
1

��������	�����
�� ��

�� �������	� ������

Klemens Böhm, Karl Aberer

Amplifying the Scope of Document Handling:
An Object-Oriented Database Application Framework

for Structured Document Storage

GERMAN NATIONAL RESEARCH CENTER
FOR INFORMATION TECHNOLOGY

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

The “Arbeitspapiere der GMD – GMD Technical Reports” primarily comprise prelimi-
nary publications, specific partial results and complementary material. In the interest
of a subsequent final publication the “Arbeitspapiere/Technical Reports” should not
be copied. Critical comments would be appreciated by the authors.
No part of this publication may be reproduced or further processed in any form or by
any means without the prior permission of GMD. All rights reserved.

� Copyright 1995

Addresses of the authors:

Klemens Böhm

GMD-IPSI

Dolivostraße 15

D-64293 Darmstadt

Email: kboehm@darmstadt.gmd.de

Phone: ++49/6151/869-963

Fax: ++49/6151/869-966

Karl Aberer

GMD-IPSI

Dolivostraße 15

D-64293 Darmstadt

Email: aberer@darmstadt.gmd.de

Phone: ++49/6151/869-935

Fax: ++49/6151/869-966

Address all correspondence to:

Klemens Böhm

GMD-IPSI

Dolivostraße 15

D-64293 Darmstadt

Email: kboehm@darmstadt.gmd.de

Phone: ++49/6151/869-963

Fax: ++49/6151/869-966

3

Abstract

With standard database approaches to document storage the document-file objects either are left in-

tact, or one general document structure is assumed. In the first case, full database functionality is not

achieved. With regard to the second case we claim that different document types are to be treated

differently. – The Standard Generalized Markup Language (SGML) is a means to identify logical

document components. The generic document structure is defined by a set of production rules, a so-

called document-type definition (DTD).

Using the object-oriented database management system VODAK the design of the meta layer of an

application framework to store SGML documents in accordance with their structure is described.

Multi-user mode, versioning and sharing of document components are considerably facilitated by

appropriate fragmentation of the documents in the database. Using an OODBMS has the advantage

that SGML semantics can be factored out from applications and can be integrated into the underlying

system. With our approach arbitrary SGML DTDs can be communicated to the system at runtime

without system shutdown. In this article we put some emphasis on describing the impact of the data

model on the database application’s structure.

Keywords: SGML, Structured Documents, Object-Oriented Databases, Extensible Data Model,

Dual Model, Metaclasses

1 Introduction

In parallel to the exploding complexity of achievements in the fields of engineering and natural

sciences size and amount of textual documents have increased in an extreme way. The critical point

that documents are becoming too large for one person to handle has long been reached. Conventional

systems for document storage either leave the document-file objects intact, or documents are frag-

mented always in the same way, independently of their structure. In order to optimize document stor-

age, however, one conception is too monolithic. A more differentiated approach takes into account

the following points:

For Shoens et al. [Sho+93] textual documents are examples of semi-structured data. We claim that

4

between different document types1 there exist considerable differences: From our point of view, en-

cyclopedic biographical articles, for instance, is structured data; novels, to give an example from the

other end of the spectrum, are weakly-structured data as a rule. From another perspective, the docu-

ment size is important. A document that still can be entirely cached can be treated differently than

bigger ones. Third, the document-development process has some relevance: Consider the scenario

of more than one author working on the document or more than one person taking part in the publish-

ing process. In that case, document storage must be different from processes for which the involve-

ment of only one person can be assumed. Besides that, a differentiation can be made by means of the

relative frequency of update operations: In some cases a static view is sufficient, in other cases nu-

merous iterations in the authoring process are foreseeable. Another issue impinging on document

storage is the degree of interdependency between documents. If frequently parts of documents are

contained within other documents, support by the storage layer is advantageous. Finally the way in-

formation is retrieved is a criterium for document storage: It is a difference whether the person

querying the document base knows the documents he is searching for or whether he is looking for

particular information in a document pool. In the first case, as a rule, syntactic criteria are known by

which the documents can easily be identified without uncertainty (e.g. ‘Document was written by

Klemens Böhm.’ – assuming that documents are attributed with their author’s name). In the second

case the degree of the search algorithms’ sophistication differs: While from a scientific point of view

approaches based on pattern matching are essentially interesting only with regard to performance,

there are more fundamental difficulties if search is really content-based: For example, the search

result may depend on the documents’ fragmentation.

