
Structured Document Storage and Re�ned

Declarative and Navigational Access Mechanisms in

HyperStorM�y

Klemens B�ohm, Karl Aberer, Erich J. Neuhold, and Xiaoya Yang

GMD-IPSI, Dolivostra�e 15, 64293 Darmstadt, Germany

fkboehm, aberer, neuhold, yangxg@darmstadt.gmd.de

Abstract

The combination of SGML and database technology allows to re�ne

both declarative and navigational access mechanisms for structured

document collection: with regard to declarative access, the user can

formulate complex information needs without knowing a query lan-

guage, the respective document-type de�nition or the underlying mod-

elling. Navigational access is eased by hyperlink-rendition mechanisms

going beyond plain link-integrity checking. With our approach, the

database-internal representation of documents is con�gurable. It al-

lows for an e�cient implementation of operations, because DTD knowl-

edge is not needed for document structure recognition. We show how

the number of method invocations and the cost of parsing can be sig-

ni�cantly reduced.

Keywords: OODBMSs, SGML, document query languages, navigation

�`HyperStorM' is an acronym for `Hypermedia Document Storage and Modelling'
yThis article has been accepted for publication in VLDB Journal, Volume 6 (1997),

Issue 4

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

1.1 Objective of this Work

With open systems, such as the World-Wide Web (WWW), and document-

exchange formats where markup can be placed within the document at ease,

notably HTML [HTM], there neither is control over the structure of individ-

ual documents nor over consistency of the document collection. With the

combination of SGML (`Standard Generalized Markup Language') [ISO86]

and database technology, on the other hand, one can specify the logical

structure of documents, make assumptions about their structure and en-

sure the consistency of the document collection. This allows to re�ne both

declarative and navigational access mechanisms.

Declarative access. With regard to declarative access to a document

collection, the prevailing question in literature in the past few years has

been: which is the most expressive query language? However, the more

expressive the query language, the more complex it is. In addition to having

an interface allowing the formulation of complex queries, ease of use of the

search mechanisms has a high priority for a lot of users. In this article, we

describe mechanisms for declarative access, so-called query templates. They

allow the user to search with a fairly high expressive power without having

to know a query language, the respective document-type de�nition, or the

underlying modelling. Di�erent query templates can be made available for

individual user groups.

A query template is a document-type-speci�c query form that is gen-

erated automatically from the corresponding document-type de�nition and

an additional query-template speci�cation. With a query template, only a

limited set of element- and attribute types is made available for querying.

Hence, the query template can be seen as a view mechanism. The query-

template speci�cation is administered by the database application. This

2



ensures consistency of the query template with the respective document-

type de�nition. In consequence, only meaningful queries can be generated

from the user input.

With regard to query templates, we exploit the fact that there is a

document-type de�nition, i.e., a schema that documents of a certain type

must conform to. On the contrary, if HTML-documents were to be adminis-

tered, the following problems would be in the way of having query templates

and making proper use of them:

� No support for individual document types. While trying to

provide coverage for all kinds of documents, HTML is highly generic.

SGML, however, has been developed to reect the particularities of dif-

ferent application scenarios by using di�erent document types. Queries

can be much more speci�c if the document type may be taken into ac-

count.

� Meta-information is not available or may not be consistent.

With appropriate document-type de�nitions, any kind of metadata1

might be seamlessly included into documents to cover users' infor-

mation needs [KSS95]. With HTML 3.2, consistency of metadata in

di�erent documents is not ensured. The HTML-DTD does not contain

any guidelines how meta-information should be modelled.

� Di�cult to consider documents' internal structure. As opposed

to SGML-DTDs speci�ed for a particular application scenario, HTML

allows to model documents' logical structure only in a generic way.

In consequence, search mechanisms are only a subset of the ones for

full-edged SGML documents.

1Throughout this article, the terms `metadata' and `metainformation' are used

interchangeably.

3



Navigational access. Another aspect of applying both SGML and database

technology is support for navigation. The following problems are addressed:

� \Navigation Failure". Navigation to a document may fail for a

variety of reasons: links to other documents may be outdated, i.e.,

the document referenced may have been removed or moved to another

location in the meantime. Navigation to a document referenced may

not be possible because the reader is not entitled to access it, or be-

cause the client is unable to present the (multimedia) document. E.g.,

a viewer for the respective format may not be available at the client

site.

� \Expectations vs. Actual Content". Frequently, the reader has

no meaningful information on the document referenced by a hyperlink

within the current document or on the set of documents to be reached

by following a hyperlink anchor. Experience shows that, quite often,

expectations awakened by the context of a link anchor are not matched

when actually viewing the document. In other words, in order to �nd

out more about the target of the link, there seems to be no alternative

to bringing the document to the client site.

� \Lost in Hyperspace". Traversing several hyperlinks may have the

e�ect that the reader looses orientation in the document collection.

Being \lost in hyperspace" [Con87] stems from the fact that hyperme-

dia objects, e.g., the WWW pages, are arranged in a non-linear way.

The reader may have to inspect several such objects to satisfy his in-

formation need. He may not be able to �nd all the relevant objects by

navigation or to avoid the irrelevant ones.

These problems are alleviated by our approach. With WWW-based ac-

cess to the document base, a document is converted to HTML according to a

conversion speci�cation before presentation. This speci�cation is contained

4



Figure 1: example for hyperlink rendition

in a style-sheet. Conversion takes place within the database. Namely, rendi-

tion of a hyperlink anchor pointing to another document may depend on that

document's characteristics.2 In particular, metadata on the document refer-

enced as well as documents indirectly referenced may be used for link anchor

rendition. As a simple example, consider a document collection where the

language of the document is made explicit in the document header, i.e., a

document with title `Perigord' contains `<LANGUAGE>FRENCH</LANGUAGE>'.

If document `Perigord' is referenced by another document, the respective

hyperlink anchor in the layouted version of the document may look as in

Figure 1. This alleviates the `Expectations-vs.-Actual-Content' problem. In

this example, if the reader does not speak French, he knows that he does

not want to access the document.

With hyperlink rendition, information on the document directly refer-

enced, but also on documents indirectly referenced, may be taken into ac-

count. Information to be displayed within the hyperlink is speci�ed in the

database-query language. To speed up the process of retrieving a document

from the database, HTML conversion results may be materialized in the

database.

If we again compare the administration of HTML documents to our ap-

proach, we face similar problems as with declarative access. Meta-information

may not be available for document rendition, or one cannot tell which meta-

information has been made explicit within documents. Inconsistent repre-

2Throughout this article, a document containing the anchor of a link referencing an-

other document will be called referencing document, the other document will be referred

to as the document referenced.

5



sentation of metadata likewise is a problem.

1.2 Database-Internal Representation of Documents

An e�cient database-internal representation of structured documents is a

prerequisite to realize the functionality that has been outlined so far. We ad-

vocate a hybrid database-internal representation of documents. Only \big"

elements are represented by individual database objects. Di�erent \small"

elements, so-called at elements, are mapped to the same database object.

The structured representation of documents is advantageous to allow �ne-

grained modi�cations of documents in the database and to reect the seman-

tics of hypermedia document components, whereas performance of certain

basic operations, such as insertion of a document into the database, is better

with an unstructured representation [BAK95]. With regard to the mapping

of at elements to database objects, there are design alternatives that are

described in this article.

Flat elements are completely marked up in the database. This allows a

more e�cient implementation of methods operating on the document struc-

ture, as compared to parsing the document fragment (see Section 4). An-

other aspect is that elements can be disambiguously identi�ed by means of

a logical object identi�er. If, �nally, methods are part of the database, as is

the case with an OODBMS, method invocations are relatively expensive.3 It

is advantageous to take this into account when implementing the methods.

The database-internal representation of documents is con�gurable. The

initial con�guration is described by means of an SGML document, an in-

stance of the so-called super-DTD. The con�guration may be partially al-

3Our terminology is di�erent from the one used in [Sto96]. Object-oriented DBMSs in

our terminology essentially correspond to object-relational ones in [Sto96]. There is no

counterpart in our terminology for object-oriented DBMSs in that terminology, which ba-

sically are persistent object-oriented programming languages without sophisticated declar-

ative access mechanisms.

6



tered at runtime. Using SGML to describe the startup con�guration has the

following advantages:

� The consistency of this speci�cation is checked by means of an SGML

parser.

� To specify the initial con�guration, the speci�cation document is in-

serted into the database in the same way normal documents are. No

di�erentiation is necessary from the user's perspective.

� The DTD-designer can specify the startup con�guration using a mech-

anism he is familiar with.

� The DTD-designer may use SGML tools to ful�ll his task.

� The mechanisms described in this article for querying the document

collection, notably query templates, are also available for document

types as documents. In other words, the document type is explicitly

available, in analogy to database-schema information contained in a

data dictionary.

