
Towards a UML Profile for Software Architecture
Descriptions∗

Mohamed Mancona Kandé, Alfred Strohmeier
Swiss Federal Institute of Technology Lausanne

Software Engineering Laboratory, CH-1015 Lausanne EPFL, Switzerland
 {mohamed.kande, alfred.strohmeier}@epfl.ch

Abstract. To formally describe architectures of software systems, specific lan-
guages called Architecture Description Languages (ADLs) have been developed
by academic institutions and research labs. However, more and more research
and industrial projects are using the standard Unified Modeling Language
(UML) for representing software architectures of systems. In this paper, we fo-
cus on how to extend the UML by incorporating some key abstractions found in
current ADLs, such as connectors, components and configurations, and how the
UML can be used for modeling architectural viewpoints. Our approach is dem-
onstrated by the software architecture of a video surveillance system. It is there-
fore the purpose of the paper to show that a UML profile for software architec-
ture abstractions is needed.
Keywords: Software architecture abstractions, software architecture description,
architectural modeling, architectural viewpoint, architectural view, ADL, UML,
connector, component, configuration.

1 Introduction
Because the number of organizations using software infrastructures to run their

core business grows, society is becoming increasingly dependent on long-running
and large software-intensive systems. To facilitate the development of such systems
and support their evolution, we need tools for explicitly supporting formal representa-
tions of the software architecture of a system. This is one of the goals of research in
software architecture [1,2]. A formal software architecture representation provides the
ability to understand, communicate and reason about high-level properties of soft-
ware-intensive systems from different perspectives or viewpoints.

Current notations for modeling software architectures are either formal, i.e., based
on a special modeling language, called an Architecture Description Language (ADL),
or they are just informal and ad hoc, e.g. the whiteboard approach. Because of their
roots in formal methods, existing ADLs are generally hard to understand and do not
integrate well with current software development practices. Moreover, existing ADLs
often take into account only a single particular perspective, from which the architect
has to model all key aspects of the software system.

In contrast, the standard Unified Modeling Language (UML) is a general tool that
provides advanced techniques and notations supporting the full life cycle of system
modeling, from requirements analysis to implementation. Furthermore, the UML sup-

                                                                
∗ To appear in the Proceedings of UML'2000 - The Unified Modeling Language: Advancing the

Standard, Third International Conference, York, UK, October 2-6, 2000.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

ports multiple views. The UML concepts and constructs can therefore be divided into
different subsets, corresponding to various aspects of the system [3,4,5]. However, as
a general-purpose language, the UML does not directly provide constructs related to
software architecture modeling, such as architectural configurations, connectors, and
styles. For instance, specifying a connector requires the definition of a concept that
allows us to localize component interactions. Therefore, we need to separate commu-
nication concerns (e.g., patterns of object interactions) from computation concerns
(e.g., objects). In UML, however, there is no direct support for thus a separation of
concern. This point is further discussed in subsection 4.2.1. Moreover, a UML com-
ponent diagram can be used to describe the organization of a software system in terms
of its components and interconnections at specification level. However, when de-
scribing an architectural configuration (i.e., a collection of instances of component and
connector types), it is unclear 1) how to instantiate component interfaces and depend-
ency relationships; 2) how to associate interaction protocols with component depend-
encies.

Integrating the UML with some existing ADLs has already been addressed [14].
One approach is to define rules for translating architectural descriptions from a par-
ticular ADL into UML. Another approach is to add key constructs needed by software
architecture modeling to the standard UML. However, using this second approach will
result in a large and complex language, hard to understand and to use.

In this paper, we propose a third approach which is based on extending UML in a
standard way, i.e., by using only standard extension mechanisms of the UML, result-
ing in a “Profile for Software Architecture Descriptions”. It might be worth noting that
several kinds of profiles are under consideration by the Object Management Group,
e.g., the “Profile for Enterprise Distributed Object Computing”.

This paper is organized as follows: section 2 briefly presents different trends in
software architecture research. Section 3 gives some examples of what should be de-
fined in a UML profile for software architecture descriptions. Section 4 presents some
extensions to the UML for supporting the modeling of software architectures; and
finally section 5 summarizes the paper and proposes some future work.

2 Software Architecture Trends
First of all, we have to admit that there is no standard definition of what is called

software architecture and that there is no single, accepted framework for codifying
architectural concepts. This lack of a standard does not facilitate the emergence of
common practices in software architecture and their controlled evolution [13]. The
diversity in the realm of software architecture stems from the variety of issues that
reflect the concerns of the authors.

One community in software architecture research, following the academic trend, is
driven by formality [1,7]. As stated by M. Shaw and D. Garlan, two pioneers in soft-
ware architecture research, an ADL is necessary to have precise descriptions of soft-
ware components and their interconnections [1], without giving any implementation
details of the system to be constructed.

