which originally made the entry call (see Section 3.1). This means
that when a child entry calls its parent and the parent entry requeues, control
is not returned to the child. Given that the code of the parent is invisible to
the child, this would effectively prohibit the child entry from undertaking any
postprocessing.

In order to reduce the number of options for discussion, for the remainder of
the article it is assumed that child entries must strengthen their parent’s barrier.
The syntax and when is used to indicate this.2 To avoid having the body of a
child protected object depend on the body of its parent, it is necessary to move the
declaration of the barrier from the body to the specification of the protected type
(private part). Consider

protected type T is tagged
entry E ;

private
I: Integer := 0;
entry E when E’Count > 1; -- barrier given in the private part

end T;

protected type T1 is new T with
entry E ;

private
entry E and when I > 0;

end T;

A: T1;

If a call was made to A.E, this would be statically defined as a call to T1.E and
would be subject to its barrier (E’Count > 1 and then I > 0). The barrier would
be repeated in the entry body.

Even with barrier strengthening, the issue of barrier evaluation must be ad-
dressed. Consider the case where a tagged protected object is converted to its
parent type (using a view conversion external to the protected type) and then an
entry is called on that type. It is not clear which barrier needs to be passed. There
are three possible strategies that can be taken:

2It is assumed that and when is a short-circuit control form.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

520 · A. J. Wellings et al.

(1) Use the barrier associated with the exact entry which is being called, ignoring
any barrier associated with an entry which overrides this exact entry. As the
parent type does not know about new data added in the child, it could be argued
that allowing an entry in the parent to execute when the child has strengthened
the barrier for that entry should be safe. Unfortunately, this is not the case.
Consider a bounded buffer which has been extended so that the Put and Get
operations can be locked. Here, if the lockable buffer is viewed converted to
a normal buffer and Get/Put called with only the buffer barriers evaluated,
a buffer will be accessible even if it is locked. Furthermore, this approach
would also mean that there would be separate entry queues for overridden
entries. The problems associated with maintaining more than one entry queue
per overridden entry have already been mentioned.

(2) Use the barrier associated with the entry to which dispatching would occur if
the object was converted to a class-wide type (i.e., the barrier of the entry of
the object’s actual type). This is the strongest barrier and would allow safe
redispatching in the entry body. This method results in only one entry queue
per entry instead of one for each entry and one for every overridden entry.
However, it is perhaps misleading, as it is the parent’s code which is executed
but the child’s barrier expression that is evaluated.

(3) Allow view conversions from inside the protected object but require that all
external calls are dispatching calls. Hence, there is only one entry queue, and
all external calls would always invoke the primitive operations of the object’s
actual type. The problem with this approach is that currently Ada does not
dispatch by default. Consequently, this approach would introduce an inconsis-
tency between the way tagged types and extensible protected types are treated.

For the remainder of this article, it is assumed that external calls to protected
objects always dispatch.3

5.4.1 Calling the Parent Entry and Parent Requeues. So far this section has
discussed the various issues associated with overridden entry calls. However, details
of how the child entry actually calls its parent have been left unspecified. The main
problem is that Ada forbids an entry from explicitly calling another entry (see
Section 3.1). There are several approaches to this problem.

(1) Use requeue. Although Ada forbids nested entry calls, it does allow entry
requeuing. Hence, the child entry can requeue to the parent. After the parent
entry has executed, control returns to the caller of the child entry, however,
so the child entry cannot do any postprocessing. As a part of the requeue,
the parent’s barrier is evaluated. It should normally be open given that the
child barrier has strengthened it; if not, an exception is raised. (To queue the
call would require more than one entry queue.)4 Furthermore, if the child and
parent entries are to form one atomic protected action, the parent entry must

3To harmonize with regular tagged types a new pragma could be introduced called “Exter-

nal Calls Always Dispatch” which would apply to regular tagged types.
4With the requeue approach and multiple entry queues, there need not be any relationship between
the parent and the child barriers. Such an approach has already been ruled out in the previous
subsection.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 521

be serviced before any other entries whose barriers happen to be open. Hence,
this requeue has slightly different semantics than a requeue between unrelated
entries.

(2) Allow the child entry to call the parent entry and treat that call as a procedure
call It is clear that calling the parent entry is different from a normal entry call;
special syntax has already been introduced to facilitate it (see Section 5.3).
In this approach, the parent call is viewed as a procedure call and therefore
not a potentially suspending operation. However, the parent’s barrier is still a
potential cause for concern. One option is to view the barrier as an assertion
and raise an exception if it is not true.5 The other option is not to test the
barrier at all, based on the premise that the barrier was true when the child
was called and, therefore, need not be reevaluated until the whole protected
action is completed.

With either of these approaches, there is still the problem that control is not
returned to the child if the parent entry requeues requests to other entries for
servicing. This, of course, could be made illegal and an exception raised. However,
requeue is an essential part of the Ada 95 model and to effectively forbid its use
with extensible protected types would be a severe restriction.

The remainder of this article will assume a model where parent calls are treated
as procedure calls (the issue of the assertion is left open) and requeue in the parent
is allowed. A consequence of this is that no postprocessing is allowed after a parent
call.

