
1

On The Role of Multi-Dimensional Separation of Concerns in
Software Architecture

Position Paper for the OOPSLA’2000 Workshop on Advanced Separation of Concerns
Mohamed Mancona Kandé and Alfred Strohmeier

Swiss Federal Institute of Technology Lausanne
Software Engineering Laboratory, CH-1015 Lausanne, Switzerland

 Email: {mohamed.kande, alfred.strohmeier}@epfl.ch

ABSTRACT
In this paper we study the need for multidimensional
separation of concerns in architecture representations,
including architecture-centered software development. We
present a case study of a simple video surveillance system,
describe its software architecture using an ADL called
Wright, and we discuss the pragmatics and problems in the
use of ADLs in general, compared to a concern-based
approach to software architecture description.
Our position is that current ADLs provide architectural
abstractions that need to be extended to achieve the major
goals of software architecture. Furthermore, in order to
cover all concerns of importance in a software architecture
description, software architects must be able to separate
various dimensions of concern and consider the system
from multiple perspectives simultaneously.

Keywords: Multidimensional separation of concerns,
software architecture, software architecture description,
ADL, architectural viewpoints, architectural views,
concern spaces.

1 INTRODUCTION
In the last ten years, software architecture has turned out to
be a significant area of research and practice in software
engineering. Representing architectures in an unambiguous
and explicit way has been characterized as a critical issue in
the design and construction of any complex software
system [1]. The major goals of software architecture consist
of providing blueprints for constructing software-intensive
systems, helping stakeholders to understand, manage and
analyze fundamental system properties, as well as
providing means that allow stakeholders to communicate
and reason about such system properties. These are
admirable goals; however, despite important industrial and
research activities in the area of software architecture, there
are still many problems that remain considerable barriers to
the achievement of the objectives of software architecture.
These barriers involve two categories of problems. The first
category consists of problems that are related to the
immaturity of software architecture in general. This
category is typically characterized by some strong
divergences in the field: there is still little agreement on
what an architecture description language (ADL) is, and

what characteristics of a software system should be
specified by an ADL [4,5]. Likewise, there are still many
controversies about the definition of software architecture,
which continue to complicate the emergence of established
architectural practices and their controlled evolution [6].
The second category consists of problems that are specific
to the current trends in software architecture research and
practice. These often result in certain restrictions of the
expressive power of software architecture, e.g., in the
inability of integrating existing ADLs with other software
development artifacts [7].
Both categories of problems mentioned above are somehow
related to the limitations of current architectural abstraction
mechanisms (including software architecture
methodologies, notations and tools [2,3,4,5,8,9,10]) to
support simultaneous separation of concerns at multiple
levels of abstraction. We believe that an architect, to be
able to provide a software architecture description that
reflects all architecturally significant aspects of a system,
requires an appropriate use of the notion of
multidimensional separation of concerns.
Multidimensional separation of concerns is a new field in
need of attention in software engineering research and
practice that was first introduced by Tarr and colleagues.
These authors hypothesized that major difficulties relative
to the improvement of software reuse, comprehensibility,
component integration and high impact of change in
software systems are due to a deficiency of separation of
concerns. In addition, they argued that in spite of the
presence of mechanisms to attain separation of concerns in
all modern software formalisms, software artifacts still
continue to exhibit properties associated with poor
separation of overlapping concerns [11]. The initial work in
this recent area is mainly focused on providing a support
for multidimensional separation of concerns in
programming languages and environments [12,13].
We have started studying the notion of multidimensional
separation of concerns in the context of software
architecture and examining how we can take advantage of
the separation of overlapping concerns in both software
architectural descriptions and architecture-centered
software development. In this paper, we put emphasis on
discussing the role of multidimensional separation of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

concerns in the area of software architecture.
To demonstrate the need of multidimensional separation of
concerns in software architecture, let us compare the
architecture description we would obtain if we used a
typical ADL, such as Wright, to the architecture description
we would get if we used a concern-based approach to
software architecture description.