Work on ADLs has concentrated on improving analysis and system-generating ca-
pabilities of the languages [6,8,9]. Unfortunately, current ADLs do not integrate well



3

with common software development methodologies and tools. Although the concept
of multiple views is generally recognized as very important  [18, 16], no single ADL
provides a means for modeling multiple views and checking their completeness and
coherence [17].

Another community, following the trend of industry, is driven by the applicability
of software architecture methodologies and the notations used for their description
[4]. It uses the UML for representing and documenting architectural designs. On one
hand, using the standard UML for architectural modeling is a convenient way to inte-
grate architectural designs with various other software design models. On the other
hand, UML lacks adequate notations and the corresponding semantics for modeling
key constructs found in most existing ADLs, such as components, connectors, con-
figurations, and architectural styles. Also, in order to be able to capitalize on the effort
spent in elaborating a software architecture description, e.g. by analyzing and verify-
ing it, standard UML tools should provide more powerful analysis capabilities.

Despite the controversies about the definition of software architecture, we adopt in
the remainder of this paper the definition given by L. Bass, P. Clemens and R. Kazman
[4]: “The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible
properties of those components, and the relationships among them”.

3 What is needed to define a UML Profile for Software Architecture
Descriptions?

In order to define a profile for Software Architecture Descriptions in UML, one
needs to identify the key concepts that are required for software architecture descrip-
tions and understand how those concepts are related. In the following, we present an
example that introduces the architecture of a simple Video Surveillance System and
highlights some software architecture elements.

Figure 1: Architectural Illustration of the Video Surveillance System

Figure 1 shows a very informal representation of the architecture of the Video Sur-
veillance System (VSS). VSS consists of a set of video cameras that interact with a
control station over a communication platform. The example illustrates two kinds of
software architecture constructs: the components of the system and their interconnec-
tion realized by a connector. The boxes are used as graphical symbols for both kinds
of constructs. They visually encapsulate their realizations, i.e., the pictures contained
in the boxes.

CameraDevice VideoControlStation

ConnectorComponent Component

Connection point Connection point

data

control



4

The CameraDevice component abstracts a set of geographically distributed video
cameras, whereas the VideoControlStation component abstracts the part of the system
that remotely controls the cameras and continuously receives the video streams.

The connector is an abstraction for the communication platform. It consists of two
kinds of nested boxes that represent connection points and the protocol of interac-
tions between these connection points, respectively. A connection point represents
an interface to the connector a component can use. In order to be able to participate in
a communication mediated by a connector, a component must implement this interface.
The implementation might be in software or in hardware. For instance, in Figure 1, two
circuit boards implement the interfaces with the camera device and the video control
station.

The protocol of interaction describes the way communication between connection
points is performed. The cable in Figure1 shows the hardware part and the con-
trol/data box shows the software part of the implementation of the protocol of interac-
tion.

To distinguish between a software architecture, describing a family of similar sys-
tems, and one of its instantiations, i.e. an individual system architecture, we need the
concept of architectural configuration. In our example, an architectural configuration
is created by interconnecting specific instances of CameraDevice with a specific in-
stance of a VideoControlStation.

In addition, many authors [1,2,8,9,10] have advocated the use of patterns in soft-
ware architecture descriptions. For example, in configurations of the Video Surveil-
lance System, the instances of VideoControlStation and CameraDevice will have to behave
like "sink" or "client", and "source" or "server", respectively, when they consume and
produce video streams, or provide and require services from each other. The software
architecture of the Video Surveillance System is hence using the architectural styles
known as client-server and pipe-and-filter styles [1,10].

All elements mentioned so far for describing software architectures are provided by
current ADLs [6,8,9], but the resulting models do not integrate well with other artifacts
resulting from the software development process. Because UML is a widely used
notation in software development, the definition and use of a UML Profile for Software
Architecture would yield software architecture models that integrate much better with
other development artifacts. In addition to current ADLs, the UML Profile should also
provide support for identifying and describing architectural viewpoints [13]. Unlike
current ADLs, the UML Profile should be able to deal with various architectural
views, a concept slightly different from a view as defined in standard UML.

All the architectural terms introduced above are explained in the next section.

4 UML Extensions for Modeling Architectures
The goal of this section is to present some extensions to the UML that define the

software architecture abstractions introduced in the previous section. Therefore, we
propose a notation and precise semantics for these abstractions, applying two mecha-
nisms proposed by the OMG [12], which are referred to as "lightweight extension
mechanism" and "heavyweight extension mechanism". A lightweight extension
mechanism allows one to adapt the UML semantics without changing the UML meta-



5

model. It is supported by the UML through the provision of built-in extension mecha-
nisms known as Tagged Values, Stereotypes, and Constraints. In contrast, a heavy-
weight extension mechanism allows one to adapt the UML semantics by extending the
standard metamodel.

