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Abstract

This paper presents a specific approach of integrating a relational database system into a federated database
system. The underlying database integration process consist of three steps: first, the external database systems
have to be connected to the integrated database system environment and the external data models have to be
mapped into a canonical data model. This step is often called syntactic transformation  including structural
enrichment and leads to component schemas for each external DBMS. Second, the resulting schemas from the
first step are used to construct export schemas which are then integrated into global, individual schemas or
views, in the third step. In this paper we focus on the first step for relational databases, i.e., the connection of a
relational database system and the mapping of the relational model into a canonical data model. We take
POSTGRES as the relational database system and the object-oriented federated database system VODAK as
the integration platform which provides the open, object-oriented data model as the canonical data model for
the integration. We show different variations of mapping the relational model. By exploiting the metaclass
concept provided by VML, the modelling language of VODAK, we show how to tailor VML such that the
canonical data model meets the requirements of integrating POSTGRES into the global database system VO-
DAK in an efficient way.
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1 Introduction

Electronic information management systems are complex human centered activities which produce
and consume the most diverse kinds of information. Today many of these activities are supported by
autonomous systems which employ different data management facilities with heterogeneous data
models, e.g., a relational model,  a hierarchical model,  an object-oriented data model, or – specifically
valid for public databases – some dedicated file system with specialized retrieval and presentation
functionality. In addition, the information is represented at different levels of detail, with mutual in-
consistencies in structure, naming, scaling, and behavior, whereby much of this behavior is hidden in
the implementation of the autonomous systems.

However, more and more applications like those in the field of cooperative authoring and publishing
or telecommunication services and administration definitely need integrated access to their underly-
ing, autonomous, heterogeneous information bases. It is needed because these applications demand
integrated processing due to consistent management of complex interrelated data as well as integrated
exchange of information produced and consumed by the many participants in an application. Such
applications should provide for a kind of individual, integrated, global views onto the underlying re-
sources.

There exist several approaches and projects which address interoperability or integration of informa-
tion bases. [25], [17], [1], and [3] give good overviews and present fundamental concepts including
the terminology of the different approaches, e.g., multidatabase systems, multidatabase languages,
and federated database systems. MRDSM [15], OMNIBASE [21], and CALIDA [7] are projects
which realized the integration of databases by multidatabase languages, but which require a kind of
sophisticated user because the user still needs information about the distribution of data, about how to
resolve semantic ambiguities and other typical well-known problems which arise when integrating
heterogeneous databases. SIRIUS-DELTA [16], DDTS [2], Mermaid [26], Multibase [14], and our
approach taken in KODIM can be mentioned as projects which follow the federated database ap-
proach. The tools and techniques developed in KODIM ([23], [8], [4], [5], [9], [19], [18]) for semantic
integration assist incremental integration driven by actual information requests of end users and the
dynamic maintenance of integrated schemas driven by external schema evolution. This approach
tries to meet the requirements of realistic situations with a big number of external information bases
(which  – due to their autonomy – are subject to only locally controlled constant change) in which
completely integrated views valid for all users can hardly be achieved with reasonable effort. In addi-
tion, many available information sources (e.g., online-databases) do not even provide fine grained,
explicitly structured data like relational databases do. Thus, in KODIM we also develop tools for the
structural enrichment of data from external information sources which do not provide any kind of
schema [6].

Database integration steps in KODIM can be partitioned into two conceptual layers:
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(i) At a base layer, heterogeneous data models have to be mapped to a uniform data model (syntac-
tic transformation phase). This requires the translation of manipulation languages and the trans-
formation of diverse data formats as well as the connection of external database management
systems or other systems providing external data.

(ii) On top of this bottom layer, i.e., on the basis of the uniform data model, implicit structure &
semantics have to be made explicit, inconsistencies in structure, naming, and scaling have to be
overcome, and semantic interrelationships between data have to be acquired in order to estab-
lish integrated views onto the external resources (semantic enrichment and semantic integration
steps).

Figure 1 shows the variety of transformations which data from diverse resources have to undergo in
order to be integrated. KODIM uses the data model of the open, object-oriented database system VO-
DAK as the canonical data model, to which the external schemas are mapped to. To use an object-ori-
ented data model as the canonical model is widely recognized to be a very promising choice for easier
representation of external data models as well as for schema integration purposes (see [25], [23], [8],
and [22]).

The syntactic transformation step provides for a syntactically uniform VODAK interface to the exter-
nal information bases, describing their database schemas (including constraints), retrieval & manipu-
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lation capabilities, and their file formats. The transformation is modularized by means of the object-
oriented VODAK Modelling Language (VML), i.e., for all imported data (schemas as well as
instances) object types and classes are established, supporting the capabilities of external information
bases in a uniform language.

By syntactic transformation, external information bases are accessible according to a uniform data
model, but they are not interrelated semantically. Two additional mapping steps are required to inter-
relate and merge these data semantically:

Semantic enrichment makes implicit structure and semantics explicit and associates additional be-
havior, which is hidden in local application programs or even worse in informal local conventions.

Semantic integration is needed to combine several schemas. Structural and semantic differences in
representation, conflicts in naming and scaling have to be resolved, correspondences between objects
have to be identified, and appropriate foci have to be specified in order to establish an (or a couple of)
integrated user view(s).

In this paper we focus on the problem of integrating relational database systems and how to get (en-
riched) export schemas. We discuss several alternatives and their limitations for the syntactic trans-
formation step and the impact of semantic enrichment. We will not discuss the semantic integration
phase in this paper. Details about the techniques employed for the final semantic integration steps are
given in [23], [20], [24], [4], [5], [19], and [18].

The rest of the paper is organized as follows: Chapter 2 gives a general description of the characteris-
tics and problems of different mappings of a relational schema into an object-oriented database model
like the data model of VODAK. Chapter 3 gives a brief outline of the concepts of the data model and of
VML as far as needed to show the realization of the mappings in Chapter 4 by exploiting specific
modelling features provided by VML. Chapter 5 concludes the paper and gives some hints to further
improvements.

2 Characteristics of Mappings

In order to characterize mappings from relational schemas and their corresponding databases to ob-
ject-oriented schemas and their corresponding databases we first have to determine the correspon-
dences between the concepts of both data models. Then we can describe the general characteristics of
a variety of alternative mappings, including different forms of semantic enrichment.

2.1 Correspondences between the Data Models

The basic concepts of the relational model are relations, tuples and attributes. A relation can be
thought of as a table with columns of different types. These columns are called the attributes, whereas
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the rows of a table, i.e. the actual contents, are the tuples of a relation. In the standard relational model
the attribute types are restricted to primitive data types, e.g. String, Integer etc. The structure of the
tuples is then determined through the definition of the relation expressed in the data definition lan-
guage (DDL). Relations and tuples are manipulated (i.e. created/appended, changed, deleted) using
the data manipulation language (DML).

