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Abstract. In this article, we propose a database-internal representation for SGML-/HyTime-documents based on
object-oriented database technology with the following features: documents of arbitrary type can be administered.
The semantics of architectural forms is reflected by means of methods that are part of the database schema and
by the database-internal representation of HyTime-specific characteristics. The framework includes mechanisms
to ensure conformance of documents to the HyTime standard. Measures for improved performance of HyTime
operations are also described. The database-internal representation of documents is a hybrid between a completely
structured and a flat representation. Namely, the structured representation is better to support the HyTime
semantics, and modifications of document components. On the other hand, most operations are faster for the flat
representation, as will be shown.
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1. Introduction

Administering large document collections and large documents has become a more and
more important issue. Not only conventional documents, but also hypermedia documents
must be handled. With SGML [10] and HyTime [11], that are standards for document
exchange, documents are not in layout format, but in a format where their logical structure
has been made explicit. Another advantage of formalisms such as SGML is that metainfor-
mation of arbitrary kind may seamlessly be integrated into the document. The structure of
such a document is specified by means of so-called document-type definitions (DTDs), i.e.,
a grammar that the instances of the respective document type must conform to. HyTime
is an extension of SGML in that it provides a list of type definitions for document compo-
nents with a fixed semantics for hyperlinking, referencing etc. that can be included in such
DTDs in a very flexible way. HyTime documents can then be exchanged between different
platforms, as content or attribute values of HyTime document components are interpreted
in a uniform way.

The objective of our work is to design and implement a framework for structured-
document storage. The semantics of document components shall be supported by the
storage system. One reason is that homogeneous declarative access mechanisms includ-
ing both primitives for querying SGML structures and primitives reflecting the specific
semantics of HyTime constructs can be provided. Another reason is that considerable per-
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formance improvements can be achieved. Furthermore, we wish to facilitate modifications
of documents that are already contained in the database. With regard to the database-
internal representation of documents, we see two alternatives. The first approach is to
have a completely structured database-internal representation, i.e., each logical document
component corresponds to a database object [1, 4, 13, 8]. The advantage is that document
modifications with arbitrary granularity are facilitated, and that the HyTime-semantics can
be exploited to refine the modeling in order to support efficient implementation of certain
HyTime-specific operations. The disadvantage is that most elementary operations are ex-
pensive, in particular, inserting entire documents into the database and retrieving them. The
alternative is to store documents as BLOBs in the database. While achieving a better per-
formance for elementary operations, this approach falls short with regard to the other issues
where a completely structured representation is suitable. To avoid the disadvantages of the
two extremes, we pursue a hybrid approach where, casually spoken, only “big” elements,
so-called non-flat elements, are represented by individual database objects, while other
database objects comprise more than one element, so-called flat elements. The operational
SGML- and HyTime-semantics can be modeled in both cases. - The most appropriate
database-internal representation depends on the access pattern. A generic system, i.e.,
one for administering documents of arbitrary type, should provide some flexibility to take
this into account. Consequently, the database-internal representation of documents has
to be specified. To this end, information on the semantics of documents and document
components is communicated to the database application. In other words, our system is
configurable. Configuration is on the type level.

The contributions of this article are the following ones:

� Describing documents' database-internal representation. The database-internal
representation of elements and element types has to be transparent, i.e., it must not be
visible from outside whether they are flat or not. We point out how modeling primitives
can be used in this context, and why extensible or even freely definable modeling
primitives are of advantage. Finally, index structures are mandatory to allow for an
efficient evaluation of queries over large document collections. It is not obvious what
index structures for structured documents should look like.

� Modifying documents. When modifying components of documents that are already
contained in the database with arbitrary granularity, there are the following problems:
it has to be ensured that the new version of the document component conforms to
the document-type definition, and the respective database-internal structures have to
be generated. When a new element is inserted or deleted, it has to be checked if
insertion or deletion at the respective position is feasible, according to the DTD. For
our solution to be deployed in real application scenarios, it is a natural requirement that
an off-the-shelf SGML editing tool can be used to carry out the modifications. The
SGML editors we are aware of allow to load a separate copy of the entire document
only. We describe how this apparent contradiction is solved with our approach. - In [2],
a database interface for file update is described. These techniques cannot be applied
here, because it is not an API for document modification that is desired, but editing
functionality.



BUILDING A HYBRID DATABASE APPLICATION 277

� Reflecting the HyTime semantics. With a system allowing to administer HyTime
documents of arbitrary type, it is a complex task to ensure documents' conformance to
the HyTime standard, which is a prerequisite for carrying out operations reflecting the
HyTime semantics. Next to explaining how the HyTime semantics is reflected in the
database, we describe measures to improve performance of HyTime-specific function-
ality. In [12, 6], work regarding a HyTime engine based on OODBMS technology is
described. While in [12] each element is represented by an individual database object,
the need for “compression” is acknowledged in [6]. In contrast to ours, that work is con-
cerned with one individual document type. They do not explain how their compression
technique can be applied to other HyTime document types, if functionality has been
given up for compressed document components, and how compression affects perfor-
mance of their system. We for our part argue that the HyTime-specific representation
of documents must be configurable to achieve a good performance of HyTime-specific
operations in many cases. Another OODBMS application for structured-document
storage is described in [14]. The system is tailored for a news-on-demand applica-
tion scenario. Again, only one specific document type is supported, and modifying
documents in the database is not described.

The remainder of this article has the following structure: In the following section, the
underlying standards are briefly reviewed. In Section 3, the database-internal representation
of structured documents is described. Section 4 contains a description of the mechanisms
for document modification. Section 5 describes how our modeling has been extended in
order to reflect the HyTime semantics. Some experiments described in Section 6 indicate
that our approach is useful. Section 7 concludes the paper.

2. Standards for Document Modeling

2.1. SGML

In the context of SGML, the differentiation between documents' logical structure and their
layout structure is fundamental. With SGML, logical document components, so-called
elements, are made explicit by means of markup, as in Figure 1. Documents have a
hierarchical structure, the primary structure, as depicted in Figure 2.