In the following subsections, we make use of both extension mechanisms to pro-
pose a UML Profile for Software Architecture. A profile is "… a consistent definition
context for elements such as, but not limited to, well formedness rules, tagged values,
stereotypes, constraints, semantics expressed in natural language, extensions to the
standard metamodel and transformation rules" [12].

First, we present our interpretation of the concepts of architectural viewpoints and
architectural views proposed by the IEEE's Recommended Practice for Architectural
Description (P1471) [13], then we apply a heavyweight extension mechanism for incor-
porating these concepts into the UML metamodel. Second, we use some lightweight
extension mechanisms for specifying connectors, components, architectural patterns,
and configurations of software architectures.

4.1 Architectural Viewpoints
The software architecture definition given in this paper, as well as the results of a

large amount of research on ADLs, have been based on the assumption that software
architecture is focussed on reasoning about structural issues at system-level
[1,2,6,7,8,9]. We believe that focusing just on the structural issues does not cover all
concerns of software architecture, since it is difficult or even impossible to cover all
concerns of the stakeholders from just one perspective. Different stakeholders have
different concerns relative to a system under development, and these concerns affect
the system’s operation, as well as its architectural qualities, such as scalability, persis-
tence, security, reliability, distribution and performance.

Software architecture must address all the significant system-level properties or any
desired combination of these properties that is of interest to any stakeholder. To
achieve this, new mechanisms are needed to separate all architecturally important
concerns. One way to separate architectural concerns is to describe software architec-
ture from different perspectives or viewpoints. The concept of multiple viewpoints
allows us to group different stakeholders' concerns into different sets of related kinds
of concerns; each set represents a certain aspect of the system that can be "viewed"
from a particular viewpoint. The notions of architectural views and viewpoints have
been used in reference models such as the “4+1 View Model”1 [16] and the ISO’s Ref-
erence Model for Open Distributed Processing (RM-ODP) [19]. Both reference models
have a limited fixed number of views and viewpoints and do not allow to create new
ones. We believe that such a fixed number of views and viewpoints is not sufficient
for covering all aspects of software architecture.

We use the terms architectural view and viewpoint as defined in the IEEE’s P1471.
According to the P1471, an architectural viewpoint is "a specification of the conven-
tions for constructing and using a view. A viewpoint acts as a pattern or template from
which to develop individual views by establishing the purposes and audience for a
                                                                
1 Rational Software Corporation is using the "4+1 View Model" as a reference model for their

development methods, but it is not standardized.



6

view and the techniques for its creation and analysis". In what follows, we propose an
interpretation of this definition providing a UML-based conceptual framework for
architectural descriptions, which does not prescribe a limited number of architectural
viewpoints and views. In this interpretation, an architectural viewpoint defines a par-
ticular perspective of a software architecture representation that allows the establis h-
ment of rules, notations and a main view by which one or more architectural views are
created, depicted, analyzed and managed. In a viewpoint definition, the rules deter-
mine the manner in which the concerns of the architect2 are represented in architectural
views. These rules are expressed by means of notations that involve techniques for
depicting architectural elements on a view, and they also describe the conventions
that guide a projection of the main view onto particular views.  The notations of a
viewpoint describe the language elements that are needed for appropriately repre-
senting all the concerns of the software architect from the perspective defined by that
viewpoint. The main view represents the primary focus of the architect from the par-
ticular perspective defined by that viewpoint. By convention, the name of the main
view corresponds to the name of its viewpoint. Note that sometimes the model of the
main view (most abstract model) can not be graphically described, e.g., a quality man-
agement viewpoint [21] will not have a corresponding model in the main view.

 Using the main view as the most abstract architectural view to be referred to for
projections allows one to structure the system from a particular angle, yet focus on
specific concerns.

Figure 2: Example of the Relationship between Viewpoints and Views
Figure 2 presents an example of the relationship between architectural viewpoints

and views.  In this Figure, we distinguish between two architectural viewpoints, the
structural viewpoint and enterprise viewpoint. Each of them represents an abstraction
mechanism allowing the system under development to be "viewed" from a particular
angle. Each viewpoint defines a main view illustrating the primary focus of the archi-
                                                                
2 In this UML-based conceptual framework, the concerns of the software architect from a

specific viewpoint represent the concerns of the system's stakeholders involved in that view-
point.

Enterprise
 View 

Configuration
View

Static
ViewStructural 

View

Behavioral
View

Structural
Viewpoint 

Enterprise
Viewpoint

System under
development



7

tect in that viewpoint. To describe distinct aspects of software architecture, the main
view of a viewpoint needs to be projected onto different architectural views. This is
shown by projecting the main view of the system from the structural viewpoint onto
the static view, behavioral view and configuration view (more details in section 4.2).
Note that main views, e.g. the enterprise view and the structural view, might overlap,
and the same holds for architectural views.