In contrast, the most relevant concept of an object-oriented data model in this framework is the con-
cept of objects, whereas each object is an instance of a class and may be a class itself. The structure and
behavior of an object is determined through a set of property and method definitions specified with the
object’s class. The type of a property can be any primitive (i.e. String, Integer etc. and also object
identifiers) or complex datatype (i.e. Array, List, Set etc.). Access to an object’s properties is only
allowed through the interface, i.e. the set of methods defined with the object’s class. The data manipu-
lation language provides for sending messages to objects in order to make them execute certain meth-
od implementations. This ensures object encapsulation and, as a logical consequence, controlled ac-
cess to data stored in objects.

We concentrate on the structural aspects of the object-oriented data model when defining a mapping
from relational to object-oriented schemas since the standard relational models do not provide meth-
ods or functions. Then there is a natural correspondence between the following concepts:

• relations and classes

• attributes and properties

• tuples and instances

First the relation definitions of a relational schema have to be translated to class definitions of an ob-
ject-oriented schema. For example, this can be done in a straightforward way according to the above
correspondences. However, the straightforward translation is not necessarily the desirable one since it
does not exploit the full expressive power of the object-oriented data model. We will therefore discuss
more refined mappings in subsections 2.2.3 and 2.2.4.

For mapping the data in the relational model to data in the object-oriented model things are more com-
plicated. The concept of object-identity plays an important role in an object-oriented data model.
When using an object-oriented data model as the canonical, global data model, information stored in
external database systems is represented as objects in the global database system. These objects pos-
sess object identifiers which consequently also identify data stored in the external system. Hence,
there must be some mapping from global object identifiers to appropriate external “object identifi-
ers”. In case of relational data base systems we miss the concept of object identifiers as conceptual
data units are identified by key values. Hence, the system has to maintain somehow a mapping of key
values to object identifiers.
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At first glance, the mapping between an external identification mechanism and object identity looks
quite simple. But in fact, as we will see later in subsection 2.3 one has to take into account different
kinds of these mappings depending on the “quality” of the external identification mechanism.

2.2 Mappings from Relational to Object-Oriented Schemas

In the following we will introduce several kinds of mappings from relational to object-oriented data-
bases. We start with the straightforward one already indicated in the previous section by the natural
correspondences between the two data models. However, as we will point out the straightforward
mapping may in certain cases lead to an unnatural object-oriented modeling. Therefore we will
introduce other types of mappings which exploit the additional expressive power of the object-ori-
ented data model. We analyze which support has to be given in the object-oriented world in order to
make the mapping efficient.

2.2.1 Straightforward Mapping

A relation is mapped to one class and vice versa. An instance of a class corresponds to exactly one
tuple in the relation which corresponds to the class. Each attribute of a relation is mapped to a corre-
sponding property of a class. A relational schema S={R1,...,RN}, Ri(ai,1, ai,2, ..., ai,ki), 1 ≤ i ≤ N, may
be translated automatically to an object-oriented schema according to the following rule:

For each relation Ri in S a class Cli with properties ci,j, 1 ≤ j ≤ ki, is defined, 
where property ci,j corresponds to attribute ai,j of relation Ri.

The values of the properties ci,j   in the object-oriented database are derived from the corresponding
attributes ai,j  in the relational database. Therefore access methods to the values stored in ai,j   have to be
provided. For simplicity we consider for the moment only reading methods. Such a method call which
enables the access to a relational database is of the form get(a):v, where a is the name of an attribute of
this relation and v is the value of a in the tuple which corresponds to the object representing this tuple.
Remember that in an object-oriented system each method call has to be sent to an object, which in this
case is the instance of a class representing a specific tuple in the corresponding relation.

This mapping type performs only the syntactic transformation step and does not contribute to the se-
mantic enrichment of an external schema. It produces an unnatural object-oriented modelling since
relationships in the relational model (which are represented as relations) are mapped to classes and
not to references between objects. For instance, a straightforward mapping of  the relations R1 (A B), 
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R2 (A  C) and R3 ( C D)  yields the classes Cl1 (A  B),  Cl2 (A  C) and Cl3 ( C  D)1.  Instead of mapping R2

to a class it is more natural to represent it by additional properties of Cl1 and Cl3 which then hold refer-
ences to the corresponding objects of the respective other class (see also Example 4). Therefore in the
following we will introduce more sophisticated kinds of mappings.

2.2.2 Comparison between the Expressive Power of the Object-Oriented and
the Relational Data Model

Let us recall some characteristics of the relational data model. Data is stored in tables with attributes
which can only be of a primitive datatype (1NF). Relationships between data are expressed through
the values of common attributes in different relations. It is known that this leads to different anomalies
if the relations are not designed carefully, i.e. they are not in one of the well-known normal forms
(3NF, BCNF, etc.). The basic mechanism to transform an arbitrary relational schema into a normal-
ized schema is to decompose the relations. Both the restriction to primitive data types and the decom-
position of relations lead to a situation where related data reside in several relations, a fact that leads to
frequent computations of joins between relations.

In contrast to this the (structural) object-oriented data model allows a modelling which is much closer
to the structure of the “real world”. The additional expressive power emerges mainly from two
sources: first, there is no restriction on the datatypes which properties can have, e.g. set and tuple
constructors may be used. Second, the concept of object identifiers allows to express relationships
between data explicitly, e.g. properties may hold references to other objects. While in the relational
model the maintenance of referential integrity constraints requires to guarantee that for each foreign
key value there exists a corresponding primary key value, in object-oriented models it is necessary to
ensure that properties hold only references to existing objects.

We summarize the differences between the data models in the following table in which we relate fea-
tures of the object-oriented model to the corresponding restrictions in the relational model.

Object-Oriented Data Model Relational Data Model

complex values 1NF

references 3NF, BCNF

We will now study different cases how mappings can invert the decompositions of relations discussed
above and can be used to construct more natural schemas in the object-oriented data model. These
mappings automatically lead to semantic enrichments of the relational schemas.

1. We extend the standard notation for relations, denoting a relation  by R(A B ...), where A, B, ... are attribute sets, e.g.
A={a1,...,anA}, and the primary key of R is underlined, to classes in the following way: Cl(A B ...) is the class Cl(a1
: T1, ... , anC:TnC), where Tj are primitive property types and ai are property names.
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2.2.3 Reconstructing Complex Values

Case 1:
Let R1 (A  B) be a relation with primary key A = {a1, ..., an}, and let  R2 (A  C D) be a relation which has
A as foreign key. Assume that relation R2 is not needed in any other context (e.g. there are no other
foreign keys in R2). Disregarding the straightforward approach we have the possibility to combine
these two relations in one class with the following structure

 Cl(A  B, t: {[C D]})2. 
The type of the third property t in Cl is set-valued because several tuples in R2 can correspond to one
tuple in R1 having the same value for A. The elements of this set are tuples in order to maintain the
dependency between C and D expressed in R2.

Example 1:
Let R1 be the relation 

conference(conf_id, title, topics, location, duration, language)
and  R2 be

session(conf_id, sess_id, duration, subject, chair_name, chair_affil).

The class which results from the mapping can then be defined as 
Conference(conf_id, title, topics, location, duration, language,

sessions:{[sess_id, duration, subject, chair_name, chair_affil]}) �

We call relation R1 the base relation in the mapping, since it contains the primary key, and R2  is called
the dependent relation. More generally, we can consider cases where there are several dependent
relations. This can happen in two ways: either there are other relations containing the primary key of
the base relation as (the only) foreign key or there are relations containing the primary key of a
dependent relation as an additional foreign key. In the first case we get additional set-valued
properties of the kind introduces in the example, in the second case we can construct deeper nestings
of the complex values. This is illustrated in the following case.