The arrangement of elements within an SGML document of a certain type is specified
by a so-called document-type definition (DTD), as in Figure 3. In essence, a DTD is a
grammar. Lines starting with `<!ELEMENT' are element-type definitions. `<!ELEMENT
BODY ...>' is the definition of element type BODY. The regular expression

(STATEMNT, (RECOMMND|DECISION|STATEMNT)*)

the so-called content model, specifies that an element of type BODY consists of one
of type STATEMNT, followed by an arbitrary number of recommendations, decisions or
statements. In a nutshell, we say that an element type is directly contained in another
one if it occurs in the content model of that element type. The transitive closure of
the directly-contained-in relationship is referred to as contained-in relationship between
element types. `+(KEYWORD)' is an inclusion model. It specifies that aKEYWORD-element
may occur anywhere in a subtree whose root is aBODY-element. Exclusion models to forbid
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<PROTOCOL>
<PARTICIP><PERSON id=jh>Jörg</PERSON>
<PERSON id=ae>Angelika</PERSON>
<PERSON id=kb>Klemens</PERSON></PARTICIP>
<BODY><STATEMNT persons="jh kb"><PARA>The different versions of
the database schema have to be integrated asap.</PARA>
<PARA>Jörg cannot carry out the <KEYWORD>integration</KEYWORD>
due to other obligations</PARA></STATEMNT>
<RECOMMND persons ="ae"><PARA>Angelika can take over some of
Jörg's assignments.</PARA> </RECOMMND> ...</BODY>

</PROTOCOL>

Figure 1. Sample SGML document of type `Protocol'

protocol

particip

person person person

Jörg Angelika Klemens

body

statemnt recommnd

The different
versions of the

database schema
have to be

integrated asap.

Angelika can
take over

some of Jörg’s
assignments.

Jörg cannot
carry out the

para para para

...

integration

 due to other
obligations.

keyword

Figure 2. Structure of Sample SGML Document
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<!DOCTYPE PROTOCOL [
<!ELEMENT PROTOCOL (PARTICIP, BODY)>
<!ELEMENT PARTICIP (PERSON+)>
<!ELEMENT PERSON (]PCDATA)>
<!ATTLIST PERSON id ID #REQUIRED>
<!ELEMENT BODY (STATEMNT, (RECOMMND|DECISION|STATEMNT)*)

+(KEYWORD)>
<!ELEMENT (RECOMMND|DECISION|STATEMNT) (]PCDATA)>
<-- `RECOMMND' is abbreviation for `recommendation' -->
<!ATTLIST (RECOMMND|STATEMNT) persons IDREFS #IMPLIED>
...]>

Figure 3. Sample DTD (Document Type `Protocol')

inclusion models in smaller subtrees are also available. ]PCDATA is a terminal element
type comparable to data type STRING. Furthermore, elements may be furnished with
attributes. `<!ATTLIST PERSON id ID #REQUIRED>' defines that there is
an attribute id of type ID for elements of type PERSON whose category is `required',
i.e., each element of type PERSON must have that attribute. Attributes of type ID and
IDREF, IDREFS allow for arbitrary references between elements, the so-called secondary
structure. An ID-attribute is a unique identifier of an element, while attributes of types
IDREF and IDREFS are references to such elements. The fist one is a reference to exactly
one ID, whereas the number of references with IDREFS is arbitrary.

Using SGML, metainformation can be included in documents in a natural way at the
corresponding position within the document, be it by introducing new element types, be it
by means of attributes. Declarative access based on the logical structure of documents and
on metainformation is feasible.

2.2. HyTime

The semantics of element types and attribute types is not part of an SGML DTD. If elements
of a certain type shall be processed in a particular way, this must be implemented within
an application, i.e., a system on top of the storage system. In consequence, hypermedia
documents, whose structure has been made explicit by SGML, cannot be handled in an
adequate way by an SGML database application only. The rationale behind HyTime
[11, 15] is to provide standardized mechanisms to describe the processing of hypermedia
documents. The HyTime standard contains a set of element-type definitions together with
a description of their semantics, so-called architectural forms or abstract element types. As
an example, consider the HyTime architectural form dataloc in Figure 4, together with
a definition of a concrete element type, i.e., one derived from that abstract one, in Figure 5
and a portion of a sample document in Figure 6. With dataloc, arbitrary pieces of data
can be identified, independent of the logical structure of documents that has been made
explicit using SGML markup. The content of the referenc-element in Figure 6, whose
element type is derived from dataloc, has to be interpreted as follows: the target data
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<!element dataloc ... (dimlist*)> //dimlist is another ar-
//chitectural form that is not
//explained here

<!attlist dataloc HyTime NAME dataloc
id ID
quantum (str|norm|word|name|sint|date|time|

utc) str
locsrc IDREFS ...>

Figure 4. Architectural Form dataloc

<!ELEMENT referenc (targets*)>
<!ATTLIST referenc HyTime NAME ]FIXED "dataloc"

id ID
quantum (str|word|name|sint|date|

time|utc) str
locsrc IDREF
author ]PCDATA>

Figure 5. Element-type definition derived from HyTime architectural form dataloc

item starts with the 11th unit and has an extension of two units. Value word of attribute
quantum specifies that these units are words.

An element-type definition may differ from the architectural form it is derived from, i.e.,
the concrete type may differ from the abstract one in the following ways:

� The concrete element type may have a different name than the abstract one. The
connection between concrete and abstract element type is established by means of
attribute HyTime. Its value is the name of the respective architectural form.

� The content models of concrete and abstract element types may be different. However,
the content of an instance of these types must conform to both content models.

� The range of an attribute in the concrete type definition may be a subset of the one it is
derived from, e.g., IDREFS may be replaced with IDREF.

� The concrete element-type definition may contain additional attributes, as compared to
the original DTD.

