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Abstract

This paper presents a specific approach of integrating arelational database system into a federated database
system. The underlying database integration process consist of three steps: first, the external database systems
have to be connected to the integrated database system environment and the external data models haveto be
mapped into a canonical data model. This step is often called syntactic transformation including structural
enrichment and | eadsto component schemasfor each external DBM S. Second, the resulting schemasfrom the
first step are used to construct export schemas which are then integrated into global, individual schemas or
views, inthethird step. In this paper wefocuson thefirst step for relational databases, i.e., the connection of a
relational database system and the mapping of the relational model into a canonical data model. We take
POSTGRES astherelational database system and the object-oriented federated database system VODAK as
theintegration platform which provides the open, object-oriented data model as the canonical data model for
the integration. We show different variations of mapping the relational model. By exploiting the metaclass
concept provided by VML, the modelling language of VODAK, we show how to tailor VML such that the
canonical datamodel meetsthe requirements of integrating POSTGRES into the global database system V O-
DAK in an efficient way.
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1 Introduction

Electronic information management systems are complex human centered activities which produce
and consume the most diverse kinds of information. Today many of these activities are supported by
autonomous systems which employ different data management facilities with heterogeneous data
models, e.g., arelational model, ahierarchical model, an object-oriented datamodel, or —specifically
valid for public databases — some dedicated file system with specialized retrieval and presentation
functionality. In addition, the information is represented at different levels of detail, with mutual in-
consistenciesin structure, naming, scaling, and behavior, whereby much of thisbehavior ishiddenin
the implementation of the autonomous systems.

However, more and more applicationslikethosein the field of cooperative authoring and publishing
or telecommuni cation services and administration definitely need integrated accessto their underly-
ing, autonomous, heterogeneous information bases. It is needed because these applications demand
integrated processing dueto consistent management of complex interrel ated dataaswell asintegrated
exchange of information produced and consumed by the many participants in an application. Such
applications should provide for akind of individual, integrated, global views onto the underlying re-
Sources.

Thereexist several approachesand projectswhich addressinteroperability or integration of informa-
tion bases. [25], [17], [1], and [3] give good overviews and present fundamental conceptsincluding
the terminology of the different approaches, e.g., multidatabase systems, multidatabase languages,
and federated database systems. MRDSM [15], OMNIBASE [21], and CALIDA [7] are projects
which realized the integration of databases by multidatabase languages, but which require akind of
sophisticated user becausethe user still needsinformation about the distribution of data, about how to
resolve semantic ambiguities and other typical well-known problems which arise when integrating
heterogeneous databases. SIRIUS-DELTA [16], DDTS[2], Mermaid [26], Multibase [14], and our
approach taken in KODIM can be mentioned as projects which follow the federated database ap-
proach. Thetool sand techniquesdevelopedinKODIM ([23],[8],[4],[5],[9],[19],[18]) for semantic
integration assist incremental integration driven by actual information requests of end users and the
dynamic maintenance of integrated schemas driven by external schema evolution. This approach
triesto meet the requirements of realistic situations with abig number of external information bases
(which —due to their autonomy — are subject to only locally controlled constant change) in which
completely integrated viewsvalid for al userscan hardly be achieved with reasonabl e effort. In addi-
tion, many available information sources (e.g., online-databases) do not even provide fine grained,
explicitly structured datalike relational databasesdo. Thus, in KODIM we also develop toolsfor the
structural enrichment of data from external information sources which do not provide any kind of
schema|[6].

Database integration stepsin KODIM can be partitioned into two conceptual layers:



(i) Atabaselayer, heterogeneous datamodels haveto be mapped to auniform datamodel (syntac-
tictransformation phase). Thisrequiresthetrandglation of manipulation languagesand thetrans-
formation of diverse dataformats as well as the connection of external database management
systems or other systems providing external data.

(i) On top of this bottom layer, i.e., on the basis of the uniform data model, implicit structure &
semantics haveto be made explicit, inconsistenciesin structure, naming, and scaling haveto be
overcome, and semantic inter relationships between data have to be acquired in order to estab-
lishintegrated viewsonto the external resources (semantic enrichment and semanticintegration

steps).

Figure 1 showsthe variety of transformations which datafrom diverse resources have to undergo in
order to beintegrated. KODIM usesthe datamodel of the open, object-oriented database system V O-
DAK asthe canonical datamodel, to which the external schemasare mapped to. To use an object-ori-
ented datamodel asthe canonical model iswidely recognizedto beavery promising choicefor easier
representation of external datamodelsaswell asfor schemaintegration purposes (see[25], [23], [8],
and [22]).

Thesyntactic transformation step providesfor asyntactically uniformVODAK interfaceto theexter-
nal information bases, describing their database schemas (including constraints), retrieval & manipu-
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lation capabilities, and their file formats. The transformation is modularized by means of the object-
oriented VODAK Modelling Language (VML), i.e, for al imported data (schemas as well as
instances) object typesand classes are established, supporting the capabilitiesof external information
bases in a uniform language.

By syntactic transformation, external information bases are accessible according to a uniform data
model, but they are not interrel ated semantically. Two additional mapping stepsarerequired to inter-
relate and merge these data semantically:

Semantic enrichment makes implicit structure and semantics explicit and associates additional be-
havior, which is hidden in local application programs or even worse in informal local conventions.

Semantic integration is needed to combine several schemas. Structural and semantic differencesin
representation, conflictsin naming and scaling haveto beresol ved, correspondences between objects
haveto beidentified, and appropriatefoci haveto be specified in order to establish an (or acouple of)
integrated user view(s).

In this paper we focus on the problem of integrating relational database systems and how to get (en-
riched) export schemas. We discuss several alternatives and their limitations for the syntactic trans-
formation step and the impact of semantic enrichment. We will not discuss the semantic integration
phaseinthispaper. Details about the techniques employed for thefinal semantic integration stepsare
givenin [23], [20], [24], [4], [5], [19], and [18].

Therest of the paper isorganized asfollows: Chapter 2 givesageneral description of the characteris-
ticsand problemsof different mappingsof arelational schemainto an object-oriented database model
likethedatamodel of VODAK. Chapter 3 givesabrief outline of the conceptsof thedatamodel and of
VML as far as needed to show the realization of the mappings in Chapter 4 by exploiting specific
modelling features provided by VML. Chapter 5 concludesthe paper and gives some hintsto further
improvements.

2 Characteristics of Mappings

In order to characterize mappings from relational schemas and their corresponding databases to ob-
ject-oriented schemas and their corresponding databases we first have to determine the correspon-
dences between the concepts of both datamodels. Then we can describethe general characteristics of
avariety of aternative mappings, including different forms of semantic enrichment.

2.1 Correspondences between the Data M odels

The basic concepts of the relational model are relations, tuples and attributes. A relation can be
thought of asatablewith columnsof different types. These columnsare called the attributes, whereas



therowsof atable, i.e. theactual contents, arethetuplesof arelation. Inthe standard relational model
the attribute types are restricted to primitive data types, e.g. String, Integer etc. The structure of the
tuplesis then determined through the definition of the relation expressed in the data definition lan-
guage (DDL). Relations and tuples are manipulated (i.e. created/appended, changed, deleted) using
the data manipulation language (DML).