Case 2:
Let R1 (A  B) and  R2 (A  C  D) be defined as before. Let R3 (A  C E) be a relation with A as the primary
keysand C of R2 as foreign keys. Again assume that R2 and R3 are not needed in any other context.
Now we have the possibility to combine these three relations in one class with the following structure :

Cl(A  B, s: {[C D, t: {[E]}]}).

2. In Cl(A, a:T)  a denotes an additional property resulting from the mapping, and for tuple types we write  [A] for [a1
: T1, ... , an:Tn].
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Example 2:
Let R1 and R2 be the relations conference  and session as in the previous example. Let R3 be

lectures(conf_id, sess_id, lecturer_name, lecturer_affil, topic)

The class Conference can then be defined as
Conference(conf_id, title, topics, location, duration, language,

sessions:{[sess_id, duration, subject, chair_name, chair_affil,
lectures: {[lecturer_name, lecturer_affil, topic]}]}) �

The first obvious advantage is that by restructuring the data in this way we can get closer to the struc-
ture of the “real world”. Moreover there is another, less obvious, advantage which becomes clear
when we analyze what kind of access to the relational database can be provided in supporting this
mapping of a relational schema. Assume we only support access methods get(a):v as introduced for
the straightforward mapping. Then first all the relations are mapped to classes in the straightforward
way; in a next step we build complex-structured classes upon them. Then one has to retrieve the values
for the complex classes by value-based joins inside the object-oriented database management system.
This will in general be much less efficient than performing the corresponding (optimized) joins in the
relational database management system.

These observations lead to the following conclusion: there is a need for more complex access methods
to the relational database, e.g. method calls of the form

get(R, {keyattr}, [attr]): {[attrval]}

where R is a dependent relation, {keyattr} is the set of primary key attributes of the base relation and
[attr] is a tuple of attributes whose values should be retrieved. In the case of Example 1 the method
get(R2, A, [C D]): {[C D]} is sent to an instance of class Cl, which corresponds to one tuple of R1, and
returns the appropriate set of tuples in R2. Now the implementation of this access method can
arbitrarily use the mechanisms of the relational DBMS, e.g. compute a value-based join between R1

and R2 efficiently.

A more general access method, which allows a nesting of arbitrary depth is of the form

get(<[R, {keyattr}]>, [attr]): {[attrval]}

where instead of one relation with the corresponding key attributes now lists of relation names and
key attributes are given as arguments.
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2.2.4 Substituting Value-Based by Reference-Based Relationships

Case 3:
Let R1 (A  B) be a relation with primary key A, and let  R2 (A  C D) be a relation which has A as foreign
key. Assume now that relation R2 is needed in another context (e.g. there is another  foreign key in R2).
Therefore we cannot map both relations to a single class. Despite the fact that, in this case, we map
each relation to a different class we have additional possibilities to enrich the structure of the resulting
classes. Some of the  alternatives are shown in the following:

• Cl1(A  B, r: {ref Cl2}), Cl2(A  C D)

• Cl1(A  B), Cl2( A C D, r: ref Cl1)

• Cl1(B, r: {ref Cl2}), Cl2(A C D, s: ref Cl1)

• Cl1(B, r: {ref Cl2}), Cl2(C D, s: ref Cl1)

where ref Cl denotes a reference to an instance of class Cl which is realized on the basis of object
identifiers. This list is not exhaustive and the decision which mapping is preferred depends on which
access paths are needed more often and which properties are needed in which classes. For example, in
the last case the attributes A are dropped assuming that they were only needed for establishing the
relationship between R1 and R2 .

Example 3:
Let R1 and R2 again be the relations conference and session as given in Example 1. Then we can map
these relations to the classes Conference and Session as follows:

• Conference(conf_id, title, topics, location, duration, language, sessions:{Session})
Session(conf_id, sess_id, duration, subject, chair_name, chair_affil)

• Conference(conf_id, title, topics, location, duration, language)
Session(conf_id, sess_id, duration, subject, chair_name, chair_affil, conference: Conference)

• Conference(title, topics, location, duration, language, sessions:{Session})
Session(conf_id, sess_id, duration, subject, chair_name, chair_affil, conference: Conference)

• Conference(title, topics, location, duration, language, sessions:{Session})
Session(sess_id, duration, subject, chair_name, chair_affil, conference: Conference)

�

Again we call relation R1  the base relation in the mapping, since it contains the primary key, and R2  is
called the dependent relation.By the same arguments as in the previous section we now have to
provide a new type of access methods in order to exploit the relational DBMS. In the simplest case
these methods are of the form
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get(Rd, {keyattr}): {ref Cld}  (get(Rb, {keyattr}): ref Clb respectively )

where Rd is the dependent relation, {keyattr} is the set of primary key attributes of the base relation Rb

and ref Cld (ref Clb) is a reference to an instance of the class Cld (Clb) which corresponds to the
dependent (base) relation. The receiver of a call of this method is an instance of Clb(Cld). For
simplicity we assume that the key attributes which are used to join the base and the dependent relation
have the same names in both relations. The following case shows a more complicated situation:

Case 4:
Let R1 (A B),  R2 (A  C) and R3 (C D) be given. In this case R2 serves only to represent an n:m
relationship between R1 and R3 and therefore can be dissolved  in the following way

Cl1(A B, r: {ref Cl3}),  Cl3(C D, s: {ref Cl1})

where the classes Cl1 and Cl3 correspond to the relations R1 and R3.

Example 4:
Let R1 be the relation conference as defined in Example 1. Let R2 be

reservation(conf_id, hotel_name)
and R3 be

hotel(name, mail_addr, city, state, country, phone_no, fax_no)

The relation reservation can be dissolved by defining the classes Conference and Hotel as
Conference(conf_id, title, topics, location, duration, language, hotels: {Hotel})
Hotel(name, mail_addr, city, state, country, phone_no, fax_no, conferences: {Conference})

�

To accomplish the mapping of the previous example efficiently we have to provide more general ac-
cess methods, i.e. methods which allow to perform join sequences over several relations. These meth-
ods are of the form

get(<[R, {keyattr}]>): {ref Cl}

where instead of one relation with the corresponding key attributes now lists of relation names and
key attributes are given as arguments.

2.2.5 Schema Restructuring

Of course, when mapping relational schemas to object-oriented schemas other restructurings can be
performed than those provided by the mappings discussed above. These can exploit additional se-
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mantic knowledge of the schema beyond the knowledge about key attributes. However, these restruc-
turings are of a different nature since they are not only inversions of normalizing processes of relation-
al schemas which are necessary due to the restrictions of the relational data model.

For example, in [27] an approach for translating relational schemas into object-oriented schemas is
discussed, where some interesting translations are made in the case where inclusion constraints are
given for the relational schemas. However, only the problems of view integration and not of database
system integration are considered. Some of the mappings that we proposed in subsection 2.2 can also
be found there. But the authors do not consider the possibility of substituting value-based by refer-
ence-based relationships as discussed in subsection 2.2.4, and thus arrive at schemas containing rela-
tionship objects, something we try to avoid where possible by our approach.