6. INTEGRATION INTO THE FULL ADA 95 MODEL

The above section has considered the basic extensible protected type model. Of
course, any proposal for the introduction of such a facility must also consider the
full implications of its introduction. This section considers the following topics:

—private types,
—abstract types, and
—generics and mix-in inheritance

6.1 Private Types

The encapsulation mechanism of Ada 95, the package, gives the programmer great
control over the visibility of the entities declared in a package. In particular, Ada
95 supports the notion of private and limited private types, i.e., types whose inter-
nal structure is hidden for clients of the packages (where the types are declared)
and that can be modified only through the primitive operations declared in these
packages (for these types). A protected type is a limited type; hence, it is necessary
to show how extensible protected types integrate into limited private types. The
following illustrates how this is easily achieved.

In order to make a type private, its full definition is moved to the private part of
the package. This can also be done for extensible protected types:

5Special consideration would need to be given to barriers which use the ’Count attribute in the
parent, since these will clearly change when the child begins execution.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

522 · A. J. Wellings et al.

package Example1 is

protected type Pt0 is tagged private ;

private

protected type Pt0 is tagged
-- primitive operations.
...

private
-- data items etc.
...

end Pt0;

end Example1;

Note that in this example, the primitive operations of type Pt0 are all declared in
the private part of the package and are thus visible only in child packages of package
Example1. Other packages cannot do anything with type Pt0, because they do not
have access to the type’s primitive operations. Nevertheless, this construct can be
useful for class-wide programming using access types, e.g., through

type Pt_Ref is access Pt0’Class;

Private types can also give a finer control over visibility. One might declare a type
and make some of its primitive operations publicly visible while other primitive
operations would be private (and thus visible only to child packages), e.g.,

package Example2 is

protected type Pt1 is tagged
-- public primitive operations, visible anywhere
...

with private
-- data items etc., see (1) below
...

end Pt1;

private

protected type Pt1 is tagged
-- private primitive operations, visible only in child packages
...

private
-- additional data items etc., see (2) below
...

end Pt1;
end Example2;

Note that the public declaration of type Pt1 uses “with private” instead of only
“private” to start its private section. This is supposed to give a syntactical indi-
cation that the public view of Pt1 is an incomplete type that must be completed
later on in the private part of the package.

The private parts of the incomplete and the full declaration of Pt1 also have
different visibility scopes:
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 523

(1) The items declared in the private part of the public incomplete declaration are
visible to types derived from Pt1 anywhere.

(2) The items declared in the private part of the full declaration of Pt1 are visible
to types derived from Pt1 in child packages of package Example2 only.

Extensible protected types thus offer even more visibility control than ordinary
tagged types: the latter must declare all their data components either in the public
or in the private part, whereas an extensible protected type may choose to make
some of them public (to descendants only) and some of them private.

Alternatively a protected type can be declared to have a private extension. Given
a protected type Pt2

package Base is

protected type Pt2 is tagged
...

private
...

end Pt2;

end Base;

a private extension can then be written as

with Base;
package Example3 is

protected type Pt3 is new Base.Pt2 with private ;

private

protected type Pt3 is new Base.Pt2 with
-- Additional primitive operations
...

private
-- Additional data items
...

end Pt3;

end Example3;

Here, only the features inherited from Pt2 are publicly visible; the additional fea-
tures introduced in the private part of the package are private and hence visible
only in child packages of package Example3.

Private types can be used in Ada 95 to implement hidden and semihidden in-
heritance, two forms of implementation inheritance (as opposed to interface inher-
itance, i.e., subtyping). For instance, one may declare a tagged type publicly as a
root type (i.e., not derived from any other type) while privately deriving it from
another tagged type to reuse the latter’s implementation. This hidden inheritance
is also possible with extended protected types. Given the above package Base,
hidden inheritance from Pt2 can be implemented as follows:

with Base;
package Example4 is

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

524 · A. J. Wellings et al.

-- the public view of Pt4 is a root type
protected type Pt4 is tagged

-- primitive operations, visible anywhere
...

with private
-- data items etc.
...

end Pt4;

private
-- the private view of Pt4 is derived from Pt2
protected type Pt4 is new Base.Pt2 with

-- additional primitive operations, visible only in child packages
...

with private
-- additional data items etc.
...

end Pt4;

end Example4;

The derivation of Pt4 from Pt2 is not publicly visible: operations and data items
inherited from Pt2 cannot be accessed by other packages. If some of the primitive
operations inherited from Pt2 should in fact be visible in the public view of Pt4,
too, Pt4 must redeclare them and implement them as call-throughs to the privately
inherited primitive operations of Pt2. In child packages of package Example4, the
derivation relationship is exposed, and hence these inherited features are accessible
in child packages.