The documents we are looking at in this article are highly structured, very big and are repeatedly

edited by several persons. Typical examples are documentations for sophisticated engineering ap-

plications or encyclopediae. Conventional system designs lead to a number of difficulties for that

kind of documents. By leaving document-file objects intact multi-user mode is not supported: Gran-

ularity is on the document level. Concurrently authoring different fragments of the same document is

cumbersome. Besides that, if versioning was supported in each task a copy of the entire document

would be generated even if only a small fragment of the document had been modified. – On the other

hand, fragmentation of documents in database applications, as practised so far, has the following

1. At a naive level of analysis, examples of document types are letter, biography, novel.

5

shortcomings: The question how documents are fragmented in the optimal way cannot be generally

answered. It is either supposed that a generic document structure exists, or only a particular docu-

ment type is supported. Furthermore it is assumed that document types do not change over time. If

the system is based on a generic document type, this view might actually be sufficient. But it does not

suffice for more sophisticated document handling [AkQ92].

The assets of SGML (‘Standard Generalized Markup Language’) [ISO86, Her90] become most evi-

dent with the kind of document we are aiming at in this article. With SGML the logical structure of

documents of arbitrary types can be described. In a nutshell, this is accomplished by identifying log-

ical document components such as sections, subsections, definitions, examples within the docu-

ment. The Document Storage Agent (D-STREAT) stores SGML documents using the object-ori-

ented database management system (OODBMS) VODAK [Kla+93, KAN93]. Those logical

document-component types correspond to classes in the database. To be capable of handling arbi-

trary document types and of incorporating document-type change into the system these classes are

created dynamically and may be modified at runtime. The underlying OODBMS VODAK provides

the relevant system support. SGML document-type definitions (DTDs) introduce the logical com-

ponents of a document of a particular type. Hence, with our approach the decision how the docu-

ments are fragmented in the document base is left to the designer of the DTD. In this article the kernel

structure of D-STREAT is described. Two other facets of D-STREAT, dynamic DTD handling and

the impact on query formulation, have already been discussed in [ABH93].

Using an OODBMS, the SGML semantics is part of the database. One effect is that the application

interface provides SGML-specific operations rather than primitive ones. Besides that, it is the

groundstone for query optimization as well as semantic concurrency control (not addressed in this

article). We will illustrate how VODAK concurrency control can be applied in this context, and

sketch how versioning is integrated into the system.

The structure of this paper is the following: The next section contains an overview of the key con-

cepts of SGML. The VODAK Modeling Language (VML) is reviewed in Section 3. It serves as the

framework on which our database application D-STREAT is based. Its description is in Section 4. In

Section 5 we review related work. The last section contains concluding remarks.

6

1: SGML Example - Markup

Specific markup
To get a feeling for
what markup is, con-
sider the tradition-
al processing of
texts...

<section author=”Klemens Böhm”>
<title>Specific markup</title>
<body><paragraph>To get a feeling for
what <new_term>markup</new_term> is,
consider the traditional processing of
texts...</paragraph>
</body></section>

<bold>Specific markup</bold>

To get a feeling for what <italic>mark-

up</italic> is, consider the traditional

processing of texts...

Misuse of SGML concepts:
Markup does not capture the
logical structure

2 Review of Basic SGML Concepts

SGML (Standard Generalized Markup Language) has received considerable attention, because it

provides the means to tackle some of the problems related to document handling. In the SGML con-

text, the distinction between a document’s logical structure and its layout structure is fundamental:

Italicizing or boldsetting a word is on the layout side. Identifying the reason why a word should be

italicized (e.g. because it is introduced right there) is on the logical level. This identification can be

accomplished by marking up the document. In the document fragment in the upper right of Figure 1

<title> and <body> are examples of start tags, </title> and </body> are the corresponding

end tags. With SGML a document’s logical structure can be predefined. A document consists of

document elements (e.g. title, body, new_term). The relationship between them is specified by

a set of production rules called document type definition (DTD). Figure 2 contains a fragment of the

DTD of the document instance from Figure 1: A section consists of a title followed by a body. A

paragraph’s content is a list whose components are either CDATA elements or new terms. Lists are

defined using ‘*’, alternatives by using ‘|’. In a nutshell, CDATA is a “plain data type” comparable to

2: SGML Example - Fragment of a Document Type Definition

<!ELEMENT section (title, body)>
<!ATTLIST section author CDATA>
<!ELEMENT title CDATA>
<!ELEMENT body paragraph*>
<!ELEMENT paragraph (CDATA|new_term)*>
<!ELEMENT new_term CDATA>

7

STRING. Sections have an attribute author of type CDATA. DTDs are machine-independent docu-

ment-interchange formats. – Using SGML inter alia has the following advantages.

