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Abstract. Due to singularities of the likelihood function, the maximum likelihood approach for the
estimation of the parameters of normal mixture models is an acknowledged ill posed optimization
problem. Ill posedness is solved by penalizing the likelihood function. In the Bayesian framework, it
amounts to incorporating an inverted gamma prior in the likelihood function. A penalized version of
the EM algorithm is derived, which is still explicit and which intrinsically assures that the estimates
are not singular. Numerical evidence of the latter property is put forward with a test.

INTRODUCTION

Mixture models are a well fitted tool for clustering the observations together into groups
for discrimination or classification : the mixture proportions then represent the relative
frequency of occurrence of each group in the population. Mixture models also provide a
convenient and flexible class of models for estimating or approximating distributions.

In particular, independent identically distributed (i.i.d.) mixture models well fit several
problems in signal and image processing, covering a wide range of applications. In [1] a
Bernoulli-Gaussian mixture model is adopted in a deconvolution problem, while [2]
highlights the important role of mixture models in the field of cluster analysis. An
example of the application of mixtures in biological (plant morphology measures) and
physiological (EEG signals) data modeling is presented in [3]. Markovian mixture
models are also commonly used, as in [4] where an application to medical image
segmentation is considered.

The present contribution summarizes two of our previous works [5, 6], which focus
on i.i.d. mixtures of univariate normal densities, with a known number of components.
Parameters are estimated with a penalized maximum likelihood approach, by mean of
the EM algorithm [7].

MIXTURE MODEL

We consider a sample �������
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Given � , the maximum likelihood estimate of the mixture parameters is defined as:- � � � � � � � - � �*�
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is the likelihood function.

LIKELIHOOD FUNCTION DEGENERACY

Likelihood function degeneracy toward infinity is a well known problem for mixtures
of Gaussian distributions, first put forward with a simple example in [8] (see also [9]).
Such an example considered a two class mixture model with a corresponding likelihood
function given by
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Intuitively, the degeneracy is due to the fact that in the sum of Gaussian densities the
variance parameter appears in the denominator. Indeed, couples such as
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yield singularities, in the sense that

�
tends to infinity as � approaches one of the

corresponding points, located at the boundary of
�

, as rigorously stated by the following
property.

Property 1 Let us consider the likelihood function (3) for a given sample� � � �*	������� ��� � , then? � � � � �A@ �CB �$D� �"EGFIH2KJ=2ML � � � �
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where
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is the parameter space (1),
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closure of the parameter space, and � � �QP �TR ��S ) � � � is a point in the parameter
space.



Consequently, the maximum likelihood estimator (2) cannot be defined. In practice,
unboundedness of

� � � ���*� is a cause of failure of commonly used optimization algo-
rithms, for instance of EM [9] and gradient types.

Hathaway [10] proposes to restrain the parameter space in order to exclude the points
of degeneracy. The constrained maximization of the likelihood function is then numeri-
cally performed by a constrained EM algorithm [11]. However, such a constrained ver-
sion of EM is complex to derive and to implement, with a resulting high computational
cost.

Hence, we remain within the framework of the problem formulated on the whole
parameter space (1). Moreover, we will specifically refer to the EM algorithm, which
iteratively compute the maximum likelihood estimates by mean of the following re-
estimation formulas
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where �
 $ � �

+ ��� � 7 ! 	 "��  � � � 7 ��& �  �'( ) � � � � $ � 7 ��� � + and � indicates the iteration.

BAYESIAN SOLUTION TO DEGENERACY: PENALIZED
LIKELIHOOD FUNCTION

A Bayesian solution is proposed to solve the degeneracy of the likelihood function in
the origin of any of the variance parameters. The latter are considered as i.i.d. random
variables, leading to a penalized likelihood function
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where � is the common prior probability density of variance parameters.
Our goal is to adjust � so that the penalized likelihood is a bounded function that

can be locally maximized by mean of an EM algorithm (which can be referred to as a
“penalized” EM algorithm). In other words, � must satisfy the requirements of

1. being a proper probability density function,
2. tending appropriately to zero to compensate for the likelihood singularities,
3. and allowing to maintain explicit re-estimation formulas for the resulting penalized

EM algorithm.