Semihidden inheritance is similar in spirit, but exposes part of the inheritance
relation. Given an existing hierarchy of extensible protected types

package Example5_Base is

protected type Pt5 is tagged
...

private
...

end Pt5;

protected type Pt6 is new Pt5 with
...

private
...

end Pt6;

end Example5_Base;

one can now declare a new type Pt7 that uses interface inheritance from Pt5, but
implementation inheritance from some type derived from Pt5, e.g., from Pt6:

with Example5_Base; use Example5_Base;
package Example5 is

protected type Pt7 is new Pt5 with
...

with private

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 525

...
end Pt7;

private

protected type Pt7 is new Pt6 with
...

private
...

end Pt7;

end Example5;

As these examples show, extensible protected types offer the same expressive power
concerning private types as ordinary tagged types. In fact, because protected types
are an encapsulation unit in their own right (in addition to the encapsulation pro-
vided by packages), extensible protected types offer an even greater visibility control
than ordinary tagged types. Primitive operations of an extensible protected type
declared in the type’s private section are visible only within that type itself or
within a child extension of that type. Combining this kind of visibility (which is
similar to Java’s “protected” declarator) with the visibility rules for packages gives
some visibility specifications that do not exist for ordinary tagged types.

There is one difficulty with this scheme, though. It is currently possible in Ada
95 to define a limited private type that is implemented as a protected type. This
raises the question whether the following should be legal:

package Example6 is

type T is tagged limited private ;
private

protected type T is tagged
...

private
...

end T;

end Example6;

Here, although child packages could treat T as an extensible protected type, other
client packages could do very little with the type. Furthermore, the mixture of
protected and non protected views of one and the same type may give rise to
incalculable implementation problems because in some cases accesses to an object
would have to be done under mutual exclusion even if the view of the object’s type
was not protected, simply because its full view was a protected type. Consequently,
the kind of private completion shown in Example6 is probably best disallowed.

6.2 Abstract Extensible Protected Types

Ada 95 allows tagged types and their primitive operations to be abstract. This
means that instances of the type cannot be created. An abstract type can be an
extension of another abstract type. A concrete tagged type can be an extension
from an abstract type. An abstract primitive operation can only be declared for

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

526 · A. J. Wellings et al.

an abstract type. However, an abstract type can have non abstract primitive oper-
ations.

The Ada 95 model can easily be applied to extensible protected types. The
following examples illustrate the integration:

protected type Ept is abstract tagged

-- Concrete operations:
function F (...) return ...;
procedure P (...);
entry E (...);

-- Abstract operations:
function F1 (...) return ... is abstract ;
procedure P1 (...) is abstract ;
entry E1 (...) is abstract ;

private
...;
entry E (...) when Cond;

end Ept;

The one issue that is perhaps not obvious concerns whether an abstract entry can
have a barrier. On the one hand, an abstract entry cannot be called, so any barrier is
superfluous. On the other hand, the programmer may want to define an abstraction
where it is appropriate to guard an abstract entry, e.g.,

protected type Lockable_Operation is abstract tagged
procedure Lock;
procedure Unlock;
entry Operation (...) is abstract ;

private
Locked : Boolean := False;
entry Operation (...) when not Locked;

end Lockable_Operation;

The bodies of Lock and Unlock set the Locked variable to the corresponding values.
Now because of the barrier-strengthening rule, the when not Locked barrier will
automatically be enforced on any concrete implementation of the operation.

The above example can be rewritten with a concrete entry for Operation that
has a null body. It should be noted, however, that with a concrete null-operation,
one cannot force concrete children to supply an implementation for the entry. With
an abstract entry, one can.

6.3 Generics and Mix-In Inheritance

Ada 95 does not support multiple inheritance. However, it does support various
approaches which can be used to achieve the desired affect. One such approach
is mix-in inheritance, which in Ada is done through generic packages that can
take a parameter of a tagged type. The generic package provides the mixed-in
components and operations: an instantiation then does the mix-in into an existing
base type. A version of Ada with extensible protected types must also allow them
to be parameters to generics and hence take part in mix-in inheritance.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 527

As with normal tagged types, two kinds of generic formal parameters can be
defined:

generic
type Base_Type is [abstract] protected tagged private ;
type Derived_From is [abstract] new protected Derived [with private];

In the former, the generic body has no knowledge of the extensible protected type
actual parameter. In the latter, the actual type must be a type in the tree of
extensible protected types rooted at Derived.

Unfortunately, these facilities are not enough to cope with situations involving
entries. Consider the case of a predefined lock which can be mixed in with any
other protected object to define a lockable version. Without extra functionality,
there is no way to express this. For these reasons, the generic modifier entry <>
is used to mean all the entries of the actual parameter. The lockable mix-in type
can now be achieved:

generic
type Base_Type is [abstract] protected tagged private ;

package Lockable_G is

protected type Lockable_Type is new Base_Type with

procedure Lock;
procedure Unlock;

private

Locked : Boolean := False;

entry <> and when not Locked;

end Lockable_Type;

end Lockable_G;

The code entry <> and when not Locked indicates that all entries in the parent
protected type should have their barriers strengthened by the boolean expression
not Locked.

The entry <> feature makes it possible to modify the barriers of entries that are
unknown at the time the generic unit is written. At the time the generic unit is
instantiated, the entries of the actual generic parameter supplied for Base Type are
known, and entry <> then denotes a well-defined set of primitive operations.

This generic barrier modifier is similar to Frølund’s “all-except” specifier [Frølund
1992], except that the latter also applies to primitive operations that are added later
on in further derivations, whereas entry <> does not. If new primitive operations
are added in further derivations, it is the programmer’s responsibility to make sure
that these new entries get the right barriers (i.e., include when not Locked).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

528 · A. J. Wellings et al.