The advantage of using HyTime architectural forms is that relevant aspects of the cor-
responding elements' semantics are standardized. If HyTime documents are administered
by a database system, the HyTime semantics can be exploited for efficient physical data
management. With dataloc-elements, for example, a materialized view on the pieces of
data referenced is conceivable. However, it depends on the application semantics whether
such a materialized view is advantageous
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<annotation linkend=a1 nr=1>
<content id=c1> We assume that these objects have been chosen

because there have been complaints ...</content>
<referenc id=r1 quantum=word locsrc=d7>11 2</referenc>

</annotation>

Figure 6. Instances of HyTime architectural forms
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Figure 7. Sample Database Structure

3. An Efficient Database-internal Representation of Structured Documents

With our approach described in [1, 4], every element is represented by an individual database
object, and there is a database class, a so-called element-type class, corresponding to each
element type. However, the duration of read-access operations as well as of document
insertion into the database depends to a high degree on the number of database objects
that are accessed or generated. This is an argument in favor of a completely unstructured
database-internal representation of documents. On the other hand, with an object-oriented
DBMS, database objects are the physical units of modification. It depends on the element
type's semantics whether its instances are good logical units of modification within a
document. Our conclusion is that not all elements should be represented by individual
database objects. With regard to elements that are not represented by individual objects,
we say that such elements are flat, or the element types are flat, as elements of the same
type shall be represented in the same way within the database. Taking the examples from
Figures 1 and 2, suppose that PARA is a flat element type. Then, the structure depicted in
Figure 7 is generated in the database.

The specification which element types are flat and which ones are not takes place when the
document-typedefinition is inserted into the database, before any documents of that type are
inserted into the database [1, 5]. - In the remainder of this section, we will address how the
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physical representation of elements and element types is made transparent, which further
measures are necessary to insert documents into the database in an efficient way, and which
(non-existing) OODBMS features would have been useful in this particular context. We
will also point out the role of extensible modeling primitives for this application scenario.

3.1. Making Document Elements' Physical Representation Transparent

In this context, it is important that the logical structure of flat document portions shall
be visible. E.g., it should be possible to navigate within flat objects and to formulate
queries referring to the logical structure made up by such elements. Thus, `flat' is not the
same as `unstructured' or `not interpretable'. Further, the requirement that the interface
of operations such as navigation operations be independent of the representation in the
database is natural. With a 1:1 mapping of element types to database objects, as practiced
previously, elements in the database are identified by means of the database object identifier
(database-OID). Navigating within the document is easy, e.g., identifying the element that
follows a particular one.

On the contrary, to identify elements within a flat document portion, the database-OID
alone is insufficient. Therefore the identification scheme for document components is
extended. An element is identified by an instance of type

[obj: OID, offset: INT]

The OID identifies the database object containing the document element. The offset
identifies the position in the flat representation, i.e., within the bytestring, where the
document element starts. The default value -1 is used if the element corresponds to the
whole database object, i.e., if the element is not flat. For example, with the structure from
Figure 7, the first PARA-element within the STATEMENT-element would be identified by
[obj: o1, offset: 0], the second PARA-element by [obj: o1, offset: 86], assuming that o1 is
the respective OID.

3.2. Making Element Types' Physical Representation Transparent

An important objective is to have both flat elements and element types available for navi-
gation and search when using that extended identification scheme. At the same time, the
physical representation shall not be visible to the user. To this end, an extension of the
model where element types are mapped 1:1 to database classes is needed. Element types
can be categorized in flat ones and non-flat ones. An element type has characteristics
that are identical for both flat and non-flat element types, such as an element-type name,
while other features are specific for the two categories. For instance, the implementation
of a method that identifies all instances of the type is different for flat and non-flat types.
Using data-modeling terminology, element types have a so-called generalization aspect
and a so-called specialization aspect. With the OODBMS VODAK, modeling primitives
for semantic relationships can freely be defined [17]. Category specialization is modeled
so that the generalization aspect is represented by a database object, the generalization
instance, the specialization object is represented by another database object, the special-
ization instance. All generalization instances are contained in the same class, the so-called
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generalization class, but there are several specialization classes according to the different
categories (see [17] for further details). Figure 8 contains an overview of the modeling.
We assume that the database is populated with one protocol-document. Classes are
represented by ellipses. Metaclasses are classes whose instances are themselves classes,
such as TERMINAL or NONTERMINAL. Both dots and rectangles with textual content
correspond to physical database objects. Arrows and lines have the following meaning.
Straight-lined arrows indicate that an object is an instance of the respective class. Straight
lines reflect the hierarchical structure of documents, i.e., the structure that is explicit within
the database. The instances of FLAT are the set of all flat document portions. ElementType
is the generalization class. Each element type is an instance of ElementType. We say that
the instances of ElementType are virtual element-type classes. The crucial point with this
particular modeling is that the specialization instances are not plain database objects in all
cases. Non-flat element types are represented by database classes, so-called element-type
classes, that are an instance of class NONTERMINAL. A flat element type is represented
by an instance of class FlatClass. FLAT being a special specialization instance is an in-
stance of TERMINAL. The rectangles that do not correspond to database objects illustrate
where properties and methods of the respective objects are defined. CS and CATSPEC are
different modeling primitives for category specialization. For example, `ET INSTTYPE'
in the box corresponding to instances of ElementType indicates that these instances have
properties and methods that are defined by class ElementType. `CS INSTINSTTYPE'
reflects that they have properties and methods provided by the modeling primitive CS. In
[4] it has been described that element types also take part in another specialization relation-
ship that is modeled using CATSPEC. Hence, NONTERMINAL and its instances have
properties and methods provided by two modeling primitives.

The situation gives rise to two arguments why modeling primitives should be extensible
or even freely definable.

� The instances of the modeling do not have to be plain database objects, they can also
be other entities. With CS, the specialization instances may be classes.

� Objects may take part in more than one semantic relationship. The extensibility of
modeling primitives is necessary to take this into account.

With regard to search in the document base, one can distinguish between search on
the type level and search on the instance level. In search expressions of the second kind,
concrete elements may occur, as opposed to the first one. Search operations on the type level
are realized as methods of the virtual element-type class. The objective of the modeling
of element types described above is to encapsulate the database-internal representation of
element types. When invoking such an operation, it is not necessary to know whether the
element type is flat or not. By means of the modeling primitives, a method invocation
to the generalization object is forwarded to the specialization object, i.e., either to the
element-type class, when it exists, or the instance of FlatClass. In Figure 8 getElements
and getElementsByAttribute are search operations on the type level. This is expressed
by means of the grey arrows directed towards virtual element type classes. getFirst and
getAll, however, are search operations on the instance level. Accordingly, the grey arrows
are directed towards virtual database objects that represent individual elements.
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An instance of FlatClass representing a flat element type may contain physical references
to the instances of FLAT containing elements of the respective type. These references,
however, are not identical with the extended identifiers of these elements. Offsets of
extended identifiers within references to flat elements are not stored explicitly, but always
computed on-the-fly. The advantage is that updates are relatively easy. If an element within
a FLAT-object was modified, a possibly large number of references to other elements within
the same FLAT-object would have to be updated with explicitly stored references.

