-

View metadata, citation and similar papers at core.ac.uk brought to you by »{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Arbeitspapiere der GMD
GMD Technical Report

Klemens Bohm, Karl Aberer

Amplifying the Scope of Document Handling:
An Object-Oriented Database Application Framework
for Structured Document Storage

GERMAN NATIONAL RESEARCH CENTER

GJ\‘/JD FOR INFORMATION TECHNOLOGY

https://core.ac.uk/display/147904303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The “Arbeitspapiere der GMD — GMD Technical Reports” primarily comprise prelimi-
nary publications, specific partial results and complementary material. In the interest
of a subsequent final publication the “Arbeitspapiere/Technical Reports” should not
be copied. Critical comments would be appreciated by the authors.

No part of this publication may be reproduced or further processed in any form or by
any means without the prior permission of GMD. All rights reserved.

© Copyright |eu] 1995

Addresses of the authors:

Klemens Bohm
GMD-IPSI
Dolivostral3e 15
D-64293 Darmstadt

Email: kboehm@darmstadt.gmd.de
Phone: ++49/6151/869-963
Fax: ++49/6151/869-966

Karl Aberer
GMD-IPSI
Dolivostral3e 15
D-64293 Darmstadt

Email: aberer@darmstadt.gmd.de
Phone: ++49/6151/869-935
Fax: ++49/6151/869-966

Address all correspondence to:

Klemens Bohm
GMD-IPSI
Dolivostral3e 15
D-64293 Darmstadt

Email: kboehm@darmstadt.gmd.de
Phone: ++49/6151/869-963
Fax: ++49/6151/869-966

Abstract

With standard database approaches to document storage the document-file objects either areleft in-
tact, or one general document structureisassumed. Inthefirst case, full database functionality isnot
achieved. With regard to the second case we claim that different document types are to be treated
differently. — The Standard Generalized Markup Language (SGML) is a means to identify logical
document components. The generic document structureisdefined by a set of production rules, aso-
called document-type definition (DTD).

Using the object-oriented database management system VODAK the design of the metalayer of an
application framework to store SGML documents in accordance with their structure is described.
Multi-user mode, versioning and sharing of document components are considerably facilitated by
appropriate fragmentation of the documentsin the database. Using an OODBM S hasthe advantage
that SGM L semanticscan befactored out from applicationsand can beintegratedinto theunderlying
system. With our approach arbitrary SGML DTDs can be communicated to the system at runtime
without system shutdown. In this article we put some emphasis on describing the impact of the data
model on the database application’s structure.

Keywords: SGML, Structured Documents, Object-Oriented Databases, Extensible Data Model,
Dua Model, Metaclasses

1 Introduction

In parallel to the exploding complexity of achievements in the fields of engineering and natural
sciences size and amount of textual documents have increased in an extreme way. Thecritical point
that documentsare becoming too largefor one person to handle haslong been reached. Conventional
systems for document storage either leave the document-file objects intact, or documents are frag-
mented alwaysin the sameway, independently of their structure. Inorder to optimize document stor-
age, however, one conception istoo monolithic. A more differentiated approach takes into account
the following points:

For Shoens et a. [Sho+93] textual documents are examples of semi-structured data. We claim that

between different document types! there exist considerabl e differences: From our point of view, en-
cyclopedic biographical articles, for instance, isstructured data; novels, to give an examplefromthe
other end of the spectrum, are weakly-structured dataas arule. From another perspective, the docu-
ment sizeisimportant. A document that still can be entirely cached can be treated differently than
bigger ones. Third, the document-devel opment process has some relevance: Consider the scenario
of morethan one author working on the document or morethan one person taking part in the publish-
ing process. In that case, document storage must be different from processesfor which the involve-
ment of only one person can be assumed. Besidesthat, adifferentiation can be made by meansof the
relative frequency of update operations: In some cases astatic view is sufficient, in other cases nu-
merous iterations in the authoring process are foreseeable. Another issue impinging on document
storage is the degree of interdependency between documents. If frequently parts of documents are
contai ned within other documents, support by the storage layer isadvantageous. Finally theway in-
formation is retrieved is a criterium for document storage: It is a difference whether the person
guerying the document base knows the documents he is searching for or whether he islooking for
particular information in adocument pool. Inthefirst case, asarule, syntactic criteriaare known by
which the documents can easily be identified without uncertainty (e.g. ‘ Document was written by
Klemens Bohm.” —assuming that documents are attributed with their author’s name). In the second
casethedegree of the search algorithms’' sophistication differs: Whilefrom ascientific point of view
approaches based on pattern matching are essentially interesting only with regard to performance,
there are more fundamental difficulties if search is really content-based: For example, the search

result may depend on the documents’ fragmentation.