7. INHERITANCE ANOMALY

The combination of the object-oriented paradigm with mechanisms for concurrent
programming may give rise to the so-called “inheritance anomaly” [Matsuoka and
Yonezawa 1993]. An inheritance anomaly exists if the synchronization between
operations of a class is not local but may depend on the whole set of operations
present for the class. When a subclass adds new operations, it may therefore become
necessary to change the synchronization defined in the parent class to account for
these new operations. This section examines how extensible protected types can
deal with this inheritance anomaly.

Synchronization for extensible protected types is done via entry barriers. An
entry barrier can be interpreted in two slightly different ways:

—As a precondition (which must become a guard when concurrency is introduced
in an object-oriented programming language, as Meyer [1997] argues). In this
sense, entries are the equivalent of partial operations [Herlihy and Wing 1994].

—As a synchronization constraint.

The use of entry barriers (i.e., guards) for synchronization makes extended pro-
tected types immune against one of the kinds of inheritance anomalies identified by
Matsuoka and Yonezawa [1993]: guards are not subject to inheritance anomalies
caused by a partitioning of states.

To avoid a major break of encapsulation, it is mandatory for a concurrent object-
oriented programming language to have a way to reuse existing synchronization
code defined for a parent class and to incrementally modify this inherited synchro-
nization in a child class. In our proposal, this is given by the and when clause,
which incrementally modifies an inherited entry barrier and hence the inherited
synchronization code.

Inheritance anomalies in Ada 95 with extended protected types can still occur,
though. Bloom [1979] suggested that the application programmers need to be
able to express the synchronization between processes according to the following
constraints (Blooms original analysis was in the context of a client server model):

(1) The type of request: The server might wish to accept requests in an order
which is determined by the type of request message. In object-oriented terms,
the type of a message is the method which is to be invoked in the called object.
Therefore given an object with, say, methods A, B, and C, the server might
wish to execute method A in preference to B and B in preference to C, etc.

(2) The order of request: A server might wish to service requests in FIFO, priority
of caller, or non deterministic order. In the object model, this requires the
methods to be executed according to order of the method invocation.

(3) Request Parameters: The arguments of the request often dictate whether a
message can or cannot be accepted. For example, a method get(n) to obtain
n items from a buffer can only be accepted if n items are available. Hence in
an object model it may be necessary to block certain method calls according
to the value of their parameters.

(4) Local State: A server might not be in a position to synchronize with a client
if it is in a certain state, for example when a bounded buffer is empty or full.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 529

In the object model, this synchronization is based on information contained in
instance variables of the object.

(5) History Information: This is synchronization based on whether a given request
(message invocation, in the object model) has occurred. This is often closely
related to local state, since past executions may well have changed the state;
however, it is sometimes convenient to maintain it as a separate category, as it
may be easier to express certain constraints this way.

As Mitchell and Wellings [1996] argue, the root cause of inheritance anomalies lies
in a lack of expressive power of concurrent object-oriented programming languages:
if not all five criteria identified by Bloom are fulfilled, inheritance anomalies may
occur. Ada 95 satisfies only three of these criteria; synchronization based on his-
tory information cannot be expressed directly using entry barriers (local state must
instead be used to record execution history), and synchronization based on request
parameter values also is not possible directly in Ada 95. The example for the re-
source controller shown in Section 9.2 exhibits both of these inheritance anomalies.
Because the barrier of entry Allocate N cannot depend on the parameter N itself,
an internal requeue to Wait For N must be used instead. The synchronization con-
straint for Wait For N itself is history-sensitive: the operation should be allowed
only after a call to Deallocate has freed some resources. As a result, Deallocate
must be overridden to record this history information in local state, although both
the synchronization constraints for Deallocate itself as well as its functionality
remain unchanged.

The entry <> modifier has been introduced in Section 6.3 to allow protected
objects created using mix-in inheritance to affect the barriers of their parent. In
the Lockable G example presented in Section 6.3, all the barriers are strengthened
by adding the condition not Locked. It may well be that the inherited proce-
dures need to be similarly guarded. This gives rise to an Ada-specific inheritance
anomaly. As synchronization is done via barriers, only entries can be synchronized,
but not procedures. If the synchronization constraints of a subtype should restrict
an inherited primitive operation that was implemented as a procedure in the par-
ent type, the subtype would have to override this procedure by an entry. However,
when using class-wide programming, a task may assume that a protected operation
is implemented as a procedure (as that is what the base type indicates) and is
therefore non blocking. At run-time the call might dispatch to an entry and block
on the barrier, which would make the call illegal if it occurred within a protected
action. For these reasons, overriding procedures with entries should not be allowed
for extensible protected types.