Figure 3: Dependencies between the Software Architecture Profile and the UML Metamodel

To specify the software architecture profile, we use a heavyweight extension
mechanism by adapting the UML metamodel. Figure 3 illustrates the relationships
between the software architecture profile and the standard metamodel of the UML.
The software architecture profile is represented by a UML package that defines the
elements for describing software architectures explicitly. The Software Architecture
Profile package depends on the Behavioral Elements package because it needs to
extend, for example, the UML notion of collaboration to define complex connectors. Its
dependence on the Model Management package is justified by using, for example, the
subsystem concept that is required to define the general notion of a component.

Figure 4 depicts a metamodel in terms of a UML class diagram that introduces the
content of the Software Architecture Profile package. This metamodel represents a
modified version of the conceptual model of the architectural description defined in
the IEEE P1471. Basically, we adapted this model by adding the notion of main view.

 Figure 4: Extended P1471 Conceptual Model of Architectural Description

This conceptual framework is an interpretation of the IEEE’s recommendations for
software architecture descriptions within a UML-based context. UML provides already
a general notion of view, and discusses possible connections between views, i.e., the
consistency of the elements used in different views [4]. R. Hilliard and others have
stated that there are problems related to the use of multiple views in the field of soft-
ware architecture [20,17]. The connection between UML models that describe different
views helps to solve some of these problems.

In this profile, the concepts of viewpoints and views are considered to be first-class
citizens. We now present some examples of architectural viewpoints, showing how to
describe the main view of a viewpoint in a concrete way. A typical example of an archi-
tectural viewpoint is the structural viewpoint that is addressed by almost every ADL.

ArchitectureArchitecturalDescription
describedBy

ModelElement
(from Core)

consistOf

ArchitectureViewpoint

name
addressableConcerns
viewpointLanguage
constructionRules
analyticTechniques

selects

ArchitecturalView

   name
purpose
concerns
elements

1..*

1

organizedBy

1..*
constituents  

/conformsTo

Main View

focus
elements

1

defines
1..*

1..*

isProjectedOnto

1..*

1
1..*1

1 1

1
1

1..* 1

Software Architecture
ProfileFoundation

Behavioral
Elements

Model
Management



8

Other possibilities for architectural viewpoints are, e.g., ODP viewpoints [19], re-
quirements engineering viewpoint, quality management viewpoint [21], etc.

Figure 5 shows the model of the structural view3 for the Video Surveillance System.
This model reflects the main focus of the software architect when considering the
system from the structural perspective. In this example, the model of the structural
view is presented in terms of components and connectors, and constraints on these
components and connectors. Thus, the structural view consists of two component
types, CameraDevice and VideoControlStation, which are interconnected by the connec-
tor, VSConnector. For brevity we omit the discussion of architectural constraints.

Figure 5: Model of the Structural View for the Video Surveillance System.

A component type is defined by the UML stereotype «archComponent». Such a
component type, similar to that defined by Miller et al. [23], is a subsystem, which has
the properties of both a UML Class and a UML Package.

The connector type is represented by a stereotype of Collaboration that contains a
connector icon, shown by the black and white connected circles, in the upper right
hand corner.

As this connector type serves as the description of numerous kinds of component
interactions (as mentioned in section 3), the VSConnector is considered to be a higher-
order (or complex) connector. The notations and semantics of connectors, including
higher-order connectors, are described in subsection 4.2.1.

4.2 Architectural Views
An architectural view is an abstraction mechanism. It is a particular way of looking

at an architectural description that illustrates some concerns of the software architect
from a specific perspective and suppresses details of implementation, algorithm, and
data representation. According to our conceptual framework, an architectural view
represents a projection of the main view of a system from a particular viewpoint. Such
a projection allows the software architect to concentrate on the description of the
system, taking into account some of the stakeholders' concerns and ignoring others.
The above definition of the notion of architectural view is compatible with the UML
notion of view. However, the latter is more general and does not distinguish between
different levels of abstraction. For example, the UML static view can, on one hand,
describe a conceptual analysis class model, with a class representing a domain con-
cept, and on the other hand describe an implementation class model, with a class rep-
resenting code.

To give examples of architectural views, we will project the structural view of the
Video Surveillance System. The result is three kinds of architectural views that de-
scribe the static structure, dynamic structure and configuration structure of the soft-
ware architecture of the system.

                                                                
3 According to the naming convention, the structural view is the main view of the structural

viewpoint.

VSConnector
«archComponent»

VideoControlStation
«archComponent»

 CameraDevice



9

4.2.1 Static View
To describe the static structure of the system, the software architect projects the

structural view onto the static view. The elements in the model describing the static
view are presented in terms of component types and connector types in the system,
and constraints on these components and interconnections.