3.3. Configuring the Document Parser

In order to insert a document into the database, it is parsed. The parser generates a
sequence of database operations which, in turn, create the database objects representing
the document. These operations are part of the database schema. Ideally, the database-
internal representation of the instances of an element type should be encapsulated. This,
however, has a considerable impact on performance if a document as a whole is inserted
into the database. Consider the case that an element is inserted. If it was not known
whether the element type was flat or not, an insert operation of the database schema would
have to be invoked for the element in any case. However, if the document parser creating
the database representation is furnished with such knowledge, inserting documents can be
organized in a more efficient way. To continue the example, with several consecutive flat
elements, a string-concatenation operation for each element without immediate database
access is essentially sufficient. Thus, before a document is inserted into the database, the
parser retrieves the configuration specification for the respective document type from the
database. The configuration specification is contained in the database in compressed form
so that this step is not time-consuming and can be carried out within one database-read
operation.

3.4. Database Support for the Extended Identification Scheme

With the existing database mechanisms, formulating queries or sequences of method invo-
cations is difficult if one wants to refer to logical units that are identified not only by means
of an OID, but also an additional value, in this case the offset. For illustrative purposes,
consider the method getNext (offset: INT): [obj: OID, offset: INT]. The target object and
the parameter identify the element. The method identifies the next element within the
document. A sequence of method invocations would be as follows:

VAR e1, e2, e3: [obj: OID, offset: INT];
...
e2 := e1.obj! getNext (e1.offset);
e3 := e2.obj! getNext (e2.offset);
...

Preferably, one would want to do without explicitly identifying the records' components.
Furthermore, intermediate variables such as e2 might not have to be introduced. I.e., a
sequence of commands of the following kind is preferable:



286 KLEMENS B�OHM, KARL ABERER, AND WOLFGANG KLAS

e3 := e1! getNext()! getNext();

In the context of declarative queries, the problem with intermediate variables is more
serious. Namely, the algebra-expression corresponding to the query becomes much bigger
by introducing additional variables. Furthermore, a base set has to be specified for each
variable in a query. There is an arbitrary number of examples that this is not always feasible
for such variables that are superfluous on the logical level. - The VODAK query processor
has been extended so that methods can be sent to records whose first component is a
database OID. If, within a query, a method is sent to such a record, it is actually sent to the
database-OID, and the offset being contained in the record becomes the first parameter of
the method. E.g., the expressions `e1.obj! getNext (e1.offset)' and `e1! getNext ()'
are identical within a query.

3.5. Indexing Documents

Indexing the data and using materialized views are a usual approach to accelerate query
evaluation by orders of magnitude. Our index structures support elementary declarative
access patterns that occur in real applications. There are the following index structures and
materializations:

� index for content-oriented search,

� index for regular-expression search,

� structure index,

� attribute index,

� ID-/IDREF-tables,

� materializations of HyTime-specific views,

� materializations of layouted versions of the documents.

These index structures are now described in more detail, except for materializations of
HyTime-specific views that are discussed in Section 5 and materializations of layouted
versions of the documents that are not directly related to query evaluation and are described
elsewhere [5].

3.5.1. Content-Based Indexing In [18], a coupling of the OODBMS VODAK with the
information-retrieval system INQUERY [7] has been described, and it has been pointed out
that content-oriented search or information retrieval (IR) is different from search on the syn-
tactic level, e.g., pattern matching. With the coupling, information-retrieval functionality
is made available for database content. The coupling has been integrated into this database
application for structured documents. Document components for which IR functionality
shall be available are redundantly administered by the information-retrieval system (IRS).



BUILDING A HYBRID DATABASE APPLICATION 287

I.e., index structures are within the IRS. - While deploying a loose OODBMS-IRS cou-
pling to provide IR-functionality for structured documents is adequate, it would be out of
proportion to use such external technology for the realization of the other kinds of index
structures. In the following, we describe which other index structures are meaningful for
structured documents, together with some details regarding implementation.

Full expressiveness of object-oriented query languages shall be achieved independent
from the fact that document components have a flat or non-flat representation. Index entries
do not contain the entire logical OID of the respective element, but only the database-OID.
The semantics of index entries is slightly different from the conventional one. Convention-
ally, an index entry contains an exact reference to the corresponding entity in the database.
Here, a database object containing at least one relevant entity is referenced. The positions
of the entities must be computed on-the-fly.

3.5.2. Direct Indexing Experience shows that, quite frequently, one wants to find all
elements of a particular type with a particular string or regular expression in their content.
The so-called direct index allows for a more efficient evaluation of such queries. Instead of
the elements within the documents, only table entries have to be inspected. Admittedly, this
structure rather is a materialized view than an index in the conventional sense of the word.
It depends on the access pattern whether direct indexing is advantageous for a particular
element type; it does not make sense to index all element types. The direct index of an
element type can be turned on or off by means of methods sent to the respective instance
of class ElementType. While this index is particularly well-suited for elements whose
internal logical structure is not important, the structure index to be described next is useful
to evaluate queries that explicitly aim at the logical structure of elements.

3.5.3. Structure Indexing Direct indexing is to identify elements by means of their
content. On the other hand, in queries on structured documents, elements can be selected
by means of structural characteristics, e.g., “Select all elements of type SURNAME that are
contained in one of type AUTHOR.”. There are two element types occurring in the query:
the instance of one type, the internal element type of the query, shall be contained in an
instance of the second type, the external element type of the query. Element type KEYWORD
is the internal element type of the sample query, while STATEMNT is the external one. It
may be advantageous to have materialized views for certain containedIn-relationships, the
so-called structure index. Administering such an index structure is fairly costly if arbitrary
modifications of documents are feasible. Namely, not only modifications of the internal
and the external elements have to be considered, but also elements in between, i.e., along
the path, as well as elements being contained in the internal one.