The remainder of this article has the following structure: in the following

section, related work is reviewed. Section 3 contains a brief review of SGML

concepts and introduces some notions that are relevant in this context. In

Section 4, we describe the database-internal representation of documents in

our framework. Section 5 describes how declarative access functionality can

be extended by using SGML and database technology, Section 6 focuses on

navigational access. Section 7 concludes the paper.

2 Related Work

We have classi�ed related work as follows: related work with regard to

document modelling, related work with regard to declarative access, and

related work with regard to navigation and HTML conversion.

7



Related work with regard to document modelling. In order to rep-

resent the documents' logical structure using an OODBMS, it seems fea-

sible to carry out a 1:1 mapping from elements to database objects. Fur-

thermore, there would be database classes, so-called element-type classes,

corresponding to an element type from the DTD. However, if this logical

view is identical with the physical representation, the following problem will

arisse: the duration of certain basic operations such as inserting documents

into the database or retrieving documents from the database is almost di-

rectly proportional to the number of database objects that are created or

retrieved, respectively. This may not be acceptable, as others have ob-

served, too [NBY95]. - An alternative seems to be the approach described

in [ACM93, ACM95]. They consider structured data whose physical repre-

sentation is at, in particular data within �les. If the structure is needed

for, e.g., query evaluation or updates, the document is parsed, and objects

in main memory are generated. Our work di�ers from theirs in the following

respects:

� With our approach, a document is not necessarily represented by

one �le. Rather, the document may be physically fragmented in the

database, and the fragments' logical structure can be recognized using,

e.g., the techniques described in [ACM93, ACM95]. The database-

internal representation is con�gurable. One advantage is that a �ner

granularity is possible with regard to concurrent write access to the

document, using concurrency control mechanisms provided by the

DBMS.

� With our database-internal representation, the DTD is not needed to

recognize documents' logical structure. More speci�c techniques than

parsing the document are applied. The advantages will be pointed out

in Section 4.

8



� An element has an OID whose lifetime is independent from the exis-

tence of a corresponding object in main memory.

Related work with regard to declarative access. The following issues

are of interest with regard to work on declarative access to document collec-

tions having originated in the database community [Mac91, C+94, MMM96,

QRS+95, B+94, ST94, O+95].

� With our approach, expressiveness of the query language is achieved

by using methods of the database schema, together with OQL query

mechanisms [Cat94]. Compared to other approaches, the expressive

power is higher, while, on the other hand, it is not necessary to extend

the query algebra. Our approach allows for full-edged information-

retrieval functionality (IR-functionality) [VAB96], which is di�erent

from search on a syntactic level [SM83], as well as search on documents'

physical characteristics.

� With many of the above references, information with regard to docu-

ments' database-internal representation is incomplete or missing.

� To the best of our knowledge, work cited above does not contain any

counterparts to query templates or the hyperlink renditionmechanisms

described in this article.

In more detail, work described in [C+94] is based on OODBMS-technology.

They have extended the underlying query algebra to reect notions such as

the lengths of paths. By using OQL that allows inclusion of methods into

query statements, and having an adequate set of methods as part of the

database schema, the same expressiveness can be obtained without extend-

ing the query algebra. In [B+94], a datatype `structured text' is introduced

to be integrated into relational database systems and an extension of SQL is

de�ned. To facilitate updates, the approach is to map SGML structures to

9



tables, but conformance to the DTD remains to be ensured. The PAT-query

algebra [ST94] lacks certain features such as the notion of position, query-

ing according to documents' secondary structure, and aggregation. Further,

only elements can be retrieved. It is, however, independent of the data-model

and will be dealt with in Section 5 again. While in [O+95] a user interface

for an SGML-/HyTime-document database has been realized, work seems

to have been centered around one particular document type.

In [YA94], a coupling of a DBMS and a text search engine is described.

There, documents' internal structure is not modelled within the database.

The text engine used there does not support the notion of vagueness. The

need for IR-functionality, e.g., ranking, is acknowledged in [SDAMK95].

Their objective is to build an integrated system providing both database-

and IR functionality. Details about documents' internal representation are

not revealed. We for our part have realized a loose coupling between the

OODBMS VODAK [VML95] and the IR-system INQUERY [CCH92] to

make IR functionality available for database content. With a loose cou-

pling, we will be able to rather easily incorporate improved IR-functionality

whenever it becomes available.

An objective of others, e.g., [QRS+95, MMM96], is to provide declarative

access mechanisms for open-ended systems where assumptions about the

data's structure cannot be made, notably the WWW. Even though WWW-

related issues currently draw a lot of attention, the question how to exploit

consistency of the document collection in controlled environments remains

to be relevant.

Related work with regard to navigation and HTML conversion.

With Hyper-G [AKM95], a principal objective is to ensure hyperlink consis-

tency. The idea is that there is a link database. It contains the information

which hyperlinks exist between documents. The advantage, as compared to

10



the current status of our work, is that there is no con�nement to the content

of one database. This is reached by giving up some of the individual infor-

mation servers' autonomy. Hyper-G is not modular, but, rather, can be seen

as \another web", as, for example, proprietary browsers have to be used.

In our context, a mere link database would not be su�cient, as arbitrary

information on documents referenced can be requested. An open question

is whether people are willing to take into account the additional overhead

of \a WWW without dangling references". On the other hand, the need to

ensure consistency of local document collections clearly exists [S+94]. - Con-

version of SGML documents to HTML is the topic of [Fre]. The notion of

location grammar is introduced as a means to specify context-sensitive trans-

formation of element types. It seems that, there, context-sensitivity refers

to documents' hierarchical structure, but not to other documents. The topic

of [kbo94], similarly, is structured document handling in the internet. They

argue that it is the SGML document that should be delivered to the client to

facilitate so-called document post-processing. Trivially, our database server

can also return the original SGML documents. If the DTD allows for it,

hyperlink rendition, as outlined above, is still feasible. Annotation servers

contain information on WWW documents that may be provided by others.

Instead of directly bringing the document to the client, the document goes

through the annotation server, and relevant information is added [RMW94].

DSSSL [ISO96] is an expressive language to specify document transfor-

mation. The standard speci�es a structured representation of documents;

conversion is based on that representation. The standard does not deal with

the question how to e�ciently carry out such a conversion if documents are

within a storage system, and if characteristics of documents referenced are

taken into account. With our approach, characteristics of the documents

referenced can be reected. Rendition mechanisms for hyperlink anchors

likewise are expressive, and are identical with our declarative access mech-

11



<agenda author=Aberer>

<header><language>English</language>

<subject>future research topics for the department</subject>

<location>...<date>...

<invited>

<name>Fischer</name><name>Chen</name>...

</invited></header>

<programme>

<item>brief review of present funding situation: in 1996/97 ...</item>

<item>problems with diploma thesis students: due to the fact ...</item>...

</programme>

<agenda>

Figure 2: sample SGML document of type `Agenda'

anisms.

3 Modelling Meta-information with SGML

The practical relevance of SGML has considerably increased in the re-

cent past. This is possibly due to the close connection between SGML

and HTML, the format of WWW documents. Within SGML documents,

the logical document components, so-called elements, are made explicit by

means of markup. The document fragment from Figure 2 is an example

of a marked-up SGML document. `<item>', `</item>' identify (the start

position/the end position of) an element of type item. `<' is the start

tag open (STAGO), using SGML terminology, `</' is the end tag open

(ETAGO), and `>' is the tag close (TAGC). It is an important aspect of

SGML that markup may not arbitrarily be chosen and be placed within

documents. Rather, for each document type, a so-called document-type

de�nition (DTD) has to be provided. It speci�es which element types

12



may occur in a document, and how elements may be arranged within a

document. A DTD is a grammar. The agenda-DTD is contained in Fig-

ure 3. Examples of element types from this DTD are header, programme,

and item. The regular expression specifying the admissible content of an

element of the respective type is referred to as content model. For in-

stance, `(header, programme)' is the content model of agenda: an agenda-

element contains a header-element, followed by a programme-element. The

expression `+(keyword)' is an example of an inclusion model. It spec-

i�es that the structure within the brackets, in this case an element of

type keyword, may occur arbitrarily within an element of type programme.

For instance, the element `<programme><item>brief review of present

<keyword>funding</keyword> situation ...</item> ...</programme>'

conforms to the DTD from Figure 3. Exclusion models are also available to

forbid such inclusions in a subtree of the subdocument. If the element-type

de�nition of item was

<!ELEMENT item (]PCDATA) -(keyword)>

the above sample element of type programme would not conform to the

sample DTD any more. - CDATA and (#PCDATA) are terminal element types

comparable to the data type STRING. - Elements may be furnished with

attributes. Again, the attributes cannot freely be chosen, but must be con-

tained in the DTD. #IMPLIED means that a value does not have to be as-

signed to the respective attribute.