In contrast, the most relevant concept of an object-oriented data model in thisframework isthe con-
cept of obj ects, whereaseach object isaninstance of aclassand may beaclassitself. Thestructureand
behavior of an object isdetermined through aset of property and method definitionsspecifiedwiththe
object’s class. The type of a property can be any primitive (i.e. String, Integer etc. and also object
identifiers) or complex datatype (i.e. Array, List, Set etc.). Access to an object’s propertiesis only
allowedthroughtheinterface, i.e. the set of methods defined with the object’ s class. The datamanipu-
lation language providesfor sending messagesto objectsin order to make them execute certain meth-
od implementations. This ensures object encapsulation and, asalogical consequence, controlled ac-
cess to data stored in objects.

We concentrate on the structural aspects of the object-oriented data model when defining amapping
from relational to object-oriented schemas since the standard rel ational model s do not provide meth-
ods or functions. Then thereis anatural correspondence between the following concepts:

e relations and classes
e  attributes and properties

e tuplesand instances

First therelation definitions of arelational schemahaveto betranslated to class definitions of an ob-
ject-oriented schema. For example, this can be donein astraightforward way according to the above
correspondences. However, thestraightforward tranglation isnot necessarily thedesirableonesinceit
doesnot exploit thefull expressive power of the object-oriented datamodel . Wewill thereforediscuss
more refined mappings in subsections 2.2.3 and 2.2.4.

For mapping thedataintherelational model to datain the object-oriented model thingsare more com-
plicated. The concept of object-identity plays an important role in an object-oriented data model.
When using an object-oriented datamodel asthe canonical, global data model, information stored in
external database systemsis represented as objectsin the global database system. These objects pos-
sess object identifiers which consequently also identify data stored in the external system. Hence,
there must be some mapping from global object identifiers to appropriate external “object identifi-
ers’. In case of relational data base systems we miss the concept of object identifiers as conceptual
dataunitsareidentified by key values. Hence, the system hasto maintain somehow amapping of key
values to object identifiers.



At first glance, the mapping between an external identification mechanism and object identity looks
quite simple. But in fact, aswe will seelater in subsection 2.3 one has to take into account different
kinds of these mappings depending on the “quality” of the external identification mechanism.

2.2 Mappings from Relational to Object-Oriented Schemas

In thefollowing wewill introduce several kinds of mappingsfrom relational to object-oriented data-
bases. We start with the straightforward one already indicated in the previous section by the natural
correspondences between the two data models. However, as we will point out the straightforward
mapping may in certain cases lead to an unnatural object-oriented modeling. Therefore we will
introduce other types of mappings which exploit the additional expressive power of the object-ori-
ented data model. We analyze which support hasto be given in the object-oriented world in order to
make the mapping efficient.

2.2.1 Straightforward Mapping

A relation is mapped to one class and vice versa. An instance of a class corresponds to exactly one
tuple in the relation which correspondsto the class. Each attribute of arelation is mapped to acorre-
sponding property of aclass. A relational schemaS={Ry,...,.R\}, R(& 1,8 2, ..., & ki), 1 <1 <N, may
be translated automatically to an object-oriented schema according to the following rule:

For each relation R in Saclass Cl; with properties g j, 1 <j <k, isdefined,
where property G j correspondsto attribute g j of relation R.

The values of the properties G j in the object-oriented database are derived from the corresponding
attributes g j intherelational database. Therefore accessmethodstothevaluesstoreding ; havetobe
provided. For simplicity weconsider for themoment only reading methods. Such amethod call which
enablestheaccessto arelational databaseisof theform get(a): v, whereaisthe name of an attribute of
thisrelation and visthevalue of ainthetuplewhich correspondsto the object representing thistuple.
Remember that in an object-oriented system each method call hasto be sent to an object, whichinthis
case is the instance of a class representing a specific tuple in the corresponding relation.

This mapping type performs only the syntactic transformation step and does not contribute to the se-
mantic enrichment of an external schema. It produces an unnatural object-oriented modelling since
relationships in the relational model (which are represented as relations) are mapped to classes and
not to references between objects. For instance, astraightforward mapping of therelationsR; (A B),



R (A C)and R (CD) yieldstheclassesCly (A B), Clo (A.C) and Cl3 (C D). Instead of mapping Ro
toaclassitismorenatural to represent it by additional propertiesof Cl; and Cl3 whichthen hold refer-
encesto the corresponding objects of therespective other class (seealso Example4). Thereforeinthe
following we will introduce more sophisticated kinds of mappings.

2.2.2 Comparison between the Expressive Power of the Object-Oriented and
the Relational Data M odel

Let usrecall some characteristics of therelational datamodel. Datais stored in tables with attributes
which can only be of aprimitive datatype (1NF). Relationships between data are expressed through
thevaluesof common attributesin different relations. It isknown that thisleadsto different anomalies
if the relations are not designed carefully, i.e. they are not in one of the well-known normal forms
(3NF, BCNF, etc.). The basic mechanism to transform an arbitrary relational schemainto anormal-
ized schemaisto decompose therelations. Both therestriction to primitive datatypes and the decom-
position of relationslead to asituation whererel ated dataresidein several relations, afact that |leadsto
frequent computations of joins between relations.

In contrast to thisthe (structural) object-oriented datamodel allowsamodelling whichismuch closer
to the structure of the “real world”. The additional expressive power emerges mainly from two
sources: first, there is no restriction on the datatypes which properties can have, e.g. set and tuple
constructors may be used. Second, the concept of object identifiers allows to express rel ationships
between data explicitly, e.g. properties may hold references to other objects. While in the relational
model the maintenance of referential integrity constraints requiresto guarantee that for each foreign
key valuethere existsacorresponding primary key value, in object-oriented modelsit isnecessary to
ensure that properties hold only references to existing objects.

We summarize the differences between the datamodelsin the following tablein which werelate fea-
tures of the object-oriented model to the corresponding restrictions in the relational model.

Object-Oriented Data M odel Relational Data M odel
complex values INF
references 3NF, BCNF

Wewill now study different cases how mappingscan invert the decompositionsof relationsdiscussed
above and can be used to construct more natural schemas in the object-oriented data model. These
mappings automatically lead to semantic enrichments of the relational schemas.

1. Weextend the standard notation for relations, denoting arelation by R(AB ...), where A, B, ... areattribute sets, e.g.
A={&,...,.ana}, and the primary key of Risunderlined, to classesin thefollowing way: CI(AB ...) istheclass Cl(ag
: T1, ..., @c: Tac), Where Tj are primitive property types and g are property names.



2.2.3 Reconstructing Complex Values

Case 1
Let Ry (A B) bearelationwithprimary key A= {ay, ..., &z}, andlet R, (A CD) bearelationwhich has
A asforeign key. Assume that relation R, is not needed in any other context (e.g. there are no other
foreign keysin Ry). Disregarding the straightforward approach we have the possibility to combine
these two relations in one class with the following structure

CI(A B, t: {{CD]})2
Thetype of thethird property tin Cl is set-valued because several tuplesin R, can correspond to one
tuplein Ry having the same value for A. The elements of this set are tuples in order to maintain the
dependency between C and D expressed in Ry.

Example 1.
Let Ry betherelation
conference(conf_id, title, topics, location, duration, language)
and Ry be
session(conf_id, sess id, duration, subject, chair_name, chair_affil).

The class which results from the mapping can then be defined as
Conference(conf_id, title, topics, location, duration, language,
sessions.{[sess _id, duration, subject, chair_name, chair_affil]}) [l

Wecall relation Ry thebaserelation inthe mapping, sinceit containsthe primary key, and R, iscalled
the dependent relation. More generally, we can consider cases where there are several dependent
relations. Thiscan happen in two ways: either there are other relations containing the primary key of
the base relation as (the only) foreign key or there are relations containing the primary key of a
dependent relation as an additional foreign key. In the first case we get additional set-valued
properties of the kind introducesin the example, in the second case we can construct deeper nestings
of the complex values. Thisisillustrated in the following case.