3.5.4. Indexing Attribute Values Materialized views on attribute values that are kept
consistent with updates are advantageous, too. With our system, multi-valued attribute
types such as NAMES and IDREFS are considered: the values are inserted into the index
structure one by one, i.e., the search for individual names or ID-references within an
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attribute of type NAMES or IDREFS is supported. The disadvantage, however, is that the
order of attribute values may have a meaning which is not supported by this index.

3.5.5. Desirable Features of OODBMSs to Realize Index Mechanisms for Structured
Documents The indexing structures and mechanisms to ensure consistency described
in this subsection are part of the database schema. There are several reasons why the
mechanisms provided by the underlying DBMS have not been used:

� Classical index mechanisms are not suited to reflect the special semantics of SGML.

� If no element type was flat, there would be the following problem with regard to
structure indexing: the internal element does not need to be directly contained in the
external one, the containment-relationship may rather be over an arbitrary number of
elements. With conventional path indices, indexing over several objects is essentially
possible [3]. However, the number of steps and the relationships between the individual
objects must be known in advance. - On the other hand, maintaining materialized views
on the result of methods is arbitrarily complex in the general case. Thus, to mitigate
the difficulties with the two extremes, it seems that an extended path index allowing to
index over an arbitrary number of steps but the same relationship (i.e., the relationship
is between objects of the same type) would be an adequate form of database support in
this context.

� A problem on the technical level is that index mechanisms for built-in datatypes of the
underlying DBMS are not as powerful as one might desire in this particular context. For
instance, there is the VML-datatype DICTIONARY, a set of key-value pairs of arbitrary
type. Suppose there is a class whose instances have a property of type DICTIONARY.
One would like to have indexing mechanisms allowing to index certain keys only,
but for all instances of the class. This would be useful to index attributes of non-flat
elements.

These characteristics of the underlying database technology are not VODAK-specific, at
least the first two. With other OODBMSs, the index mechanisms provided by the system
could not have been used either.

3.6. Supporting Documents' Secondary Structure

Documents do not only have a hierarchical structure. In the context of structured docu-
ments, arbitrary relationships can be established by means of the ID-/IDREF(S) mech-
anism. These mechanisms allow to define the documents' secondary structure. Next to
differentiating between primary and secondary structure, a differentiation between intra-
document relationships and inter-document relationships (not described here) is feasible.

3.6.1. Intra-Document Relationships With SGML, each element can be furnished with
an ID, which must be unique within the document. With attributes of type IDREF or
IDREFS, elements can be referenced by means of their ID. The value of an attribute
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of type IDREF must occur in the document as value of an attribute of type ID. When
attribute values are updated, this constraint is checked. To support navigation according
to the secondary structure or to process declarative queries based on that structure, it may
be advantageous to maintain an ID table, i.e., a set of key-value pairs: An SGML-ID is
a key, that must be unique, the value is the OID of the corresponding database object.
With our approach, if the element is within a FLAT-object, it is again only the OID that
is stored, but not the offset. The motivation is the same as before, namely not to make
small modifications cumbersome. - In the previous subsection, the index structures for
attributes have been described. One might wonder why there is another mechanism for ID
attributes. One reason is that the attribute index is for the whole document collection. The
ID mechanism, in turn, is laid out for individual documents. Another reason is that with
attributes of type ID the attribute name is not relevant, as opposed to other attributes.

An ID table supports the processing of queries in one direction, such as “Select all
elements referenced by particular elements.", but not queries in the opposite direction,
i.e., “Select all elements referencing particular elements.". In this case, an IDREF-table
is advantageous. An IDREF-table maps ID-references to database objects. - It is not
mandatory to maintain such tables. Naturally, the decision depends on the concrete scenario.
Some criteria are as follows: a table is of rather little use if the document is not very much
fragmented in the database, i.e., most portions are flat. If documents are frequently updated,
as opposed to the number of queries on the secondary structure, maintaining the tables may
not be worthwhile. Finally, if there are hardly any queries with regard to the secondary
structure, such a table will not be necessary.

Supporting the ID-/IDREF-mechanisms is important for an efficient implementation of
the HyTime-semantics that will be described in Section 5.

4. Modifying Documents

In this section, mechanisms for modifying documents contained in the database will be
described. In the following section, our approach to reflect the semantics of HyTime
architectural forms in an OODBMS is discussed. Next to the fact that both modifying
documents and modeling of HyTime architectural forms are facilitated by a structured
database-internal representation of documents the relationship between the two issues is as
follows: a prominent feature of HyTime is to provide standardized mechanisms allowing
to model hyperlinks. As an example, annotations of different types can be modeled. These
annotations must be part of a HyTime document. Hence, generating an annotation is an
insertion of elements into the document.

With regard to document modification, the following distinction can be made: overwriting
an attribute value or a (terminal) element's textual content is rather simple, because the
database structure representing the document is left unchanged. Index structures have to
be updated. The more general case is that elements can be inserted into the document or
removed from the document. At first sight, in order to modify a document, it seems feasible
to remove the document as a whole from the database, modify and then insert it into the
database again. This, however, may be time-consuming with big documents. Furthermore,
granularity for updates would be on the document level. In the general case, this is too
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Figure 9. different approaches to parsing SGML documents

coarse. Incremental modifications of documents, particularly, insertion of elements into a
document already contained in the database, leads to the following difficulties:

1. The corresponding database structure has to be generated. If a document as a whole is
inserted into the database, this is controled by the SGML parser. The parser, however,
can only parse entire documents.

2. It has to be ensured that insertion does not lead to a violation of the DTD, and that the
restrictions of the (SGML-)standard are met.

3. Index structures must be updated. With structure index and IRS index, elements may be
affected by the modification that are not contained in the subtree that has been inserted
or deleted, but are above it in the hierarchical structure.