• Authors can concentrate on the document content rather than its layout.

• We call the fact that the same layout is used for the same logical document components docu-

ment consistency. It is fostered by using markup instead of “private” layout conventions. If big

documents are composed without using markup it can easily occur that one author, say, under-

lines new terms and another one italicizes them. Document consistency is an issue both within

documents as well as among several documents. It is a contribution to corporate identity.

• A marked-up document bears more information than one without markup. With markup

authoring is eased especially if there are several authors (or other persons involved in the

process, e.g. reviewers).

• Queries making use of the document structure can be formulated (e.g. “Select all new terms.”

or “Select all sections whose title contains the word ‘markup’.”). SGML is most useful to iden-

tify logical document components whose function is not evident even to a human reader. In a

big reference work there may be two dozens of reasons why, say, a word might be italicized.

• Attributes for document elements can be introduced (see Figure 1 and Figure 2 for attribute

author). This further eases (multi-)authoring and querying.

SGML Terminology. In SGML a document has a tree structure: The nodes, i.e. the logical

document components, are called elements. The subelements of an element are its content. The

leaves contain the data content. In Figure 1 there are elements section, title, body etc. There is

a differentiation between generic and specific document descriptions. For instance, the specification

that a section contains a list of paragraphs is generic. On the other hand, stating that a section consists

of a particular paragraph p1, followed by paragraph p2, is specific. An element-type definition is the

generic description of an element, i.e. the set of rules specifying its content and attributes. The ele-

ment-type name is also called generic identifier. The generic description of the content of elements

of a particular type is its content model, the one of the attributes the attribute model. In SGML there

exist six constructors to construct a content model from other element types, three connectors and

three occurrence indicators. For instance, the sequence connector (,) introduces an order of the con-

tent-element types, ‘*’ is the optional and repeatable occurrence indicator.

8

CDATA being an example of a terminal element type contains textual data. – Aside from SGML there

is the standard ODA [ISO89] and various proprietary formats to describe documents’ logical struc-

ture. The concepts that are discussed in the sequel can quite easily be applied to those other formats.

3 Key Concepts of the VODAK Modeling Language (VML)

Applying OODBMSs has turned out to be advantageous with regard to various application domains.

Because there exist conceptual and terminological differences between different OODBMSs and

OOPLs the terminology of the VODAK Modeling Language (VML) is reviewed in brevity. With

object-oriented models the data and the procedures that process them tend to be grouped in

autonomous entities, the objects. We call the constituents of an object properties and methods.

Properties are the variable-like containers for the data, methods the procedures capturing objects’

semantics. In our terminology, the object’s type is its property- and method definitions. As usual,

objects’ unique identifiers are given out and administered by the system. In the VML conception,

classes are sets of objects of the same type. In VML, it is possible that instances of different classes

are of the same type. The separation of the structural and the extensional aspect is called dual model.

With main-stream OODBMSs this differentiation is not made. In VML classes are first-class ob-

jects. With the OODBMS VODAK both data and operations on it are administered by the system.

The advantage is that the application semantics is within the database system.

Metaclasses are a special feature of VODAK. A metaclass is a class whose instances are themselves

classes. Symmetrically, a metainstance is an instance of a metaclass’s instance. As a rule, a class defi-

nition contains the definition of its instances’ types. In VML terminology, this type is the insttype of

that class. In addition, it is possible that an object has properties or methods the other instances of its

class do not have. (This is a relaxation of the principle that all instances are of the same type.) Those

individual properties and methods are part of an object’s owntype. Furthermore, the properties and

methods in a metaclass’s instinsttype are the ones of its metainstances. Hence, an object has the prop-

erties and methods defined in its owntype, in its class’s insttype and in its metaclass’s instinsttype.

Inheritance. In VML there is a distinction between three kinds of inheritance. Two of them are

introduced here: Type inheritance and inheritance via metaclasses: It is possible to factor out a por-

tion of an object-type definition and to reuse it in other object-type definitions. This mechanism is

called type inheritance or subtyping. On the other hand, the definition of a metaclass contains proper-

9

ties and methods of their instances and metainstances. The phenomenon that an object or an applica-

tion class has properties and methods that are neither part of the object definition nor the class defini-

tion but instead part of a metaclass definition is referred to as inheritance via metaclasses.