In this view, a component represents an encapsulation unit for data and computa-
tion, called a computational component. Its stereotype is represented by the keyword
«computational». A component type encapsulates the static structure of a computa-
tional component. It is specified as a set of interface elements that together define the
component interface. A computational component communicates with other comp o-
nents through its interface. Thus, each interface element defines a logical interaction
point between the component and its environment.

The concept of computational component used in this paper is similar to "computa-
tional objects" defined by the RM-ODP [19]. However, the approach we propose for
specifying this concept is principally based on the notion of “capsule” introduced by
B. Selic and J. Rumbaugh [11]. Like a capsule class, a computational component type
defines additional class compartments that are labeled with the keywords operational,
signal and stream. These compartments are used for the declaration of the interface
elements. The keywords operational, signal and stream indicate the kinds of interface
elements that can be supported or required by a computational component. Semanti-
cally, an interface element type is not equivalent to a UML interface, as it can be in-
stantiated at runtime (as in ROOM [22]).

Another alternative to represent a computational component consists in placing a
computational icon (see icon on CameraDevice) in the upper right hand corner of the
class name compartment. For the sake of clarity, we show both the stereotype and the
icon on the elements in Figure 6.

The type of an interface element is either operational, signal or stream. An opera-
tional interface element type describes a set of operations that can be required or pro-
vided by a specific component, whereas a signal interface element type specifies a set
of signals that can be sent or received by a specific component. A stream interface
element type specifies a set of quality of services to be guaranteed by data flow con-
nections, as well as a collection of streams that can be consumed or produced by a
specific comp onent.

 Figure 6: Static structure of the computational component type CameraDevice.

Figure 6 shows an example of the static structure of a computational component
type, called CameraDevice. The interface of the CameraDevice is specified by the Cam-
Control, which is an interface element of type «operational». Accordingly, the Cam-
eraDevice provides a set of operations (such as start, zoom, and stop) that allows the

«computational»
CameraDevice

+ /camControl

«stream»

QualityOfService

Produces

Consumes

«signal»

Outgoing

Incoming

«operational»
  CamControl

Provides
 start()
 stop()
 zoom()
 pan
 tilt

Requires

Operational
 + /camControl: CamControl

Signal
 
 

Stream



10

control station to remotely control a video camera implementing the CamControl. The
composition relationship between CameraDevice and CamControl indicates that the inter-
face element is an externally visible part of the component. The label (camControl) on
the association end represents the public classifier role to be fulfilled by an instance of
the CamControl, which is referred to as a port in the configuration view (see 4.2.3). The
other two unnamed interface element types are not used in the example but show the
graphical notations for stream and signal interface element types.

A connector is an abstraction that explicitly represents a locus of definition for
component interconnections and communication responsibilities. A connector type
defines a pattern of interactions between two or more components. Like a connector
type, a Collaboration in UML describes a pattern of interaction among a set of partici-
pants, which are usually instances of classes or data types. The structure of a Collabo-
ration is defined by a collection of roles, called Classifier roles and Association roles.
A Classifier role is a slot that describes the role played by a participant in the Collabo-
ration, whereas an Association role describes the connection between two Classifier
roles within the Collaboration [4]. The description of Collaboration often depends on
the participants (objects and/or classes). However, in software architecture, it is impor-
tant to be able to specify a connector independently of any of the components that
may use it to communicate. To enable connector modeling in UML, we propose a
stereotype of a Collaboration that allows us to separate the specification of connec-
tors from that of the components. We define therefore the stereotype «connector» that
specializes the Collaboration concept by hiding Classifier roles and introducing the
notion of Connection role and Connection point.

A connection role is a stereotype of an association role, a particular association,
which describes the connection between two compatible connection points. A con-
nection role extends an association role by defining some constraints (restrictions or
semantic conditions) to be applied on the connection. These constraints should be
fulfilled in any interaction mediated between the connection points. A connection role
also allows one to describe a protocol of interactions, as shown in the behavioral view.
A connection point is a concept that represents a connector interface. It is a kind of
"association end role" that defines the participation of a component in a connector
type. A connection point is specified in terms of messages or data flows that a partici-
pant component can exchange with others in interactions mediated by the connector.

The benefit of this approach is that 1) it allows one to specify simple connector
types and higher-order connector types using the same notation; 2) a simple connec-
tor type can define some architectural styles implicitly; 3) a higher-order connector
type can be specified as a composition of simple connector types.