4.1. Generating the Database Structure

4.1.1. Extending the Document-Type Definition An SGML parser that controls docu-
ment insertion into the database is part of our architecture. In principle, there are two
different kinds of parsers for structured documents (see Figure 9). In the first case, the
DTD is compiled, i.e., a parser for documents of the type is generated. In the second case,
the DTD is interpreted. From another perspective, in the first case, parsing consists of two
steps, namely parsing the DTD and parsing the document, in the second case, there is only
one step. In the context of our work, parsing is as in Figure 9 (a). I.e., a parser generator for
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<!DOCTYPE PROTOCOL EXT [
<!ELEMENT PROTOCOL EXT (DUMMY|(PARTICIP, BODY))>
<!ELEMENT PARTICIP (PERSON+)>
<!ELEMENT PERSON (]PCDATA)>
<!ATTLIST PERSON id ID>
<!ELEMENT BODY (STATEMNT, (RECOMMND|DECISION|STATEMNT)*)>
<!ELEMENT (RECOMMND|DECISION|STATEMNT) (]PCDATA)>
<-- `RECOMMND' is abbreviation for `recommendation' -->
<!ATTLIST (RECOMMND|STATEMNT) persons IDREFS>
<!ELEMENT DUMMY (PARTICIP|PERSON|BODY|STATEMNT|RECOMMND|

DECISION)>
...]>

Figure 10. Modified DTD

a two-step parsing process is used. With this premise, our solution to the problem addressed
in Item 1 is as follows: To generate the database-structure corresponding to the element
to be inserted by means of an SGML parser, the document-type definition is modified in
a schematic way that does not require manual intervention. Individual elements now are
admissible documents. E.g., the DTD in Figure 3 becomes the DTD in Figure 10. Thus,
an arbitrary element becomes a document conformant to the DTD by enclosing it in

` <PROTOCOL EXT><DUMMY>', ` </DUMMY></PROTOCOL EXT>'.

If, for example, the element

<PERSON id="rb">Ralph</PERSON>

is to be inserted into the document, the document

<PROTOCOL EXT><DUMMY><PERSON id="rb">Ralph</PERSON></DUMMY>
</PROTOCOL EXT>

is parsed. In more detail, element-type name DUMMY is predefined. Instances of DUMMY
are treated differently: it ignores elements of type DUMMY when constructing the database
structure, but remembers that it is within an element of type DUMMY. Instead of generating
a new tree in a database, a subtree is inserted into a tree that already exists. The insertion
operation is furnished with parameters specifying the position in the document where the
element is to be inserted.

4.1.2. Inclusion and Exclusions With this approach, as described so far, one does not
have to generate a fragment DTD on the fly. This, however, is necessary to some degree
when taking into account inclusions and exclusions. Namely, because of inclusions and
exclusions it is context-dependent whether elements are allowed within another one. This
is illustrated by means of the following DTD-fragment.
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<!ELEMENT A (C)+ +(D)>
<!ELEMENT B (C)+>

If an element c of type C is inserted into a document, an element d of type D is allowed
within c if c is inserted into an element of type A, but not into an element of type B. To
solve the problem, the inclusion models and exclusion models of all elements must be
inspected where c is inserted directly or indirectly. Depending on the position where c is
to be inserted the inclusion model and exclusion model for DUMMY has to be generated
dynamically. - Another observation is the following one: when entire documents are
inserted into the database, communication is in one direction only, namely from the parser
to the database (except for fetching the configuration specification). This, however, is not
sufficient if a document within the database is modified. For the position where insertion
shall take place, the types of the elements containing this position are needed for parsing,
as explained above.

4.2. Conformance Checking

Communication between parser and database is necessary to ensure SGML conformance.
In the context of IDs it has been pointed out that components of an attribute of type
IDREF(S) must occur as ID-values within the document. When an entire document is
parsed, it is checked at the end of the process if there is a corresponding ID-value for
all IDREF-/IDREFS-values. If an ID-reference is not valid, the parser terminates with
an error message. If a fragment of a document containing IDREF-/IDREFS-attributes is
inserted, it is not only this fragment that must be searched for corresponding ID-values.
The part of the document already contained in the database must be considered, too. I.e.,
information from the database is needed to decide whether the fragment may be inserted
or not.

Furthermore, it must be ensured that, according to the DTD, the element may be inserted
at the specified position within the document. The SGML parser with the DUMMY-extension
described before does not carry out this check, it merely ensures that the internal logical
structure of the element to be inserted conforms to the DTD. With our implementation, that
check is carried out by means of the DREAM parser [9], a tool for analyzing document-type
definitions that has been integrated into our framework. For each nonterminal element type,
our extension of the DREAM parser generates an automaton corresponding to the content
model. The automata are used to check if the new sequence of elements that would be the
result of the insertion process conforms to the content model of the father element. This
check is carried out within the database.

5. Modeling HyTime Architectural Forms and Ensuring Conformance of Documents
to the HyTime Standard

Ensuring conformance of HyTime documents to the standard is arduous due to the com-
plexity of the standard. In the following paragraphs, the modeling is described. After that,
the mechanisms for conformance checking are described.
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Elements derived from HyTime architectural forms have both SGML- and HyTime-
specific characteristics. For instance, two numbers in a dimspec-element, i.e., an element
derived from HyTime architectural form dimspec, have to be interpreted as address,
while the meaning of the same numbers within the content of elements of other types is not
fixed in advance. In other words, an element in its role as HyTime element has additional
characteristics. They are modeled by means of an additional database object. In order to
use the VODAK modeling primitives for role specialization [17], it is required that both
the generalization aspect as well as the specialization aspect are modeled by individual
database objects.1 This is depicted in Figure 11. The generalization objects are in the left
half of the figure, while the specialization objects are in the right half.
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document hierarchy
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Figure 11. Modeling of a HyTime-Document

Consider an element type in a DTD being derived from a HyTime-architectural form.
When the DTD is inserted into the database, a corresponding role-specialization class, a
HyTime-element-type class, is generated. All HyTime-element-type classes that are derived
from the same architectural form are instance of the same metaclass.2 In Figure 11, Dataref
and Marker are HyTime element-type classes. They correspond to element types from
the application-DTD that are derived from HyTime architectural forms dataloc and
marklist, respectively. dimspec and dimlist are other HyTime architectural forms.
DatalocIndex and Marklist are metaclasses corresponding to HyTime architectural forms
dataloc and marklist.
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All information that is needed for conformance checking or for HyTime-specific pro-
cessing is contained in properties of the metaclass. This includes the content model of the
architectural form, and information about which of the form's attributes have to be recog-
nized. It is not only the attributes that are known to the metaclass, but also the category of
the respective attribute, e.g., #IMPLIED, #REQUIRED. An attribute's category is specific
to the architectural form. An attribute id, for example, may be required in one architectural
form, but be optional in another one.