Semantic Relationships. A fundamental reason why metaclasses are in use is to model semantic

relationships between classes. Examples of semantic relationships are aggregation (“partOf”) and

specialization. For example, a section may be an aggregation of subsections, a subsection an ag-

gregation of chapters, and a chapter an aggregation of paragraphs. Some OODBMSs offer hard-

coded mechanisms to describe relations between classes (cf. IS-A and IS-PART-OF relationships

[Ban+86]). However, semantic relations have a variety of facets. Furthermore, some facets, which

are called dimensions in [Hal94], impinge on the interface. E.g. within an aggregation the order of

the components may be relevant (as with the chapters of a book) or not (as with the ingredients of a

fruit salad). With hardcoded mechanisms the opalescence of these relations cannot fully be taken

into account. We are convinced that a flexible mechanism such as freely definable methods for VML

metaclasses’ instances and metainstances is mandatory to come up with an appropriate modeling. –

Once a kind of aggregation has been modeled and implemented on the metaclass level it needs not be

repeated in the individual cases, e.g. between classes SECTION and SUBSECTION, between classes

SUBSECTION and CHAPTER, and so on. An integrity constraint to be verified by an aggregation-me-

taclass method is that there are no cycles in the aggregation hierarchy, such as SECTION - SUBSEC-

TION - CHAPTER - PARAGRAPH - SECTION, to give an example.

The approach to specialization is basically the same. To introduce our terminology, consider biblio-

graphical entries that can be categorized into independent publications (books), dependent ones

(articles), special publications (dissertations, proceedings etc.) and journals. We call an individual

bibliographical entry a generalization instance, an individual journal and the like specialization

instances. One real-world object is represented by different database objects. In VML there would be

a class BIBENTRY on the one hand and classes INDEPPUB, DEPPUB, SPECPUBL and JOURNAL on the

other hand. The class BIBENTRY is called generalization class, classes such as JOURNAL specializa-

tion classes. The real-world features all objects being categorized have in common are modeled as

the generalization instances’ properties and methods. We call this principle generalization principle.

Furthermore, in VML instances of metaclasses can be created at runtime. Their type and the metain-

stances’ type is part of the metaclass definition.

10

4 A VODAK Application Framework for SGML Documents

This section describes the core structure of D-STREAT, a prototypical VODAK application frame-

work for the storage of structured documents. It seems to be a straightforward option to model ele-

ment types as VML classes being part of the schema. SGML attributes would be just properties. In

that case, however, the requirement that DTDs must be modifiable dynamically would not be met.

System shutdown every time a DTD is altered or a new one is introduced would not be acceptable.

Overall Structure. We differentiate between document-type-independent features, document-

type-specific ones and HyTime-specific ones2. Correspondingly, the schema consists of a docu-

ment-type-independent layer, the document-type-specific layer, and the HyTime layer as in Fig-

ure 3.3 Classes are represented by ellipses. Objects that are not classes are just dots. The fact that an

object is an instance of a class is displayed by a plain line arrow between them. An arrow of kind

 is from a specialization class to the corresponding generalization class, an arrow of

kind is from a specialization instance to the corresponding generalization instance.

The distinction between ‘document-type-specific’ and ‘document-type-independent’ is according

to the generalization principle. In the document-type-specific layer an application class corresponds

to every SGML-element type. In the sequel, we refer to these classes as element-type classes. An

element-type class is a specialization class of the class DOCUMENT_ELEMENT in the document-type-

independent layer. So for every real-world document element there is an instance of the correspond-

ing element-type class and another one of the generalization class DOCUMENT_ELEMENT.

Document-Type Independent Layer. The objects in the document-type-independent layer have

the element-type-independent features, due to the generalization principle: The structural informa-

tion of the document trees is part of this layer, as well as, say, methods to navigate through the tree.

2. The HyTime standard is an extension of SGML associating well-defined semantics with SGML-document ele-
ments. An objective of HyTime is, generally speaking, to handle multimedia documents. Figure 3 contains an
element-type class SLIDE to illustrate that document content need not always be in textual form. event, to ex-
plain the figure, may be a time interval during which the slide is displayed. This could be captured by a method
display of EVENT’s metainstances displaying the slide at the time interval specified. In this context it suffices
to know that extending the system to deal with HyTime is straightforward. On the other hand, we do not see how
the HyTime semantics could easily be integrated into a file-based system.

3. The diagram includes the class system ‘metaclass - (application) class - instances’. The rungs of this hierarchy
will be referred to as levels. Levels and layers are orthogonal.