Classifying element types. Element types can be categorized by the

role of their instances within the documents [HHM94]. This classi�cation is

important as access patterns, notably with regard to declarative access, are

di�erent for the individual categories.

� Structural element types. Markup of such elements is used to

identify documents' logical structure. Examples from the sample DTD

13



<!DOCTYPE agenda [

<!ELEMENT agenda (header, programme)>

<!ATTLIST agenda author CDATA ]IMPLIED>

<!ELEMENT header (language?, (location|roomno), date, invited)>

<!ELEMENT programme (item)+ +(keyword)>

<!ELEMENT (language|location|roomno|date|name|keyword) (]PCDATA)>

<!ELEMENT invited (name)+>

<!ELEMENT item (]PCDATA)>

]>

Figure 3: Sample DTD (Document Type `Agenda')

agenda

header

language

programme

item ...

...

english

subject location

future research
topics...

...

brief review of......

date invited
...

Figure 4: sample document's hierarchical structure

14



are programme or item.

� Non-structural element types. Non-structural elements are indi-

vidual words or short sequences of words within structural elements'

content having a particular role, e.g., element type keyword in the

agenda-DTD. In other words, markup of non-structural element types

is used to make explicit the meaning of words within text. In most

cases, non-structural elements are not bound to structural element

types, but may occur rather freely within the text.

� Informational element types. Informational elements are meta-

information. While non-structural elements occur within actual doc-

ument text, informational elements do not occur within structural el-

ements' textual content. Rather, they tend to be contained in a docu-

ment header. Typically, informational element types that do not have

an internal structure could also be modelled as SGML attributes, while

non-structural element types cannot. An example of an informational

element type is element type language from the DTD in Figure 3.

Using this categorization of element types according to their roles, we

are now in the position to describe how meta-information can be modelled

with SGML.

� Informational elements are metadata.

� The markup of structural elements and non-structural elements is

meta-information. This is di�erent from informational element types

where the elements themselves are meta-information.

� Elements, normally structural elements, can be furnished with at-

tributes, as described above. The attribute values are meta-information.

Furthermore, the document-type de�nition itself can be seen as meta-

data. Namely, the di�erent ways to represent metadata, as described above,

15



must be complemented with the type de�nition for meaningful interpreta-

tion.

Further SGML mechanisms. The SGML concepts that have been de-

scribed in this section are merely a subset of SGML. It is the subset for which

support is described in the following. With our approach, SGML entities

and marked sections are resolved by the parser and do not occur any more

within the document in the database. Hence, the mapping of a document to

the corresponding database content is not loss-free. Furthermore, notations

and the SGML link mechanism are not supported.

4 The HyperStorM Database Application Frame-

work to Administer Structured Documents

The structure of this section is as follows: the database-internal represen-

tation of documents is described in the following subsection; con�gurability

mechanisms are described in Subsection 4.2. In the last subsection, the

transformation algorithm from documents to their database-internal repre-

sentation is presented.

4.1 Reecting the SGML Information Model

This subsection covers design decisions and issues with regard to the database-

internal representation of structured documents within the database.

1. Hybrid database-internal representation for documents: some elements

are represented by individual database objects, while others, the at

ones, are not. This representation is subject to con�guration for the

particular document type, and the respective con�guration mecha-

nisms will be described in the sequel.

2. Flat elements are completely marked up within the database.

16



3. Elements have a logical OID whose life cycle is independent of the

existence of corresponding (C++-)objects in main memory.

4. The query language of our system is OQL, together with methods

from the database schema. With methods as part of the query lan-

guage, expressiveness of the declarative access mechanisms is naturally

higher than with other approaches. Method invocations are costly with

methods being part of the database. This must be reected with their

implementation.

To reect documents' internal structure, not only documents, but also

document components are explicit within the database. A di�erentiation

between at and non-at elements is made (cf. Section 1.2). Database

objects corresponding to at elements are at objects. The string repre-

sentation of a at object's elements is the at string of the database ob-

ject. As an example of documents' database-internal representation, con-

sider the document from Figure 2. One out of many representations that

are possible within the database is given in Figure 5. With that particu-

lar con�guration, language and subject are examples of at element types.

`<language>English...</invited>' and `<programme><item>brief...</programme>'

are examples of at strings. `<language>English... </invited>' is the at string

of the language- and the subject-element. The hybrid database-internal repre-

sentation facilitates modi�cations of document fragments and better reects

the semantics of hypermedia document components. It reduces the negative

impact of a structured physical representation with regard to performance

[BAK95].

Structure recognition of at elements. As just explained, elements

in the database can either be at or non-at. While, with SGML, it is

allowed to omit markup if the document structure can be disambiguously

recognized by means of the DTD, document fragments within the database

17



agenda

header

<language>english</language>
<subject>future research topics...

</subject><location>...
</location>...<invited>...</invited>

<programme><item>brief review
of...</item>...</programme>...

Figure 5: possible physical representation of `Agenda'-document

are completely marked up. Markup that may have been omitted from the

original documents is added. Consequently, the document structure can be

recognized without the DTD (see the top right fragment in Figure 6 as an

example, as opposed to the top left one). Simple linear access operations

are su�cient. The advantages of not using the DTD are the following ones:

� If the DTD was used for structure recognition, it might seem feasible to

construct a fragment-DTD on-the-y. However, DTDs are not context-

free due to inclusions and exclusions. Hence, to construct the fragment

DTD, one would have to inspect the inclusion and exclusion models of

the elements the current at elements are contained in. This requires a

number of access operations to database objects that are unnecessary

with our approach. As an example, consider the following clipping

from a DTD.

<!ELEMENT A (C)* +(G)>

<!ELEMENT B (C)*>

<!ELEMENT C (D?, E+)>

In order to construct a fragment-DTD for an element c of type C,

in particular, the inclusion model of type C, one must check if c is

contained in an element of type A or B. In the �rst case, the fragment-

DTD must reect that c may contain an element of type G, as opposed

18



to the second case.

� Structure recognition is more e�cient without the DTD: if documents

of di�erent types are in the database, it is not necessary to look up

the respective type �rst.

� With a DTD-based approach, a exible fragmentation of documents in

the database is not possible in practice. As an example, consider the

bottom left database object in Figure 5. The corresponding document

fragment `<language>...</invited>' does not have a root element. In

consequence, either a document fragment suitable for parsing would

have to be constructed �rst. `<header><language>...</invited></header>'

would be such a parseable fragment. However, this requires access to

at least one more database object, namely the header-object. If this

object contained non-at elements, further database-access operations

would be necessary. Alternatively, concatenation of at elements to

build a at object would have to be forbidden, i.e., the language-

element, the subject-element etc. would be separate database objects.

But this may lead to a big increase in the number of database objects.

Object identi�er. Object identity is an important notion in object-oriented

modelings. The necessity of OIDs for both at and non-at elements intro-

duces a logical and a physical object level. The logical view remains to

be the one that there is an object corresponding to each element. On the

physical level, however, this is not the case. A logical OID consists of a phys-

ical OID and the STAGO-position within the corresponding at string, i.e.,

the byte o�set. If the respective element is a non-at one, the o�set is -1.

The DBMS has been extended so that it can transparently support method

invocation on objects identi�ed by logical OIDs. With message calls, the

DBMS resolves logical OIDs and dispatches them to the physical objects.

19



original document:
<A><B>xxx<C>yyy</A>

database-internal representation:
<A><B>xxx<C>yyy</C></B></A>

A

B C

xxx yyy

B

Cxxx

yyy

A

Figure 6: inferring the document structure from complete and incomplete

markup

In the parsing approach described in [ACM93, ACM95], object identi�ers

are available only as long as the corresponding structure in main memory

exists.

Classes and methods of the database schema. The following classes

are part of the database schema.

ELEMENT - The physical database objects representing the document struc-

ture are instances of this class, e.g., the nodes in Figure 4.

ElementType - For each element type from a DTD, there is an instance of

the class.

DTD - An instance of this class corresponds to each DTD currently sup-

ported.

Document - For each document, there is a corresponding object.

The methods for elements include the following ones:

hasTextualContentRegex (r: REGEX): BOOL

hasAttrValueRegex (attrName: STRING, r: REGEX): BOOL

20



getIRSValue (q: STRING): REAL

isContainedIn (e: logicalOID): BOOL

getReferencedElements (attrName: STRING): flogicalOIDg

getAttrValue (attrName: STRING): STRING

getSize (): REAL

getAll (elementTypeName: STRING): flogicalOIDg

getFirst (elementTypeName: STRING): logicalOID

getElementText (): STRING

Instances of ElementType have method getElements(): flogicalOIDg.