5.0.1. HyTime Conformance Checks In the sequel, it is described how the requirements
stemming from the HyTime standard are reflected in the realization of our system. Both
when inserting the DTD and when inserting documents, conformance checks have to be
carried out. If requirements are not fulfilled, insertion terminates with an error message.
Database objects may have been generated before this point. Generation of such objects
is undone by means of database transaction mechanisms. In the sequel, it is described in
which phase of document- or DTD-insertion the individual conformance checks are carried
out. Not all checks are explicitly mentioned, i.e., checks that are of a technical nature are
omitted from the following list. For instance, the root element of a document must have an
attribute HyTime, and it must have the value HyDoc. Our system issues a warning, if this
requirement is not fulfilled.

1. Checks before HyTime element-type classes are generated:

� If an attribute required according to the architectural form is not contained in the
element-type definition, insertion is aborted with an error message.

� The attributes' category is specified in the architectural form. For instance, the
architectural form may specify that a certain HyTime attribute must be defined
in the DTD. This is the case if the attribute definition in the architectural form
has the keyword ]REQUIRED. As another example, the architectural form may
specify that an attribute value must be fixed in the DTD, i.e., be the same for all
instances of the respective element: if the attribute definition in the architectural
form contains keyword ]FIXED-in-DTD, the respective attribute definition in
the DTD must contain keyword ]FIXED. The corresponding check takes place in
this phase of the insertion process.

� As pointed out before, the range of an attribute in an element-type definition
derived from an architectural form must be a subset of the corresponding attribute
range from the architectural form. E.g., NAMES may be replaced by NAME. - The
respective check is carried out during this phase.

It is not mandatory to compare the content models of architectural form and derived
element-type definition in the DTD. Such a comparison is not part of the current version
of the system.

2. Checks before objects corresponding to HyTime elements are generated:

� The content of an element derived from an architectural form must conform both
to the architectural form's content model and the corresponding content model in
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the DTD. One approach to realization is that, for each architectural form's content
model, there is a corresponding automaton, and the content is then compared with
the respective automaton.

� It is checked if attributes that are required according to the HyTime standard are
indeed instantiated within the document, and if attributes whose value is fixed in
the architectural form have the correct value.

3. Checks after the creation of HyTime objects:

� Under certain circumstances, attributes and attribute values can be omitted from the
document. The database application then assigns a default value to such attributes.

� The HyTime standard contains conditions on HyTime documents that cannot be
modeled using conventional mechanisms, i.e., in particular, cannot be reflected by
means of the content model. E.g., the content of instances of architectural form
dimspec must resolve to a list of numbers. Normally, such conditions do not
refer to individual elements in isolation. Rather, several elements may have to be
inspected to check the condition. Hence, these conditions can only be checked in
the database after having generated the HyTime objects. If an error is identified,
generation of the database objects is undone by means of the database transaction
mechanisms.

The current version of the database-application framework contains an implementation of
those architectural forms that can be used to model annotations in a variety of ways. Con-
sidering the remaining architectural forms, with regard to implementation of the HyTime
conformance checks, no major difficulties are expected because these checks can directly
be taken over from the other forms' implementation. On the other hand, for some of the
remaining forms, the implementation of architectural-form-specific semantics is not always
obvious. In particular, this holds true if time-dependent media have to be considered.

5.1. Improving the Performance of HyTime-specific Operations

5.1.1. Reducing the Number of Database Objects In order to improve performance in
this particular context, there does not exist only one, but two metaclasses for some architec-
tural forms. The second metaclass differs from the first one in that its metainstances bear
materializations of HyTime-specific views. The interfaces of their instances and metain-
stances are identical (with regard to the read operations). As an example, consider the
HyTime architectural form dataloc. Instances of this architectural form reference arbi-
trary pieces of data. In some cases, it is advantageous if the dataloc-role-specialization
object contains a materialized view on the pieces of data referenced. In other cases, there
may be no advantages resulting from such a materialized view. The arguments are roughly
the same as the ones for ID tables in the previous section. In consequence, this aspect of
the elements' physical configuration has been made configurable, just as elements' flat-
/non-flat characteristics. - However, it may be too undifferentiated to have exactly one
materialized view. The views on the document that should be materialized depend on
the application scenario, i.e., the document types and the operations and queries on the
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document collection. Furthermore, with the HyTime mechanisms, views over an arbitrary
number of elements are feasible. In consequence, enriching the modeling with additional
view materializations is of advantage.

Performance is not always improved by means of HyTime-specific view materializations.
Clearly, HyTime-specific read operations are accelerated. However, the restriction that
HyTime elements must not be flat has the consequence that certain basic operations such as
document insertion and retrieval of documents from the database are decelerated. Hence,
the above restriction is too rigid. There should be a differentiation between the individual
architectural forms, i.e., the HyTime aspect of HyTime-element types should not always
be modeled by means of a role-specialization object. There are the following criteria:

� If the materialization of a view is advantageous for a HyTime-element type, it is natural
to model the HyTime aspect using a role-specialization object. In the introduction, we
have pointed out that representing an element by an individual database object may be
advantageous to reflect the HyTime semantics. By that remark, we have referred to the
materialization of HyTime-specific views, that are best modeled as a property of the
respective database object.

� Some HyTime architectural forms are only used within other forms, as a rule, and,
from the user's perspective, do not represent a meaningful document component, e.g.,
dimspec. Methods reflecting the semantics of such architectural forms are not invoked
by the application, but within operations of the HyTime-element they are contained in.
It seems feasible that those methods operate on the flat database structure. By means
of interpretation it is checked that the method may be executed for the target element.

5.1.2. Conformance Checking Checking if a document fulfills the requirements of the
HyTime standard consists of various individual checks, as indicated above. These checks
may become fairly time-consuming, because not only the individual HyTime-element
is subject to such checks. Rather, an arbitrary number of elements may be involved.
Furthermore, the corresponding HyTime element-type classes and metaclasses have to be
accessed to obtain the information the conformance checks are based on. - The following
measures help to cut down the duration of conformance checking:

� Neither knowledge on the architectural forms that is needed for conformance checks
nor information about which element types are derived from which architectural form
is stored with the corresponding database object any more, but instead is cached in
main memory. In analogy to the automata corresponding to the content models from
the DTD, data structures may have to be generated anew each time the database server
is started.