2.3 Mapping Populations – the Identification Problem

In the previous subsection we considered the different types of mappings between a relational and an
object-oriented schema. In addition to this mapping of schemas we need to describe the mapping of
concrete tuples to concrete objects.

From the previous discussions about which kinds of mappings we consider we make the following
observation: from a relational schema S={R1, R2, ...Rn} a distinguished subset S’ is chosen. For each
relation R in S’ a corresponding class Cl is defined. It is clear that the extension of a class Cl corre-
sponds one-to-one to the extensions of R, i.e. for each tuple in R an object in Cl is generated. The in-

formation stored in the relations R�S �S’ is then accessed through the complex access methods
introduced in 2.2.3, i.e. for the tuples in these relations no individual objects are generated.

In an object-oriented data model objects are identified by their unique object identifiers. Object iden-
tity is an important concept in order to construct complex objects or to provide object references. Fur-
thermore, object identity is very important to identify objects beyond session boundaries3.

In a relational database the identification mechanism is based on key values. The mapping of key val-
ues to object identifiers may become very complex and may impose restrictions on the usage of the
global objects because key values may change. Furthermore it is not sufficient only to consider the
key values alone but also the relation involved has to be used as a parameter in the mapping. In POST-
GRES, for which we later provide the actual implementation of the mapping functions, there exists
the concept of tuple identifiers. These are realized as an additional attribute in each relation and do not
change throughout the lifetime of a tuple. In this case we can map tuple and relation identifiers to ob-

3. This is achieved in only those systems which allow to explicitly ask for an object identifier which can be stored in
one session and retrieved in another session.
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ject identifiers. If a relational system does not provide tuple identifiers, we have to map the values of
the ”real” key attributes and the relation identifiers to object identifiers. Objects with corresponding
identifiers have to be generated for all tuples in those relations for which a corresponding class is gen-
erated.

Once the mapping from key values resp. tuple identifiers to object identifiers is fixed we have to de-
fine a strategy how the object-oriented database is populated.

(1) The instances of the classes are generated when the database is initialized. Adding or deleting
tuples in the relational database has to be propagated to the object-oriented view.

(2) The instances of the classes are generated on demand. This requires additional access methods
which can be sent to classes and trigger queries in the relational database such that the result of
the query leads to the generation of instances in the object-oriented database.

In both cases changes of key attributes in the relational database have to be propagated to the object-
oriented database if the object identifiers are derived from key values.

Additionally to the question when instances are generated we have to decide how the attributes of the
relations are represented within the instances. Obviously this has an important impact on duplicating
data and keeping the object database consistent with the external relational database. Again we can
distinguish several possibilities.

(1) All attribute values are stored in property values when the database is initialized. This demands
that any changes in the attribute values lead to updates in the object-oriented database. This may
not only affect values but also references.

(2) Attribute values are stored in property values on demand. Although this reduces the overhead in
the initialization phase this leads to similar problems as in (1).

(3) Attribute values are always accessed via the access methods or in other words attribute values
are not stored in the object-oriented database. This avoids the difficulties in dealing with updates
of the relational database. It means that the instances of the classes in the object-oriented data-
base have no own state expressed by properties.

Note that updates in the object-oriented database can always be easily propagated to the relational
database since the correspondence between objects and relational data is known in the object-oriented
database.
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3 The Canonical Target Data Model of VODAK

In our project, the data model of VODAK serves as the canonical target model in which the syntacti-
cally uniform component schemas are defined. In the following we will give a brief outline of this
model as far as we need it to show how the VML modelling features are used to realize the mapping of
a relational schema. For a more detailed description of the model see [13].

3.1 Object Types, Data Types, and Inheritance

Object Types

The structure and the procedural behavior of objects are defined through abstract data types which we
call object types. Every object type definition is identified by a unique type identifier. The definition of
an object type consists of sets of property definitions and method definitions. Every property defini-
tion consists of the name and the type of the property. Every method definition is represented by a
method signature and an implementation of the method.

Properties can be defined either as public or as private properties. Private properties are only available
(accessible) within the scope of the object type which defines them. If properties are declared to be
public they are available (accessible) from outside of the object type which defines them by specific
access methods which are automatically provided for public properties by the DBMS. Methods can
also be defined to be private or public, in analogy to public and private properties. Private methods
usually serve as auxiliary methods for the implementation of other methods.

Data Types

The types used for the definition of properties, formal parameters, and results of methods are either
primitive types or complex types which can be built from predefined primitive types and object type
identifiers by applying type constructors. We call such types data types as the values of these types are
not stored as separate objects in the database, which could be identified by an object identifier. Similar
to an object type, a data type may be identified by a unique identifier.

Object Type Inheritance

In the VODAK data model object types can be derived from other object types by means of specializa-
tion. More specialized object types, called subtypes, are built through specifying how they differ in
their property and method definitions from already defined more general ones, called supertypes.

An object type T that is defined as a subtype of another object type T1, specified through a subtypeOf
clause, imports the property definitions of its supertype. These are merged with the property defini-
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tions given for the object type T itself. If a property (identified via its name) is defined twice, i.e., it is
defined at object type T and at a supertype T1, the specification of type T overrides the one of type T1.
The subtypeOf relationship between T and T1 does not induce any relationship between objects of
type T and objects of type T1.

3.2 Objects, Classes, and Metaclasses

Objects

Objects are representations of material or immaterial real-world entities, or of abstract concepts, e.g.,
data model primitives. Objects are identified through unique object identifiers. The concrete state of
an object identified can conceptually be represented as a set of factual properties, i.e., pairs of proper-
ty names and values. Possible states of an object, i.e., its definitional properties and the kind of proper-
ty values allowed to be stored with the properties, and corresponding methods are specified through
an associated object type.

Classes and their Instances

Every object in the system is defined as an instance of exactly one class that contains all objects of
“equal” real world meaning. The structural properties and methods of these objects are defined
through an object type (the instance-type) associated with the class.

In the data model of VODAK a class is not a type, but an object itself. A class serves as the object
which (a) collects all its instances, and (b) has associated an object type as the instance-type of the
class.

Metaclasses

As classes are objects, they are instances of other classes, called metaclasses. Hence, for a class, three
levels may be distinguished: the instance level, constituted by the instances of the class, the class level
constituted by the class object itself, and the metaclass level, constituted by the class’s metaclass.

Common properties of the instances of a metaclass (which serve as classes) are defined by its in-
stance-type. But, in addition, common properties of instances of several classes may be defined once
at the meta level, i.e., at the common metaclass of these classes by an instance-instance-type. Addi-
tional individual properties and methods may be added at the (meta)class level by associating an ob-
ject type, called own-type, with a (meta)class.

Determining the Structure and Behavior of Objects



16

Roughly, the structure and the behavior of any object is determined through
• the own-type associated with the object (if it is a (meta)class),
• the instance-type associated with the object’s class, and
• the instance-instance-type associated with the object’s metaclass.

(Notice, that these types may be defined as subtypes of other types, and not only the properties and
methods specified directly with these types have to be considered, but also the properties and methods
inherited from the supertypes of these types).