11

3: D-STREAT - Overview

instance–of

EVENT

Level 1:
individual
objects

Level 3:
metaclasses

Level 2:
application
classes

chapter XY
as
CHAPTER

chapter XY

Document-Type-
Independent Layer HyTime LayerDocument-Type-Specific Layer

CHAPTER SLIDE with
 event
 behavior

SLIDE CDATA

NONTERMINAL

semantic relationship

TERMINAL

specialization-of

SECTION

as
DOCUMENT
_ELEMENT

CATSPEC&PARTOF

DOCUMENT_
 ELEMENT

In the previous section metaclasses to model aggregation and specialization have been described.

The class DOCUMENT_ELEMENT and its instances take part in more than one semantic relationship:

First, the category-specialization relationship with element-type classes as specialization classes; se-

cond, the aggregation relationship. In this particular partOf-relation parts and wholes are instances

of the same class, namely DOCUMENT_ELEMENT. Because document elements may take part in the

partOf-relation independent of their type, the partOf-relation is between generalization instances,

due to the generalization principle. An aggregation metaclass capturing the semantics of the partOf-

relation between document components cannot be used together with a metaclass for category spe-

cialization, because an object is instance of exactly one class: Inheriting features from several meta-

classes could lead to unforeseeable overlappings of the metaclasses’ types. Instead the metaclasses’

types must be related via the subtype mechanism. A new metaclass is defined: The insttype is sub-

type of these metaclasses’ insttypes; the same holds true for the instinsttypes. Hence, instances and

metainstances have both specialization and aggregation semantics. (In Figure 3 this metaclass is

called CATSPEC&PARTOF.) At the moment we are working on the integration of versioning seman-

tics in a similar way. The special problems that occur when combining different semantic concepts

are described in a forthcoming article.

12

Document-Type Specific Layer. This layer bears the element-type-specific information. There is a

differentiation between terminal and nonterminal element types. Terminal element types such as

CDATA are part of ISO 8879-1986 [ISO86] and can be used in any DTD. They need not be introduced

at runtime, as opposed to DTD-specific nonterminal element types. The designation ‘terminal’ re-

flects the fact that their instances are leaves of the document tree. Their processing differs from the

one of nonterminal elements, e.g. because they do not have attributes according to the standard.

Nonterminal element-type classes have properties bearing the information that constitutes the ele-

ment type. These properties are inherited from the metaclass NONTERMINAL and instantiated for the

first time when the class is created. Likewise, the properties and methods of the element-type

classes’ instances are inherited from that metaclass. The dual-model conception facilitates the cre-

ation of element-type classes without defining new types. Element-type classes are containers for

SGML elements of the same element type. – In Section 2 it has been implied that SGML DTDs are

essentially grammars defining the documents’ structure. The semantics of document components

DE_
INSTTYPE

CP_INSTINSTTYPE
É
É
ÍÍ
ÍÍ

CATSPEC_
INSTINST-

TYPE
ÉÉ
ÉÉ

PARTOF_
INSTINST-

TYPE
ÉÉ
ÉÉ

CATSPEC_
INSTINSTTYPE

4: D-STREAT - Dual Model

Level 1:
individual
objects

Level 2:
application
classes

chapter XY
as
DOCUMENT_
ELEMENT NT_

INSTINSTTYPE

ÉÉ
ÉÉ
ÉÉ
ÉÉ

DE_
OWNTYPE

CP_INSTTYPEÍÍ
ÍÍ DOCUMENT_

 ELEMENT (DE)
SECTION CHAPTER

CATSPEC_
INSTTYPE ÍÍ

CATSPEC&PARTOF (CP)

CATSPEC_
INSTTYPEÍÍ

ÍÍ

PARTOF_
INSTTYPEÍ

Í

Level 3:
metaclasses

NT_
INSTTYPE ÍÍ

NONTERMINAL (NT)

13

does not follow from the element-type definitions.4 The effect is that no element-type-specific pro-

cessing is necessary. Element-type classes’ instances are of the same VML type. In the database, the

content of an SGML element is a list of instances of the generalization class DOCUMENT_ELEMENT.

The attribute values are, according to the SGML standard, a sequence of characters. The interpreta-

tion of user-defined attribute types is not part of SGML. Interpretation of SGML attributes is only

possible for a limited set of attribute types being part of [ISO86], such as ID, IDREF.

Type-to-Class Mapping. Figure 4 is a fragment of Figure 3: The boxes next to the objects indicate

from which types the objects inherit their properties and methods. An instance of DOCUMENT_ELE-

MENT, for instance, has the properties and methods defined in the instinsttype of CATSPEC&PARTOF

and the ones from the insttype of DOCUMENT_ELEMENT. The line between types within a box dis-

play the subtyping relation: CP_INSTINSTTYPE is subtype of CATSPEC_INSTINSTTYPE and of

PARTOF_INSTINSTTYPE. The plain lines outside the boxes connect the types with the classes where

they are defined.