Case 2:

LetR; (A B)and R (A C D) bedefined asbefore. Let Rz (A C E) bearelation with A asthe primary

keysand C of R, asforeign keys. Again assume that R, and R; are not needed in any other context.

Now wehavethepossibility to combinethesethreerelationsin one classwith thefollowing structure:
CI(A B,s {[CD,t: {[E]}I]D).

2. InCI(A, a:T) adenotesan additional property resulting from the mapping, and for tuple typeswewrite [A] for [
i T, ey 80Tl



Example 2:
Let Ry and Ry be the relations conference and session asin the previous example. Let Rg be
lectures(conf_id, sess id, lecturer_name, lecturer_affil, topic)

The class Conference can then be defined as
Conference(conf_id, title, topics, location, duration, language,
sessions.{[sess _id, duration, subject, chair_name, chair_affil,
lectures: {[lecturer_name, lecturer_affil, topic]}]}) |

Thefirst obvious advantageisthat by restructuring the datain thisway we can get closer to the struc-
ture of the “real world’. Moreover there is another, less obvious, advantage which becomes clear
when we analyze what kind of access to the relational database can be provided in supporting this
mapping of arelational schema. Assume we only support access methods get(a): v as introduced for
the straightforward mapping. Thenfirst all the relations are mapped to classesin the straightforward
way; inanext stepwebuild complex-structured classesupon them. Thenonehastoretrievethevalues
for thecomplex classesby val ue-based j oinsinsi de the obj ect-ori ented database management system.
Thiswill ingeneral bemuchlessefficient than performing the corresponding (optimized) joinsinthe
relational database management system.

Theseobservationslead to thefollowing conclusion: thereisaneed for more complex accessmethods
to the relational database, e.g. method calls of the form

get(R, {keyattr}, [attr]): {[attrval]}

where Risadependent relation, {keyattr} isthe set of primary key attributes of the base relation and
[attr] isatuple of attributes whose values should be retrieved. In the case of Example 1 the method
get(R, A, [CD]): {|CD]} issenttoaninstanceof classCl, which correspondsto onetupleof Ry, and
returns the appropriate set of tuples in R, Now the implementation of this access method can
arbitrarily use the mechanisms of therelational DBMS, e.g. compute aval ue-based join between Ry
and R efficiently.

A more general access method, which allows a nesting of arbitrary depth is of the form
get(<[R {keyattr}]>, [attr]): {[attrval]}

where instead of one relation with the corresponding key attributes now lists of relation names and
key attributes are given as arguments.
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2.2.4 Substituting Value-Based by Reference-Based Relationships

Case 3:

Let R, (A B) bearelationwith primary key A, andlet R, (A CD) bearelationwhich hasAasforeign
key. Assumenow that relation R, isneeded in another context (e.g. thereisanother foreignkey inRy).
Therefore we cannot map both relations to asingle class. Despite the fact that, in this case, we map
eachrelationto adifferent classwe haveadditional possibilitiesto enrich the structure of theresulting
classes. Some of the alternatives are shown in the following:

e Cli(A B,r: {ref Clp}), Clo(A CD)

e Cli(A B),Clo(ACD,r: ref Cly)

e Cly(B,r: {ref Clp}), Clo(ACD, s: ref Cly)
e Cly(B,r: {ref Clp}), Clo(C D, s: ref Cly)

where ref Cl denotes a reference to an instance of class Cl which is realized on the basis of object
identifiers. Thislistisnot exhaustive and the decision which mapping is preferred depends on which
access paths are needed more often and which propertiesare needed in which classes. For example, in
the last case the attributes A are dropped assuming that they were only needed for establishing the
relationship between Ry and Ry

Example 3:
Let Ry and R, again bethe relations conference and session as given in Example 1. Then we can map
these relations to the classes Conference and Session as follows:

e  Conference(conf_id, title, topics, location, duration, language, sessions.{Session})
Session(conf_id, sess id, duration, subject, chair_name, chair_affil)

e  Conference(conf_id, title, topics, location, duration, language)
Session(conf_id, sess id, duration, subject, chair_name, chair_affil, conference: Conference)

e  Conference(title, topics, location, duration, language, sessions.{Session})
Session(conf_id, sess id, duration, subject, chair_name, chair_affil, conference: Conference)

e  Conference(title, topics, location, duration, language, sessions.{Session})
Session(sess _id, duration, subject, chair_name, chair_affil, conference: Conference)

4

Againwecall relation Ry thebaserelationinthe mapping, sinceit containstheprimary key, and R is
called the dependent relation.By the same arguments as in the previous section we now have to
provide a new type of access methodsin order to exploit the relational DBMS. In the simplest case
these methods are of the form
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get(Ry, {keyattr}): {ref Clg} (get(Ry, {keyattr}): ref Cly respectively )

where Ry isthe dependent relation, {keyattr} isthe set of primary key attributes of thebaserelation R,
and ref Clg (ref Clp) is areference to an instance of the class Cly (Clp) which corresponds to the
dependent (base) relation. The receiver of a cal of this method is an instance of Cl,(Cly). For
simplicity weassumethat the key attributeswhich are used to join the base and the dependent relation
have the same names in both relations. The following case shows a more complicated situation:

Case 4
Let Ry (AB), R (A C)and R (C D) be given. In this case R, serves only to represent an n:m
relationship between R; and Rz and therefore can be dissolved in the following way

Cli(AB,r: {ref Cl3}), CI3(CD, s {ref Cl{})

where the classes Cl; and Cl3 correspond to the relations Ry and Rs.

Example 4.

Let Ry be the relation conference as defined in Example 1. Let R, be
reservation(conf_id, hotel_name)

and R; be
hotel (name, mail_addr, city, state, country, phone_no, fax_no)

The relation reservation can be dissolved by defining the classes Conference and Hotel as
Conference(conf _id, title, topics, location, duration, language, hotels. {Hotel})
Hotel (name, mail_addr, city, state, country, phone_no, fax_no, conferences: { Conference})

H

To accomplish the mapping of the previous exampl e efficiently we have to provide more general ac-
cessmethods, i.e. methodswhich allow to performjoin sequencesover several relations. These meth-
ods are of the form

get(<[R, {keyattr}]>): {ref Cl}

where instead of one relation with the corresponding key attributes now lists of relation names and
key attributes are given as arguments.

2.2.5 Schema Restructuring

Of course, when mapping relational schemas to object-oriented schemas other restructurings can be
performed than those provided by the mappings discussed above. These can exploit additional se-
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mantic knowledge of the schemabeyond the knowledge about key attributes. However, theserestruc-
turingsareof adifferent naturesincethey arenot only inversionsof normalizing processesof relation-
al schemas which are necessary due to the restrictions of the relational data model.

For example, in [27] an approach for trandlating relational schemas into object-oriented schemasis
discussed, where some interesting translations are made in the case where inclusion constraints are
givenfor therelational schemas. However, only the problems of view integration and not of database
system integration are considered. Some of the mappingsthat we proposed in subsection 2.2 can also
be found there. But the authors do not consider the possibility of substituting value-based by refer-
ence-based rel ationshi ps as discussed in subsection 2.2.4, and thus arrive at schemas containing rela
tionship objects, something we try to avoid where possible by our approach.