As discussed in Section 6.3, further Ada-specific inheritance anomalies that might
arise when mix-in inheritance is used can be avoided by providing additional func-
tionality for generics. Because the generic mix-in class must define the synchroniza-
tion for the complete class resulting from the combination of the mix-in class with
some a priori unknown base class, the entry <> barrier modifier was introduced.
It allows the mix-in class to impose its own synchronization constraints on an un-
known set of inherited operations. However, the new generic barrier modifier entry
<> alone is not sufficient to avoid the introduction of new Ada-specific inheritance
anomalies. It is also necessary to have a way for the mix-in class to adapt the

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

530 · A. J. Wellings et al.

synchronization of its additional primitive operations to the synchronization con-
straints imposed by an actual base type. When the generic mix-in is instantiated
with some base type to create a new result type, it must be possible to param-
eterize the mix-in’s synchronization based upon the base type in order to obtain
the correct synchronization for the new result type. How such a parameterization
could be obtained is still a topic of on-going research.

8. INTERACTION WITH TAGGED TYPES

So far, the discussion has focused on how protected types can be extended. This
section now considers the interaction between tagged types and protected tagged
types.

Consider the following which defines a simple buffer:

package Simple_Buffer is
type Data_T is tagged private ;
procedure Write (M : in out Data_T; X : Integer);
procedure Read (M : in Data_T; X : out Integer);

private
type Data_T is tagged

record
I : Integer := 4;

end record ; -- say
end Simple_Buffer;

Such a buffer can only be used safely in a sequential environment. To make a
prewritten buffer safe for concurrent access requires it to be encapsulated in a
protected type. The following illustrates how this can easily be achieved.

protected type Buffer is tagged
procedure Write (X : Integer);
procedure Read (X : out Integer);

private
D : Simple_Buffer.Data_T;

end Buffer;

The buffer can now only be accessed through its protected interface.
Of course if the Buffer protected type is extended, the following will dispatch

on the buffer.

type B is access Buffer’Class;

Buf : B := new ...;

Buf.Write(3);

Alternatively, Simple Buffer.Data T can be made protected but not encapsulated
by the following:

protected type Buffer is tagged
procedure Write (M : in out Simple_Buffer.Data_T; X : Integer);
procedure Read (M : in out Single_Data_T; X : out Integer);

private
..;

end Buffer;

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 531

This would allow the buffer to be accessed directly (without the protection over-
heads) where the situation dictates that it is safe to do so.

Combining extensible protected types with class-wide tagged types allows for
even more powerful paradigms. Consider

protected type Buffer is tagged
procedure Write (M : in out Simple_Buffer.Data_T’Class;

X : Integer);
procedure Read (M : in out Single_Data_T’Class;

X : out Integer);
private

..;
end Buffer;

Here, both the protected type and the tagged type can be easily extended. The
program can arrange for dispatching on the Buffer and from within the Write/Read
routines. Further, by using access discriminants the data can be encapsulated and
protected from any concurrent use.

type Ad is access Simple_Buffer.Data_T’Class;

protected type Buffer(A : Ad) is tagged -- a normal discriminant
procedure Write (X : Integer);
procedure Read (X : out Integer);

private
...

end Buffer;

type B is access Buffer’Class;

B1 : B := new Buffer(new Simple_Buffer.Data_T)...;

Here, B1 will dispatch to the correct buffer, and Write/Read will dispatch to the
correct data which will be encapsulated.

9. EXAMPLES

This section presents two examples illustrating the principles discussed in this arti-
cle. They assume all external calls dispatch; there is no postprocessing after parent
calls, and no checking of parents’ barriers; and they assume that the child has access
to the parent’s state.

9.1 Signals

In concurrent programming, signals are often used to inform tasks that events have
occurred. Signals often have different forms: there are transient and persistent
signals, those that wake up only a single task, and those that wake up all tasks. This
section illustrates how these abstractions can be built using extensible protected
types.

Consider first, an abstract definition of a signal.

package Signals is

protected type Signal is abstract
procedure Send;
entry Wait is abstract ;

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

532 · A. J. Wellings et al.

private
Signal_Arrived : Boolean := True;

end Signal;

type All_Signals is access Signal’Class;
end Signals;

package body Signals is

protected body Signal is abstract
procedure Send is
begin

Signal_Arrived := True;
end Send;

end Signal;
end Signals;

Now to create a persistent signal:
with Signals; use Signals;
package Persistent_Signals is

protected type Persistent_Signal is new Signal with
entry Wait;

private
entry Wait when Signal_Arrived;

end Persistent_Signal;
end Persistent_Signals;

package body Persistent_Signals is

protected body type Persistent_Signal is
entry Wait when Signal_Arrived is
begin

Signal_Arrived := False;
end ;

end Persistent_Signal;
end Persistent_Signals;

To create a transient signal
with Signals; use Signals;
package Transient_Signals is

protected type Transient_Signal is new Signal with
procedure Send;
entry Wait;

private
entry Wait when Signal_Arrived;

end Transient_Signal;
end Transient_Signals;

package body Transient_Signals is

protected body type Transient_Signal is
procedure Send is
begin

if Wait’Count = 0 then

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 533

return ;
end if ;
Signal.Send;

end Send;

entry Wait when Signal_Arrived is
begin

Signal_Arrived := False;
end ;

end Transient_Signal;
end Transient_Signals;

To create a signal which will release all tasks.

generic
type Base_Signal is new protected Signal;

package Release_All_Signals is

protected type Release_All_Signal is new Base_Signal with
entry Wait;

private
entry Wait and when True;

end Release_All_Signal;
end Release_All_Signals;

package body Release_All_Signals is

protected body Release_All_Signal

entry Wait and when True is
begin

if Wait’Count /= 0 then
return ;

end if ;
Base_Signal.Wait;

end ;
end Release_All_Signal;

end Release_All_Signals;

Now, of course,

My_Signal : All_Signals := ...;

My_Signal.Send;

will dispatch to the appropriate signal handler.