Illustration. Extended functionality, as compared to other approaches to document handling, is our

objective. Multi-authoring (i.e. multi-user mode) and versioning have been mentioned. – In VML

there exists the possibility to brace a sequence of operations to a transaction. Then the DBMS inter

alia ensures that no interleaving with other operations occurs. Multi-authoring need not be realized

as part of the database application, but instead built-in features can be applied. The following code

fragment is part of a sequence of operations generating an instance of the DTD in Figure 1.

BEGIN_TRANSACTION
BODY := NONTERMINAL -> createElemType(’Body’, ...);
BODY -> setContentModel(’(Paragraph)*’);
body := BODY -> createElem();
ok := body -> setContent ({(1, para1), (2, para2)});
...

IF (ok)
COMMIT_TRANSACTION

ELSE
ABORT_TRANSACTION

5: Example

4. An exception are SGML types ID, IDREF, IDREFS. These types, however, need not be used in connection with
documents having a tree structure. Therefore, they have not been introduced.

14

The meaning of BEGIN_TRANSACTION, COMMIT_TRANSACTION and ABORT_TRANSACTION is

canonical. BODY is the object identifier of an instance of NONTERMINAL, i.e. an element-type class.

The method createElemType creates a new instance of the class NONTERMINAL. Because in VODAK

classes and metaclasses are first-class objects they can receive method calls. The second operation

sets the content model of the element-type class BODY to ‘(Paragraph)*’. Now an instance of BODY

can be created: The method createElem actually creates two objects: An instance of the target-ele-

ment-type class and the corresponding generalization instance. The first one is returned; the variable

body is instantiated with it. In the next step, the content of body is instantiated with a list of para-

graphs: para1 and para2 are instances of DOCUMENT_ELEMENT that must have been created before.

ok is a variable of type BOOL. setContent returns TRUE iff it executed as foreseen.

For versioning it is necessary to break down the authoring process into so-called tasks. As a rule,

each task’s end corresponds to a version of the document, the result of the task. With our approach

granularity for versioning is on the SGML element level: If within a task a small portion of the docu-

ment is altered, it is not necessary to generate a copy of the entire document, but only copies of the

elements that have been modified. They are generated automatically by operations being part of the

versioning metaclasses if within the current task a copy of the element being modified has not yet

been generated. Hence, the interface of edit-operations (e.g. setContent) needs not be altered. On the

other hand old document versions can be read and new versions can be derived from them. In the

world of non–versioned objects, for example, there is a method printDocument. In the world of ver-

sioned objects it has a counterpart printDocument (task: taskType) displaying the state of the document

at the end of the relevant task. – Versioning features are currently integrated into D-STREAT.

Coupling with SGML Parser. To insert documents as a whole into the system, the SGML parser

ASP (“Amsterdam Parser”) [WaE87] is coupled with D-STREAT. The ASP has been extended to

invoke the methods creating the database objects that represent the logical document components.

This is already part of the parsing process. On the other hand, the parser also checks the document’s

conformance to its DTD. Because after the parsing process it is known that the document is correct

certain verifications can be omitted that are part of the operations in the general case. For instance,

one axiom describing aggregation states that the aggregation relation is cycle-free. This is checked

within the corresponding operation of the metaclass PARTOF every time a new relation is introduced.

Because of the documents’ correctness after parsing, i.e. the document has a tree structure, checks of

this kind can be omitted when inserting documents the way just described. This is advantageous for

15

performance reasons. The metaclass PARTOF provides another version of that operation without that

check. It is to be used within the coupling with the ASP. This is feasible because of the extensibility of

the data model, i.e. the freely definable methods in metaclasses. Application-specific knowledge is

not only necessary to model semantic relationships. It is also advantageous with regard to efficiency.

Experiences. We cannot yet answer the question whether current OODBMS technology is able to

handle large document bases. Namely, VODAK is a prototype with considerable leeway for opti-

mization. Documents stored in OODBMSs according to their tree structure naturally occupy more

disk space than as a file: With “extreme” documents consisting of as much markup as possible the

factor in VODAK is about a hundred. However, with conventional OODBMSs semantic control

over the objects is not part of the database. This would lead to a substantially reduced disk-space

consumption, but there would be no basis for semantics–based query optimization [AbF93]. Setting

up the entire document trees in the database is rather slow. It is comparable to the time interval for

establishing the database structures in the loose coupling between INQUERY and an OODBMS de-

scribed in [CST92]. The duration for large documents is in the hour range. – We will assess query

evaluation with our database application after integrating VODAK query-optimization features.