The documents we are looking at in this article are highly structured, very big and are repeatedly
edited by several persons. Typical examples are documentations for sophisticated engineering ap-
plications or encyclopediae. Conventional system designs lead to a number of difficulties for that
kind of documents. By |eaving document-file objectsintact multi-user modeisnot supported: Gran-
ularity isonthedocument level . Concurrently authoring different fragmentsof the samedocument is
cumbersome. Besidesthat, if versioning was supported in each task a copy of the entire document
would be generated evenif only asmall fragment of the document had been modified. — Onthe other

hand, fragmentation of documents in database applications, as practised so far, has the following

1. Atanaiveleve of analysis, examples of document types are letter, biography, novel.

shortcomings: The question how documents are fragmented in the optimal way cannot be generally
answered. It is either supposed that a generic document structure exists, or only a particular docu-
ment type is supported. Furthermore it is assumed that document types do not change over time. If
the systemisbased on ageneric document type, thisview might actually be sufficient. But it does not
suffice for more sophisticated document handling [AkQ92].

Theassetsof SGML (‘ Standard Generalized Markup Language’) [SO86, Her90] become most evi-
dent with the kind of document we are aiming at in thisarticle. With SGML thelogical structure of
documentsof arbitrary types can be described. Inanutshell, thisisaccomplished by identifying log-
ical document components such as sections, subsections, definitions, examples within the docu-
ment. The Document Storage Agent (D-STREAT) stores SGML documents using the object-ori-
ented database management system (OODBMS) VODAK [Klat+93, KAN93]. Those logical
document-component types correspond to classes in the database. To be capable of handling arbi-
trary document types and of incorporating document-type change into the system these classes are
created dynamically and may be modified at runtime. The underlying OODBM SV ODAK provides
the relevant system support. SGML document-type definitions (DTDs) introduce the logical com-
ponents of a document of a particular type. Hence, with our approach the decision how the docu-
mentsarefragmented inthedocument baseisleft tothedesigner of theDTD. Inthisarticlethekernel
structure of D-STREAT isdescribed. Two other facets of D-STREAT, dynamic DTD handling and
the impact on query formulation, have already been discussed in [ABH93].

Using an OODBMS, the SGML semanticsis part of the database. One effect isthat the application
interface provides SGML-specific operations rather than primitive ones. Besides that, it is the
groundstone for query optimization as well as semantic concurrency control (not addressed in this
article). We will illustrate how VODAK concurrency control can be applied in this context, and

sketch how versioning isintegrated into the system.

The structure of this paper is the following: The next section contains an overview of the key con-
ceptsof SGML. TheVODAK Modeling Language (VML) isreviewed in Section 3. It servesasthe
framework onwhich our database application D-STREAT isbased. Itsdescriptionisin Section4. In

Section 5 we review related work. The last section contains concluding remarks.

Specific markup <section author="Klemens Bdhm” >
To get a feeling for <title>Specific markup</title>
what markup is, con- <body><paragraph>To get a feeling for
sider the tradition- [> what <new_termsmarkup</new_terms is,
al processing of consider the traditional processing of
texts... texts...</paragraph>

</body></section>

<bold>Specific markup</bold>

Misuse of SGML concepts: | 1o get a feeling for what <italicsmark-

Markup does not capturethe
logical structure up</italic> 1is, consider the traditional

processing of texts...

1: SGML Example - Markup

2 Review of Basic SGML Concepts

SGML (Standard Generalized Markup Language) has received considerable attention, because it
providesthe meansto tackle some of the problemsrelated to document handling. Inthe SGML con-
text, the distinction between adocument’slogical structure and itslayout structure isfundamental :
Italicizing or boldsetting aword is on the layout side. Identifying the reason why aword should be
italicized (e.g. becauseit isintroduced right there) ison the logical level. Thisidentification can be
accomplished by marking up the document. In the document fragment in the upper right of Figure 1
<title> and <body> are examplesof start tags, </title> and </body> arethe corresponding
end tags. With SGML a document’s logical structure can be predefined. A document consists of
document elements (e.g. title, body, new term). Therelationship between them isspecified by
aset of production rules called document type definition (DTD). Figure 2 contains afragment of the
DTD of the document instance from Figure 1: A section consists of atitle followed by a body. A
paragraph’s content is a list whose components are either cDATA elements or new terms. Lists are

definedusing ‘*’, alternativesby using ‘| . Inanutshell, coaTa isa” plain datatype” comparableto

<!ELEMENT section (title, body) >
<!ATTLIST section author CDATA>
<!ELEMENT title CDATA>

<!ELEMENT body paragraph*>
<!ELEMENT paragraph (CDATA |new_term) *>
<!ELEMENT new_term CDATA>

2: SGML Example - Fragment of a Document Type Definition

STRING. Sections have an attribute aut hor of type cpaTa. DTDs are machine-independent docu-

ment-interchange formats. — Using SGML inter aia has the following advantages.
e Authors can concentrate on the document content rather than its layout.