9.2 Advanced Resource Control

Resource allocation is a fundamental problem in all aspects of concurrent program-
ming. Its consideration exercises all Bloom’s criteria (see Section 7) and forms
an appropriate basis for assessing the synchronization mechanisms of concurrent
languages, such as Ada.

Consider the problem of constructing a resource controller that allocates some
resource to a group of client agents. There are a number of instances of the resource,
but the number is bounded; contention is possible and must be catered for in the
design of the program. Mitchell and Wellings [1996] propose the following resource

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

534 · A. J. Wellings et al.

controller problem as a benchmark for concurrent object-oriented programming
languages.

Implement a resource controller with 4 operations:
—Allocate: to allocate one resource,
—Deallocate: to deallocate a resource (which thus becomes available

again for allocation)
—Hold: to inhibit allocation until a call to
—Resume: which allows allocation again.
There are the following constraints on these operations:
(1) Allocate is accepted when resources are available and the controller

is not held (synchronization on local state and history)
(2) Deallocate is accepted when resources have been allocated (syn-

chronization on local state)
(3) calls to Hold must be serviced before calls to Allocate (synchro-

nization on type of request)
(4) calls to Resume are accepted only when the controller is held (syn-

chronization on history information).

In Ada 95, not all history information can be expressed directly in barriers.
However, it is possible to use local state variables to record execution history.

The following solution simplifies the presentation by modeling the resources by
a counter indicating the number of free resources. Requirement 2 is interpreted
as meaning that an exception can be raised if an attempt is made to deallocate
resources which have not yet been allocated. Hence, it is represented by a protected
procedure rather than an entry.

package Rsc_Controller is

Max_Resources_Available : constant Natural := 100; -- For example

No_Resources_Allocated : exception ; -- raised by deallocate

protected type Simple_Resource_Controller is tagged

entry Allocate;
procedure Deallocate;
entry Hold;
entry Resume;

private

Free : Natural := Max_Resources_Available;
Taken : Natural := 0;
Locked : Boolean := False;

entry Allocate when Free > 0 and not Locked and -- req. 1
Hold’Count = 0; -- req. 3

entry Hold when not Locked;
entry Resume when Locked; -- req. 4

end Simple_Resource_Controller;
end Rsc_Controller;

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 535

The body of this package simply keeps track of the resources taken and freed, and
sets and resets the Locked variable.

package body Rsc_Controller is

protected body Simple_Resource_Controller is

entry Allocate when Free > 0 and not Locked and
Hold’Count = 0 is

begin
Free := Free -1; -- allocate resource
Taken := Taken + 1;

end Allocate;

procedure Deallocate is
begin

if Taken = 0 then
raise No_Resources_Allocated;

end if ;
Free := Free + 1; -- return resource
Taken := Taken - 1;

end Deallocate;

entry Hold when not Locked is
begin

Locked := True;
end Hold;

entry Resume when Locked is
begin

Locked := False;
end Resume;

end Simple_Resource_Controller;
end Rsc_Controller

Mitchell and Wellings [1996] then extend the problem to consider the impact of
inheritance:

Extend this resource controller to add a method: Allocate N which
takes an integer parameter N and then allocates N resources. The exten-
sion is subject to the following additional requirements:
5. Calls to Allocate N are accepted only when there are at least N

available resources. (Synchronization on request parameters.)
6. Calls to Deallocate must be serviced before calls to Allocate or

Allocate N. (Synchronization on the type of request.)

The additional constraint that calls must be serviced in a FIFO Within Priorities
fashion is ignored here. Mitchell and Wellings [1996] also do not implement this,
and in Ada 95, it would be done through pragmas.

Note that this specification is flawed, and the implementation shown in Mitchell
and Wellings [1996] also exhibits this flaw: if Deallocate is called when no re-
sources are allocated, the resource controller will deadlock and not service any calls
to Deallocate, Allocate, or Allocate N. In this implementation, this has been
corrected implicitly, because calling Deallocate when no resources are allocated is
viewed as an error, and an exception is raised.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

536 · A. J. Wellings et al.

Requirement 5 is implemented by requeuing to Wait For N if not enough re-
sources are available.

Requirement 6 is implicitly fulfiled because calls to Deallocate are never queued,
since Deallocate is implemented as a procedure.

with Rsc_Controller; use Rsc_Controller;
package Advanced_Controller is

protected type Advanced_Resource_Controller is
new Simple_Resource_Controller with

entry Allocate_N (N : in Natural);

procedure Deallocate;
-- Ada-specific anomaly: because barriers cannot access
-- parameters, we must also override this method so that
-- we can set ’Changed’ (see below).

private
entry Allocate_N when

Free > 0 and not Locked and -- req. 1
Hold’Count = 0; -- req. 3

-- Note: Ada does not allow access to parameters in a barrier
-- (purely for efficiency reasons). Such cases must in Ada
-- always be implemented by using internal suspension of the
-- method through a requeue statement. Everything below is just
-- necessary overhead in Ada 95 to implement the equivalent of
-- having access to parameters in barriers.