Method hasTextualContentRegex returns TRUE i� r is contained in the tar-

get element's textual content. Method hasAttrValueRegex returns TRUE i� the

value of attribute attrName contains r. getIRSValue returns the belief value

of the element's textual content with regard to IRS-query q, as computed

by the underlying IRS. isContainedIn returns TRUE i� the target element is

contained in the parameter element e. If attribute attrName of the target

element of getReferencedElements is of type IDREF(S), the logical OIDs of the

elements referenced (within the same document) are returned. Otherwise,

the empty set is returned. getAttrValue returns the value of attribute attr-

Name. getAll returns all elements of type elementTypeName that are contained

in the target element; getFirst returns the �rst element of type elementType-

Name (in preorder) that is contained in the target element. getElementText

returns the target element's textual content. getElements returns the logical

OIDs of all elements of the type.

With regard to methods hasTextualContentRegex and getIRSValue, some

comments are appropriate. Data administered by a storage system may

be subject to di�erent paradigms. With some element types, one wants

to search their instances with exact mechanisms, i.e., by means of pattern

matching on the syntactic level such as regular expression search. Such

search mechanisms are in place for element types such as SURNAME or PART NO.

21



In this case, method hasTextualContentRegex should be used. On the other

hand, the objective of IR search is to cover the user's information need by

going beyond the syntactic level. Results of IR queries are never precise

and may di�er from system to system, as the content of a piece of text may

be seen di�erently by di�erent systems. In the IR context, it is too undif-

ferentiated to merely say `The document is relevant.' or `The document is

not relevant.'. Rather, relevance is expressed by means of a belief value b

such that b 2 [0;1]. The belief value is the probability that the document

is relevant with regard to the query, as computed by the system. As a rule

of thumb, IR mechanisms for text only work well for texts containing more

than 20 to 30 words, they do not work for individual words or short se-

quences of words. In consequence, search on the syntax level makes sense

for informational element types, i.e., metadata, while IR search mechanisms

should only be applied to structural element types, i.e., raw data.

Not only individual concepts, but also complex query terms in the IRS-

query language may be parameter of method getIRSValue. With INQUERY

being the underlying IRS, parameters such as `#and(HyTime, MHEG)',

`#not(Java)', or `#uw10(SGML, HTML)' can be processed. (The last ex-

pression speci�es that `SGML' and `HTML' must occur within a window of

10 words.) In combination with other search mechanisms, this gives rise to

a powerful search functionality.

The set of methods reects our practical experiences and is now stable.

Methods hasTextualContentRegex, hasAttrValueRegex, getIRSValue, isContainedIn,

getReferencedElements, and getSize are necessary to formulate queries corre-

sponding to terms in the extended PAT language, and none of these meth-

ods can be omitted without subtracting from expressiveness (cf. Section 5.2).

Method getAll is an example of a method that is needed for more e�cient

query evaluation, as compared to isContainedIn. getFirst and getAttrValue go

beyond the expressiveness of the extended PAT language.

22



Example of method implementation. Method next identi�es the right

sibling of the target element in the logical document structure. In the sam-

ple document from Figure 4, the next element of the subject-element is the

location-element. Method next makes use of method getPositionOfETAGO. get-

PositionOfETAGO returns the (byte o�set) position of the end tag open which

corresponds to the start tag whose (byte o�set) position is the method pa-

rameter. The method illustrates that, with our database-internal representa-

tion, operations on documents' logical structure are feasible without directly

using knowledge on the document type. Furthermore, method implementa-

tion is speci�c for our database-internal representation of documents. For

instance, it is a prerequisite that a at object must not contain any other

object.

(1) next(): logicalOID f

(2) IF (SELF is a at element) f

(3) p := position of SELF within at string;

(4) p := SELF -> getPositionOfETAGO (p);

(5) f := at string of SELF;

(6) p := f ->> �nd (p, STAGO) //if the next element is contained in the same at

//database object, it begins after the end tag of the target element

//`�nd' starts to search at byte o�set identi�ed by the �rst parameter.

//It returns the byte o�set where the second param. has been found, otherwise -1.

(7) IF (p > -1) f //next element is contained in the same at

//database object, as its begin markup has been found

(8) compute logical OID from p;

(9) RETURN logical OID just computed; g; g;

(10) convert the (physical) OID of the next database object to logical OID;

//trivial to identify next database object with structured representation

(11) RETURN logical OID just computed; g;

In the database, tag delimiters, e.g., STAGO, TAGC, are represented by

special characters so that they cannot be mistaken with symbols `<', `>'

23



within text, and search becomes more e�cient.

Improving method performance. With OODBMSs, database method

invocation is costly. Knowledge on the physical representation can be used

to cut down the number of method invocations, and to reduce the parsing

e�ort. In particular, it is worthwhile to avoid recursiveness. Consider the

following implementation of method getAll.

(1) getAll (E: ElementType): flogicalOIDg f

(2) r := fg;

(3) IF (SELF is a at element) f

(4) p := position of SELF within at string;

(5) p end := SELF -> getPositionOfETAGO (p);

(6) f := at string of SELF;

(7) WHILE ((p < p end) AND (p > -1)) f //make sure that only elements within

//target element are retrieved

(8) p := f ->> �nd (p, concatenate (STAGO, TypeName (E)))

(9) IF (p > -1)

(10) IF ((isWithinBeginMarkup (p, f)) AND (E == type name of the element

whose begin markup includes position p)) f

//make sure that, e.g., AUTHORS is not found instead of AUTHOR

(11) l := logical OID computed from p;

(12) r := r [ flg; g; g; g

(13) ELSE

(14) DO (children of SELF, element, e) //iterate over the children of SELF

(15) r := r [ (e -> getAll (E));

(16) IF (ElementType (SELF) == E)

(17) r := r [ fSELFg;

(18) RETURN r; g;

On the contrary, a straightforward implementation would be recursive

for all elements (as opposed to the one above that is only recursive for

non-at elements). Based on the MMF-DTD [S+94], we have conducted

24



experiments to verify that the �rst version is more e�cient. If all elements

are at, and the root element is the target element of the original method

invocation, the �rst version is faster by factor 1000 approximately. Natu-

rally, the di�erence becomes smaller with fewer at elements. If no elements

are at, the performance of the two versions is nearly identical.

4.2 Con�gurability Mechanisms

It is subject to con�guration which elements are represented by individual

database objects and which ones are at. The con�guration mechanisms are

described next.

With our database application, documents of arbitrary type can be ad-

ministered. Insertion of documents consists of the following steps:

1. The corresponding document-type de�nition is parsed. If the DTD

is correct, a parser for instances of the DTD is generated. Further-

more, the DTD is - on a syntactical level - transformed to an SGML

document that conforms to a speci�c DTD, the so-called super-DTD.

The super-DTD is a document-type de�nition whose instances are

document-type de�nitions. In the sequel, we will refer to any DTD

di�erent from the super-DTD as application DTD. For instance, the

DTD from Figure 3 is an application DTD. It corresponds to the super-

DTD-instance in Figure 7. (A fragment of) the super-DTD itself is

contained in Figure 8.

2. At this point, the super-DTD instance contains exactly the informa-

tion from the DTD. Attribute elemName of element type ELEM, to give

an example, contains the element-type name, attribute contentModel

contains the content model as a string. Furthermore, the super-DTD

instances generated in Step 1 contain additional attributes that, ini-

tially, are instantiated with a default value. These attributes essen-

tially contain information on the physical representation of element

25



<DOCTYPE docName=AGENDA ...>

<ELEM elemName=AGENDA ... contentModel='( HEADER , PROGRAMME )' ...>

<ATTRIBUTE attrName=AUTHOR attrKeyDecl=CDATA attrKeyDef=IMPLIED ...>

</ELEM>

<ELEM elemName=HEADER ... contentModel='( LANGUAGE ?,( LOCATION |

ROOMNO ), DATE , INVITED )' ...></ELEM>

<ELEM elemName=PROGRAMME ... contentModel='( ITEM , ITEM *)' ...></ELEM>

Figure 7: Fragment of the Super-DTD instance corresponding to `Agenda'-

DTD

<!ELEMENT ELEM (ATTRIBUTE*)>

<!ATTLIST ELEM elemName NAME ]REQUIRED

contentModel CDATA ]IMPLIED ...>

<!ELEMENT ATTRIBUTE EMPTY>

<!ATTLIST ATTRIBUTE attrName NAME ]REQUIRED ...> ...

Figure 8: Fragment of the Super-DTD

26



types or attribute types. For example, type ELEM has an attribute

FLAT: value NO signi�es that such elements are represented by indi-

vidual database objects, YES, on the other hand, stands for a at

database-internal representation. By means of further attributes, the

index structures are speci�ed.4 - Summing up, in this step, i.e., Step 2,

the physical representation of documents of a certain type is con�g-

ured.