2.3 Mapping Populations—the I dentification Problem

In the previous subsection we considered the different types of mappings between arelational and an
object-oriented schema. In addition to this mapping of schemas we need to describe the mapping of
concrete tuples to concrete objects.

From the previous discussions about which kinds of mappings we consider we make the following
observation: from arelational schemaS={Ry, R, ...R} adistinguished subset S ischosen. For each
relation Rin S acorresponding class Cl is defined. It is clear that the extension of aclass Cl corre-
sponds one-to-one to the extensions of R, i.e. for each tuplein Ran object in Cl isgenerated. Thein-

formation stored in the relations ReS\S is then accessed through the complex access methods
introduced in 2.2.3, i.e. for the tuples in these relations no individual objects are generated.

In an obj ect-oriented datamodel objectsareidentified by their unique object identifiers. Object iden-
tity isanimportant concept in order to construct complex objectsor to provide object references. Fur-
thermore, object identity is very important to identify objects beyond session boundaries3.

Inarelational database theidentification mechanism isbased on key values. The mapping of key val-
uesto object identifiers may become very complex and may impose restrictions on the usage of the
global objects because key values may change. Furthermore it is not sufficient only to consider the
key valuesalonebut also therelation invol ved hasto be used asaparameter in the mapping. In POST -
GRES, for which we later provide the actual implementation of the mapping functions, there exists
the concept of tupleidentifiers. Thesearerealized asan additional attributein each relation and do not
change throughout the lifetime of atuple. In this case we can map tuple and relation identifiersto ob-

3. Thisisachieved in only those systemswhich alow to explicitly ask for an object identifier which can be stored in
one session and retrieved in another session.
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jectidentifiers. If arelational system does not providetupleidentifiers, we have to map the values of
the”real” key attributes and the relation identifiersto object identifiers. Objects with corresponding
identifiershaveto begenerated for al tuplesin thoserelationsfor which acorresponding classisgen-
erated.

Once the mapping from key values resp. tupleidentifiersto object identifiersisfixed we haveto de-
fine a strategy how the object-oriented database is popul ated.

(1) Theinstances of the classes are generated when the database isinitialized. Adding or deleting
tuplesin the relational database has to be propagated to the object-oriented view.

(2) Theinstances of the classes are generated on demand. Thisrequires additional access methods
which can be sent to classes and trigger queriesin the relational database such that the result of
the query leads to the generation of instances in the object-oriented database.

In both cases changes of key attributesin the relational database have to be propagated to the object-
oriented database if the object identifiers are derived from key values.

Additionally to the question when instances are generated we have to decide how the attributes of the
relations are represented within theinstances. Obviously this has an important impact on duplicating
data and keeping the object database consistent with the external relational database. Again we can
distinguish several possibilities.

(1) All attribute values are stored in property valueswhen the databaseisinitialized. Thisdemands
that any changesin the attribute valueslead to updatesin the obj ect-oriented database. Thismay
not only affect values but also references.

(2) Attributevaluesarestoredin property valueson demand. Although thisreducestheoverheadin
the initialization phase this leads to similar problemsasin (1).

(3) Attribute values are always accessed viathe access methods or in other words attribute values
arenot stored inthe object-oriented database. Thisavoidsthedifficultiesin dealing with updates
of the relational database. It means that the instances of the classes in the object-oriented data-
base have no own state expressed by properties.

Note that updates in the object-oriented database can aways be easily propagated to the relational
database sincethe correspondence between objectsand rel ational dataisknowninthe object-oriented
database.
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3 The Canonical Target Data Model of VODAK

In our project, the datamodel of VODAK servesasthe canonical target model in which the syntacti-
cally uniform component schemas are defined. In the following we will give a brief outline of this
model asfar asweneed it to show how the VML modelling featuresare used to realize the mapping of
arelational schema. For a more detailed description of the model see [13].

3.1 Object Types, Data Types, and I nheritance

Object Types

Thestructure and the procedural behavior of objectsare defined through abstract datatypeswhichwe
call object types. Every object typedefinitionisidentified by auniquetypeidentifier. Thedefinition of
an object type consists of sets of property definitions and method definitions. Every property defini-
tion consists of the name and the type of the property. Every method definition is represented by a
method signature and an implementation of the method.

Propertiescan bedefined either aspublic or asprivate properties. Private propertiesareonly available
(accessible) within the scope of the object type which defines them. If properties are declared to be
public they are available (accessible) from outside of the object type which defines them by specific
access methods which are automatically provided for public properties by the DBMS. Methods can
also be defined to be private or public, in analogy to public and private properties. Private methods
usually serve as auxiliary methods for the implementation of other methods.

Data Types

The types used for the definition of properties, formal parameters, and results of methods are either
primitive types or complex typeswhich can be built from predefined primitive types and object type
identifiersby applying type constructors. Wecall suchtypesdatatypesasthevaluesof thesetypesare
not stored as separate objectsin the database, which could beidentified by an object identifier. Similar
to an object type, a data type may be identified by a unique identifier.

Object Type Inheritance

IntheVODAK datamodel object typescan bederived from other object typesby meansof specializa-
tion. More specialized object types, called subtypes, are built through specifying how they differ in
their property and method definitions from already defined more general ones, called supertypes.

Anobject type T that is defined as asubtype of another object type Ty, specified through a subtypeOf
clause, imports the property definitions of its supertype. These are merged with the property defini-
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tionsgiven for the object type T itself. If aproperty (identified viaitsname) isdefined twice, i.e., itis
defined at object type T and at asupertype Ty, the specification of type T overridesthe one of typeT.
The subtypeOf relationship between T and T1 does not induce any relationship between objects of
type T and objects of type T;.

3.2 Objects, Classes, and M etaclasses

Objects

Objectsarerepresentations of material or immaterial real-world entities, or of abstract concepts, e.g.,
datamodel primitives. Objectsareidentified through unique object identifiers. The concrete state of
an object identified can conceptually be represented asaset of factual properties, i.e., pairsof proper-
ty namesand val ues. Possible statesof an object, i.e., itsdefinitional propertiesand thekind of proper-
ty values allowed to be stored with the properties, and corresponding methods are specified through
an associated object type.

Classes and their I nstances

Every object in the system is defined as an instance of exactly one class that contains all objects of
“equal” real world meaning. The structural properties and methods of these objects are defined
through an object type (the instance-type) associated with the class.

In the data model of VODAK aclassis not atype, but an object itself. A class serves as the object
which (a) collects dl itsinstances, and (b) has associated an object type as the instance-type of the
class.

M etaclasses

Asclassesare objects, they areinstances of other classes, called metaclasses. Hence, for aclass, three
levelsmay bedistinguished: theinstancelevel, constituted by theinstances of theclass, theclasslevel
constituted by the class object itself, and the metaclass level, constituted by the class's metaclass.

Common properties of the instances of a metaclass (which serve as classes) are defined by itsin-
stance-type. But, in addition, common properties of instances of several classes may be defined once
at the metalevel, i.e., a the common metaclass of these classes by an instance-instance-type. Addi-
tional individual properties and methods may be added at the (meta)classlevel by associating an ob-
ject type, called own-type, with a (meta)class.

Deter mining the Structure and Behavior of Objects
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Roughly, the structure and the behavior of any object is determined through
¢ the own-type associated with the object (if it is a (meta)class),
¢ the instance-type associated with the object’s class, and
¢ the instance-instance-type associated with the object’s metacl ass.

(Notice, that these types may be defined as subtypes of other types, and not only the properties and
methods specified directly with thesetypeshaveto be considered, but al so the propertiesand methods

inherited from the supertypes of these types).