5 Related Work

We are not aware of OODBMS applications for structured document storage. However, research in

various areas has contributed useful findings.

Document Storage. In [CrS87, ZTS91, CST92, Bar+93] either document structures for database

storage or database applications for document handling are described. As opposed to our approach,

only special document types are dealt with. Three possible kinds of textual document storage in

nested relational database systems are discussed in [ZTS91]. The article’s objective is to compare the

efficiency of the different techniques presented. The approaches are static, i.e. the document type is

hardcoded in the schema. The Gold Mailer [Bar+93], an integrated system for sending and receiving

messages, contains a so-called index engine for archiving received messages. Again, the document

structure is fixed. In queries structure-orientation can be combined with content-orientation. In this

context, however, content-based retrieval is pattern matching. A loose coupling of the text-retrieval

system INQUERY with an OODBMS is described in [CST92]. Likewise, there is a rigid set of docu-

ment-component types. On the other hand, INQUERY’s retrieval functionality is an asset.

16

The objective of the Rufus System [Sho+93] is to provide database support for semi-structured data.

For them, textual documents are just an arbitrary example of semi-structured data next to, say, com-

puter programs or images. Hence, document-specific support (e.g. by using concepts such as

SGML) is not envisaged. Rufus does not modify the file objects themselves, because the developers

want to carry on using applications developed against the data’s original format. We argue that the

negative valuation of approaches that transform documents’ formats to a database format is too un-

differentiated. Namely, storage of documents in the database is done to extend functionality. The

decision whether document storage in databases is advantageous is manifold (cf. Section 1). With

Rufus the database contains descriptive information about file-system objects. It is only the retrieval

functionality that is extended. – With the system presented in [Bur92] it is possible to formulate quer-

ies referring to both the structure as well as its content. As opposed to the approaches mentioned

before, arbitrary document structures can be dealt with. Again, however, content-based search is

mere pattern matching. This functionality can in principle be achieved with our system by integrat-

ing a grep-command for the VML-datatype STRING. – It seems that with these approaches docu-

ments’ modification is not supported.

SGML Databases. Some years ago pioneering work has been done in the field of storing SGML

documents in databases. Schouten [Sch89] describes how with his system SGML documents are

fragmented and how the fragments are stored in a relational DBMS. The mapping from SGML docu-

ments to the relational schema is intricate. It is not part of the system or of an application program.

Hence, the system does not capture SGML’s semantics. Documents’ organization in the database has

no DTD-specific aspects: The data structures are generic and are not adapted to individual DTDs.

However, avoiding these pitfalls seems to be difficult using a relational system.

Schema Evolution. With main-stream OODBMSs a schema consists of class definitions5 contain-

ing the definitions of instances’ properties and methods and subclass-relations between classes. Cor-

respondingly, on a more formal level an object is specified by its signature and a set of axioms

[SSC92]. Axioms being first-order-predicate-logic formulae correspond to that conventional notion

of ‘schema’ without a metaclass mechanism as in VML. From that perspective, operations within

D-STREAT such as creating a new class are schema-change operations. With the VML conception,

5. The distinction between object types and classes in VML is rather an exception, as compared to other OODBMSs.

17

metaclass definitions may be part of the schema. This corresponds to second-order-predicate logic.

In this case, creating new application classes is not schema evolution.

6 Conclusions

The design of a database application for structured documents (D-STREAT) has been elaborated.

D-STREAT is currently being refined. The documents are fragmented for storage according to their

SGML-document-type definition. D-STREAT’s functionality is different compared to systems that

use databases only to store description information on the documents or that carry out a generic frag-

mentation independent of the document-type-specific structure. The OODBMS VODAK offers the

advantages of differentiating between classes and types, of metaclasses to model semantic relation-

ships between classes and of generating instances of metaclasses at runtime.

On the other hand, IRSs have features that D-STREAT currently does not have. The idea to develop a

coupling between an IRS and D-STREAT is nearby. On the one hand, having the functionality of

both IRSs and database applications for document storage is envisioned. Furthermore, new func-

tionality results from the combination of IRSs with DBMSs. For instance, it would be possible to

formulate queries referring both documents’ content as well as the one of databases. Query optimiza-

tion using knowledge on operations’ costs is currently being integrated into VODAK [AbF93]. Be-

cause costs of IRSs’ operations are principally known the next goal would be an integrated query

optimization taking into account both the database methods and the IRS’s operations. An interesting

topic in this context would be to exactly identify situations in which redundant document storage,

that is storage both as one large file object and as fragments, is advantageous.

