
1

��������	�����
�� ��

��
 �������	� ������

��� ���

Karl Aberer, Gisela Fischer

Object-Oriented Query Processing: The Impact of Methods
on Language, Architecture and Optimization

July 1993

GERMAN NATIONAL RESEARCH CENTER
FOR COMPUTER SCIENCE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

The “Arbeitspapiere der GMD – GMD Technical Reports” primarily comprise prelimi-
nary publications, specific partial results and complementary material. In the interest
of a subsequent final publication the “Arbeitspapiere/Technical Reports” should not
be copied. Critical comments would be appreciated by the authors.
No part of this publication may be reproduced or further processed in any form or by
any means without the prior permission of GMD. All rights reserved.

� Copyright 1995

Addresses of the authors:

Dr. Karl Aberer

GMD-IPSI

Dolivostraße 15

D-64293 Darmstadt

Email: aberer@darmstadt.gmd.de

Phone: ++49/6151/869-935

Fax: ++49/6151/869-966

Gisela Fischer

GMD-IPSI

Dolivostraße 15

D-64293 Darmstadt

Email: fischerg@darmstadt.gmd.de

Phone: ++49/6151/869-933

Fax: ++49/6151/869-966

Address all correspondence to:

Dr. Karl Aberer

GMD-IPSI

Dolivostraße 15

D-64293 Darmstadt

Email: aberer@darmstadt.gmd.de

Phone: ++49/6151/869-935

Fax: ++49/6151/869-966

3

Abstract
Although nearly all object-oriented data models proposed so far include behavioral aspects, most object-

oriented query languages, algebras and query optimization strategies simply adapt relational concepts

since they focus on the complex structures of objects and neglect the behavior. We claim that this approach

is not sufficient since it does not reflect the much richer semantics methods can carry which have to be

taken into account for really efficient query processing. The quite straightforward approach we consider is

to integrate methods in an algebraic framework for query processing and to make there partial knowledge

about methods available in the form of equivalences. We examine two important questions which emerge

from taking this approach. First, how is it possible to integrate algebraic set operators with methods de-

fined in database schemas within an object-oriented data model? Second, what is the impact on the archi-

tecture of the query processor when the algebra becomes an extendible component in query processing?

1 Introduction
Query processing in object-oriented database management systems is an active research area. The goal is

to bring together the main features of object-oriented database management systems, namely a data mod-

el, which supports objects with complex structure and behavior, and extensibility, with a declarative and

efficient query language. The concept of declarative query languages has proven to be successful in the

framework of relational database management systems. As query processing in relational and nested rela-

tional database management systems is considered as starting point, currently most approaches for ob-

ject-oriented query processing focus mainly on the structural part of object-oriented data models and do

not take account of the much richer semantics methods can carry and which have to be taken into account

for really efficient query processing in non-standard applications. Thus conclusions as in [32] are drawn:

“In retrospect, the extent of similarities between relational and object-oriented query processing should

not have come as a surprise, if we recognize that, regardless of data models, query processing is essential-

ly a process of mapping a declarative query expression into a sequence of procedural executions.”

Although the knowledge from relational query processing is an important starting point, we claim that

there are many new issues to consider, which play only a minor role in relational query processing. De-

spite many efforts in the area of object-oriented query processing during the last years they are still quite

far from being satisfactorily solved. Simply adapting relational query processing concepts by taking a

structural view is not sufficient for data models providing structure and behavior. Any query processor

that claims to support the features of an object-oriented database management system should satisfy the

following objectives: support for complexly structured objects with methods defined on these objects,

4

extensibility with respect to the processing resources and strategies, modularity of processing compo-

nents, declarativity and efficiency. As an overall observation this means to step from hard-coded to flex-

ible and adaptable query processors.

In this paper we want to shift the attention away from the structural view and focus on behavioral aspects.

We will analyze the impact of behavioral extensions on the different components of the query processor.

Simply allowing method calls in query statements as it is proposed in many query languages is by far not

enough. Methods have an impact on the whole architecture of the query processor, starting from the lan-

guage, over optimization up to execution. Therefore we will come up with a modular reference architec-

ture for a query processor. Based on this architecture we will analyze some of the components in detail.

One of the main issues is the choice of a data model and a query language. There we rely on the framework

of the object-oriented database management system VODAK which is currently developed and imple-

mented at GMD-IPSI, its manipulating language VML and its query language VQL. VQL is an object-

oriented query language, developed on the basis of the SQL paradigm. We show how VQL allows to fully

exploit the features of the underlying object-oriented data model VML, in particular methods.

For query optimization we take a completely algebraic viewpoint. However, we want to get away from a

built in algebra for two reasons. First, extensibility makes it necessary to give the user the means to extend

the query algebra, and the means towards this end are methods. Second, the query optimizer should also

be able to use knowledge about application specific methods. Thus we represent the algebra within the

VML data model completely by methods in a method algebra. Based on this method algebra we discuss

different possibilities how knowledge about methods, given in form of equivalences, can be used by the

query optimizer. Thus the meaning of semantic query optimization as known from relational database

systems radically gains in importance if we take methods into account.

Search strategy as well as cost and execution models should be exchangeable or modifiable as the applica-

tions we carry in mind will take place in different environments, e.g., on distributed platforms, which will

of course lead to changing needs from applications. We will sketch shortly how to come to a completely

self-contained description of the query processor within the object-oriented data model.