3. The document generated in Step 2 is parsed by a super-DTD-parser.

In addition to checking the document's conformance to the DTD, the

parser invokes database commands that generate the database objects

that represent the document.

4. A database-internal bootstrap operation is invoked that, given the

document inserted in Step 3, generates the corresponding database

classes, index tables etc.

5. Now documents conforming to that application-DTD can be inserted

into the database. The document parser that has been generated in

Step 1 not only checks conformance to the DTD, but also invokes

database operations generating the corresponding database represen-

tation, updates index tables etc.

Summing up, the physical representation of documents is con�gurable

with element or attribute types being the granules of con�gurability. The

dimensions of con�gurability are orthogonal to each other and transparent

to the application programmer.

4Index structures can be turned on or o� at a later stage by means of method invo-

cations. The at-/non-at con�guration, however, cannot be modi�ed any more. Such a

reorganization of the database would be extremely costly, and the need for such function-

ality has not yet arisen in our context.

27



4.3 The Transformation Algorithm from Documents' Logical

Structure to their Physical Representation

In the sequel, we give the transformation algorithm that generates a docu-

ment's database-internal representation from its logical structure. We will

prove that the output of the transformation algorithm has certain important

characteristics.

By de�nition, Element type B is directly contained in element type A

with regard to DTD D if B occurs in the content model of A in D.

De�nition 1 Element type B is contained in element type A with regard to

DTD D if

1. B is directly contained in A with regard to D, or

2. there is an element type C such that B is contained in C with regard

to D, and C is contained in A with regard to D, or,

3. in D, A has an inclusion model that contains B, or

4. there is an element type C in D such that C has an inclusion model

containing B, and A is contained in C with regard to D.

The following lemma allows to derive information on the document type

from a document that conforms to the underlying document-type de�nition.

Due to the complex de�nition of containment on the type level, the lemma is

not trivial. For instance, if an element a is directly contained in an element

b, one cannot infer that the element type of a occurs in the content model

of the element type of b (because of inclusions). From another perspective,

the lemma shows that De�nition 1 is meaningful.

Lemma 1 If an element a of type A is directly contained in an element b

of type B in some document of type D, then A is contained in B with regard

to D.

28



Proof. The proof is by induction on the depth of the document tree.

� a is directly contained in b, and b is the root of the document.

In this case, for a to be directly contained in b, either

1. A occurs in the content model of B, or

2. A occurs in the inclusion model of B.

In both cases, it follows directly from the de�nition that A is contained

in B.

� a is directly contained in b. Furthermore, `b contained in c. ) B

contained in C.'.

For a to be directly contained in b,

1. A occurs in the content model of B, or

2. A occurs in the inclusion model of B, or

3. A occurs in the inclusion model of an element type C, and there

is an element c of type C such that a is indirectly contained in c.

It follows from Items 1, 3, 4 from the de�nition (corresponding to

Items 1, 2, 3, respectively) that A is contained in B.

Lemma 2 If an element a of type A is contained in an element b of type B

in some document of type D, then A is contained in B with regard to D.

Proof. The lemma immediately follows from Lemma 1 and Item 2 in the

de�nition of `contains'.

In the transformation algorithm, the function isFlat with signature is-

Flat (E: ElementType): BOOL is used. It returns TRUE if E is contained in

an element type that has been marked as at in the corresponding super-

DTD instance. In the algorithm, the document is traversed recursively in a

29



depth-�rst-like manner. If the type of the current element is not at, a new

database object is created and inserted into the tree structure that is already

there (Lines 14-23). Otherwise, the current element's string representation

is just appended to the current database object, which is at (Lines 6-12).

The transformation algorithm is as follows:

(1) transform (e: Element, lastElementWasFlat: BOOL, currentObj: OID, parentObj: OID,

root: BOOL): OID f

(2) IF (Type (e) -> isFlat()) f

(3) IF (NOT (lastElementWasFlat)) f

(4) currentObj := ELEMENT -> new();

(5) insert currentObj as rightmost child of parentObj; g;

(6) IF (Type (e) is terminal element type) //e.g., CDATA, (#PCDATA)

(7) currentObj -> append (textualContent (e))

(8) ELSE f

(9) f currentObj -> append (BeginMarkup (e));

(10) DO (children of e, element, e') //iterate over the children of e, e' is loop var.

(11) c := transform (e', TRUE, currentObj, parentObj, FALSE);

(12) currentObj -> append (EndMarkup (e)); g; g

(13) ELSE f //current element type is not at

(14) currentObj := ELEMENT -> new();

(15) IF (NOT (root))

(16) insert currentObj as rightmost child of parentObj;

(17) store ElementTypeName (e) with currentObj;

(18) store Attributes (e) with currentObj;

(19) currentElementIsFlat := FALSE;

(20) c := NULL;

(21) DO (children of e, element, e') //iterate over the children of e

(22) f c := transform (e', currentElementIsFlat, c, currentObj, FALSE);

(23) currentElementIsFlat := isFlat (Type (e')); g; g; g;

ELEMENT is the database class described before, while Element is the

type of SGML elements. - The initial invocation of transform is transform

30



(root, TRUE, NULL, NULL, TRUE). The actual implementation of the algorithm

is non-recursive. Namely, an SGML parser has been extended to control

the transformation that does not work recursively. Note that the database

objects generated are untyped, i.e., they may either contain at element

types or represent non-at elements. We say that the database object is

at or the database object is non-at, respectively. By de�nition, an object

becomes a at one or a non-at one by means of the assignments in Lines (7),

(9), (12) or in Lines (17), (18), respectively. Thus, the de�nition of at and

non-at database objects is an algorithmic one. From now on, this de�nition

of at database objects replaces the previous one.

The implementation of methods reecting the SGML semantics such as

getAll is based on the following lemmas.

Lemma 3 After a type (i.e., either at or non-at) has been assigned to

a database object, the type does not change any more in the course of the

transformation algorithm.

Proof. \)": Consider a at database object. The assignments making this

object a non-at one occur in Lines (17), (18). The object is generated

immediately before (Line (14)). In consequence, it cannot happen that a

at object is subject to the assignments making it a non-at one.

\(": An object that is already non-at cannot become a at one later.

Namely, non-at objects are generated in Line (14) only. It can easily be

seen that such an object does not become currentObj any more in the course

of transformation after having speci�ed that it is non-at.

The following lemma shows that transformation by means of the algo-

rithm is sound (cf. our remark on the implementation of next, and such

knowledge has also been used for the implementation of getAll (Lines (3)-

(12))).

Lemma 4 A non-at object is never contained in a at one.

31



Proof. Suppose a non-at object was contained in a at one. Then, there

is a non-at element e1 that is directly contained in at element e2. This

requires that either

1. ElementType (e1) occurs in the content model of ElementType (e2),

or

2. there is an element type F s.t. ElementType (e1) occurs in the inclusion

model of F, and there is an element e s.t. ElementType (e) = F and

e1 is contained in e.

Case 1 cannot happen because ElementType (e1) would have to be a at

one. With regard to Case 2, it follows from Lemma 2 that ElementType (e2)

is contained in F, and ElementType (e1) is contained in F. The last item

from De�nition 1 implies that ElementType (e1) is contained in Element-

Type (e2). This, however, is a contradiction to the de�nition of isFlat, be-

cause, in that case, ElementType (e1) would have to be at.

A variant of the transformation algorithm is used in the context of doc-

ument modi�cation, i.e., in order to insert elements into documents that are

already in the database.

5 DTD-Speci�c and Generic Declarative Access

Mechanisms

By using SGML and database technology, we have come up with query mech-

anisms for a document collection characterized by the following features:

(1) Formulating expressive queries is possible without knowing a query lan-

guage, the DTD, and the underlying data model. (2) For di�erent user

groups, di�erent mechanisms can be generated, closely matching the user

group's needs. The description of these mechanisms and how to con�gure

them covers a large part of this section. This query mechanism, though ex-

32



pressive, provides for a lower degree of expressiveness than others, as we will

show. Our conclusion is to let the user choose between various, in our case

three, query mechanisms di�ering with regard to expressiveness, but also

with regard to intuitiveness and user-friendliness. In addition to query tem-

plates, there are an extension of the PAT algebra and OQL, together with

methods from the schema. We will show that the extended PAT algebra is

more expressive than query templates, and that OQL together with a rele-

vant set of methods is more expressive than the extended PAT algebra. On

the other hand, however, in order to formulate queries with the individual

mechanisms, the user must have di�erent levels of knowledge, as indicated

in Table 1. More precisely, `n' in the second column does not include the

language of regular expressions and the underlying IRS, and `n' in the third

column does not reect that the user has to understand the semantics of

element- and attribute-type names.