Figure 2 shows how ametaclass M can be used to define common structure and behavior for classes
and their instances. Classes Cl; and Cl, are guaranteed to behave in the same way according to the
definitions given with the instance-type associated with the metaclass M. In general, instances of Cly
and Cl, havedifferent interfaces because of the different definitions specified with theinstance-types
associated with Clq and Cl». But, these interfaces consist of acommon part which correspond to the
definitions given with theinstance-instance-type of the metaclassM. Theinitia object type and class
structureisformed by afew predefined metacl asses (including the metaclass Metaclass) and object

types, but will not be discussed here in detail.

Metaclass InstinstType Metaclass InstType
------ D
+ Instance-instance-type Instance-type +
subtype-of instance-of subtype-of
| |
- i rftinceﬂ nstance-type instance-type_ ’k\\\\\\
defines common 777779 77/ defines common structure
structure and behav- and behavior reconciled with
ior reconciled with ) the instance-instance-type
the instance-type instance-of
instance-type
instance-of Instances and classes provide com-
mon behavior which is reconciled
to each other through the metaclass

Figure 2: Metaclasses determine structure and behavior of classes and their instances
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Classes and object type definitions which reflect specific application semantics constitute the ap-
plication layer (seethe areamarked with the patternC—). The metacl asses and the object types used
for their definition constitute the meta layer (see the area marked with the pattern ).

3.3 Message Passing and M ethod Execution

Thepropertiesof an object can be accessed (read or manipulated) only through the execution of meth-
odsdefined for the object. The execution of amethod isinvoked by sending amessage obj—m (args)
to the object.

The semantics of sending a message obj—m (args) to an object are as follows:

e Ifthemethod misdefinedfor the object obj, the code specified for misexecuted using the actual
parameters args.

e If themethod mis not defined for the object obj, the message obj—NoMethod (m, args) is ex-
ecuted, where the method mand its arguments args are passed as arguments to the user specifi-
able method NoMethod. The implementation of method NoMethod determines the future ex-
ecution of the method mwithin the scope of other objects existing in the database that may even
be members of other object classes.

Del egation of messagesto other objectsviathe method NoMethod all owsthe specification of apartic-
ular inheritance behavior for different semantic rel ationships between objects. In particular, thisabil-
ity has proven to be useful, when we added specialized modelling primitivesfor hypermediaand ar-
gumentative networks[10], database integration [11], and modelling of multimedia documents[12]
to the kernel data model. However, we will not further discuss this feature here.

3.4 Tailoringthe Model for Specific Application Needs

Thedatamodel of VODAK isan open, adaptable model which providesfor the specification of addi-
tional modelling primitives at ametalayer of adatabase schema That is, amodel designer can tailor
the model to meet specific modelling requirements by introducing appropriate modelling primitives
(semantic rel ationshi ps between classes and their instances) like aggregation, specialization, gener-
alization, grouping, part-of, etc. through the definition of metaclasses. The concept of metaclasses
and the distinction between classes and types alow to determine a common state and behavior of
classes and their instances at the metalayer independent of the specification given at the application
layer. Inthefollowing, we briefly illustrate how the kernel model can be adapted to meet specific ap-
plication needs, in our case, the integration of an external relational database system.

Starting with an initial default metaclass system (see the area marked with the pattern L——1 in
Figure 3) a model designer can adapt the model to integrate externa databases by defining meta-
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classeswhich provide the semanti cs needed to map modelling primitives used in the external schema
toVML. InFigure 3, themetaclassPG_METACLASSI sintended to support the straightforward map-
ping of POSTGRES relations and attributesto VML classes, properties and methods. In analogy to
PG_METACLASS, the metaclass SYBASE_ METACLASS could be intended to capture all the com-
mon semantics for integrating another relational database system.

Since the metaclass PG_ METACLASS s defined such that it supports a straightforward mapping, a
relationismappedto exactly oneclassin VML and atupleismapped exactly to oneinstance of aclass.
The common behavior and structure of an object which representsatuplein arelation, i.e. the access
methodsto the POSTGRES database, are specified by themetaclassPG_METACLASSsince (1) they
are common to all classes and instances resulting from the mapping, and (2) they are independent of
the application, i.e., independent of the contents of the concrete schemasto be integrated. Examples
for the common structure and behavior provided by the metaclass PG_METACLASS are the follow-
ing ones:

(1) Theaccessmethod get introduced for the straightforward mapping is sent to instances of aclass
representing arelation R. These instances have to know about the relation R they are derived
from, i.e. therelation identifier hasto be stored for theseinstances. Sincethisinformationisthe
samefor all instancesof aclassit issufficient to storeit oncewith the class. Hence, aclass(asan
object) needsto have aproperty and appropriate access methodsto storeand toretrievetherela
tion name.

(2) Everyinstanceof aclasscorrespondstosometupleinarelation. Therefore, every instance needs
some property and hasto respond to appropriate access methods which allow to store, to assign
and to retrieve the key values respectively tuple identifiers of the tuplein order to establish the
correspondence between atuple and the instance.

(3) Inaddition, amethod which retrievesthe value of a specific tuple attribute must be defined for
every instancein order to enabl e the mapping between attributes and properties. Thisisexactly
the get method introduced earlier in 2.1.

Note, that the propertiesand methods can be defined oncefor all POSTGRES schemasindependent of
the concrete contents of aschema.# Themethodin (3) ismadeavail ablefor the schemadesigner while
the structuresin (1) and (2) remain hidden.

A database application designer can now usethefunctionality provided by the metaclassto definethe
classeswhich correspond to therel ations. Supposewe have givenrelations Conference, Tutorial, Ses-
sion, etc. the designer may define classes CONFERENCE, TUTORIAL, SESSION, etc..

4. If wetakeinto account that one can integrate several relational databases managed by different database systems
then one can optimize the design of the different metaclasses by defining an appropriate object type hierarchy for
theinstance-types and instance-instance-types used for the metacl ass definitionsin order to avoid redundant defini-
tions.
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Figure 3: A metaclass modelling the straightforward mapping of a POSTGRES database.
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To ensurethat these classes actually correspond to specific relationshe declaresPG_METACLASSto
betheir metaclass, and specifies someinitialization (details are shown | ater). The schemadesigner is
free to specify whatever properties and methods he/she wants to have for the classes and their
instances. In order to accessthetuplesand attribute valuesin rel ations he/shejust can use the methods
provided by the metaclass.

If another type of mapping hasto be provided one can introduce another metaclasswhich providesall
the functionality needed by the other kind of mapping. For example, in Figure 4, the metaclass
PG_RECOMPOSE_METACLASSIsintended to providethe common structuresand methods needed
for the more complex mappings (see 2.2.2 and 2.2.3). Again, these properties and methods can be
defined with a metaclass since (1) they are common to all classes and instances resulting from the
mapping, and (2) they are independent of the application.

4 Realization of the Mappingsin VML

As we have shown in section 3.4 the mappings of a relational schema to a VML schema can be
realized using metaclasses. In thissection wewill first definethe metaclassPG_METACLASSfor the
straightforward mapping and give an example on how to map arelation to a class using the func-
tionality defined in this metaclass. In analogy to that we will define the metaclass PG RECOM-
POSE_METACLASS, which providesfor complex mappings, and show the recomposition of several
relations to a class by means of an example.