Another issue is database support for generic structures. In this case, tree structures are of interest. In

[Sub+93] it has basically been pointed out that there is the potential for query optimization. We are,

however, not aware of a realization of query optimization for tree structures.

Acknowledgements. We thank Peter Muth, Thomas Rakow and Marc Volz for their comments on

an earlier version of this article and Ute Sotnik for correcting the worst mistakes.

References

AbF93 K. Aberer, G. Fischer, “Object-Oriented Query Processing: The Impact of Methods on Language,
Architecture and Optimization”, Arbeitspapiere der GMD No. 763, St. Augustin, 1993

18

ABH94 K. Aberer, K. Böhm, C. Hüser, “The Prospects of Publishing Using Advanced Database Con-
cepts”, to appear in Proceedings of Electronic Publishing 94

AkQ92 E. Akpotsui, V. Quint, “Type Transformation in Structured Editing Systems”, in C. Vanoirbeek,
G. Coray (eds.), Proceedings of Electronic Publishing 92, Lausanne, Switzerland, Cambridge
University Press, pp. 27-42

Bar+93 D. Barbará et al., “The Gold Mailer”, in Proceedings of the Ninth International Conference on
Data Engineering, Vienna, Austria, IEEE Computer Society Press, pp. 92-99

BIP92 N. Belkin, P. Ingwersen, A.M. Pejtersen (eds.), Proceedings of the Fifteenth Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, 1992, ACM
Press

Bur92 F.J. Burkowski, “Retrieval Activities in a Database Consisting of Heterogeneous Collections of
Structured Text”, in [BIP92], pp. 112-125

CrS87 W.B. Croft, D.W. Stemple, “Supporting Office Document Architectures with Constrained
Types”, in Proceedings ACM SIGMOD 1987, San Francisco, May 27-29, pp. 504-509

CST92 W.B. Croft, L.A. Smith, H.R. Turtle, “A Loosely-Coupled Integration of a Text Retrieval System
and an Object-Oriented Database System”, in [BIP92], pp. 223-232

ISO86 Information Processing – Text and Office Systems – Standardized Generalized Markup Language
(SGML), ISO 8879-1986 (E), International Organization for Standardization, 1986

ISO89 Information Processing – Text and Office Systems – Office Document Architecture (ODA) and
Interchange Format, Part 2, Document Structures, 1989

Her90 E. van Herwijnen, Practical SGML, Kluwer Academic Publishers, 1990

Hal94 M. Halper et al., “Integrating a Part Relationship into an Open OODB System Using Meta-
classes”, submitted to ADB-94

KAN93 W. Klas, K. Aberer, E.J. Neuhold, “Object-Oriented Modeling for Hypermedia Systems using
The VODAK Modeling Language (VML)” in Object-Oriented Database Management Systems,
NATO ASI Series, Springer Verlag Berlin Heidelberg, August 1993

Kla+93 W. Klas et al., “VML - The VODAK Model Language Version 3.1” Technical Report, GMD-IPSI,
July 1993

Sch89 H. Schouten, “SGML*CASE The Storage of Documents in Databases”, Vol. 4, No. 1, SGML Us-
ers’ Group Bulletin, 1989

Sho+93 K. Shoens et al. “The Rufus System: Information Organization for Semi-Structured Data”, in R.
Agrawal, S. Baker, D. Bell (eds.), Proceedings of the International Conference on Very Large
Data Bases 1993, Dublin, Ireland, VLDB Endowment, pp. 97-107

SSC92 A. Sernadas, C. Sernadas, J.F. Costa, “Object Specification Logic”, INESC Research Report
1992, to appear in Journal on Logic and Computer Science

Sub+93 B. Subramanian et al., “Ordered Types in the AQUA Data Model”, Proceedings of the Fourth
International Workshop on Database Programming Languages 1993 (DBPL)

WaE87 J. Warmer, S. van Egmond, “The Implementation of the Amsterdam SGML Parser”,
 Technical Report, Faculteit Wiskunde en Informatica, Department of Mathematics and
Computer Science, Vrije Universiteit Amsterdam, 1987

ZTS91 J. Zobel, J.A. Thom, R. Sacks-Davis, “Efficiency of Nested Relational Document Database Sys-
tems”, in G.M. Lohmann, A. Sernadas, R. Camps (eds.), Proceedings of the International Confer-
ence on Very Large Data Bases 1991, Barcelona, Spain, VLDB Endowment, pp. 91-102