Modelling (Syntax of the) query language DTD

OQL y y y

PAT n y y

Templates n n n

Table 1: Knowledge necessary to use di�erent query mechanisms.

5.1 Query Templates

Query templates are automatically generated document-type-speci�c query

forms. They may contain widgets of di�erent types. It is subject to con�g-

uration which widgets are part of a query template. The following widgets

are part of the framework.

� Entry �eld for element-content search. The �gure is an example of

such a widget, as seen in a WWW-browser. The user has to type in

33



a list of regular expressions, each of them separated by a blank space.

The operation corresponding to the widget takes all elements of the

respective type, in this case SURNAME. If AND is selected, it returns all

documents containing elements of the type that contain all of the reg-

ular expressions. If OR is selected, it returns all documents containing

elements of the type that contain one of the regular expressions.

� Entry �eld for IR search (information-retrieval search). An entry �eld

for IR search actually consists of two �elds, as can be seen in the

�gure. The user must type a concept to be searched for in the �rst

entry �eld and a threshold value t in the second one. It must hold

that t 2 [0;1). The corresponding operation takes all elements of the

respective type. It returns all documents containing those elements

that match the concept with a likelihood greater than the threshold

value, as computed by the underlying IRS. - Instead of a concept, a

query in the language of the underlying IRS can also be typed in.

� Entry �eld for attribute search. The corresponding operation takes

all elements of the corresponding type, in this case SECTION. If AND

is selected, it returns all documents containing elements whose value

for attribute SECQUAL contains all of the regular expressions that have

been typed in. If OR is selected, it returns all documents containing

elements whose value for attribute SECQUAL contains one of the regular

expressions that have been typed in.

34



� Entry �eld for structure search. The corresponding operation takes all

elements of the �rst type, in this case SURNAME. For all such elements

that are contained in one of the second type, in this case AUTHOR,

and contains all of the regular expression that have been typed in,

the corresponding document is returned, if AND has been selected.

Analogously, with OR, only one regular expression must be contained.

� Entry �eld for search for physical characteristics. As opposed to the

other atomic entry �elds, these entry �elds are hardcoded. However,

they can be turned on or o� by means of the con�guration mecha-

nisms. At this point, there is an entry �eld for document size allowing

speci�cation of a lower and upper bound.

The overall structure of a query template is depicted in Figure 9. The

left column of widgets is for the document to be retrieved, the right column

will be explained below. Results corresponding to individual entry �elds

in a column are combined using logical AND. Only those entry �elds are

considered where something has been entered.

More complex queries can be formulated using the widget for secondary

structure search. Furthermore, one wants to specify documents by means of

the (link) relationships that exist with other documents. In addition to those

two columns of widgets, there is a pulldownmenu with the following options:

[NO LINKS], an element-type name/attribute-type name pair followed by a

right arrow, and an element-type name/attribute-type name pair followed

35



by a left arrow. The semantics of the menu items is as follows:

� If [NO LINKS] is selected, the documents matching the entries in the

left column are retrieved. Entities in the right column are ignored.

� If `-> <E>/<A>', e.g., `-> HYPLINK/REFERENC', is selected, selection

is based on all pairs of documents (d1, d2) such that d1 matches the

template entries in the left column, and d2 matches the entries in the

right column. The query returns all documents d1 that contain an

element of type E, this element has attribute A with value n, and n is

the name of d2.

� If `<- <E>/<A>', e.g., `<- HYPLINK/REFERENC', is selected, selection

is based on all pairs of documents (d1, d2) such that d1 matches the

template entries in the left column, and d2 matches the entries in

the right column. The query returns all documents d1 such that d2

contains an element of type E, this element has attribute A with value

n, and n is the name of d1.

The menu for secondary structure search is also subject to con�guration.

The distinction between regular-expression search and IR search has

been reected by means of methods hasTextualContentRegex and getIRSValue in

Section 4. Analogously, query templates may contain both �elds for element-

content search and for IR search. As pointed out before, not only individual

36



concepts, but also complex query terms in the IRS-query language may be

typed into entry �elds for IR search. Consequently, it is not necessary to

provide an AND-/OR-toggle for this widget type.

Specifying query templates. The DTD alone is not su�cient as a ba-

sis for automatic generation of query templates. Frequently, one wants to

make available only a restricted set of types for declarative access. This

corresponds to the notion of `view' in the context of conventional database

systems. The motivation why views should be part of the framework is as

manifold as it is with view mechanisms in conventional systems. In principle,

we see two alternative ways of specifying query templates.

1. The super-DTD is extended so that its instances contain the query-

template speci�cation. - Di�erent ways of modelling the speci�cation

are conceivable. For example, there may be an additional element

type QUERYFORM with attributes of type IDREFS. These references point

to the di�erent element- and attribute types to be included in the

template. The type de�nition of QUERYFORM may be as follows:

...

<!ELEMENT QUERYFORM EMPTY> ...

<!ATTLIST QUERYFORM ...

CONTENTSEARCH IDREFS

ATTRSEARCH IDREFS

IR SEARCH IDREFS

...>

2. Each query template has a speci�cation contained in a �le.

With regard to Item 2, as one may need di�erent templates for one document

type, one may also want to freely add new views over time. However, it

is important to ensure the consistency of the query-template speci�cation

37



with the DTD. Otherwise, queries could be generated for which a solution

cannot exist, and the user would not even notice it. But an operation

which directly reads the speci�cation from �le and checks for its consistency

would be too time-consuming with large DTDs. Hence, query-template

generation must consist of two steps: First, the speci�cation is read from �le,

its consistency to the DTD is checked, and it is inserted into the database.

Then, a database-internal, consistent version of the speci�cation can be

accessed. - We have realized the �rst alternative and are now implementing

the second one.

5.2 Other Declarative Access Mechanisms and a Comparison

of their Expressive Power

An extension of the PAT algebra. The PAT algebra, originally de-

scribed in [ST94], is a query language independent of the underlying data

model. In our extension of the PAT algebra, query terms are generated by

the grammar

e -> <Element-type name> |

e UNION e|

e INTERSECT e|

e DIFF e|

CONTENT SELECT (e, r)|

ATTR SELECT (e, A, r)|

IR SEARCH (e, c, t)|

e INCLUDS e|

e INCL-IN e|

REFERENCES (e, A, e)|

REF-BY (e, A, e)|

ID-REFER (e, A, e)|

ID-REF-BY (e, A, e)|

LB-SIZE (e, s)|

38



UB-SIZE (e, s)|

(e)

The term <Element-type name> stands for the set of all elements of

the respective type. UNION, INTERSECT, and DIFF are set operators with the

usual semantics. CONTENT SELECT takes a set of elements and returns those

where the content contains regular expression r. ATTR SELECT takes a set

of elements and returns those where attribute A contains regular expression

r. IR SEARCH takes a set of elements and returns those matching concept

c (or the IR query c) with a probability greater than t, according to the

underlying IRS. INCLUDS and INCL-IN take two sets of elements E1 and E2

and return the set of elements

E1 INCL-IN E2 = fe1 2 E1 j 9e2 2 E2 s:t: e1 is contained in e2g

E1 INCLUDS E2 = fe1 2 E1 j 9e2 2 E2 s:t: e1 contains e2g

REFERENCES, REF-BY, ID-REFER, and ID-REF-BY take two sets of ele-

ments E1 and E2 and return the set of elements

REFERENCES(E1, A, E2)= fe1 2 E1 j 9e2 2 E2 s:t: e1 has attribute A with value v;

and v is name of the document where e2 is contained ing

REF-BY(E1, A, E2)= fe1 2 E1 j 9e2 2 E2 s:t: e2 has attribute A with value v;

and v is name of the document where e1 is contained ing

ID-REFER(E1, A, E2)= fe1 2 E1 j 9e2 2 E2 s:t: e1; e2 are contained in the

same document; e2 has an attribute of type ID with value v; e1 has attribute A of

type IDREF (S) containing vg

ID-REF-BY(E1, A, E2)= fe1 2 E1 j 9e2 2 E2 s:t: e1; e2 are contained in the

same document; e1 has an attribute of type ID with value v; e2 has attribute A of

type IDREF (S) containing vg

LB-SIZE takes a set of elements and returns those whose size is greater

than s, UB-SIZE returns those elements whose size is smaller than s.

The extensions, as compared to the original algebra [ST94], are the dis-

tinction between search on a syntactic level and IR search, the fact that

39



Figure 9: query template generated from the MMF-DTD

documents' secondary structure has been taken into account, and the fact

that documents' physical characteristics have been considered.

OQL queries. The expressive power of OQL stems from the fact that

methods from the database schema can be used within queries at liberty.