Current_Queue : Boolean := False;
-- Indicates which of the two ’Wait_For_N’ entry queues is the one
-- that currently shall be used. (Two queues are used: one queue
-- is used when trying to satisfy requests, requests that cannot
-- be satisfied are requeued to the other. Then, the roles of the
-- two queues are swapped. This avoids problems when the calling
-- tasks have different priorities.)

Changed : Boolean := False;
-- Set whenever something is deallocated. Needed for correct
-- implementation of ’Allocate_N’ and ’Wait_For_N’. Reset each
-- time outstanding calls to these routines have been serviced.
-- ’Changed’ actually encodes the history information ’Wait_For_N’
-- is only accepted after a call to ’Deallocate’.

entry Wait_For_N (for Queue in Boolean) (N : in Natural);
-- This declares two entries with names "Wait_For_N (True)"
-- and "Wait_For_N (False)". ’Allocate_N’ requeues to one of the
-- entries if less than N resources are currently available.
-- Two entries are required to ensure correct behavior if calling
-- tasks have different priorities.

entry Wait_For_N (for Queue in Boolean) when
not Locked and Hold’Count = 0 and

(Queue = Current_Queue) and Changed;
end Advanced_Resource_Controller;

end Advanced_Controller;

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 537

package body Advanced_Controller

protected body Advanced_Resource_Controller is

procedure Deallocate is
-- Overridden to account for new history information encoding
-- needed for access to parameter in the barrier of Allocate_N.

begin
Changed := True;
Simple_Resource_Controller.Deallocate;

end Deallocate;

entry Allocate_N (N : in Natural) when
Free > 0 and
not Locked and
Hold’Count = 0 is

begin
if Free >= N then

Free := Free - N;
Taken := Taken + N;

else
requeue Wait_For_N(Current_Queue);

end if ;
end Allocate_N;

entry Wait_For_N (for Queue in Boolean)(N : in Natural) when
not Locked and Hold’Count = 0 and

(Queue = Current_Queue) and Changed is
begin

if Wait_For_N(Queue)’Count = 0 then
Current_Queue := not Current_Queue;
Changed := False;

end if ;
if Free >= N then

Free := Free - N;
Taken := Taken + N;

else
requeue Wait_For_N(not Queue);

end if ;
end Wait_For_N;

end Advanced_Resource_Controller;
end Advanced_Controller;

10. CONCLUSIONS

This article has argued that Ada 95’s model of concurrency is not well integrated
with its object-oriented model. It has focussed on the issue of how to make protected
types extensible and yet avoid the pitfalls of the inheritance anomaly. The approach
adopted has been to introduce the notion of a tagged protected type which has the
same underlying philosophy as normal tagged types.

Although the requirements for extensible protected types are easily articulated,
there are many potential solutions. The article has explored the major issues and,
where appropriate, has made concrete proposals. Ada is an extremely expressive
language with many orthogonal features. The article has shown that the introduc-
tion of extensible protected types does not undermine that orthogonality, and that

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

538 · A. J. Wellings et al.

the proposal fits in well with limited private types, generics, and normal tagged
types.

The work presented here, however, has not been without its difficulties. The
major one is associated with overridden entries. It is a fundamental principle of
object-oriented programming that a child object can build upon the functionality
provided by its parent. The child can call its parent to access that functionality,
and therefore extend it. In Ada, calling an entry is a potentially suspending op-
eration, and this is not allowed from within a protected object. Hence, overriding
entries gives a conflict between the object-oriented and the protected type mod-
els. Furthermore, Ada allows an entry to requeue a call to another entry. When
the requeued entry is serviced, control is not returned to the entry which issued
the requeue request. Consequently, if a parent entry issues a requeue, control is
never returned to the child. This again causes a conflict with the object-oriented
programming model, where a child is allowed to undertake postprocessing after a
parent call. The article has discussed these conflicts in detail and has proposed a
range of potential compromise solutions.

Ada 95 is an important language — the only international standard for object-
oriented real-time distributed programming. It is important that it continues to
evolve. This article has tried to contribute to the growing debate of how best to
fully integrate the protected type model of Ada into the object-oriented model. It
is clear that introducing extensible protected types is a large change to Ada and
one that is only acceptable at the next major revision of the language. Many of the
complications come from the ability to override entries. One possible major sim-
plification of the proposal made here would be not to allow these facilities. Entries
would be considered “final” (using Java terminology). Such a simplification might
lead to an early transition path between current Ada and a more fully integrated
version.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of Oliver Kiddle and Kristina
Lundqvist to the ideas discussed in this paper. We also would like to acknowledge
the participants at the 9th International Workshop on Real-Time Ada Issues who
gave us some feedback on some of our initial ideas.

REFERENCES

Atkinson, C. and Weller, D. 1993. Integrating Inheritance and Synchronisation in Ada9X.
Proceedings of TRI’Ada 93, ACM.

Bloom, T. 1979. Evaluating synchronisation mechanisms. In Proceedings of the Seventh ACM
Symposium on Operating System Principles. Pacific Grove, 24–32.