4.1 TheMetaclassPG_METACLASS

PG_METACLASSrealizesastraightforward mapping between rel ationsand classes, i.e. onerel ation
ismapped to oneclassand viceversa. Aswe have stated in subsection 2.2.2, theidentifier and the key
attribute identifiers of arelation haveto be stored with the corresponding classto enable the creation
of theclass' extent with respect to therelation’s extent. POSTGRES allows adecisive simplification
concerning the key attributes of arelation: the attribute oid (a tuple identifier) is implicitly defined
with every POSTGRES el ation. oid servesasakey sinceitsvalueisautomatically computed and left
unchanged whenever anew tupleisinserted in therel ation using the actual dataand time. Becauseoid
isdefined with every relationit can beregarded asauniversal, application independent key. It follows
that the access method provided for the instances of a class can use oid instead of the actual,
application dependent key attributes of the corresponding relation.

Therelationshi ps between the predefined metacl ass M etacl ass, the metaclassPG_ METACLASSand
some application classes are shown in Figure 3.
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Figure 4: A metaclass modelling more complex mappings of a POSTGRES database.




22

4.1.1 Definition of the MetaclassPG_ METACLASS

The access to the POSTGRES database within the methods of the own type, instance type and
instance-instance type of PG_METACLASS is realized using POSTGRES C library functions. In
order to provide a better understanding of the realization of the mapping with VML we describe the

effects of those methods instead of showing the actual VML/C++ method implementation.

The metaclass PG_ METACLASS and its associated object types are defined as follows:

(1) Definition of PG_METACLASS

CLASS PG_METACLASS METACLASS Metaclass
OWNTYPE PG_Metaclass_OwnType

INSTTYPE PG_Metaclass_InstType
INSTINSTTYPE PG_Metaclass_InstinstType

END;

(2) Definition of the object type PG_Metaclass OwnType

The own type of the metaclass PG_ METACLASS defines the methods linkdb and unlinkdb which

initialize and terminate the communication to a POSTGRES database.

OBJECTTYPE PG_Metaclass_OwnType;
INTERFACE
METHODS linkdb(db: STRING);
unlinkdb();
IMPLEMENTATION
METHODS
linkdb(db: STRING);
{/l'initialize communication with POSTGRES database db
3
unlinkdb();
{ /I terminate communication with currently accessed POSTGRES database
3
END;

(3) Definition of the object type PG_Metaclass InstType

Theinstancetype of the metaclass PG META CL A SS definesthe property relation and the methods
getRel andinit which areavailablefor application classes defined asinstancesof PG METACLASS.
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Theidentifier of therelation corresponding to aclassisstoredin property relation; the method getRel
just returnsthevalueof thisproperty. Themethodinit assignsthevalueof itsparameter to the property
relation and retrieves all actual values of the attribute oid from the corresponding relation, createsan
instance of the classfor each value and storesthisvalue with the new instancein property PG_Oidin
order to enable further access to non-key attributes®.

OBJECTTYPE PG_Metaclass_InstType SUBTYPEOF Metaclass_InstType;
INTERFACE
PROPERTIES relation: STRING;
METHODS init(rel: STRING);
getRel(): STRING;
IMPLEMENTATION
METHODS
init(rel: STRING);
{ relation :=rel,
/I retrieve set of tuple identifiers from relation rel;
/l create an instance of the class which executes the method
// init for each retrieved value and store this value in
/I property PG_Oid of the new instance
h
getRel(): STRING;
{ RETURN relation; };
END;

(4) Definition of the object type PG_Metaclass InstinstType

Theinstance-instancetype of the metaclassPG_METACLASS definesthe property PG_Oid and the
methods setPG_0Oid, getPG_Oid and getValue which are available for the instances of application
classes defined as instances of PG_ METACLASS. The value of the attribute oid of the tuple cor-
responding to the instance is stored in property PG_Oid. The methods setPG_Oid and getPG_Oid
store and return the value of property PG_Oid. The method getValue(att: STRING): STRING isused
toretrieve single values of attributes of the relation which correspondsto the class of thereceiver ob-
ject. Asparametersit takestheidentifier of theattribute of whichthevalueisrequested. getValue uses
theidentifier of the corresponding tuple stored with the receiver to determinethe correct tuplein the
database.

5. Usualy, the creation of theinstanceswhich correspond to the tuples of therelation will be done dynamically on de-
mand. But to simplify the presentation we will not show the implementation for this alternative.
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OBJECTTYPE PG_Metaclass_InstinstType SUBTYPEOF Metaclass_InstinstType;
INTERFACE
METHODS getValue(att: STRING): STRING;
setPG_Oid(oid: STRING);
IMPLEMENTATION
PROPERTIES PG_Oid: STRING;
METHODS
setPG_Oid(oid: STRING);
{ PG_Oid :=oid; // is used in init() };
getPG_Oid(): STRING;
{ RETURN PG_Oid; // used in method getValue()};
getValue(att: STRING): STRING;
{ I/ Retrieve attribute att from the tuple corresponding to the
Il instance receiving the method;
/I use the relation identifier stored with the class of the instance
I/l and the value of PG_Oid in order to construct the appropriate
/I POSTGRES retrieval statement.
/I Since the POSTGRES C library functions only return attribute values
Il as strings, return retrieved value as a string and leave the conversion to
Il other datatypes to the application programmer

END;

4.1.2 Examplefor a Straightforward Mapping

L et usassumethat we have giventhefollowing POST GRESrel ation conferencewith thekey attribute
conf_id.

conference (conf_id, title, topics, location, duration, language)

We define now aclass CONFERENCE by using PG METACLASS as its metaclass. The structure
and behavior of instances of class CONFERENCE isdefined by the object type conference_InstType.
We use the init method provided with the metaclass PG_ METACLASS to express that the relation
conference is mapped to the class CONFERENCE.

For each attribute given in the relation conference we define aproperty aswewant to have this attrib-
ute in our application domain. In this example we defined properties title, location, and language,
which correspond to the appropriate attributes of the relation. The properties conf_id, topics, and
duration aredefined in the sameway through the supertypesof conference InstType. Thisis, because
the corresponding attributes of the relation conference appear in other relations of the POSTGRES
schematoo. Hence, in order to avoid repeated definitions of these propertiesthey are defined once by
supertypes which are shared by the object types of several classes.
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All implementations of methods which retrieve the property values, i.e., which retrieve the attribute
valuesfrom the POSTGRES database, follow the same scheme: First, they test whether thevaluefor
theproperty hasalready been retrieved from the database. If not, thevalueisretrieved from theunder-
lying POSTGRES database by using the method getValue provided with the metaclass PG META-
CLASS. Thismethod actually generates a POSTGRES retrieval statement to get the value from the
database and then returnsit. In our implementation, weassign thisvalueto the property, beforereturn-
ing the value to the calling method. Note, that the (intermediate) storage of the value as a property
valueisoptional and depends on the requirements of an application. Storing the valuewith aproperty
allowsfor much faster subsequent retrievals, but imposes restrictionsto the applicationswith respect
to autonomous updates of the external database. Note, that for agiven strategy, one can generate the
object type definitions and the implementations of the methods automatically.