The static structure of a simple connector type consists of two connection points
and a connection role. A simple connector type can only mediate interactions between
two components. For instance, one connection point could be seen as defining the
participation of the client component, while the other defines the participation of the
server component.  In this case, a connector role defines the protocol of interactions
between the client and the server and the constraints that are applied to both partici-
pants. The same reasoning could be used in the case of the pipe-and-filter style, with
the difference that the connection role would define the properties of the pipe,



11

whereas the connection points would represent the participation of the filter comp o-
nents.

Figure 7: Static Structure of a Simple Connector type.

Figure 7 gives an overview of the static structure of a simple connector type. The
white and the black circles are two connection points, conjugates of one another. We
took the concept of “conjugated” elements from B. Selic et al. in [11] and [22]. Conju-
gated connection points are two connection points that are compatible but one is the
inverse of the other.

A higher-level connector type is a composition of two or more simple connector
types. Figure 8 presents an example of the static structure of a higher-order connector
type, the VSConnector. The labeled white circles on the border of the collaboration
symbol represent the simple connector types that are combined to define the specifica-
tion of the higher-order connector. In other words, each white circle is a shorthand
representation of two conjugated connection points and one connection role. Ac-
cordingly, the VSConnector is presented as a composition of the following five simple
connector types: VirtualDevice, StreamController, StreamEndPoint, VideoStream and Strea-
mEndPointSignaling.

 Figure 8: Static Structure of the VSConnector.

VirtualDevice defines all configuration related interactions that can take place be-
tween two compatible multimedia devices. It describes the sequence of alternating
configuration signals that are exchanged between the interacting parties. StreamCon-
troller mediates the interactions for initiating and finishing the negotiation procedure in
point-to-point multimedia connections. It describes how to control and coordinate the
connection activities that are particular to stream connections between multimedia
devices. StreamEndPoint determines the interactions related to the control of individual
flow endpoints composing a stream endpoint. It describes how to control and manage
flow connections between multimedia devices. VideoStream defines a set of data flows,
where each flow represents a continuous sequence of objects in a specific direction. It
defines the continuous media transfer between components and describes the quality
of service constraints that are related to it. StreamEndPointSignaling is needed to mediate
a set of signals for the establishment and release of stream connections (in a non-
sophisticated environment).

An elaborated description of these five simple connector types is shown in Figure
9. In this figure, the keyword "Connector"  and the scope operator "::" preceding the

Classifier role Classifier role

Connection role

Connection point Connection point

«connector»
VSConnector

«signal»
VirtualDevice

«operational»
StreamController

«signal»
StreamEndPoint

«stream»
VideoStream

«signal»
StreamEndPointSignaling



12

name of the connection point type indicate that the connection point is defined within
the scope of a connector. This allows one to differentiate between interface elements
of components and connection points in connectors at the configuration level.

A connection point can be a signal, a stream or an operational connection point.
The form of communication supported by a simple connector type corresponds to the
type of its connection points. Similarly, the higher-order connector type supports all
the kinds of communication that are supported by its constituents. In Figure 8, for
instance, the form of communication supported by the simple connector type Virtual-
Device is signal. This is indicated by the corresponding stereotype «signal». Thus, we
can see that the higher-order connector type VSConnector supports the mediation of
streams, signals and operations.

Like other constructs in the UML, the Object Constraint Language (OCL) can be
used in the static view to define constraints on the components and connectors.

Figure 9: Elaborated Simple Connector types composing the VSConnector.

4.2.2 Behavioral View
The purpose of the behavioral view is to provide the part of the software architec-

ture description that focuses on behavioral (or dynamic) properties of a system under
development. To describe the behavioral structure of the system, the software archi-
tect makes a projection of the structural view onto the behavioral view. This projection
allows the architect to separate the behavioral concerns of the system from all the
others. The behavioral properties of the system are defined by the behavior of its
computational component types and connector types, and the constraints on the ele-
ments describing that behavior.

The behavioral structure of a computational component is defined by the specifica-
tion of its interface protocol, the component interface protocol (CIP) . The component
interface protocol describes the allowable sequence of data flows, call events and
signal events that a given component may be engaged in. A component interface
protocol can be modeled as a composite state machine that contains the entire set of
the protocol state machines of all the interface elements. An approach that can be
used to specify operational interface elements has been proposed in [15].

Like for components, the behavioral structure of a connector is defined by using
protocol state machines. To describe the behavior of a simple connector type, we
specify the protocol of interactions of the connection role using a UML protocol state
machine.