e Wecall thefact that the samelayout is used for the samelogical document components docu-
ment consistency. It isfostered by using markup instead of “private” layout conventions. If big
documents are composed without using markup it can easily occur that one author, say, under-
lines new terms and another oneitalicizesthem. Document consistency isan issue both within

documents as well as among several documents. It is a contribution to corporate identity.

e A marked-up document bears more information than one without markup. With markup
authoring is eased especially if there are several authors (or other persons involved in the

process, e.g. reviewers).

e Queriesmaking use of the document structure can be formulated (e.g. “ Select all new terms.”
or “ Select all sectionswhosetitle containstheword ‘ markup’.”). SGML ismost useful to iden-
tify logical document components whose function is not evident even to ahuman reader. In a

big reference work there may be two dozens of reasons why, say, aword might be italicized.

e Attributes for document elements can be introduced (see Figure 1 and Figure 2 for attribute

author). Thisfurther eases (multi-)authoring and querying.

SGML Terminology. In SGML a document has a tree structure: The nodes, i.e. the logical
document components, are called elements. The subelements of an element are its content. The
leaves contain the data content. In Figure 1 thereareelementssection, title, body €tc. Thereis
adifferentiation between generic and specific document descriptions. For instance, the specification
that asection containsalist of paragraphsisgeneric. Ontheother hand, stating that asection consists
of aparticular paragraph p1, followed by paragraph p2, isspecific. An element-type definitionisthe
generic description of an element, i.e. the set of rules specifying its content and attributes. The ele-
ment-type nameisaso called generic identifier. The generic description of the content of elements
of aparticular typeisits content model, the one of the attributes the attribute model. In SGML there
exist six constructors to construct a content model from other element types, three connectors and
three occurrenceindicators. For instance, the sequence connector (,) introduces an order of the con-

tent-element types, ‘*’ isthe optional and repeatable occurrence indicator.

CDATA being an exampleof aterminal el ement type containstextual data. — Asidefrom SGML there
isthe standard ODA [1SO89] and various proprietary formats to describe documents’ logical struc-
ture. The conceptsthat are discussed in the sequel can quite easily be applied to those other formats.

3 Key Concepts of the VODAK Modeling Language (VML)

Applying OODBM Sshasturned out to be advantageouswith regard to various application domains.
Because there exist conceptual and terminological differences between different OODBM Ss and
OOPLs the terminology of the VODAK Modeling Language (VML) is reviewed in brevity. With
object-oriented models the data and the procedures that process them tend to be grouped in
autonomous entities, the objects. We call the constituents of an object properties and methods.
Properties are the variable-like containers for the data, methods the procedures capturing objects
semantics. In our terminology, the object’s type is its property- and method definitions. As usual,
objects unique identifiers are given out and administered by the system. In the VML conception,
classes are sets of objects of the sametype. In VML, it ispossible that instances of different classes
are of the sametype. The separation of the structural and the extensional aspect iscalled dual model.
With main-stream OODBM Ss this differentiation is not made. In VML classes are first-class ob-
jects. With the OODBM S VODAK both data and operations on it are administered by the system.
The advantage is that the application semantics is within the database system.

Metaclassesareaspecial feature of VODAK. A metaclassisaclasswhoseinstances arethemselves
classes. Symmetrically, ametainstanceisaninstance of ametaclass' sinstance. Asarule, aclassdefi-
nition containsthe definition of itsinstances' types. In VML terminology, thistypeistheinsttype of
that class. In addition, it is possible that an object has properties or methodsthe other instances of its
classdo not have. (Thisisarelaxation of the principlethat al instances are of the sametype.) Those
individual properties and methods are part of an object’s owntype. Furthermore, the properties and
methodsin ametaclass sinstinsttype arethe ones of its metai nstances. Hence, an obj ect hasthe prop-

erties and methods defined in its owntype, in its class' s insttype and in its metaclass' s instinsttype.

Inheritance. In VML there is a distinction between three kinds of inheritance. Two of them are
introduced here: Typeinheritance and inheritance via metaclasses: It is possible to factor out apor-
tion of an object-type definition and to reuse it in other object-type definitions. This mechanismis

calledtypeinheritance or subtyping. Ontheother hand, the definition of ametacl asscontainsproper-

tiesand methods of their instances and metai nstances. The phenomenon that an object or an applica-
tion classhas propertiesand methodsthat are neither part of the object definition nor the classdefini-

tion but instead part of a metaclass definition is referred to as inheritance via metacl asses.