OBJECTTYPE conference_InstType;
INTERFACE
PROPERTIES conf_id: STRING;
title: STRING;
topics: STRING;
location: STRING;
duration: STRING;
language: STRING;
METHODS  getconf_id() : STRING;
gettitle(): STRING;
gettopics): STRING;
getlocation(): STRING;
getduration(): STRING;
getlanguage(): STRING;
IMPLEMENTATION
METHODS
getconf_id(): STRING;
{IF (conf_id == "UNKNOWN VALUE’) title := SELF—getValue('conf_id’);
RETURN conf _id; };
gettitle(): STRING;
{ IF ( title =="UNKNOWN VALUE’) title := SELF—getValue('title’);
RETURN title; };
gettopics(): STRING;
{ IF (topics == '"UNKNOWN VALUE") topics := SELF—getValue('topics’);
RETURN topics; };
/I The methods getlocation, getduration and getttitle are implemented analogously.
END;
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CLASS CONFERENCE METACLASS PG_METACLASS
INSTTYPE conference_InstType

INIT CONFERENCE—init('conference’)

END;

4.2 TheMetaclassPG_RECOMPOSE_METACLASS

PG_RECOMPOSE_METACLASS realizes more complex mappings between relations and classes.
Ingenera, thedefinitionisstructured similarly asshownfor themetaclassPG_METACLASS. It dif-
fers insofar as we now have to provide more complex access methods as described in subsections
2.2.3 and 2.2.4. The relationships between the predefined metaclass Metaclass, the metaclass
PG_RECOMPOSE _METACLASS and an application class have been shown in Figure 4.

4.2.1 Definition of the MetaclassPG_ RECOMPOSE_METACLASS

Again, the accessto the POST GRES database within the methods of the own type, instance type and
instance-instancetype of PG RECOMPOSE_METACLASSIsredized using POSTGRES Clibrary
functions. In order to provide abetter understanding of the realization of the mapping with VML we
describe the effects of those methods instead of showing the actual VML/C++ method implement-
ation.

The metaclass PG RECOMPOSE_METACLASS and its associated object types are defined as
follows:

(1) Definition of PG_RECOMPOSE_METACLASS

CLASS PG_RECOMPOSE_METACLASS METACLASS Metaclass
OWNTYPE PG_Metaclass_ OwnType

INSTTYPE PG_Metaclass_InstType

INSTINSTTYPE PG_RECOMPOSE_Metaclass_InstinstType

END;

(2) Definition of the object type PG_RECOMPOSE_InstIinstType

The instance-instance type of the metaclass PG RECOMPOSE _METACLASS is a subtype of
PG_Metaclass _InstIinstType, and hencethe method getValue(att: STRING): STRING and the mecha-
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nismsto support the mapping of thetupleto object identifiersareinherited fromthistype. Additional -
ly the type PG_ RECOMPOSE _InstinstType provides three further methods, which are speciadiza-
tions of the general methods getValue and getOID introduced in subsection 2.2.3 and 2.2.4. The
method getValue (rel: STRING, joinatt : {STRING}, att : { STRING }): { || STRING —> STRING|| }
recomposes complex values by joining the relation corresponding with the receiver object’s class
with relation rel using the set of join attributes joinatt and retrieving the values of the attributes att of
thosetuplesof rel meetingthejoin condition. Thesevaluesarereturned asaset of dictionaries. Dictio-
naries are used here as atechnique to represent arbitrary tuple structures. The methods getOID(rel:
STRING, joinatt : {STRING}): {OID} and getOID(rel1: STRING, joinatty: {STRING}, rel>: STRING,
joinatty: {STRING}): {OID} areprovidedin order to establish reference-based rel ationships. Thefor-
mer computesthe samejoin asthe method getVal uejust described before, but retrievesthetupleiden-
tifiers of the tuples of rel which meet the join conditions and returns the object identifiers of the
instances of the class corresponding to rel which represent those tuples. Thelatter ssimply joinsthree
relations (the one corresponding with the receiver object’s class, rel; and rely) in the same way, re-
trieves the tuple identifiers of those tuplesin rel, meeting the join conditions and returns the object
identifiers of the appropriate instances of the class corresponding to rel>. For better readability we
define only the two methods described above for computing object-based references from value-
based references. It is straightforward to define a general, highly parametrized method which com-
putes a join between n relations.

OBJECTTYPE PG_RECOMPOSE_Metaclass_InstinstType
SUBTYPEOF PG_Metaclass_InstinstType;
INTERFACE
METHODS getOID(rel: STRING, joinatt: {STRING}): {OID};
getValue(rel:STRING,joinatt:{STRING},att:{STRING}):{|| STRING—>STRING||};
getOID(rel1:STRING,joinattl:{STRING},rel2:STRING joinatt2:{STRING}):{OID};
IMPLEMENTATION
METHODS
getOID(rel: STRING, joinatt : {STRING}): {OID};
{ /I Join the relation corresponding to the receiver object’s class with

/I the relation rel using joinatt. Retrieve the tuple identifiers of the tuples of rel

/l which meet the join condition; find the class corresponding to rel and return the

/I object identifiers of its instances corresponding with those tupels.};

getValue (rel: STRING, joinatt : {STRING}, att : { STRING }): { ||STRING —> STRING|| } ;

{/! Join the relation corresponding to the receiver object’s class with the relation rel

/I using joinatt; retrieve the values of attributes {att} from those tuples in rel which

/I meet the join condition and return those values. Those values are returned as a

Il set of dictionaries, where the key of the dictionary represents the attribute name

/I and the value of the dictionary the attribute value as a string in relation rel

/I (this preserves the relational tuple structure) };




28

getOID(rel1:STRING, joinatt;: {STRING}, relo:STRING, joinatty: {STRING}): { OID };
{ /I Join the relation corresponding to the receiver object’s class with
/I the relations rel; and rel, using joinatt; and joinatt,. Retrieve the
/I tuple identifiers of the tuples of rel, which meet the join condition;
/I find the class corresponding to rel, and return the
/I object identifiers of its instances corresponding with those tupels.};
END:

4.2.2 Example for a Recomposition Mapping

L et us assume that we have given the following fragment of a POSTGRES schema:

conference (conf_id, title, topics, location, duration, language)
conf_info_address (conf_id, name, mail_addr, city, state, country, phone_no, fax_no)
session (conf_id, sess_id, duration, subject, chair_name, chair_affil)
lectures (conf_id, sess_id, lecturer_name, lecturer_affil, topic)

hotel (name, mail_addr, city, state, country, phone_no, fax_no)
reservation (conf_id, hotel_name)

Let us assume that we want to recompose these relations to classes according to the mapping de-
scribed previoudly.

Theattribute conf_idisthe primary key of relation conference and aforeign key inthe other relations.
Therefore conference is the base relation, conf_info_adress, session and lectures are non-base rela-
tions. The instances of the class CONF_EVENT which results from the mapping correspond to the
tuplesof conference; the attributes of conferenceand conf_info_adressare modelled assingle-valued
propertiessinceconf_idistheonly key attributeintheserelations. In contrast tothat, conf_idisonly a
part of the set of key attributesin the relations session and lectures; there may exist several tuplesin
session for atuplein conference. Furthermore, since the key attribute sess_id of relation sessionisa
foreign key attribute in relation lectures, for atuple in session there may exist several tuplesin lec-
tures. Therefore the attributes of session and lectures are combined to acomplex set-valued property
with nested tuple structure which models all sessions of a conference including the corresponding
lectures.

Therelation hotel isabaserelation sinceit does not contain aforeign key. It istherefore mappedto a
separate classHOTEL . Therelation reservation representsarel ationship between conference and ho-
tel. It was generated as a consequence of the decomposition of the relational schema. Consequently
thisrelation will dissolve in the mapping sinceit can be substituted by object references between the
instances of the classes CONF_EVENT and HOTEL.