Figure 2 shows how a metaclass M can be used to define common structure and behavior for classes
and their instances. Classes Cl1 and Cl2 are guaranteed to behave in the same way according to the
definitions given with the instance-type associated with the metaclass M. In general, instances of Cl1
and Cl2 have different interfaces because of the different definitions specified with the instance-types
associated with Cl1 and Cl2. But, these interfaces consist of a common part which correspond to the
definitions given with the instance-instance-type of the metaclass M. The initial object type and class
structure is formed by a few predefined metaclasses (including the metaclass Metaclass) and object
types, but will not be discussed here in detail.
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Classes and object type definitions which reflect specific application semantics constitute the ap-
plication layer (see the area marked with the pattern ). The metaclasses and the object types used
for their definition constitute the meta layer (see the area marked with the pattern ÍÍ).

3.3 Message Passing and Method Execution

The properties of an object can be accessed (read or manipulated) only through the execution of meth-
ods defined for the object. The execution of a method is invoked by sending a message obj�m (args)
to the object.

The semantics of sending a message obj�m (args) to an object are as follows:

• If the method m is defined for the object obj, the code specified for m is executed using the actual
parameters args.

• If the method m is not defined for the object obj, the message obj�NoMethod (m, args) is ex-
ecuted, where the method m and its arguments args are passed as arguments to the user specifi-
able method NoMethod. The implementation of method NoMethod determines the future ex-
ecution of the method m within the scope of other objects existing in the database that may even
be members of other object classes.

Delegation of messages to other objects via the method NoMethod allows the specification of a partic-
ular inheritance behavior for different semantic relationships between objects. In particular, this abil-
ity has proven to be useful, when we added specialized modelling primitives for hypermedia and ar-
gumentative networks [10], database integration [11], and modelling of multimedia documents [12]
to the kernel data model. However, we will not further discuss this feature here.

3.4 Tailoring the Model for Specific Application Needs

The data model of VODAK is an open, adaptable model which provides for the specification of addi-
tional modelling primitives at a meta layer of a database schema. That is, a model designer can tailor
the model to meet specific modelling requirements by introducing appropriate modelling primitives
(semantic relationships between classes and their instances) like aggregation, specialization, gener-
alization, grouping, part-of, etc. through the definition of metaclasses. The concept of metaclasses
and the distinction between classes and types allow to determine a common state and behavior of
classes and their instances at the meta layer independent of the specification given at the application
layer. In the following, we briefly illustrate how the kernel model can be adapted to meet specific ap-
plication needs, in our case, the integration of an external relational database system.

Starting with an initial default metaclass system (see the area marked with the pattern  ÍÍÍ  in
Figure 3) a model designer can adapt the model to integrate external databases by defining meta-
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classes which provide the semantics needed to map modelling primitives used in the external schema
to VML. In Figure 3, the metaclass PG_METACLASS is intended to support the straightforward map-
ping of POSTGRES relations and attributes to VML classes, properties and methods. In analogy to
PG_METACLASS, the metaclass SYBASE_METACLASS could be intended to capture all the com-
mon semantics for integrating another relational database system.

Since the metaclass PG_METACLASS is defined such that it supports a straightforward mapping, a
relation is mapped to exactly one class in VML and a tuple is mapped exactly to one instance of a class.
The common behavior and structure of an object which represents a tuple in a relation, i.e. the access
methods to the POSTGRES database, are specified by the metaclass PG_METACLASS since (1) they
are common to all classes and instances resulting from the mapping, and (2) they are independent of
the application, i.e., independent of the contents of the concrete schemas to be integrated. Examples
for the common structure and behavior provided by the metaclass PG_METACLASS are the follow-
ing ones:

(1) The access method get introduced for the straightforward mapping is sent to instances of a class
representing a relation R. These instances have to know about the relation R they are derived
from, i.e. the relation identifier has to be stored for these instances. Since this information is the
same for all instances of a class it is sufficient to store it once with the class. Hence, a class (as an
object) needs to have a property and appropriate access methods to store and to retrieve the rela-
tion name.

(2) Every instance of a class corresponds to some tuple in a relation. Therefore, every instance needs
some property and has to respond to appropriate access methods which allow to store, to assign
and to retrieve the key values respectively tuple identifiers of the tuple in order to establish the
correspondence between a tuple and the instance.

(3) In addition, a method which retrieves the value of a specific tuple attribute must be defined for
every instance in order to enable the mapping between attributes and properties. This is exactly
the get method introduced earlier in 2.1.

Note, that the properties and methods can be defined once for all POSTGRES schemas independent of
the concrete contents of a schema.4 The method in (3) is made available for the schema designer while
the structures in (1) and (2) remain hidden.

A database application designer can now use the functionality provided by the metaclass to define the
classes which correspond to the relations. Suppose we have given relations Conference, Tutorial, Ses-
sion, etc. the designer may define classes CONFERENCE, TUTORIAL, SESSION, etc..

4. If we take into account that one can integrate several relational databases managed by different database systems
then one can optimize the design of the different metaclasses by defining an appropriate object type hierarchy for
the instance-types and instance-instance-types used for the metaclass definitions in order to avoid redundant defini-
tions.
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To ensure that these classes actually correspond to specific relations he declares PG_METACLASS to
be their metaclass, and specifies some initialization (details are shown later). The schema designer is
free to specify whatever properties and methods he/she wants to have for the classes and their
instances. In order to access the tuples and attribute values in relations he/she just can use the methods
provided by the metaclass.

If another type of mapping has to be provided one can introduce another metaclass which provides all
the functionality needed by the other kind of mapping. For example, in Figure 4, the metaclass
PG_RECOMPOSE_METACLASS is intended to provide the common structures and methods needed
for the more complex mappings (see 2.2.2 and 2.2.3).  Again, these properties and methods can be
defined with a metaclass since (1) they are common to all classes and instances resulting from the
mapping, and (2) they are independent of the application.

4 Realization of the Mappings in VML

As we have shown in section 3.4 the mappings of a relational schema to a VML schema can be
realized using metaclasses. In this section we will first define the metaclass PG_METACLASS for the
straightforward mapping and give an example on how to map a relation to a class using the func-
tionality defined in this metaclass. In analogy to that we will define the metaclass PG_RECOM-
POSE_METACLASS, which provides for complex mappings, and show the recomposition of several
relations to a class by means of an example.

4.1 The Metaclass PG_METACLASS

PG_METACLASS realizes a straightforward mapping between relations and classes, i.e. one relation
is mapped to one class and vice versa. As we have stated in subsection 2.2.2, the identifier and the key
attribute identifiers of a relation have to be stored with the corresponding class to enable the creation
of the class’ extent with respect to the relation’s extent. POSTGRES allows a decisive simplification
concerning the key attributes of a relation: the attribute oid (a tuple identifier) is implicitly defined
with every POSTGRES relation. oid serves as a key since its value is automatically computed and left
unchanged whenever a new tuple is inserted in the relation using the actual data and time. Because oid
is defined with every relation it can be regarded as a universal, application independent key. It follows
that the access method provided for the instances of a class can use oid instead of the actual,
application dependent key attributes of the corresponding relation.