Semantic Relationships. A fundamental reason why metaclasses are in use is to model semantic
relationshi ps between classes. Examples of semantic relationships are aggregation (“ partOf”) and
specialization. For example, a section may be an aggregation of subsections, a subsection an ag-
gregation of chapters, and a chapter an aggregation of paragraphs. Some OODBM Ss offer hard-
coded mechanisms to describe relations between classes (cf. IS-A and |S-PART-OF relationships
[Ban+86]). However, semantic relations have a variety of facets. Furthermore, some facets, which
are called dimensionsin [Hal94], impinge on the interface. E.g. within an aggregation the order of
the components may be relevant (as with the chapters of abook) or not (as with theingredients of a
fruit salad). With hardcoded mechanisms the opal escence of these relations cannot fully be taken
into account. We are convinced that aflexible mechanism such asfreely definable methodsfor VML
metaclasses' instances and metainstances is mandatory to come up with an appropriate modeling. —
Onceakind of aggregation has been model ed and implemented on the metacl asslevel it needsnot be
repeated in the individual cases, e.g. between classes SECTION and SUBSECTION, between classes
SUBSECTION and CHAPTER, and so on. Anintegrity constraint to be verified by an aggregation-me-
taclass method isthat there are no cyclesin the aggregation hierarchy, such as SECTION - SUBSEC-
TION - CHAPTER - PARAGRAPH - SECTION, to give an example.

The approach to specialization isbasically the same. To introduce our terminology, consider biblio-
graphical entries that can be categorized into independent publications (books), dependent ones
(articles), special publications (dissertations, proceedings etc.) and journals. We call an individual
bibliographical entry a generalization instance, an individual journal and the like specialization
instances. Onereal-world objectisrepresented by different database objects. InVML therewould be
aclassBIBENTRY ontheone hand and classesINDEPPUB, DEPPUB, SPECPUBL and JOURNAL onthe
other hand. The classBIBENTRY iscalled generalization class, classes such asJOURNAL specializa-
tion classes. The real-world features all objects being categorized have in common are modeled as

thegeneralizationinstances propertiesand methods. Wecall thisprinciplegeneralization principle.

Furthermore, in VML instances of metaclasses can be created at runtime. Their type and the metain-

stances’ typeis part of the metaclass definition.

4 A VODAK Application Framework for SGML Documents

This section describes the core structure of D-STREAT, aprototypical VODAK application frame-
work for the storage of structured documents. It seemsto be a straightforward option to model ele-
ment types as VML classes being part of the schema. SGML attributes would be just properties. In
that case, however, the requirement that DTDs must be modifiable dynamically would not be met.

System shutdown every timeaDTD isatered or anew oneisintroduced would not be acceptable.

Overall Structure. We differentiate between document-type-independent features, document-
type-specific ones and HyTime-specific ones?. Correspondingly, the schema consists of a docu-
ment-type-independent layer, the document-type-specific layer, and the HyTime layer asin Fig-
ure 3.3 Classes are represented by €llipses. Objectsthat are not classes arejust dots. Thefact that an
object is an instance of aclassis displayed by a plain line arrow between them. An arrow of kind
-« —— — isfromaspecialization classto the corresponding generalization class, an arrow of

kKind = --------- isfromaspecializationinstanceto the corresponding generalizationinstance.

The distinction between * document-type-specific’ and ‘ document-type-independent’ is according
to the generalization principle. In the document-type-specific layer an application class corresponds
to every SGML-element type. In the sequel, we refer to these classes as element-type classes. An
element-typeclassisaspecialization classof theclassDOCUMENT_ELEMENT inthedocument-type-
independent layer. So for every real-world document element thereisan instance of the correspond-
ing element-type class and another one of the generalization class DOCUMENT_ELEMENT.

Document-Type Independent Layer. The objects in the document-type-independent layer have
the element-type-independent features, due to the generalization principle: The structural informa-

tion of the document treesis part of thislayer, aswell as, say, methods to navigate through the tree.

2. The HyTime standard is an extension of SGML associating well-defined semantics with SGML-document ele-
ments. An objective of HyTime is, generally speaking, to handle multimedia documents. Figure 3 contains an
element-type class SLIDE to illustrate that document content need not always be in textual form. event, to ex-
plain the figure, may be atime interval during which the slide is displayed. This could be captured by a method
display of EVENT's metainstances displaying the slide at the time interval specified. In this context it suffices
to know that extending the system to deal with HyTime is straightforward. On the other hand, we do not see how
the Hy Time semantics could easily be integrated into afile-based system.

3. The diagram includes the class system ‘metaclass - (application) class - instances’. The rungs of this hierarchy
will bereferred to as levels. Levels and layers are orthogonal.