TheclassesCONF_EVENT and HOTEL andtheir instancetypesCONF_EVENT _InstTypeand HO-
TEL_InstType are defined as follows:
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DATATYPE conf_type =[conf_id: STRING, title : STRING, topics : STRING,
location : STRING, duration : STRING, language : STRING];
DATATYPE conf_info_address_type = [name : STRING, mail_addr : STRING, city : STRING,
state : STRING, country : STRING, phone_no: ARRAY[SUBRANGE 0..15] OF INT,
fax_no : ARRAY[SUBRANGE 0..15] OF INT];
DATATYPE lectures_type = [ lecturer_name : STRING, lecturer_affil : STRING, topic : STRING];
DATATYPE session_type = [sess_id: INT, duration : STRING , subject : STRING,
chair_name : STRING, chair_affil : STRING, lectures : { lectures_type }];

OBJECTTYPE CONF_EVENT _InstType;
INTERFACE
PROPERTIES

conference: conf_type;

conf_info_address: conf_info_address_type;

sessions : {session_type}; // nested structure of sessions and lectures

hotels: {HOTEL}

METHODS

getConfernce_conf_id(): STRING;

getConference_title(): STRING;

...

getConf_info_address_name(): STRING;

...

getSessions(): {session_type} ;
IMPLEMENTATION
EXTERN StringTolnt(s: STRING): INT; // converts a string to an integer
METHODS

getConference_conf_id(): STRING;

{ IF (conference.conf_id == "UNKNOWN VALUE)
conference.conf_id := SELF—getValue('conf_id’);

RETURN conference.conf_id;};

getConference_title(): STRING;

{ IF (conference.title == "UNKNOWN VALUE")
conference.title := SELF—getValue('title’);

RETURN conference.title;};
/I Other methods operating on property conference are implemented analogously
getConf_info_address_name(): STRING;

{ IF (conf_info_address.name == "UNKNOWN VALUE’)
conf_info_address.name := SELF—getValue('conf_info_address’, {’conf_id’}, {'name});
RETURN conf_info_address.name;};

/I Other methods operating on property conf_info_address are implemented analogously
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getSessions(): {session_type};

{ VAR actSess : {||STRING—>STRING]||};
VAR actLect: {||STRING—>STRING||};
VAR actSessTuple: session_type;

VAR actLectTuple: lectures_type;
VAR s : ||[STRING—>STRING]];
VAR | : ||[STRING—>STRING];

IF (sessions =={})
{ actSess := SELF—getValue('session’, {’conf_id’},
{’sess_id’, 'duration’, 'subject’, chair_name’, chair_affil'}); // retrieve all sessions
actLect := SELF—getValue(lectures’, {'conf_id’},
{'sess_id’, 'lecturer_name’, ’lecturer_affil’, 'topic’}); // retrieve all lectures
/I combine sessions and lectures to one nested structure

FORALL (s IN actSess)

{ actSessTuple.sess_id:= StringTolnt (GETVALUE s FROM ’sess_id’);
actSessTuple.duration:= GETVALUE s FROM 'duration’;
actSessTuple.subject:= GETVALUE s FROM ’'subject’;
actSessTuple.chair_name:= GETVALUE s FROM ’'chair_name’;
actSessTuple.chair_affil:= GETVALUE s FROM ’chair_affil’;

FORALL (I IN actLect)
{IF (actSessTuple.sess_id == StringToInt(GETVALUE | FROM ’sess_id"))
{ actLectTuple.lecturer_name := GETVALUE | FROM ’lecturer_name’;
actLectTuple.lecturer_affil := GETVALUE | FROM ’lecturer_affil’;
actLectTuple.topic := GETVALUE | FROM 'topic’;
INSERT actLectTuple INTO actSessTuple.lectures; } }
INSERT actSessTuple INTO sessions;}}
RETURN sessions;};
getHotels(): {OID};
{ IF (hotels == {})
hotel:= SELF—getOID('reservation’, {’conf_id’}, 'hotel’, {"hotel_name’});
RETURN conferences;}
END;

CLASS CONF_EVENT METACLASS PG_RECOMPOSE_METACLASS
INSTTYPE CONF_EVENT _InstType
INIT CONF_EVENT—init ('conference’)
END;
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OBJECTTY PE HOTEL_InstType;
INTERFACE
PROPERTIES
hotel _name: STRING;
mail_addr: STRING;
city: STRING;
state: STRING;
country: STRING;
phone_no: ARRAY [SUBRANGE 0..15] OF INT;
fax_no: ARRAY [SUBRANGE 0..15] OF INT;
conferences: {CONF_EVENT};
METHODS
getHotel_name(): STRING;
getMail_addr(): STRING;
getCity(): STRING;
getState(): STRING;
getCountry(): STRING;
getPhone_no(): ARRAY [SUBRANGE 0..15] OF INT;
getFax_no(): ARRAY [SUBRANGE 0..15] OF INT;
getConferences(): {OID};
IMPLEMENTATION
EXTERN StringToArray (s: STRING) : ARRAY [SUBRANGE 0..15] OF INT;
/I This is an external function to convert strings to arrays (provided the string
/I contains single numbers separated by spaces. It can be used in the following
/I method implementations
getHotel_name(): STRING;

{IF ( hotel_name =="'UNKNOWN VALUE’') hotel name := SELF—getValue(hotel_name’);

RETURN hotel_name; };
/I The methods getMail_Addr, .., gettCountry are implemented analogously.
getPhone_no(): ARRAY [SUBRANGE 0..15] OF INT;
{IF ( phone_no[0] == 0)
phone_no := StringToArray (SELF—getValue('phone_no"));
RETURN phone_no;};
/I The method getFax_no is implemented analogously.
getConferences(): {OID};
{ IF (conferences == {})
conferences:= SELF—getOID('reservation’, {’hotel_name’}, 'conference’, {'conf_id’});
RETURN conferences;};
END:

CLASS HOTEL METACLASS PG_RECOMPOSE_METACLASS
INSTTYPE HOTEL_InstType
INIT HOTEL—>init (hotel’)

END;
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5 Conclusion

In this paper we have shown theintegration of arelational databaseinto the object-oriented federated
database management system VODAK using the metaclass concept of the VODAK Modelling Lan-
guage VML. First we described astraightforward mapping between therelational and the object-ori-
ented datamodel. Then, based on comparison of the expressive power of the two datamodelswe de-
fined more complex mappings which reduce the gap between the two worlds by allowing asemantic
enrichment of therel ational schemawithinthe object-oriented schema. In order to support these map-
pingsefficiently weintroduced specific access methods. Then weintroduced the object-oriented data
model of VODAK which is used as the canonical model for the mapping, and focused on the meta-
class concept of VML. As an example we gave ashort overview of an actual implementation of the
access methodsto POST GRES databases making use of the metaclass concept. Thisimplementation
isbased on POSTGRES V4.0. We illustrated the prototype implementation applied to afairly com-
plex relational schema.

Beside the standard features of arelational database management system POSTGRES provides ad-
vanced conceptslikefunctionsand rules. In principleone could incorporate such schemainformation
inmethod bodies. Thiswasnot investigated so far sincethe accessto this schemainformation was not
readily available.

The metaclasses are the bases for the integration of relational databasesinto VODAK. (Semi-)Auto-
matic integration tool s can use these metacl assesin the integration process. We propose two i nterest-
ing directionsof further research: first, alimited but automatic transl ation capability of relational into
object-oriented schemas more advanced than the straightforward approach; second, interactivetools
for schemaintegration, both based on the mappingswhich allow for semantic enrichment of therela-
tional schemas.
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