«Connector::stream»
VideoStream

QualityOfService
 pictureQoS: VideoQoS
 soundQoS: AudioQoS
 flownum: NumberOfFlows

Produces
 picture: VideoFlowType
 audio: AudioFlowType

Consumes

«Connector::signal»
StreamEndPointSignaling

Outgoing
 connectRequest ()
 connectResponse  ( )

Incoming
 connectIndication  ()
 connectConfim  ()

«Connector::signal»
VirtualDevice

Outgoing
 setPeer  ( )
 setFormat ()
 setDeviceParams  ( )
 modifyQoS ( )
 configure ()

Incoming
  setPeer ()
 setFormat ()
 setDeviceParams  ( )
 modifyQoS ( )
 configure ()

«Connector::operational»
 StreamController

Provides
 start ()
 stop ()
 modifyQoS ()
 bindDevices ()
 unbindDevices ()
 destroy ()

Requires

«Connector::signal»
StreamEndPoint

Outgoing
 start ( )
 stop ()
 destroy ()
 connect ()
 requestConnection ()
 modifyQoS ( )
 disconnect ()

Incoming



13

Figure 10: Representation of the StreamEndPointSignaling in the behavioral and static
views.

In the case of a higher-order connector type, a composite state machine will be used
that contains the protocol state machines of each of the simple connector types com-
posing it. Figure 10 shows an example of a protocol state machine that describes the
behavior of the simple connector type StreamEndPointSignaling. It describes the allow-
able sequences of signal events that are related to the establishment and release of
stream connections between two communicating components.

According to the protocol that is shown in Figure 10, the initiating component must
be in the state idle to send the connectRequest signal, which results in the request signal
event. When the connectRequest signal arrives at the connection point on the site of
the receiver, an indication signal event (entry event of announcing state, not shown)
occurs. The receiver component gets a connectIndication signal announcing that a com-
ponent wants to connect to it. Then the receiver component may send the connectRe-
sponse signal to tell whether it wants to accept or reject the pending connection re-
quest. During this period, the initiating component will be waiting for confirmation. If the
connection request is accepted, the response signal event occurs at the connection
point on the site of the initiating component. This results in the arrival of the con-
nectConfirm signal at the interface of the component issuing the connection request. In
both the announcing and waitingForConfirmation states, it is possible that the process
restarts when the timeOut signal event occurs. In the waitingForConfirmation state, the
connection is deleted when the destroy  signal event occurs.

Figure 10 also illustrates that views can be interdependent, e.g., the state machine
models the behavior of the StreamEndPointSignaling connection point.

4.2.3 Configuration View
The purpose of the configuration view is to offer a partial description of the soft-

ware architecture of a system under development that focuses on a set of instances of
the component and connector types defined in the previous architectural views. As in
the other views, this projection allows the software architect to separate the configura-
tion issues from all the other kinds of concerns. The elements that define the configu-
ration structure are instances of computational component types and connector types,
together with the constraints on these elements.

A simple configuration structure can be described by using only simple connectors
and two components, whereas a complex configuration structure requires the instan-
tiation of a higher-level connector type and several component types. Thus, the inter-
connection of components using a composition of many simple connectors may be
used to define the configuration structure of a complex system. To get different con-
figurations of the same architecture, a higher-order connector type is instantiated in

idle announcing

destroyed

request
Initial

destroy

timeOut

timeOut

response

«Connector::signal»
StreamEndPointSignaling

Outgoing
 connectRequest ( )
 connectResponse  ()

Incoming
 connectIndication ()
 connectConfim  ()

waitingFor
Confirmation



14

different ways. In this case, some kind of configuration script may be needed for each
particular configuration. The script defines which of the simple connector types of a
higher-order connector type would be instantiated in a specific configuration.

The instance of a simple connector type has two categories of elements: dynamic
ports and a link  between these ports, where each (base) port has a corresponding
conjugate (symbolized by a '~'). A dynamic port is an instance of a connection point
that is dynamically created (as part of the connector type instance) and attached to a
component. To attach a dynamic port to a component means that the component has
to provide a realization of the connection point. The link between the ports represents
an instance of the connection role defined by the connector type.

When a component type is instantiated, all of its interface element types are also
instantiated. The instances of the interface element types are, in contrast to dynamic
ports, called static ports. To differentiate dynamic ports from static ports, the stereo-
type of the connector type is prefixed with the keyword "Connector" («Connector::port-
name»), indicating that the port is an instance of a connection point.

 Figure 11: Simple Configuration of the Video Surveillance System

Figure 11 presents an example of configuration of the VSS that shows an instance
of the VSConnector, CameraDevice and VideoControlStation. The stream port (black and
white circles within a box) indicates that the stream communication is bi-directional.

According to the configuration script used for this example, the instantiation of the
VSConnector shown contains only the simple connector type instances StreamEndPoint-
Signaling and VideoStream.

5 Summary and Future Work
In this paper, we have argued for a UML profile for software architecture descrip-

tions, which extends the standard UML by incorporating some key constructs found
in current ADLs. For this purpose, we focused on a set of software architecture con-
cepts, such as viewpoints, views, connectors, components and configurations. We
illustrated also how they can be combined to describe different views that may repre-
sent together the software architecture of a system in UML.