10

CATSPEC&PARTOF NONTERMINAL @
Level 3:

metaclasses ?
Le\/el 2 — 7 7 7
application &\ {i H\}/ \>Z\
classes DOCUMENT SECTION CHAPTER _SLI CDATA (SLIDE with
ELEMENT \ / . event
_ _ . i} . _) . ?) ﬁ ~ behavior
La/el 1. llﬂ f::::::iil-;::i l L l \\\ l
individual 5 "
. hapter XY
objects s e chapter XY
DOCUMENT
ELEMENT CHAPTER
Document-Type- — - .
| ndependent Layer Document-Type-Specific Layer HyTime Layer
semantic relationship specialization-of instance—of
< ,,,,,,,,,,

3: D-STREAT - Overview

In the previous section metaclasses to model aggregation and specialization have been described.
The classDOCUMENT_ELEMENT and itsinstancestake part in more than one semantic rel ationship:

First, the category-specialization rel ationshi p with el ement-ty pe classesas speciali zation classes; se-
cond, the aggregation relationship. In this particular partOf-relation parts and wholes are instances
of the same class, namely DOCUMENT_ELEMENT. Because document elements may take part in the
partOf-relation independent of their type, the partOf-relation is between generalization instances,
dueto the generalization principle. An aggregation metacl ass capturing the semantics of the partOf -
relation between document components cannot be used together with ametaclassfor category spe-
cialization, because an object isinstance of exactly oneclass: Inheriting featuresfrom several meta-
classes could lead to unforeseeabl e overlappings of the metaclasses' types. Instead the metaclasses

types must be related via the subtype mechanism. A new metaclassis defined: The insttypeis sub-
type of these metaclasses' insttypes, the same holdstrue for the instinsttypes. Hence, instances and
metainstances have both specialization and aggregation semantics. (In Figure 3 this metaclass is
called CATSPEC&PARTOF.) At the moment we are working on the integration of versioning seman-
ticsin asimilar way. The special problems that occur when combining different semantic concepts

are described in a forthcoming article.

11

Document-Type Specific Layer. Thislayer bearsthe el ement-type-specific information. Thereisa
differentiation between terminal and nonterminal element types. Terminal element types such as
CDATA arepart of 1SO 8879-1986 [1SO86] and can beusedinany DTD. They need not beintroduced
at runtime, as opposed to DTD-specific nonterminal element types. The designation ‘terminal’ re-
flectsthe fact that their instances are leaves of the document tree. Their processing differsfrom the

one of nonterminal elements, e.g. because they do not have attributes according to the standard.

Nonterminal element-type classes have properties bearing the information that constitutes the ele-
ment type. These propertiesareinherited from the metaclassNONTERMINAL and instantiated for the
first time when the class is created. Likewise, the properties and methods of the element-type
classes' instances are inherited from that metaclass. The dual-model conception facilitates the cre-
ation of element-type classes without defining new types. Element-type classes are containers for
SGML elements of the same element type. — In Section 2 it has been implied that SGML DTDsare
essentially grammars defining the documents' structure. The semantics of document components

Level 3:
CATSPEC&PARTOF (CP) (NONTERMINAL (NT) metaclasses
Level 2:
CATSPEC_ gy PARTOF_) application
INSTTYPE #4 INSTTYPE |asses
/ T CATSPEC_
CP_INSTTYPE #/ “ N TS INSTTYP Y
DOCUMENT_ ("SECTION (CHAPTER \ |
DE_ ‘ ELEMENT (DE) 31— ~r NT_ Y
OWNTYPE “ﬁf ﬁ A STTYPE Y
Level 1:
individual
i/x//»’n\\\\\\ — \ bjects
CATSPEC_ PARTOF_ (& “Chapter XY ® CATSPEC_ 1\,
INSTINST- %/, INSTINST- 7 as INSTINSTTYPE /'~
TYPE TYPE DOCUMENT_
ELEMENT NT_ 77
, INSTINSTTYPE 7/~
CP_INSTINSTTYPE
DE_ /7
INSTTYPE #4

4: D-STREAT - Dual Model

12

does not follow from the element-type definitions.# The effect is that no €l ement-type-specific pro-
cessing isnecessary. Element-type classes’ instancesare of the same VML type. Inthe database, the
content of an SGML element isalist of instances of the generalization classDOCUMENT_ELEMENT.
Theattribute values are, according to the SGML standard, asequence of characters. Theinterpreta-
tion of user-defined attribute typesis not part of SGML. Interpretation of SGML attributesis only
possible for alimited set of attribute types being part of [1SO86], such as 1D, IDREF.

Type-to-Class M apping. Figure 4 isafragment of Figure 3: The boxes next to the objectsindicate
from which typesthe objectsinherit their properties and methods. Aninstance of DOCUMENT_ELE-
MENT, for instance, hasthe properties and methods defined in theinstinsttype of CATSPEC&PARTOF
and the ones from the insttype of DOCUMENT_ELEMENT. The line between types within abox dis-
play the subtyping relation: CP_INSTINSTTYPE is subtype of CATSPEC_INSTINSTTYPE and of
PARTOF_INSTINSTTYPE. The plain lines outside the boxes connect the typeswith the classeswhere
they are defined.