The relationships between the predefined metaclass Metaclass, the metaclass PG_METACLASS and
some application classes are shown in Figure 3.
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4.1.1 Definition of the Metaclass PG_METACLASS

The access to the POSTGRES database within the methods of the own type, instance type and
instance–instance type of PG_METACLASS is realized using POSTGRES C library functions. In
order to provide a better understanding of the realization of the mapping with VML we describe the
effects of those methods instead of showing the actual VML/C++ method implementation.

The metaclass PG_METACLASS and its associated object types are defined as follows:

(1) Definition of PG_METACLASS

 
CLASS PG_METACLASS METACLASS Metaclass

    OWNTYPE PG_Metaclass_OwnType
    INSTTYPE PG_Metaclass_InstType
    INSTINSTTYPE PG_Metaclass_InstInstType
  END;

(2) Definition of the object type PG_Metaclass_OwnType

The own type of the metaclass PG_METACLASS defines the methods linkdb and unlinkdb which
initialize and terminate the communication to a POSTGRES database.

OBJECTTYPE PG_Metaclass_OwnType;
  INTERFACE
    METHODS linkdb(db: STRING);
    unlinkdb();
  IMPLEMENTATION
  METHODS 
    linkdb(db: STRING);
    { // initialize communication with POSTGRES database db

};
    unlinkdb();
    { // terminate communication with currently accessed POSTGRES database
    };
  END;

(3) Definition of the object type PG_Metaclass_InstType

The instance type of the metaclass PG_METACLASS defines the property relation and the methods
getRel and init which are available for application classes defined as instances of PG_METACLASS.
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The identifier of the relation corresponding to a class is stored in property relation; the method getRel
just returns the value of this property. The method init assigns the value of its parameter to the property
relation and retrieves all actual values of the attribute oid from the corresponding relation, creates an
instance of the class for each value and stores this value with the new instance in property PG_Oid in
order to enable further access to non-key attributes5.

 OBJECTTYPE PG_Metaclass_InstType SUBTYPEOF Metaclass_InstType;
  INTERFACE
    PROPERTIES relation: STRING;
    METHODS init(rel: STRING);
    getRel(): STRING;
  IMPLEMENTATION
  METHODS 
    init(rel: STRING);
    { relation := rel;
      // retrieve set of tuple identifiers from relation rel;

  // create an instance of the class which executes the method
  // init for each retrieved value and store this value in
  // property PG_Oid of the new instance

    };
    getRel(): STRING;
    { RETURN relation; };
  END;

(4) Definition of the object type PG_Metaclass_InstInstType

The instance-instance type of the metaclass PG_METACLASS defines the property PG_Oid and the
methods setPG_Oid, getPG_Oid and getValue which are available for the instances of application
classes defined as instances of PG_METACLASS. The value of the attribute oid of the tuple cor-
responding to the instance is stored in property PG_Oid. The methods setPG_Oid and getPG_Oid
store and return the value of property PG_Oid. The method getValue(att: STRING): STRING  is used
to retrieve single values of attributes of the relation which corresponds to the class of the receiver ob-
ject. As parameters it takes the identifier of the attribute of which the value is requested. getValue uses
the identifier of the corresponding tuple stored with the receiver to determine the correct tuple in the
database.

5. Usually, the creation of the instances which correspond to the tuples of the relation will be done dynamically on de-
mand. But to simplify the presentation we will not show the implementation for this alternative.
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OBJECTTYPE PG_Metaclass_InstInstType SUBTYPEOF Metaclass_InstInstType;
  INTERFACE
    METHODS getValue(att: STRING): STRING;

   setPG_Oid(oid: STRING);
  IMPLEMENTATION
          PROPERTIES PG_Oid: STRING;
  METHODS 

setPG_Oid(oid: STRING);
    { PG_Oid := oid; // is used in init() };
    getPG_Oid(): STRING;
    { RETURN PG_Oid; // used in method getValue()};
    getValue(att: STRING): STRING;
    { // Retrieve attribute att from the tuple corresponding to the
     // instance receiving the method;
     // use the relation identifier stored with the class of the instance
     // and the value of PG_Oid in order to construct the appropriate

// POSTGRES retrieval statement.
     // Since the POSTGRES C library functions only return attribute values

// as strings, return retrieved value as a string and leave the conversion to
// other datatypes to the application programmer

  };
  END;

4.1.2 Example for a Straightforward Mapping

Let us assume that we have given the following POSTGRES relation conference with the key attribute
conf_id.

conference (conf_id, title, topics, location, duration, language)

We define now a class CONFERENCE by using PG_METACLASS as its metaclass. The structure
and behavior of instances of class CONFERENCE is defined by the object type conference_InstType.
We use the init method provided with the metaclass PG_METACLASS to express that the relation
conference is mapped to the class CONFERENCE.

For each attribute given in the relation conference we define a property as we want to have this attrib-
ute in our application domain. In this example we defined properties title, location, and language,
which correspond to the appropriate attributes of the relation. The properties conf_id, topics, and
duration are defined in the same way through the supertypes of conference_InstType. This is, because
the corresponding attributes of the relation conference appear in other relations of the POSTGRES
schema too. Hence, in order to avoid repeated definitions of these properties they are defined once by
supertypes which are shared by the object types of several classes.
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All implementations of methods which retrieve the property values, i.e., which retrieve the attribute
values from the POSTGRES database, follow the same scheme: First, they test whether the value for
the property has already been retrieved from the database. If not, the value is retrieved from the under-
lying POSTGRES database by using the method getValue provided with the metaclass PG_META-
CLASS. This method actually generates a POSTGRES retrieval statement to get the value from the
database and then returns it. In our implementation, we assign this value to the property, before return-
ing the value to the calling method. Note, that the (intermediate) storage of the value as a property
value is optional and depends on the requirements of an application. Storing the value with a property
allows for much faster subsequent retrievals, but imposes restrictions to the applications with respect
to autonomous updates of the external database. Note, that for a given strategy, one can generate the
object type definitions and the implementations of the methods automatically.

  OBJECTTYPE conference_InstType;
  INTERFACE
    PROPERTIES conf_id: STRING;

title: STRING;
topics: STRING;

    location: STRING;
duration: STRING;

    language: STRING;
    METHODS getconf_id() : STRING;

gettitle(): STRING;
gettopics): STRING;

    getlocation(): STRING;
   getduration(): STRING;
    getlanguage(): STRING;
  IMPLEMENTATION
  METHODS 
    getconf_id(): STRING;
    { IF ( conf_id == ’UNKNOWN VALUE’ ) title := SELF→getValue(’conf_id’);
        RETURN conf_id; };
    gettitle(): STRING;
    { IF ( title == ’UNKNOWN VALUE’ ) title := SELF→getValue(’title’);
        RETURN title; };

gettopics(): STRING;
    { IF ( topics == ’UNKNOWN VALUE’ ) topics := SELF→getValue(’topics’);
        RETURN topics; };
//  The methods getlocation, getduration and getttitle are implemented analogously.
  END;
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CLASS CONFERENCE METACLASS PG_METACLASS
  INSTTYPE conference_InstType
    INIT CONFERENCE→init(’conference’)
  END;

4.2 The Metaclass PG_RECOMPOSE_METACLASS

PG_RECOMPOSE_METACLASS realizes more complex mappings between relations and classes.
In general, the definition is structured similarly as shown for the metaclass PG_METACLASS. It dif-
fers insofar as we now have to provide more complex access methods as described in subsections
2.2.3 and 2.2.4. The relationships between the predefined metaclass Metaclass, the metaclass
PG_RECOMPOSE_METACLASS and an application class have been shown in Figure 4.