2 AN ADL-BASED APPROACH TO SOFTWARE
ARCHITECTURE DESCRIPTION
In this section, we briefly introduce an example of

architecture description using Wright [10]. We present the
Wright architectural modeling constructs and notations by
illustrating the case study of a simple Video Surveillance
System (VSS) [7]. As shown in Figure 1, VSS consists of a
set of video cameras that interact with a control station over
a communication platform. The example illustrates two
kinds of software architecture constructs: the component
types of the system and their interconnection described by a
connector type.
The CameraDevice component type abstracts a set of
geographically distributed video cameras, whereas the
VideoControlStation component type abstracts the part of the
system that remotely controls the cameras and continuously
receives the video streams. The connector type,
VSConnector, is an abstraction for the communication
platform. It consists of two kinds of elements: a pair of
connection points and the protocol of interactions between
these connection points. Each connection point represents
an interface to the connector a component can use. In order
to be able to participate in a communication mediated by a
connector, a component must implement this interface. The
implementation might be in software or in hardware.
Conceptually, connection points can be seen as interface
elements for both component and connector types. We use
in Figure 1 two circles (white and black) to graphically
represent the interfaces with the camera device and the
video control station. Indeed, these are two connection
points, conjugates of one another. As in previous work, to
represent a component type in the topology of VSS, we use
one of the UML extension mechanisms to define the
«archComponent» stereotype, which has the properties of
both a UML Class and a UML Package. The connector
type is represented by a stereotype of Collaboration that
contains a connector icon, shown by the black and white
linked circles, at the upper right in the oval. The dashed
line between the connection points is a UML binding that,
in this case, conceptually represents the attachment of two
connection points. (For further details on UML, see

[14,15].)
Figure 1 Topology for Video Surveillance System
Wright provides a support for separating a few dimensions
(kinds) of concern: it allows us to separate the structure
from behavior concerns in the architecture of a software
system and it also fosters separation between the
computation, communication and configuration concerns.

Structure of the System Architecture
In Wright the structure of a system architecture is
represented as an arrangement of a set of typed components
and connectors that work together. Components represent
abstractions for independent computational entities or
system-level storage units. Connectors abstractly represent
interactions among components. Defining the structure of
the system architecture using Wright consists in describing
architectural styles or families of systems and declaring the
configuration.
Figure 2 shows a static Wright specification of the VSS,
which consists essentially of two parts: the first one
represents the declaration of the architectural style
(SimpleVideoSurveillanceSystem), while the second
one declares the configuration (SimpleSCSystem). The
Style introduces component and connector types, and
constraints. The structure of each Component specification
consists of a Port (p) and a Computation part. The Connector
specification consists of two Roles (source and sink) and a
Glue. Ports and roles describe elements of components and
connector interfaces, respectively. These can be considered
as Wright implementations of connection points in both
components and connectors. The computation describes the
entire behavior of the components, while the glue specifies
the comprehensive behavior of connectors.
The configuration requires an instantiated style. Thus, it
uses instances of the component and connector types that
are defined in the style, to attach their ports to roles. In the
example, the SimpleSCSystem configuration shows how
both ports (p) of the component type instances vcs and cd
are attached to the connector type instance connector.
These attachments mean that the port p of the component
vcs (instance of VideoControlStation) fills the role of type
sink belonging to connector. At the same, the port p of
the component cd (instance of CameraDevice) fills the role
of type source that belongs to connector.

Behavior of the System Architecture
The Wright specification of the architectural behavior of
the VSS describes a set of significant events that are
processed by components, and the sequences in which
these events occur. To describe the behavior of components
and connector types, Wright allows us to specify a process
for each of the following elements: port, role, computation
and glue.
Style SimpleVideoSurveillanceSystem
Component VideoControlStation