[lustration. Extended functionality, as compared to other approachesto document handling, isour
objective. Multi-authoring (i.e. multi-user mode) and versioning have been mentioned. —In VML
there exists the possibility to brace a sequence of operationsto atransaction. Then the DBM S inter
aliaensuresthat no interleaving with other operations occurs. Multi-authoring need not be realized
as part of the database application, but instead built-in features can be applied. The following code
fragment is part of a sequence of operations generating an instance of the DTD in Figure 1.

BEGIN_TRANSACTION
BODY := NONTERMINAL -> createElemType('Body’, ...);
BODY -> setContentModel(’(Paragraph)*");
body := BODY -> createElem();
ok := body -> setContent ({(1, paral), (2, para2)});

IF (ok)
COMMIT_TRANSACTION

ELSE
ABORT_TRANSACTION

5: Example

4. Anexception are SGML types ID, IDREF, IDREFS. These types, however, need not be used in connection with
documents having atree structure. Therefore, they have not been introduced.

13

The meaning of BEGIN_TRANSACTION, COMMIT_TRANSACTION and ABORT_TRANSACTION is
canonical. BODY isthe object identifier of aninstance of NONTERMINAL, i.e. an el ement-type class.
Themethod createElemType creates anew instance of the classNONTERMINAL. Becausein VODAK
classes and metaclasses are first-class objects they can receive method calls. The second operation
sets the content model of the element-type class BODY to ‘ (Paragraph)*’. Now an instance of BODY
can be created: The method createElem actually creates two objects. An instance of the target-ele-
ment-type classand the corresponding generalization instance. Thefirst oneisreturned; thevariable
body is instantiated with it. In the next step, the content of body is instantiated with alist of para-
graphs: paral and para2 areinstances of DOCUMENT_ELEMENT that must have been created before.

ok isavariable of type BOOL. setContent returns TRUE iff it executed as foreseen.

For versioning it is necessary to break down the authoring process into so-called tasks. Asarule,
each task’s end correspondsto aversion of the document, the result of the task. With our approach
granularity for versioningisonthe SGML element level: If within atask asmall portion of the docu-
ment isatered, it is not necessary to generate a copy of the entire document, but only copies of the
elementsthat have been modified. They are generated automatically by operations being part of the
versioning metaclasses if within the current task a copy of the element being modified has not yet
been generated. Hence, theinterface of edit-operations (e.g. setContent) needs not be altered. Onthe
other hand old document versions can be read and new versions can be derived from them. In the
world of non—versioned objects, for example, there isamethod printDocument. In the world of ver-
sioned objectsit hasacounterpart printDocument (task: taskType) displaying the state of the document
at the end of the relevant task. — Versioning features are currently integrated into D-STREAT.

Coupling with SGML Par ser. To insert documents as awhole into the system, the SGML parser
ASP (“Amsterdam Parser”) [WaE87] is coupled with D-STREAT. The ASP has been extended to
invoke the methods creating the database objects that represent the logical document components.
Thisisaready part of the parsing process. On the other hand, the parser also checks the document’s
conformanceto its DTD. Because after the parsing processit is known that the document is correct
certain verifications can be omitted that are part of the operationsin the general case. For instance,
one axiom describing aggregation states that the aggregation relation is cycle-free. Thisis checked
withinthe corresponding operation of the metaclassPARTOF every timeanew relationisintroduced.
Because of thedocuments' correctnessafter parsing, i.e. thedocument hasatree structure, checksof

thiskind can be omitted when inserting documentsthe way just described. Thisisadvantageousfor

14

performancereasons. The metaclassPARTOF providesanother version of that operation without that
check. Itisto beused withinthe coupling withthe ASP. Thisisfeasible because of theextensibility of
the datamodel, i.e. the freely definable methods in metaclasses. Application-specific knowledgeis
not only necessary to model semantic relationships. It isal so advantageouswith regard to efficiency.

Experiences. We cannot yet answer the question whether current OODBM S technology is ableto
handle large document bases. Namely, VODAK is a prototype with considerable leeway for opti-
mi zation. Documents stored in OODBM Ss according to their tree structure naturally occupy more
disk space than asafile: With “extreme” documents consisting of as much markup as possible the
factor in VODAK is about a hundred. However, with conventional OODBM Ss semantic control
over the objectsis not part of the database. This would lead to a substantially reduced disk-space
consumption, but therewould be no basisfor semanti cs-based query optimization [AbF93]. Setting
up the entire document trees in the database is rather slow. It is comparable to the time interval for
establishing the database structuresin the loose coupling between INQUERY and an OODBM Sde-
scribed in [CST92]. The duration for large documentsisin the hour range. — We will assess query

evaluation with our database application after integrating VODAK query-optimization features,

5 Related Work

We are not aware of OODBM S applicationsfor structured document storage. However, researchin

various areas has contributed useful findings.