The inverted gamma distribution
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which is known as the conjugate prior for the variance of a scalar Gaussian density [12],
is proved to satisfy the three conditions.

As regard Point 1, the inverted gamma is assured to be proper by constraining the
choice of its parameters: ��� ' and

� � # , as discussed in [12].
As regard Point 2, the following property states the boundedness of

� 
on
�

(whereas,
from Property 1,

�
is an unbounded function under the same conditions), and it assures

that the points of singularity do not maximize
� 

.

Property 2 The penalized likelihood is bounded above over the parameters space.
Hence, the penalized likelihood function does not degenerate in any point of the closure
of parameters space

D�
. Moreover it tends to zero as ( ) �� ' , for any ) . Hence, no( ) �,' � ) � �U#
�� � � maximizes the penalized likelihood function.

Proof For the sake of simplicity the proof refers to a two class mixture model, without
loss of generality.

Akin to the likelihood function, the penalized version (8) may degenerate only in
the origin of any of the parameters S ) . Let us note � � � ��� � � ��� ) � )�� � � 	 � � � ) ��� � #,� ) ,
and let us consider the likelihood function (4) penalized by a proper inverted gamma
distribution (8)
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On every compact domain strictly contained in the parameter space,

��
is bounded.

This is a straightforward consequence of the fact that
� 

is the product of two functions
which are bounded on such domains (the product of sum of Gaussian distributions and
the product of inverted gamma distributions). Hence, it is sufficient to prove that

��
remains bounded on the boundaries of

�
, and more precisely that it remains bounded in

the points of singularity.



From the inequality
	 �� � � � � � &�� ) � � ( ) ��� # the likelihood function can be bounded

above by� � #(#	 ) � 	��� � � �( )	 � #( ) ) � 	��� � � �( )) � �67 ! 	 � #(#	 ; #( )��
� � �67 ! 	�8 #

( ) ���� ! �� �	 	�����=� �X ( )	 � #
( ) ��) 	 �� � � �X ( )) �; #

( ) ��	 	��� �=� �X ( )	 � #
( ) � �� ! �� �)

	 �� � � �X ( )) � < (10)

By considering that EIFGH	 � J B #
( ) � �� ! �� � 	 �� � � �X ( )�� �,'

and that EIFGH	 � J B #( ) �� 	 �� � � �X ( ) � �,'
it is straightforward to see that the penalized likelihood function tends to zero as ( )

� ' .
Therefore, it is bounded in the point of singularity and its boundedness on the whole
parameter space follows. 


Hence, the existence of the penalized maximum likelihood estimator is assured, and
such an estimator falls within the parameters space

�
(the boundaries are excluded by

the null value of the likelihood).
Moreover, the penalized likelihood estimator has recently been proved to be consis-

tent [6].

PENALIZED EM ALGORITHM

As regard Point 3, explicitness directly follows from the appropriate choice of � � S ) �
as an inverted gamma distribution. Indeed, the EM algorithm is based on the iterative
maximization, with respect to � , of a criterion � , which, at iteration � ; # , is given by� $ � ��� � �'�
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where
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P
��� � P ����� � 7 ! 	 " �"! , is proportional to the likelihood function of the complete data
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which is a product of Gaussian densities. With respect to S ) , the likelihood function of
the complete data (12) also reads
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where X  denotes the number of data sampled from the class ) ,
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By applying the penalization, the term
� � � � � � �
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Therefore, penalization by an inverted gamma distribution has introduced no “structural”
changes in criterion � of the EM algorithm and explicitness is maintained.

A more thorough analysis reveals that the re-estimation equations remain explicit
because � is chosen as the conjugate prior of the likelihood of the complete data ([13],
[12, page 99]).

The re-estimation equations of the penalized EM algorithm are not only explicit, but
they also correspond to a very slight alteration of the standard ones. Indeed, equations (5)
and (6) remain unchanged, while equation (7) becomes
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Therefore, penalization of the EM does not increase the computational burden: this is an
extremely important aspect in the case of large samples or image processing.