4.2.1 Definition of the Metaclass PG_RECOMPOSE_METACLASS

Again, the access to the POSTGRES database within the methods of the own type, instance type and
instance-instance type of PG_RECOMPOSE_METACLASS is realized using POSTGRES C library
functions. In order to provide a better understanding of the realization of the mapping with VML we
describe the effects of those methods instead of showing the actual VML/C++ method implement-
ation.

The metaclass PG_RECOMPOSE_METACLASS and its associated object types are defined as
follows:

(1) Definition of PG_RECOMPOSE_METACLASS

 
CLASS PG_RECOMPOSE_METACLASS METACLASS Metaclass
OWNTYPE PG_Metaclass_OwnType

    INSTTYPE PG_Metaclass_InstType
    INSTINSTTYPE PG_RECOMPOSE_Metaclass_InstInstType
  END;

(2) Definition of the object type PG_RECOMPOSE_InstInstType

The instance-instance type of the metaclass PG_RECOMPOSE_METACLASS is a subtype of
PG_Metaclass_InstInstType, and hence the method getValue(att: STRING): STRING and the mecha-
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nisms to support the mapping of the tuple to object identifiers are inherited from this type. Additional-
ly the type PG_RECOMPOSE_InstInstType provides three further methods, which are specializa-
tions of the general methods getValue and getOID introduced in subsection 2.2.3 and 2.2.4. The
method getValue (rel: STRING, joinatt : {STRING}, att : { STRING }): { || STRING ––> STRING|| }
recomposes complex values by joining the relation corresponding with the receiver object’s class
with relation rel using the set of join attributes joinatt and retrieving the values of the attributes att of
those tuples of rel meeting the join condition. These values are returned as a set of dictionaries. Dictio-
naries are used here as a technique to represent arbitrary tuple structures. The methods getOID(rel:
STRING, joinatt : {STRING}): {OID} and getOID(rel1:STRING, joinatt1: {STRING}, rel2:STRING,
joinatt2: {STRING}): {OID} are provided in order to establish reference-based relationships. The for-
mer computes the same join as the method getValue just described before, but retrieves the tuple iden-
tifiers of the tuples of rel which meet the join conditions and returns the object identifiers of the
instances of the class corresponding to rel which represent those tuples. The latter simply joins three
relations (the one corresponding with the receiver object’s class, rel1 and rel2) in the same way, re-
trieves the tuple identifiers of those tuples in rel2 meeting the join conditions and returns the object
identifiers of the appropriate instances of the class corresponding to rel2. For better readability we
define only the two methods described above for computing object-based references from value-
based references. It is straightforward to define a general, highly parametrized method which com-
putes a join between n relations.

  OBJECTTYPE PG_RECOMPOSE_Metaclass_InstInstType 
SUBTYPEOF PG_Metaclass_InstInstType;

INTERFACE
METHODS getOID(rel: STRING, joinatt: {STRING}): {OID};

getValue(rel:STRING,joinatt:{STRING},att:{STRING}):{||STRING––>STRING||};
getOID(rel1:STRING,joinatt1:{STRING},rel2:STRING,joinatt2:{STRING}):{OID};

     IMPLEMENTATION       
METHODS

getOID(rel: STRING, joinatt : {STRING}): {OID};
 { // Join the relation corresponding to the receiver object’s class with 

// the relation rel using joinatt. Retrieve the tuple identifiers of the tuples of rel
// which meet the join condition; find the class corresponding to rel and return the
//  object identifiers of its instances corresponding with those tupels.};

    getValue (rel: STRING, joinatt : {STRING}, att : { STRING }): { ||STRING ––> STRING|| } ;
     {// Join the relation corresponding to the receiver object’s class with the relation rel

//  using joinatt; retrieve the values of attributes {att} from those tuples in rel which
// meet the join condition and return those values. Those values are returned as a
// set of dictionaries, where the key of the dictionary represents the attribute name
// and the value of the dictionary the attribute value as a string in relation rel 
//  (this preserves the relational tuple structure) };
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getOID(rel1:STRING, joinatt1: {STRING}, rel2:STRING, joinatt2: {STRING}): { OID };
 { // Join the relation corresponding to the receiver object’s class with 

//  the relations rel1 and rel2 using joinatt1 and joinatt2. Retrieve the 
//  tuple identifiers of the tuples of rel2 which meet the join condition;
//  find the class corresponding to rel2 and return the
//  object identifiers of its instances corresponding with those tupels.};

END:

4.2.2 Example for a Recomposition Mapping

Let us assume that we have given the following fragment of a POSTGRES schema:

conference (conf_id, title, topics, location, duration, language)
conf_info_address (conf_id, name, mail_addr, city, state, country, phone_no, fax_no)
session (conf_id, sess_id, duration, subject, chair_name, chair_affil)
lectures (conf_id, sess_id, lecturer_name, lecturer_affil, topic)
hotel (name,  mail_addr, city, state, country, phone_no, fax_no)
reservation (conf_id, hotel_name)

Let us assume that we want to recompose these relations to classes according to the mapping de-
scribed previously.

The attribute conf_id is the primary key of relation conference and a foreign key in the other relations.
Therefore conference is the base relation, conf_info_adress, session and lectures are non-base rela-
tions. The instances of the class CONF_EVENT which results from the mapping correspond to the
tuples of conference; the attributes of conference and conf_info_adress are modelled as single-valued
properties since conf_id is the only key attribute in these relations. In contrast to that, conf_id is only a
part of the set of key attributes in the relations session and lectures; there may exist several tuples in
session for a tuple in conference. Furthermore, since the key attribute sess_id of relation session is a
foreign key attribute in relation lectures, for a tuple in session there may exist several tuples in lec-
tures. Therefore the attributes of session and lectures are combined to a complex set-valued property
with nested tuple structure which models all sessions of a conference including the corresponding
lectures.

The relation hotel is a base relation since it does not contain a foreign key. It is therefore mapped to a
separate class HOTEL. The relation reservation represents a relationship between conference and ho-
tel. It was generated as a consequence of the decomposition of the relational schema. Consequently
this relation will dissolve in the mapping since it can be substituted by object references between the
instances of the classes CONF_EVENT and HOTEL.