Document Storage. In [CrS87, ZTS91, CST92, Bar+93] either document structures for database
storage or database applicationsfor document handling are described. As opposed to our approach,
only special document types are dealt with. Three possible kinds of textual document storage in
nested rel ational database systemsarediscussedin[ZTS91]. Thearticle' sobjectiveisto comparethe
efficiency of the different techniques presented. The approaches are static, i.e. the document typeis
hardcoded inthe schema. The Gold Mailer [Bar+93], anintegrated system for sending and receiving
messages, contains aso-called index engine for archiving received messages. Again, the document
structureisfixed. In queries structure-orientation can be combined with content-orientation. In this
context, however, content-based retrieval is pattern matching. A loose coupling of the text-retrieval
system INQUERY withan OODBM Sisdescribedin[CST92]. Likewise, thereisarigid set of docu-
ment-component types. On the other hand, INQUERY ’sretrieval functionality is an asset.

15

The objective of the Rufus System [Sho+93] isto provide database support for semi-structured data.
For them, textual documentsarejust an arbitrary example of semi-structured datanext to, say, com-
puter programs or images. Hence, document-specific support (e.g. by using concepts such as
SGML) isnot envisaged. Rufus does not modify thefile objectsthemsel ves, because the devel opers
want to carry on using applications devel oped against the data’s original format. We argue that the
negative valuation of approachesthat transform documents’ formatsto adatabase format istoo un-
differentiated. Namely, storage of documents in the database is done to extend functionality. The
decision whether document storage in databases is advantageous is manifold (cf. Section 1). With
Rufusthe database contai ns descriptiveinformation about file-system objects. Itisonly theretrieval
functionality that isextended. —With the system presentedin [Bur92] it ispossibleto formulate quer-
ies referring to both the structure as well as its content. As opposed to the approaches mentioned
before, arbitrary document structures can be dealt with. Again, however, content-based search is
mere pattern matching. Thisfunctionality canin principle be achieved with our system by integrat-
ing a grep-command for the VML-datatype STRING. — It seems that with these approaches docu-
ments modification is not supported.

SGML Databases. Some years ago pioneering work has been done in the field of storing SGML
documents in databases. Schouten [Sch89] describes how with his system SGML documents are
fragmented and how thefragmentsarestoredin arelational DBM S. The mapping from SGML docu-
ments to the relational schemaisintricate. It isnot part of the system or of an application program.
Hence, the system doesnot capture SGM L’ ssemantics. Documents' organizationinthe database has
no DTD-specific aspects: The data structures are generic and are not adapted to individual DTDs.

However, avoiding these pitfalls seems to be difficult using arelational system.

Schema Evolution. With main-stream OODBM Ss a schema consists of class definitions® contain-
ing thedefinitionsof instances’ propertiesand methodsand subclass-rel ations between classes. Cor-
respondingly, on a more formal level an object is specified by its signature and a set of axioms
[SSC92]. Axiomsbeing first-order-predicate-logic formul ae correspond to that conventional notion
of ‘schema without a metaclass mechanism asin VML. From that perspective, operations within

D-STREAT such ascreating anew class are schema-change operations. With the VML conception,

5. Thedistinction between object typesand classesin VML israther an exception, as compared to other OODBM Ss.

16

metacl ass definitions may be part of the schema. This correspondsto second-order-predicate logic.

In this case, creating new application classes is not schema evolution.

6 Conclusions

The design of a database application for structured documents (D-STREAT) has been elaborated.
D-STREAT iscurrently being refined. The documents are fragmented for storage according to their
SGML -document-type definition. D-STREAT sfunctionality isdifferent compared to systemsthat
use databasesonly to store descriptioninformation on the documentsor that carry out ageneric frag-
mentation independent of the document-type-specific structure. The OODBM SV ODAK offersthe
advantages of differentiating between classes and types, of metaclassesto model semantic relation-
ships between classes and of generating instances of metaclasses at runtime.

Ontheother hand, IRSshavefeaturesthat D-STREAT currently doesnot have. Theideatodevelopa
coupling between an IRS and D-STREAT is nearby. On the one hand, having the functionality of
both IRSs and database applications for document storage is envisioned. Furthermore, new func-
tionality results from the combination of IRSs with DBMSs. For instance, it would be possible to
formulate queriesreferring both documents' content aswell asthe oneof databases. Query optimiza-
tion using knowledge on operations’ costsiscurrently being integrated into VODAK [AbF93]. Be-
cause costs of IRSs' operations are principally known the next goal would be an integrated query
optimization taking into account both the database methods and the IRS s operations. Aninteresting
topic in this context would be to exactly identify situations in which redundant document storage,

that is storage both as one large file object and as fragments, is advantageous.