Moreover, from equation (13) it is straightforward to see that every maximizer (either
global or local) of the penalized likelihood function yields strictly positive variance
estimates. Indeed we have ? � (*) � � (*)����� � X��
� � �� � ; X � '
where ( )����� � X�� tends to ' as X tends to infinity.

NUMERICAL RESULTS

We have tested the penalized and non penalized EM algorithm on a 2 class mixture
model, defined in (4).

Eight-hundred samples of length fifty have been randomly generated from two Gaus-
sian distribution, having parameters P ��� ' 	� ' 	��
 �TR ��� ' � ��
 ��S ) ��� # � 
 .

For each sample, the starting point of the EM iterations was chosen automatically.
Such a choice is based on partitioning the empirical histogram of the data, as proposed
in [14]. As in [11], the EM algorithm was considered to have converged whenever the
maximum of the relative stepsize�
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for ) �$#
�� � , became less or equal than #(' ��� .
Figure 1 depicts the histograms for the values of the non-penalized estimates of ( )	

and ( )) , and the histograms for the values of the penalized ones.
By comparing the histograms, the efficiency of penalization becomes evident. Without

penalization, the distribution of the estimates spreads toward the singularity ( ( ) � ' ,
hence

E
���
( ) � � N ), and for #�� times the EM algorithm converges to the singularity

itself. On the other hand, coherently with the theoretical results of Property 2, the
estimates computed by the penalized EM algorithm are concentrated around the true
value and none of them is a singularity.

By increasing the length of the samples the number of convergence of the standard
EM algorithm to singularities is reduced (probably as a consequence of a restriction of
the attracting domain of the degeneracy point), but it is still greater than zero. Table 1
summarizes the results for samples of length fifty and one-hundred of the non-penalized
(a) and penalized (b) EM algorithm.

TABLE 1. Non penalized (a) and penalized (b) EM algorithm
results for samples of length fifty and one-hundred.

�����
samples of length: convergence to singularities:

(a) � � 13�����
1

�����
samples of length: min value of ��� :

(b) � � 0.3951�����
0.4247
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FIGURE 1. Histograms of EM � �� and � �� estimates, where the solid line indicates the true value while
the dashed line indicates a rupture toward infinity of the � axis. The top two histograms and the bottom
ones refer to the values of the non-penalized and penalized estimates, respectively. Penalization evidently
avoids spreading toward the singularity ( � ��� �

, hence
����� � �	��
� ) of the � � estimates.

CONCLUDING REMARKS

Penalization of the likelihood has revealed itself to be an efficient and simple solution to
likelihood degeneracy.

Theoretical properties ensure the existence of the maximum likelihood estimator as
well as its belonging to the parameter space.

The choice of the conjugate prior of the likelihood of the complete data as penalization
term conducted to explicit EM algorithm re-estimation formulas. While the role of
conjugate priors is acknowledged in Bayesian sampling schemes, including mixture
problems [13], putting forward the link between conjugate priors and explicit penalized
EM schemes is an original contribution, as far as we know.

Numerical examples evidence the existence of singularities and the efficiency of the
penalized solution.

Concerning the asymptotic behavior of the penalized maximum likelihood estimator,
we know from [15] that penalization does not alter asymptotic properties such as con-
sistency. Hence, local consistency of the penalized estimator is a direct consequence of
local consistency of the non penalized one (see [15]). On the other hand, global con-



sistency cannot be similarly deduced, since the non penalized maximum likelihood es-
timator is globally not even defined and classical theorems, as [16] and [8], cannot be
applied. Although not trivial, proof of global consistency has recently been achieved
[6].

To our best knowledge, Hathaway’s EM re-estimation formulas [11] are the only pre-
existing non-degenerate alternative to our penalized version. It is based on constrained
maximization of the likelihood, within an appropriately chosen subset of

�
. However,

Hathaway’s version is substantially more complex to derive and to implement, and the
resulting numerical cost is higher.
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