The classes CONF_EVENT and HOTEL and their instance types CONF_EVENT_InstType and HO-
TEL_InstType are defined as follows:
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DATATYPE conf_type = [conf_id: STRING, title : STRING, topics : STRING,
location : STRING, duration : STRING, language : STRING];

DATATYPE conf_info_address_type = [name : STRING, mail_addr : STRING,  city : STRING,
state : STRING, country : STRING, phone_no: ARRAY[SUBRANGE 0..15] OF INT,

       fax_no : ARRAY[SUBRANGE 0..15] OF INT];
DATATYPE lectures_type = [ lecturer_name : STRING, lecturer_affil : STRING, topic : STRING];
DATATYPE session_type =  [sess_id: INT, duration : STRING , subject : STRING,

chair_name : STRING, chair_affil : STRING, lectures : { lectures_type  } ];

  OBJECTTYPE CONF_EVENT_InstType;
INTERFACE

PROPERTIES
conference: conf_type;
conf_info_address: conf_info_address_type;
sessions : {session_type}; // nested structure of sessions and lectures
hotels: {HOTEL}

METHODS
getConfernce_conf_id(): STRING;
getConference_title(): STRING;
// ...
getConf_info_address_name(): STRING;
// ...

  getSessions(): {session_type} ;
IMPLEMENTATION

EXTERN StringToInt(s: STRING): INT; // converts a string to an integer
METHODS

getConference_conf_id(): STRING;
{ IF (conference.conf_id == ’UNKNOWN VALUE’) 

conference.conf_id := SELF→getValue(’conf_id’);
RETURN conference.conf_id;};

getConference_title(): STRING;
{ IF (conference.title == ’UNKNOWN VALUE’) 

conference.title := SELF→getValue(’title’);
RETURN conference.title;};

//  Other methods operating on property conference are implemented analogously
getConf_info_address_name(): STRING;
{ IF (conf_info_address.name == ’UNKNOWN VALUE’) 

conf_info_address.name := SELF→getValue(’conf_info_address’, {’conf_id’}, {’name}’);
RETURN conf_info_address.name;};

 // Other methods operating on property conf_info_address are implemented analogously
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getSessions(): {session_type};
{ VAR actSess : {||STRING––>STRING||};
  VAR actLect: {||STRING––>STRING||};
  VAR actSessTuple: session_type;
  VAR actLectTuple: lectures_type;
  VAR s : ||STRING––>STRING||;
  VAR l : ||STRING––>STRING||;

IF (sessions == {})
  { actSess := SELF→getValue(’session’, {’conf_id’}, 

{’sess_id’, ’duration’, ’subject’, chair_name’, chair_affil’}); // retrieve all sessions
 actLect := SELF→getValue(’lectures’, {’conf_id’}, 

  {’sess_id’, ’lecturer_name’, ’lecturer_affil’, ’topic’}); // retrieve all lectures
// combine sessions and lectures to one nested structure

FORALL (s IN actSess) 
{  actSessTuple.sess_id:= StringToInt (GETVALUE s FROM ’sess_id’);

actSessTuple.duration:= GETVALUE s FROM ’duration’;
actSessTuple.subject:= GETVALUE s FROM ’subject’;
actSessTuple.chair_name:= GETVALUE s FROM ’chair_name’;
actSessTuple.chair_affil:= GETVALUE s FROM ’chair_affil’;
FORALL (l IN actLect)
{ IF (actSessTuple.sess_id == StringToInt(GETVALUE l FROM ’sess_id’))

{ actLectTuple.lecturer_name := GETVALUE l FROM ’lecturer_name’;
  actLectTuple.lecturer_affil := GETVALUE l FROM ’lecturer_affil’;
  actLectTuple.topic := GETVALUE l FROM ’topic’;
  INSERT actLectTuple INTO actSessTuple.lectures; } }
INSERT actSessTuple INTO sessions;}}

RETURN sessions;};
  getHotels(): {OID};

{ IF (hotels == {})
hotel:= SELF→getOID(’reservation’, {’conf_id’}, ’hotel’, {’hotel_name’});

  RETURN conferences;}
END;

  CLASS CONF_EVENT METACLASS PG_RECOMPOSE_METACLASS
     INSTTYPE CONF_EVENT_InstType

 INIT CONF_EVENT→init (’conference’)
  END;
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OBJECTTYPE HOTEL_InstType;
INTERFACE

PROPERTIES
hotel_name: STRING;
mail_addr: STRING;
city: STRING;
state: STRING;
country: STRING;
phone_no: ARRAY [SUBRANGE 0..15] OF INT;
fax_no: ARRAY [SUBRANGE 0..15] OF INT;
conferences: {CONF_EVENT};

METHODS
  getHotel_name(): STRING;
  getMail_addr(): STRING;
  getCity(): STRING;
  getState(): STRING;
  getCountry(): STRING;
  getPhone_no(): ARRAY [SUBRANGE 0..15] OF INT;
  getFax_no(): ARRAY [SUBRANGE 0..15] OF INT;
  getConferences(): {OID};

IMPLEMENTATION
EXTERN StringToArray (s: STRING) : ARRAY [SUBRANGE 0..15] OF INT;
// This is an external function to convert strings to arrays (provided the string
// contains single numbers separated by spaces. It can be used in the following
// method implementations
getHotel_name(): STRING;

      { IF ( hotel_name == ’UNKNOWN VALUE’ )  hotel_name := SELF→getValue(’hotel_name’);
       RETURN hotel_name; };
//  The methods getMail_Addr, ..,  gettCountry are implemented analogously.

getPhone_no(): ARRAY [SUBRANGE 0..15] OF INT;
      { IF ( phone_no[0] == 0) 

phone_no := StringToArray (SELF→getValue(’phone_no’));
RETURN phone_no;};

//  The method getFax_no is implemented analogously.
  getConferences(): {OID};

{ IF (conferences == {})
conferences:= SELF→getOID(’reservation’, {’hotel_name’}, ’conference’, {’conf_id’});

  RETURN conferences;};
    END:

   CLASS HOTEL METACLASS PG_RECOMPOSE_METACLASS
 INSTTYPE HOTEL_InstType
 INIT HOTEL→init (’hotel’)

  END;
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5 Conclusion

In this paper we have shown the integration of a relational database into the object-oriented federated
database management system VODAK using the metaclass concept of the VODAK Modelling Lan-
guage VML. First we described a straightforward mapping between the relational and the object-ori-
ented data model. Then, based on comparison of the expressive power of the two data models we de-
fined more complex mappings which reduce the gap between the two worlds by allowing a semantic
enrichment of the relational schema within the object-oriented schema. In order to support these map-
pings efficiently we introduced specific access methods. Then we introduced the object-oriented data
model of VODAK which is used as the canonical model for the mapping, and focused on the meta-
class concept of VML. As an example we gave a short overview of an actual implementation of the
access methods to POSTGRES databases making use of the metaclass concept. This implementation
is based on POSTGRES V4.0. We illustrated the prototype implementation applied to a fairly com-
plex relational schema.

Beside the standard features of a relational database management system POSTGRES provides ad-
vanced concepts like functions and rules. In principle one could incorporate such schema information
in method bodies. This was not investigated so far since the access to this schema information was not
readily available.

The metaclasses are the bases for the integration of relational databases into VODAK. (Semi-)Auto-
matic integration tools can use these metaclasses in the integration process. We propose two interest-
ing directions of further research: first, a limited but automatic translation capability of relational into
object-oriented schemas more advanced than the straightforward approach; second, interactive tools
for schema integration, both based on the mappings which allow for semantic enrichment of the rela-
tional schemas.
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