Another issueisdatabase support for generic structures. Inthiscase, treestructuresare of interest. In
[Sub+93] it has basically been pointed out that thereisthe potential for query optimization. We are,
however, not aware of arealization of query optimization for tree structures.

Acknowledgements. We thank Peter Muth, Thomas Rakow and Marc Volz for their comments on

an earlier version of this article and Ute Sotnik for correcting the worst mistakes.

References

AbF93 K. Aberer, G. Fischer, “ Object-Oriented Query Processing: The Impact of Methodson Language,
Architecture and Optimization”, Arbeitspapiere der GMD No. 763, St. Augustin, 1993

17

ABH9%4

AkQO2

Bar+93

BIP92

Bur92

Crs87

CST92

1SO86

1SO89

Her90
Hal94

KAN93

Klat+93

Sch89

Sho+93

SSC92

Sub+93

WaE87

ZTS91

K. Aberer, K. Béhm, C. Huser, “The Prospects of Publishing Using Advanced Database Con-
cepts’, to appear in Proceedings of Electronic Publishing 94

E. Akpotsui, V. Quint, “Type Transformation in Structured Editing Systems’, in C. Vanoirbeek,
G. Coray (eds.), Proceedings of Electronic Publishing 92, Lausanne, Switzerland, Cambridge
University Press, pp. 27-42

D. Barbaraet d., “The Gold Mailer”, in Proceedings of the Ninth International Conference on
Data Engineering, Vienna, Austria, IEEE Computer Society Press, pp. 92-99

N. Belkin, P. Ingwersen, A.M. Pejtersen (eds.), Proceedings of the Fifteenth Annual I nter national
ACM S GIR Conference on Research and Development in Information Retrieval, 1992, ACM
Press

F.J. Burkowski, “Retrieval Activitiesin a Database Consisting of Heterogeneous Collections of
Structured Text”, in [BIP92], pp. 112-125

W.B. Croft, D.W. Stemple, “Supporting Office Document Architectures with Constrained
Types’, in Proceedings ACM SSGMOD 1987, San Francisco, May 27-29, pp. 504-509

W.B. Croft, L.A. Smith, H.R. Turtle, “ A Loosely-Coupled Integration of a Text Retrieval System
and an Object-Oriented Database System”, in [BIP92], pp. 223-232

Information Processing — Text and Office Systems— Standardized Generalized M arkup Language
(SGML), ISO 8879-1986 (E), International Organization for Sandardization, 1986

Information Processing — Text and Office Systems — Office Document Architecture (ODA) and
Interchange Format, Part 2, Document Structures, 1989

E. van Herwijnen, Practical SGML, Kluwer Academic Publishers, 1990

M. Halper et a., “Integrating a Part Relationship into an Open OODB System Using Meta
classes’, submitted to ADB-94

W. Klas, K. Aberer, E.J. Neuhold, “Object-Oriented Modeling for Hypermedia Systems using
The VODAK Modeing Language (VML)” in Object-Oriented Database Management Systems,
NATO ASI Series, Springer Verlag Berlin Heidelberg, August 1993

W.Klasetad.,“VML - TheVODAK Model LanguageVersion 3.1" Technical Report, GMD-I1PH,
July 1993

H. Schouten, “ SGML* CASE The Storage of Documentsin Databases’, Vol. 4, No. 1, SGML Us-
ers’ Group Bulletin, 1989

K. Shoenset d. “The Rufus System: Information Organi zation for Semi-Structured Data’, in R.
Agrawal, S. Baker, D. Bell (eds.), Proceedings of the International Conference on Very Large
Data Bases 1993, Dublin, Ireland, VLDB Endowment, pp. 97-107

A. Sernadas, C. Sernadas, J.F. Costa, “Object Specification Logic”, INESC Research Report
1992, to appear in Journal on Logic and Computer Science

B. Subramanian et a., “Ordered Types in the AQUA Data Model”, Proceedings of the Fourth
International Workshop on Database Programming Languages 1993 (DBPL)

J. Warmer, S. van Egmond, “ The Implementation of the Amsterdam SGML Parser”,
Technical Report, Faculteit Wiskunde en Informatica, Department of Mathematics and
Computer Science, Vrije Universiteit Amsterdam, 1987

J. Zobel, JA. Thom, R. Sacks-Davis, “Efficiency of Nested Relational Document Database Sys-
tems’,in G.M. Lohmann, A. Sernadas, R. Camps(eds.), Proceedingsof the I nternational Confer-
ence on Very Large Data Bases 1991, Barcelona, Spain, VLDB Endowment, pp. 91-102

18