� Conformance checks are shifted from the instance level to the type level. The content
model of the element-type definition is compared with the one of the architectural form
it is derived from in order to find out if the extension of the element type's content
model is a subset of the one of the architectural form, or if the intersection of these
two extensions is empty. Such a comparison is not obligatory according to the HyTime
standard, and, in the general case, such statements about two content models cannot
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be made. The objective, however, is to come up with such results for a possibly large
number of cases. In such a case, no checks on the instance level would be necessary,
and they could then be omitted for improved performance.

Furthermore, checks on the instance level may become superfluous by analyzing the
document-type definition. For instance, with regard to architectural form dimspec, in
some cases it can be inferred from the document-type definition that its content always
resolves to a list of numbers. Such checks have to be developed for each architectural
form individually. Again, it is not feasible to cover all cases. The objective is to avoid
checks on the instance level for a possibly large number of cases. On another level, to
reduce checking on the instance level, it seems advantageous to derive recommendations
to the DTD-designer that correspond to such restrictions in the standard.

� With the current version of the system, HyTime conformance checks take place in the
database. The basic idea is to carry out checking outside of the database as much as
possible to avoid access to database objects, in particular when inserting documents
as a whole. When a document is inserted into the database, its logical structure
is first recognized by an SGML parser. At first sight, it seems feasible to extend the
SGML-parser so that HyTime conformancechecks take place during parsing. However,
while certain clean-cut extensions of the parser have been sufficient so that it controls
document insertion into the database, this is not the case for HyTime conformance
checking. - Alternatively, the architecture depicted in Figure 12 is feasible: the SGML
parser checks whether the document conforms to the respective DTD. The database
operations generating the database-internal representation of the document are not
invoked by the SGML parser. If the document conforms to the SGML-DTD, another
version of the document is generated. In this version of the document, no markup is
omitted, and the tag delimiters have been made easily identifiable by means of special
characters. Based on this version of the document, no knowledge on the grammar
is necessary to recognize the logical structure of documents. The motivation is to
recognize the logical document structure without knowledge on the DTD. As a second
step, the HyTime checker recognizes the documents' logical structure, independent
of the DTD, and carries out the HyTime conformance checks. If the document is
conformant to the HyTime standard, it invokes the database operations to generate the
documents' database-internal representation.
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Figure 12. Architecture
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6. Experimental Results

We have conducted experiments to investigate the effect of different physical representations
of document components. For these experiments, MMF-documents have been used [16].
An MMF-DTD consists of 128 element types. We have run tests with four different
configurations: everything flat, nothing flat, 70 out of 128 element types flat, 95 out of
128 element types flat.

Within these experiments, we have had a closer look at four elementary operations:

1. Inserting entire documents into the database.

2. Retrieving and displaying entire documents.

3. Selecting all elements of a certain type, independent of the document.

4. Navigating within the documents, e.g., traversing to the following element, the element
the current element is contained in etc.

As expected, the duration of document insertion into the database strongly depends on the
number of elements whose physical representation is flat. On an average, there is a factor 12
between the two extremes (“everything flat" vs. “nothing flat"). Further measures reducing
the duration with the “everything-flat" configuration by another 50% are conceivable.

With the second item, the difference between the two extremes is even larger, namely
there is a factor 35.

The third kind of access that has been examined is a little more differentiated. If in
a document there are only one or two instances of the element type that is searched for,
the “nothing-flat" representation is about 50% faster than the other extreme. In both
cases there is about the same number of database objects that are accessed. With the
“flat"-configuration, however, the FLAT-string has to be scanned in addition.3 However, if
there are more elements of the particular type contained in the same FLAT-object, the flat
representation is advantageous, as there are less database objects to be accessed.

When navigating within documents, we have not noticed considerable differences be-
tween the flat and the non-flat representation. Non-flat is slightly faster.

Summing up, with small- to medium-sized documents, the “everything-flat” configuration
is superior to the alternatives available if there is a “normal” mix of access operations. The
structured representation, however, is more appropriate with regard to concurrent access to a
document including modification operations and the modeling of element types' semantics,
as has been explained in the previous sections. The conclusion we have drawn is that some
flexibility is worthwhile to take into account the application-specific semantics, and we see
our approach as a way to achieve this.

7. Conclusions

The objective of our work is to build a storage system for structured documents. Object-
oriented database technology gives way to mechanisms for modifying the document collec-
tion, and allows for exploiting the SGML-/HyTime semantics for the documents' physical
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representation. On the other hand, with a straightforward mapping from document com-
ponents to database objects, as carried out previously [1], certain access operations are
rather slow. It has turned out that, with a hybrid database-internal representation, the weak-
nesses of the two extremes can be avoided. The question what data structure is the most
appropriate one for the documents' physical representation cannot generally be answered.
This depends on the access pattern, which in turn differs for different document types and
different application scenarios. A generic system should offer flexibility to support the
actual access pattern in an adequate way. The basic observation is that element or attribute
types should not be treated in a uniform manner. The characteristics of document com-
ponents should be reflected with the database-internal representation. In other words, the
database-application framework has been made configurable. One may choose between
different physical representations for elements (i.e. “flat" vs. “non-flat"), several indexing
structures for the document collection of elements' and attributes' contents, and diverse
mechanisms supporting access according to documents' secondary structure. The effect
is that, compared to our previous work, performance of basic operations is considerably
improved. Further, the functionality that has been achieved with the previous prototype has
not been subtracted from.

With our database-application framework, documents of arbitrary types can be admin-
istered. The initial database-internal representation of documents of a certain type is
configured when the DTD is inserted into the database, before documents of that type are
inserted. For performance reasons, the parser is furnished with information on the current
configuration.
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Notes

1. In consequence, with our current implementation there is the restriction that elements with HyTime semantics
must not be flat so that the modeling primitives for role specialization can be applied.

2. With VODAK, metaclasses are classes whose instances are classes themselves. It is feasible to generate
(application-)classes, i.e., instances of metaclasses, at runtime. In this case, a metaclass comprises both the
type definition of its instances and its metainstances.

3. In this context we point out that the sample documents consist of a lot of elements and are highly structured,
but, on the other hand, are not very big. With bigger documents, the difference is expected to be larger.
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