 «archComponent»
VideoControlStation

 «archComponent»
 CameraDevice VSConnector

Connection Points Conceptual Attachment

Port p = videostreamrequest → ready → p П §
Computation = streamCompute → p.videostreamrequest →

p.ready → Computation П §

Component CameraDevice
Port p = videostreamrequest → ready → p §
Computation = videostreamrequest → p.streamCompute →

p.ready → Computation §

Connector VSConnector

Role sink = videostreamrequest → ready → sink П §
Role source = videostreamrequest → ready → source П §
Glue = source.videostreamrequest →

sink.videostreamrequest → Glue
source.ready → sink.ready → Glue

§

Constraints

∃! s ∈ Component,

∀ c ∈ Component : TypeCameraDevice (s) ∧
TypeVideoControlStation (c) ⇒ connected(c,s)

EndStyle

Configuration SimpleSCSystem
Style SimpleVideoSurveillanceSystem
Instances vcs : VideoControlStation;

cd : CameraDevice;
connector : VSConnector

Attachments vcs.p as connector.sink;
cd.p as connector.source

EndConfiguration

Figure 2 Static Wright Specification for Video Surveillance
System

Note that the Wright notation for behavioral description
indicates the direction of interactions by explicitly
distinguishing initiated events (overlined) from observed
events (not overlined). To make the editing work easier, we
replaced these overbars by underlines in Figure 2.
The computation process specifies how to handle events
arriving on any port of a component and how to send
events through the ports. The VideoControlStation

requests some video streams over and over again (by
sending the p.videostreamrequest events) through the
port p and waits for a response (p.ready) on the same port
p; or it terminates successfully (§). In this particular case,
the VideoControlStation decides by itself whether it
makes another request or terminates. This way of taking a
decision by itself is referred to as an internal choice and
denoted by the П symbol. In contrast, an external choice has
been used in the computation specification of the
CameraDevice. This means that the computation process of
CameraDevice is expected to reply to each request, and is
not allowed to terminate in advance.
The process p assigned to the VideoControlStation port,
defines the way this component interacts with its
environment using this port. This is a local interaction
protocol, which covers the same behavioral pattern as
defined in the computation process mentioned above,
except the internal part (specified by streamCompute

event).
In this example, the specifications of both role processes

(source and sink) are kept simple and identical to those of
the ports. This makes it easier to see how instances of both
component types can attach their ports to these roles to be
interconnected in the configuration.
The Glue process specifies the interaction protocols
between the roles of a connector. In our example, the
VideoControlStation initiates an event to request video
streams (source.videostreamrequest) that must be sent
as source.videostreamrequest to the CameraDevice, and
the response (source.ready) of the CameraDevice must be
sent back as sink.ready to VideoControlStation.
So Wright proposes notations for abstractly and formally
representing software architectures and exposing properties
for analysis by promoting the independence of connectors
and components and by increasing the flexibility to
compose and reuse both connectors and components.
Current ADLs, including Wright, have provided a solid
foundation on which one can explore some architectural
abstractions that define various dimensions of concern in
software architecture. However, through the pursuit of such
a foundation of software architecture, we have begun to
discover some inflexibility encountered by studying
comparisons between existing ADLs [3,4,5].
Thus, ADLs allow architects to decompose systems along
only a few dimensions of concerns. According to P. Tarr
and her colleagues, these are dominant dimensions of
concern. For instance, as the Wright notion of architecture
description is essentially centered on the representation of
architectural styles, we can consider styles to be the
“dominant” dimension of concern in Wright-based software
architectures.

3 A CONCERN-BASED APPROACH TO
SOFTWARE ARCHITECTURE DESCRIPTION

Throughout this position paper, we take the premise that
providing an architectural approach to large-scale software
development is the right way of proceeding. However, as
we discussed earlier, describing software architecture along
only a restricted number of dimensions of concern is
important, but often not enough. While restricting
dimensions of concern facilitates the job of software
architects, it makes it very difficult to express, analyze and
reason about key structures of software architecture. In
particular, this is the case when we admit that:
Software architecture is an abstract but fundamental
“thing” that represents a bridge between requirements,
program code and runtime execution environment.
The description of the structure or all the structures that
constitute such a bridge is what we referred to as software
architecture description all through this work. These
structures involve numerous kinds of concerns that often
need to be further refined, encapsulated, manipulated and
implemented at other stages in the software life cycle.