The resulting approach is an interpretation of the IEEE’s Recommended Practice for
Architectural Description (P1471). We demonstrated it on a video surveillance system,
which in particular highlighted the ability to describe the combination of three different
types of communication: signal, operational and streaming protocols. Furthermore, we
proposed an approach how to specify simple and complex connectors.

«computational»
  /vcs: VideoControlStation

«computational»
/camDev:CameraDevice

/ vStream :VideoStream~

:StreamEndPointSignaling~

/camControl:VCamControl

:StreamEndPointSignaling

/ vStream :VideoStream

Base signal port

Conjugated signal port

Base stream port

Conjugated stream port

Base operational port

Conjugated operational portLegend:

              Operational connectorSignal connector Stream connector



15

Though there are still many open issues, we hope that this paper is a first step in
the right direction towards a UML profile for software architecture descriptions.

In future work, we will refine the proposed UML profile, apply it to other examples
and address some issues related to the support of Multi-Dimensional Separation of
Concerns (MDSOC) in software architecture. Also, we will investigate the usefulness
of Aspect-Oriented Programming techniques for implementing higher-order connec-
tors. Finally, we will explore different ways to describe configuration scripts, and de-
fine constraints between simple connectors composing a complex connector.

6 References
1. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an Emerging Discipline. Pren-

tice-Hall, New Jersey (1996).
2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley

(1998).
3. Booch, G., et al.: The Unified Language Modeling User Guide. Addison-Wesley (1998).
4. Rumbaugh, J., et al.: The Unified Language Modeling Reference Manual. Addison-Wesley

(1999).
5. The Unified Modeling Language Specification. Object Management Group (On-line at

http://www.omg.org), Framingham, Mas.
6. Garlan, D., Monroe, R. T. and Wile, D.: ACME: An Architecture Description Interchange

Language. Proceedings of CASCON '97 (1997).
7. Allen, R. J.: A Formal Approach to Software Architecture. Ph.D. Thesis, Carnegie Mellon

University, School of Computer Science, available as TR# CMU-CS-97-144, May (1997).
8. Medvidovic, N. and Taylor, R. N.: A Classification and Comparison Framework for Software

Architecture Description Languages. IEEE Transactions on Software Engineering, Vol. 26,
No.1, January 2000.

9. Clements, P.: A Survey of Architecture Description Languages. 8th International Workshop on
Software Specification and Design, Germany, March, 1996.

10. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,  P., Stal M.: Pattern-Oriented Software
Architecture – A System of Patterns. John Wiley and Sons Ltd (1996).

11. Selic, B., Rumbaugh, J.: Using UML for Modeling Complex Real-Time Systems. ObjecTime,
(1998).

12. Object Management Group: Analysis and Design Platform Task Force  White Paper on the
Profile mechanism . Version 1.0. OMG Document ad/99-04-07, URL: www.omg.org.

13. IEEE Architecture Working Group: Draft Recommended Practice for Architectural Descrip-
tion (Version 5). October (1999).

14. Robbins, J. E., et al.: Integrating Architecture Description Languages with a Standard Design
Method. In Proc. of the 20th Intl. Conf. on Software Engineering (ICSE'98), pp. 209-218
(1998).

15. Sendall, S., Strohmeier, A.: From Use Case to System Operation Specifications. To be pub-
lished in the UML'2000 Conf. Proc., Stuart Kent and Andy Evans (Ed.), LNCS (2000).

16. Kruchten, P. B: The 4+1 view model of architecture. IEEE Software, 12(6):42-50, (1995).
17. Le Métayer, D. and Périn M.: Multiple Views in Software Architecture. Position paper from

the First Working IFIP Conference on Software Architecture  WICSA1, San Antonio,
(1999).

18. Perry, D. E. and Wolf, A. L.: Foundations for the Study of Software Architecture. ACM SIG-
SOFT Software Engineering Notes, 17:4 (October 1992).

19. ISO/IEC 10746-1/2/3. Reference Model for Open Distributed Processing – Part 1: Over-
view/Part2: Foundations/Part3: Archictecture. ISO/IEC (1995).



16

20. Hilliard R.: Views and Viewpoints in Software Systems Architecture. Position paper from the
First Working IFIP Conference on Software Architecture  WICSA1, San Antonio, (1999).

21. Sommerville et al. Managing Process Inconsistency Using Viewpoints. IEEE Transactions on
Software Engineering, Vol. 25, No.6, November/December 1999.

22. Selic, B., Gullekson, G., Ward, P. T.: Real-Time Object-Oriented Modeling. Wiley, (1994).
23. Miller, J., Wirfs-Brock, R.: How Can a Subsystem Be Both a Package and a Classfier?  2nd

International ConferenceUML '99, The Unified Modeling Language: Beyond the Standard,
USA, 1999.