Brinch-Hansen, P. 1972. Structured multiprogramming. CACM 15, 7, 574–578.

Briot, J.-P., Guerraoui, R., and Lohr, K.-P. 1998. Concurrency and distribution in object-
oriented programming. ACM Computing Surveys 30, 3 (Sept.), 291–329.

Burns, A. and Wellings, A. J. 1998. Concurrency in Ada, Second ed. Cambridge University
Press.

Caromel, D. 1993. Toward a method of object-oriented concurrent programming. Communica-
tions of the ACM 36, 9, 90–102.

Corradi, A. and Leonardi, L. 1990. Parellism in object-oriented programming languages. In
IEEE Conference on Computer Languages. 271–280.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

Integrating Object-Oriented Programming and Protected Objects in Ada 95 · 539

Frølund, S. 1992. Inheritance of synchronization constraints in cocurrent object-oriented pro-
gramming languages. In Proceedings of ECOOP ’92, LNCS. Vol. 615. Springer, 185–196.

Herlihy, M. and Wing, J. 1994. Linearizability: A correctness criterion for concurrent objects.

ACM Transactions on Programming Languages and Systems 12, 3, 463–492.

Hoare, C. 1974. Monitors - an operating system structuring concept. CACM 17, 10, 549–557.

Johnson, R. 2000. Tagged protected types: Inheritance and polymorphism extensions for syn-
chronization and mutual exclusion in Ada. Ph.D. thesis, Colorado Technical University.

Karaorman, M. and Bruno, J. 1993. Introducing concurrency to a sequential language. Com-
munications of the ACM 36, 9, 103–16.

Kiddle, O. P. and Wellings, A. J. 1998. Extended protected types. In Proceedings of ACM
SIGAda Annual International Conference (SIGAda 98). 229–239.

Lea, D. 1997. Concurrent Programming in Java. Addison Wesley.

Liskov, B. and Wing, J. 1994. A behavioral notion of subtyping. ACM Transactions on Pro-
gramming Languages and Systems 16, 6, 1811–1841.

Maio, A. D., Atkinson, C., Goldsack, S., Maderna, F., and Moreton, T. 1989. DRAGOON:
An Ada-based object oriented language for concurrent, real-time distributed systems. In Ada:
The Design Choice, Proceedings Ada-Europe Conference, Madrid, A. Alvarez, Ed. Cambridge
University Press, 39–48.

Matsuoka, S. and Yonezawa, A. 1993. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In Research Directions in Concurrent Object-Oriented
Programming. MIT Press, 107–150.

Meyer, B. 1993. Systematic concurrent object-oriented programming. Communications of the
ACM 36, 9, 56–80.

Meyer, B. 1997. Object-Oriented Software Construction, Second ed. Prentice Hall.

Michell, S. and Lundqvist, K. 1999. Extendable dispatchable task communication mechanisms.
In Proceedings of IRTAW9, Ada Letters, Vol XIX(2). 54–59.

Mitchell, S. E. and Wellings, A. J. 1996. Synchronisation, concurrent object-oriented pro-
gramming and the inheritance anomaly. Computer Languages 22, 1, 15–26.

Newman, R. 1998. The classiC programming language and design of synchronous concurrent
object oriented languages. Journal of Systems Architecture 45, 5, 387–407.

Oaks, S. and Wong, H. 1997. Java Thread. O’Reilly.

Taft, T. and Duff, R., Eds. 1997. Ada 95 Reference Manual. Springer-Verlag. (ISBN 3-540-
63144-5).

Wellings, A. J., Mitchell, S., and Burns, A. 1996. Object-oriented programming with pro-
tected types in Ada 95. International Journal of Mini and Micro Computers 18, 3, 130–136.

Wirth, N. 1988. The programming language Oberon. Software - Practice and Experience 18, 7,
671–690.

Wyatt, B., Kavi, K., and Hufnagel, S. 1992. Parallelism in object-oriented languages: a survey.
IEEE Software 9, 6, 56–66.

Yokote, Y. and Tororo, M. 1987. Concurrent programming in concurrentsmalltalk. In Object-
Oriented Concurrent Programming. MIT Press, 129–158.

Yonezawa, A., Briot, J.-P., and Shibayama, E. 1986. Object-oriented concurrent programming
in ABCL/1. In ACM SIGPLAN Notices - Proceedings of OOPSLA 86. 258–268.

Received May 1999; accepted March 2000

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000.

	Introduction
	Concurrent Object-Oriented Programming
	The Ada 95 Programming Language
	Data-Oriented Synchronization: Protected Types
	Object-Orientation: Tagged Types
	Child Packages
	Object-Oriented Programming and Concurrency

	Making Ada 95 Concurrent Programming more Object-Oriented
	Extensible Protected Types
	Declaration and Primitive Operations
	Inheritance
	Dispatching and Redispatching
	Entry Calls
	Calling the Parent Entry and Parent Requeues

	Integration into the Full Ada 95 Model
	Private Types
	Abstract Extensible Protected Types
	Generics and Mix-In Inheritance

	Inheritance Anomaly
	Interaction with Tagged Types
	Examples
	Signals
	Advanced Resource Control

	Conclusions
	Acknowledgments
	References