The structure of an OQL-query is the same as with SQL. The select-clauses

speci�es what is to be selected. The from-clause speci�es which database

classes, or, more generally, which sets, the query refers to. The where-clause

contains a condition that must be ful�lled by the query result. All variables

occurring in the query must be bound in the from clause. - The reader is

referred to [Cat94] for more information on OQL.

Illustrations. For illustration purposes, consider the query template in

Figure 9. The template entries correspond to the query \Select all docu-

ments containing an element of type SURNAME whose textual content contains

`Roth', and that are referenced by a document containing an element of type

SECTION whose value of attribute SECQUAL contains `NEWS' and containing

an element of type LANGUAGE whose value of attribute LANGQUAL contains

`English' or `english'.". The corresponding extended PAT expression is

REF-BY (MMF INCLUDS CONTENT SELECT (SURNAME, 'Roth'),

40



REFERENC,

HYPLINK INCL-IN (MMF INCLUDS ATTR SELECT (SECTION, SECQUAL, 'NEWS'))

INCLUDS ATTR SELECT (LANGUAGE, LANGQUAL, '[Ee]nglish'))

The corresponding OQL expression is

select D0.name

from D0 in Document, D1 in Document,

P0 in D0.root -> getAll ('SURNAME'),

P1 in D1.root -> getAll ('SECTION'),

P2 in D1.root -> getAll ('LANGUAGE'),

P3 in D1.root -> getAll ('HYPLINK')

where P0 -> hasTextualContentRegex ('Roth') and

P1 -> hasAttrValue ('SECQUAL', 'NEWS') and

P2 -> hasAttrValue ('LANGQUAL', '[Ee]nglish') and

P3 -> getAttrValue ('REFERENC') = D0.name

The following lemmas reect the expressive power of the di�erent mech-

anisms.

Lemma 5 The extended PAT language is more expressive than query-template

entries.

Proof. The proof is by de�ning a mapping from query-template entries to ex-

pressions in the extended PAT language. The full mapping is given in [B�97].

To illustrate the mapping, consider the widget for attribute search. Let E

be the respective element-type name, and A be the attribute-type name.

With r1 ... rn being the input to the respective �eld, the corresponding

expression is <root-element-type> INCLUDS (ATTR SELECT (E, A, r1)

� ... � ATTR SELECT (E, A, rn)) with � 2 fUNION, INTERSECTg. In

the opposite direction, it is obvious that, e.g., the extended PAT expression

A INCLUDS B INCLUDS C cannot be mapped to any query-template input.

Lemma 6 The extended PAT-query language is less expressive than OQL,

together with the methods given in Section 4.

41



Proof. The proof is by de�ning a mapping of extended PAT expressions to

OQL statements. The proof is recursive over the structure of query-algebra

terms. Again the full mapping is contained in [B�97]. As an example, let Q be

the OQL query corresponding to the PAT expression e. Then ATTR SELECT

(e, A, r) is mapped to

select p from p in Q where (p -> hasAttrValueRegex ('<A>', '<r>'))

In the opposite direction, it is obvious that, e.g., the OQL query

select p, p -> getFirst ('CHRNAME')

from e in ElementType, p in e -> getElements()

where (e.name == 'AUTHOR')

cannot be mapped to any extended PAT expression.

For evaluation, both input to query templates and extended PAT ex-

pressions are mapped to OQL expressions. - Declarative access mechanisms

are also relevant in the following section.

6 Hyperlink Rendition Mechanisms in HyperStorM

With WWW-based access to the database application, documents can be

converted to HTML. Conversion is speci�ed by means of a style-sheet con-

tained in a �le.

Hyperlink rendition. Documents may contain references to other docu-

ments. Usually, such references are made explicit within the document with

hypertext anchors. With our system, rendition of anchors of links pointing

to other documents in the database may depend on characteristics of the

documents referenced. As a special case of such rendition, only anchors of

sound links are converted to HTML anchors to avoid some cases of naviga-

tion failure. The layout speci�cation speci�es how link anchors are encoded

in documents of the respective type.

42



In Section 4, it has been described how the physical representation of doc-

uments and document components can be con�gured using the super-DTD.

These mechanisms, however, are not used to specify document conversion

for the following reasons:

� An initial con�guration must have been speci�ed before documents

are inserted into the database. This does not have to be the case for

the conversion speci�cation. Furthermore, a higher degree of exibility

and ease of modi�cation is necessary with the conversion speci�cation,

as compared to the con�guration speci�cation. It is appropriate if the

con�guration is altered by means of method invocations, but this is

too complicated and inexible for the conversion speci�cation.

� From an organizational perspective, while the database-internal con-

�guration should be speci�ed by the DTD designer, this is not nec-

essary for document rendition, as readers' individual preferences may

be reected.

� The super-DTD has been designed to represent information on individ-

ual (element- or attribute-) types. But the super-DTD instance would

become too big if information from several style-sheets was included.

There should be no restrictions to the number of style-sheets.

Incorporating information on documents referenced into hyper-

link anchors. With our system, information on documents directly or

indirectly referenced can be used to render the corresponding hyperlink an-

chor in the referencing document in a very exible way. The core idea is

that, for an element type whose instances are hyperlink anchors, the style-

sheet contains a database query. The query speci�es the information to be

included in the hyperlink anchor. For this purpose, the full expressive power

of OQL can be exploited.

43



In this context, there are two problems impeding why OQL queries can-

not just be written down and executed during document conversion.

1. Query results must be of a type that can be displayed within a HTML

document.

2. Within such queries, one would like to refer to the particular hyperlink

anchor. For example, one would like to formulate the query \Select

all elements of type AUTHOR within the document that is referenced

by the hyperlink whose anchor is currently being rendered.". So far,

there is no straightforward way to refer to the hyperlink whose anchor

is currently being rendered in a query.

The solution to Item 1 is as follows: the query is parsed. Then, the

query-result type is looked up. If the type is not available for display, e.g.,

because the query result is a set of database OIDs or a set of instances of

bulk types, the query in the style-sheet is ignored. The current version of

the system accepts only sets of strings.

With regard to Item 2, OQL-queries within the style-sheet may contain

the symbols ANCHORELEM and LINKATTR. Before query evaluation, the sym-

bol ANCHORELEM is replaced by an expression that can be interpreted by

the query processor. In a nutshell, it is the logical OID of the anchor ele-

ment. Since the replacement is carried out within the database, it is ensured

that the new query is correct. Consider the following example:

select p -> getElementText()

from d in Document, p in d.root -> getAll ('LANGUAGE')

where (d.name = (ANCHORELEM -> getAttrValue (LINKATTR)))

The query selects all LANGUAGE-elements in the document referenced

(cf. Figure 1).

Expanding instances of element types is meaningful for informational

and non-structural element types. For instance, one may want to display all

44



instances of a non-structural element type KEYWORD in the referencing doc-

ument. The usefulness of such an expansion for structural element types is

limited, except when these element types are at the same time informational,

such as, say, TITLE.

Summing up, the drawbacks pointed out in the introduction are alle-

viated as follows: checking for a link target before activating the anchor

prevents navigation failure. Displaying meta-information alleviates the \Ex-

pectations vs. ctual Content"-problem and is a measure against \getting lost

in hyperspace".

With the functionality described so far, document conversion should be

part of the services o�ered by the database. It would be an unnecessary step

to generate SGML from the database content �rst and then transform the

result to HTML. Furthermore, conversion on the client would be ine�cient

because of unnecessary communication over the network to obtain infor-

mation on the documents referenced. Besides that, and most importantly,

materialized views are used to avoid executing queries during document

conversion. Their consistency is ensured by the database system.

Using materialized views. It is advantageous to materialize the conver-

sion result within the database. In principle, an arbitrary number of dif-

ferent views on the same document being the result of di�erent conversion

parameters is conceivable. To cope with the requirement of materializing

more than one view, but being restricted to a limited number of material-

izations, we have implemented a simple page replacement strategy (LRU).

With our system, documents within the database may be modi�ed. Then,

materialized views have to be updated after the corresponding documents

have been altered. The problem is aggravated by the fact that updates of

individual documents cannot be seen in isolation. Instead, documents that

directly or indirectly reference the modi�ed document also have to be taken

45



into account. In this context, we assume that each document can reference

any other document. Assertions that would allow restrictions of this as-

sumption would be helpful, but cannot be made in the general case. With

our system, a view is updated when a document is accessed, if any docu-

ment has been modi�ed after the view's last generation date. With frequent

updates, a conceivable re�nement is to di�erentiate between modi�cations

having an impact on conversion of referencing documents and modi�cations

without such e�ects. In this case, however, conversion speci�cations have to

be administered by the database.