To describe the software architecture of complex systems,
software architects are concerned with the identification,
representation, composition, decomposition and analysis of
multiple structures. Thus, to foster the description of
software architectures, we have started the ConcernBASE
(Concern-Based and Architecture-centered Software
Engineering) project. ConcernBASE is a software
engineering approach that complements the abstraction
mechanisms found in current ADLs, allows for
simultaneous separation of overlapping concerns in
software architecture description and provides a support for
architecture-centered software development. Seen as an
architectural approach, ConcernBASE allows us to
consider the software architecture of a system as an abstract
thing and to decompose it into a set of concern spaces, each
of which has multiple architectural dimensions.
ConcernBASE is built around three basic abstractions:
architectural viewpoints, architectural concern spaces and
architectural views.
The relationships between these three basic elements are
illustrated in Figure 3. Figure 3 presents two architectural
viewpoints (the Structural Viewpoint and Architecture Analysis
Viewpoint) and their corresponding concern spaces named
Structural Concern Space and Architecture Analysis Concern
Space.

Figure 2: Relationship between Architectural Viewpoints,
Concern Spaces and Views

Architectural Viewpoints
An architectural viewpoint defines a particular perspective
of software architecture that establishes rules and notations
for identifying architectural concerns, grouping these
concerns into architectural dimensions and organizing the
dimensions into one or more concern spaces. The rules
determine the manner in which concerns are represented in
the concern space. Rules are expressed by means of a
notation that involves techniques for depicting elements on
a particular architectural view. Rules also describe the

conventions that guide a projection of concern space onto
individual architectural views along some specific
dimensions. The notations of a viewpoint describe the
language elements that are needed for appropriately
representing all the concerns of the software architect from
the perspective defined by that viewpoint.

Architectural Concern Spaces
A concern space defines rules for representing dimensions
of concern in certain architectural views. It describes a
pattern or template from which to develop individual views
by establishing the purposes and audience for each view
and by providing techniques to create and analyze each of
the views. Each architectural concern space defines a set of
concerns relative to a particular perspective and
encapsulates ideas, notions, elements, properties or other
things that are architecturally significant and cut across
multiple dimensions.
Thus, a concern space provides a mechanism for
multidimensional separation of concerns, by mean of which
various dimensions can be represented in an architectural
view simultaneously. A concern space allows us to create,
depict and analyze one or more architectural views at the
same time and it specifies how to integrate and manage
those architectural views.

Basically, an architectural concern can be an idea, notion,
element, property, or any artifact that is of importance to
the software architects and which can be classified
according to various dimensions. Architectural concerns
involve things like data, computation, signal, message,
communication, synchronization, connector role, etc. In
contrast, an architectural dimension is a set of architectural
concerns that can be used to describe a specific aspect of
software architecture. Each architectural dimension has
structure and can be considered as a linguistic type that
describes a way of looking at a set of different architectural

Configuration
View

Behavioral
View

Structural
Viewpoint

Architecture
Analysis

Viewpoint
System under
development

Static
View

Structural
Concern
Space

Architecture
Analysis
Concern
Space

elements. Examples of architectural dimensions are
components, connectors, configurations, etc.
We proposed in [7], a UML profile for software
architecture description that supports the modeling of these
dimensions by combining certain architectural concerns.
For instance, we demonstrated that the component
dimension could be used to encapsulate and combine the
following four architectural concerns: computation, data,
signal and messages.

Architectural Views
An architectural view is a specific way of presenting a
software architecture description that illustrates some
architectural concerns from a particular perspective. Since
architectural views are incomplete architecture descriptions
that reflect only a subset of a concern space, they
systematically suppress all details of implementation,
algorithm, and low-level data representation. An
architectural view is needed to represent one or more
architectural dimensions. Therefore, it is a suitable
modularization mechanism that allows us to encapsulate
any kind of software artifact of importance at architecture
level. Architectural views can be overlapped, when they
represent overlapping dimensions. ConcernBASE also
allows architectural views to be nested according to the
rules defined in the concern space. In this case, each nested
view will be considered as a refinement of the outer view.
This allows developers, for instance, to further manipulate,
refine and implement various dimensions of concern that
are represented in a particular architectural view.
Although it is outside the scope of this paper, the approach
presented here could also be used to cover other phases of
the software life cycle.
In addition the provision of explicit notations for each of
the three basic abstractions, ConcernBASE allows us to
combine these abstractions to provide some flexible and
concern-based mechanisms for the decomposing and
composing of software architectural structures using any
modeling language. In our work, we choose to use an
extension of the standard UML.

4 CONCLUSION
In this paper, we have discussed the limitations of existing
ADLs relative to the simultaneous separation of concerns.
We feel that using multidimensional separation of concerns
in software architecture facilitates the representation of
software architectures and provides the ability to expose the
dimensions along which substantial system properties are
expected to evolve, to be understood, represented,
managed, reused and analyzed. Our contribution to
supporting multidimensional separation of concerns in
software architecture results in the ConcernBASE
approach. This general approach serves as an initial starting

point for future research work. The concepts described in
the previous section need to be customized and detailed for
specific methodologies, projects and organizations. We see
two main fields that need to be clearly considered in
ConcernBASE:
• Conceptual framework issues: characteristics of

architectural abstractions, notation and tools that
influence composition and decomposition mechanisms
and their combination.

• Methodological issues: characteristics of the
integration of architectural descriptions with other
software development artifacts.

REFERENCES
1. Garlan, D.: Software Architecture: A Roadmap. In The

Future of Software Engineering; Anthony Finkelstein (Ed).
22nd International Conference on Software Engineering,
ICSE 2000; University of Limerick, Ireland, 4-11 June 2000.

2. Shaw, M., Garlan, D.: Software Architecture - Perspectives
on an Emerging Discipline. Prentice-Hall, New Jersey
(1996).

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in
Practice. Addison-Wesley (1998).

4. Garlan, D., Monroe, R. T. and Wile, D.: ACME: An
Architecture Description Interchange Lan-guage.
Proceedings of CASCON '97 (1997).

5. Medvidovic, N. and Taylor, R. N.: A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on Software
Engineering, Vol. 26, No.1, January 2000.

6. IEEE Architecture Working Group: Draft Recommended
Practice for Architectural Description (Version 5, October
1999).

7. Kandé, Mohamed M. and Strohmeier, A.: Towards a UML
Profile for Software Architecture Descriptions. To be
published in the UML'2000 Conf. Proc., Stuart Kent and
Andy Evans (Eds.), LNCS (2000).

8. Kruchten, P. B: The 4+1 view model of architecture. IEEE
Software, 12(6):42-50, (1995).

9. ISO/IEC 10746-1/2/3. Reference Model for Open Distributed
Processing – Part 1: Overview/Part2: Foundations/Part3:
Archictecture. ISO/IEC (1995).

10. Allen, R. J.: A Formal Approach to Software Architecture.
Ph.D. Thesis, Carnegie Mellon Univer-sity, School of
Computer Science, available as TR# CMU-CS-97-144, May
(1997).

11. Tarr, P., Ossher, H., Harrison, W. and Sutton, S.M. Jr.: "N
Degrees of Separation: Multi-Dimensional Separation of
Concerns." Proceedings of the International Conference on
Software Engineering - ICSE'99 (May 1999).

12. Ossher, H. and Tarr, P.: Multi-Dimensional Separation of
Concerns using Hyperspaces. IBM Research Report 21452
(April 1999).

13. Ossher, H. and Tarr, P.: Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development.
Kluwer (2000). (To appear.)

14. Rumbaugh, J., et al.: The Unified Language Modeling
Reference Manual. Addison-Wesley (1999).

15. The Unified Modeling Language Specification. Object
Management Group (On-line at http://www.omg.org),
Framingham, Mas.