7 Conclusions

One objective of this article was to point out how the combination of database

technology and SGML can be exploited in order to ease access to the doc-

ument collection, both declaratively as well as by means of navigation. In

order to ease declarative access, a mechanism to express information needs

has been designed that is expressive, while, at the same time, neither knowl-

edge of a query language nor the document type or the underlying modelling

are needed to use it. This so-called query-template mechanism can be con-

�gured to match the needs of di�erent user groups. We exploit the fact that

SGML documents conform to a document-type de�nition. Such a document-

type de�nition is comparable to a database schema in that both can be seen

as integrity constraints on the data. HTML would not be very useful in

this particular context due to its high genericity. The HTML-DTD does not

impose any real constraints on documents' logical structure. - The query-

template mechanism, though expressive, is less expressive than other query

languages. Thus, in order to provide the user with a choice of declarative ac-

cess mechanisms, queries can also be formulated using two other languages.

These languages have also been described, and their expressiveness has been

compared.

46



Navigational access is eased as follows: meta-information on the doc-

uments can be exploited for hyperlink rendition. Database technology is

advantageous to speed up conversion, and to ensure consistency of conver-

sion outputs that have been materialized. The approach would not work well

with HTML because, with previous versions of HTML, no mechanisms are

provided to model meta-information, and with HTML 3.2 it cannot be en-

sured that meta-information is modeled consistently. It is left to the author

of the document which meta-information is provided, and how he provides

it.

With the description of documents' database-internal representation, we

have covered several original features. With our hybrid representation of

documents, elements can or cannot be represented by individual database

objects. The actual representation is subject to con�guration. The initial

con�guration is speci�ed by means of an SGML document. To recognize

the logical structure of physically unstructured document components, it

is not necessary to use the DTD at this stage. We have come up with an

object-oriented modeling of structured documents, together with methods

that are the basis for declarative access. Elements have a (logical) OID even

though they do not have to be represented by an individual database object.

With method implementation, it has been reected that, with OODBMSs,

method invocations are expensive.

In the future, we wish to evaluate the behavior of a real user community.

We will examine the expressive power of query templates and see whether

new primitives are needed. - In previous work, we have examined how to

reect the semantics of HyTime architectural forms in the database and have

come up with an implementation [BA94, BAK95]. The HyTime-link model

is more sophisticated than the one that has been considered so far. Arbitrary

document portions can be referenced, independent of the structure that has

been made explicit with SGML markup. It may be worthwhile to extend

47



the reections with regard to link conversion to the HyTime model.

References

[ACM93] S. Abiteboul, S. Cluet, and T. Milo. Querying and Updating

the File. In R. Agrawal, S. Baker, and D. Bell, editors, Pro-

ceedings of the International Conference on Very Large Data

Bases, pages 73{84. VLDB Endowment, 1993. Dublin, Ireland.

[ACM95] S. Abiteboul, S. Cluet, and T. Milo. A Database Interface for

File Update. In Proceedings ACM SIGMOD, pages 386{397.

ACM Press, 1995.

[AKM95] K. Andrews, F. Kappe, and H. Maurer. The Hyper-G Network

Information System. J.UCS, 1(4):206{220, 1995.

[B+94] G.E. Blake et al. Text / Relational Database Management

Systems: Harmonizing SQL and SGML. In Proceedings of the

First International Conference on Applications of Databases.

Lecture Notes in Computer Science, Springer Verlag, June

1994.

[B�97] Klemens B�ohm. Using Object-oriented Database Technology

for Structured Document Storage (in German, forthcoming).

PhD thesis, Technical University of Darmstadt, 1997.

[BA94] Klemens B�ohm and Karl Aberer. Storing HyTime Documents

in an Object-Oriented Database. In Nabil R. Adam, Bharat

Bhargava, and Yelena Yesha, editors, Proceedings of the Third

International Conference on Information and Knowledge Man-

agement, pages 26{33. ACM Press, November 1994.

48



[BAK95] Klemens B�ohm, Karl Aberer, and Wolfgang Klas. Building a

Con�gurable Database Application for Structured Documents,

1995. Accepted for publication in Multimedia - Tools and Ap-

plications.

[C+94] V. Christophides et al. From Structured Documents to Novel

Query Facilities. In Proceedings ACM SIGMOD. ACM Press,

May 1994.

[Cat94] R.G.G. Cattell, editor. The Object Database Standard:

ODMG-93. Morgan Kaufmann Publishers, 1994.

[CCH92] J.P. Callan, W.B. Croft, and S.M. Hardig. The INQUERY

Retrieval System. In Proceedings of the Third International

Conference on Database and Expert Systems Application, pages

78{83. Springer Verlag, 1992.

[Con87] J. Conklin. Hypertext: An Introduction and Survey. IEEE

Computer Magazine, pages 17{41, September 1987.

[Fre] E.D. Freese. The Transformation of SGML Doc-

uments for Presentation on the World Wide Web.

http://www.sil.org/sgml/freese.html.

[HHM94] A. Haake, C. H�user, and W. M�ohr. Milestone M1; BERKOM

Project:CLIP-ING; Workpackage 2: System Architecture.

Technical report, GMD-IPSI, November 1994.

[HTM] HyperText Markup Language (HTML). Available under

"http://www.w3.org/pub/WWW/MarkUp/".

[ISO86] Information Technology - Text and O�ce Systems - Standard-

ized Generalized Markup Language (SGML), 1986.

49



[ISO96] Document Style Semantics and Speci�cation Language

(DSSSL), 1996.

[kbo94] Guidelines for Electronic Text Encoding and Interchange, April

1994.

[KSS95] V. Kashyap, K. Shah, and A. Sheth. Multimedia Database

Systems: Issues and Research Directions, chapter Metadata for

building the MultiMedia Patch Quilt. Springer Verlag, 1995.

[Mac91] I.A. Macleod. A Query Language for Retrieving Informa-

tion from Hierarchic Text Structures. The Computer Journal,

34(3):254{264, 1991.

[MMM96] A. Mendelzon, G. Mihaila, and T. Milo. Querying the World

Wide Web, 1996. PDIS'96.

[NBY95] G. Navarro and R. Baeza-Yates. A language for queries on

structure and contents of textual databases. In Proceedings of

18th ACM Conference on Research and Development in Infor-

mation Retrieval (SIGIR'95), July 1995. Seattle, WA, U.S.A.

[O+95] M.T. �Ozsu et al. An Object-Oriented Multimedia Database

System for a News-on-Demand Application. Multimedia Sys-

tems, (3):182{203, 1995.

[QRS+95] Dallan Quass, Anand Rajaraman, Yehoshua Sagiv, Je�rey D.

Ullman, and Jennifer Widom. Querying Semistructured

Heterogeneous Information. In Proceedings of the Fourth

International Conference on Deductive and Object-Oriented

Databases, pages 319{344, 1995. Singapore.

[RMW94] Martin R�oscheisen, Christian Mogensen, and Terry Winograd.

Shared Web Annotations as a Platform for Third-Party Value-

50



Added Information Providers: Architecture, Protocols, and

Usage Examples. Technical Report STAN-CS-TR-97-1582,

Stanford University, November 1994.

[S+94] Klaus S�ullow et al. MultiMedia Forum - an Interactive On-

line Journal. In Christoph H�user, Wiebke M�ohr, and Vincent

Quint, editors, Proceedings of Conference on Electronic Pub-

lishing, pages 413{422. John Wiley & Sons, Ltd., April 1994.

[SDAMK95] R. Sacks-Davis, T. Arnold-Moore, and A. Kent. A Stan-

dards Based Approach to Combining Information Retrieval

and Database Functionality. International Journal of Infor-

mation Technology, World Scienti�c, 1(1):1{16, 1995.

[SM83] Gerard Salton and Michael J. McGill. Introduction to Mod-

ern Information Retrieval. McGraw-Hill Book Company, �rst

edition, 1983.

[ST94] A. Salminen and F.W. Tompa. PAT Expressions: an Algebra

for Text Search. Acta Linguistica Hungarica, 41(1):277{306,

1994.

[Sto96] Michael Stonebraker. Object-Relational DBMSs. Morgan Kauf-

mann Publishers, Inc., 1996.

[VAB96] M. Volz, K. Aberer, and K. B�ohm. Applying a Flexible

OODBMS-IRS-Coupling to Structured Document Handling.

In Proceedings of the 12th International Conference on Data

Engineering, pages 10{19, 1996. New Orleans.

[VML95] VODAK V 4.0 User Manual. Technical Report 910, GMD-

IPSI, April 1995. St. Augustin.

51



[YA94] T.W. Yan and J. Annevelink. Integrating a Structured Text

Retrieval System with an Object-Oriented Database System.

In Proceedings of the International Conference on Very Large

Data Bases. VLDB Endowment, 1994. Santiago, Chile.

52