The remainder of the paper is organized as follows: In Section 2, we review the related work. In Section 3,

we propose a modular reference architecture. In Section 4, we introduce the VML data model and in Sec-

tion 5, the VQL query language, including some aspects of processing the query input. In Section 6, we

discuss how to model a query algebra in our object-oriented data model leading to the notion of method

algebra. In Section 7, we discuss equivalence-based query optimiziation based on the method algebra. In

5

Section 8, we give an outlook on a possible design of the other components of the query processing archi-

tecture and finally, in Section 9, we give some concluding remarks.

2 Related Work
The main body of work in object-oriented query processing focuses on structural aspects and is thus close-

ly related to work on relational query processing (e.g. [29]). A large number of query languages and ob-

ject-oriented algebras where proposed in this direction [13][31][33][35][37][39][41][45]. Closely related

to this are works on different variants of indexing techniques for path expressions [7][8][30]. This work

has already developed into a stable framework for query languages on the structural part of object-ori-

ented databases, for overviews see [9][27]. In [43] an architecture closely related to relational architec-

tures is proposed. Implementations that follow these proposals are found in Orion/Itasca [5][32], O2

[4][14][16], OSCAR [26] and Cocoon [40].

Work concentrating on the impact of methods in the framework of object-oriented query processing is

somehow rare. Some theoretical aspects are covered in [6]. An approach suggesting precomputation of

methods for indexing is described in [10]. A proposal to reveal knowledge about the execution of methods

behavior to the query processor is described in the REVELATION project [23].

Apart from this general picture for standard object-oriented query processing we have to take account of

different developments in related areas.

In particular relevant for us is work on extendible database systems. Here, we mention the extended rela-

tional system POSTGRES, with an extendible data model that is exploited in query processing [42]. In the

EXODUS/VOLCANO projects generic support for query processing in extendible relational and object-

oriented database systems was investigated and prototypes for query optimization and execution were

developed [15][21][24]. In [12] a query optimizer that was built on this prototypes for the Open OODB

system is described. An extendible database programming language is described in [44]. A proposal for

modelling extendible search strategies of query optimizers is found in [36].

Rule based query optimization is fundamental in extendible database systems. Background on this is

found in [19][22][24]. A particularly interesting implementation was given for structural object oriented

data models in [30].

Semantic query optimization is another important issue for our work. For an example of semantic query

optimization in relational systems see [11]. In [20] also semantic knowledge of operations on abstract data

types is considered. In [43] semantic knowledge about classes is exploited for query optimization.

6

3 A Reference Architecture

In order to provide a clearly defined framework for the subsequent discussion and to clearly identify the

different components of query processing that can be affected by methods we propose in this section a

reference architecture for a query processing. It is designed according to our objectives and identifies the

main orthogonal components needed for query processing. In the following sections we will discuss the

impact of methods on different components of this architecture. An illustration of the architecture is found

in Figure 1.

As a first component we consider the query language as it is offered to the user. This may be an SQL-like

textual query language, a DML programming language extension, an application interface in a host lan-

guage or a visual query interface. Important is support for set-oriented access and full exploitation of all

structural and behavioral features of a database schema of the underlying object-oriented data model. The

query expression is parsed and transformed into an internal representation. Then the semantic correctness

of the query is checked. This step has to take account of the database schema. Next a simplification step

takes place. This step simplifies the representation of the user input such that it can be translated to a de-

fault algebraic expression of the query algebra. The query algebra has to have at least the expressive pow-

er of the query language but it has also to be extendible by operations defined in the database schema.

The optimization process can be considered as a search problem: the search space for a specific expres-

sion is produced by a set of equivalences between algebraic expressions and consists of the set of expres-

sions which are semantically equivalent under the given set of equivalences. The search is for the expres-

sion with minimal cost according to a given cost model. The search strategy is an algorithm which has to

perform this task. We do not consider a specific strategy, as different strategies may be appropriate in dif-

ferent contexts. However, each strategy must be able to deal as well with the extendible set of algebraic

operators, an extendible set of equivalences and an extendible cost model.

We separate the algebra from the execution model. The execution model describes the translation of the

algebraic expression in a piece of executable code. The execution models may realize completely differ-

ent paradigms of computations, e.g. object-at-a-time vs. set-at-a-time (data-flow vs. functional). It may

happen that two algebraic operators are translated in the same way in a specific model. Closely related to

the execution model is the cost model which, in dependence of a database state, quantifies the cost of each

operator to be executed.

7

Search space

Equivalence
rules*

Figure 3: Reference Architecture for a Query Processor and Optimizer

Query1 Query_n. . .

Default algebra
expression

• Parsing
• Semantic analysis

• Simplification

Semantically equiva-
lent queries

Algebra
expression #1

“Optimal” expression

Algebra
expression #2

Algebra
expression #m

. . .

Query2

Search strategy*

Cost model*

Execution model*

Executable code

Query output

Algebra*

Data model*

• Generation of executable
code

• Result generation

• Optimization

• encapsulated query
processing step

 * extendible or exchangeable
component

next processing step

influences

depends on

Database

Simplified
query

• Transformation to
algebra

 Query Language*

8

In the final step the optimized algebra expression is mapped to an executable expression by referring to the

execution model. The executable expression produces the desired query result. These two steps can be

performed by the query processor either in an interpretative way, by looking up the appropriate execution

for an algebraic operator and immediately executing it, or by compilation, where the executable is first

produced and then executed afterwards.

4 The Data Model
The VODAK Modelling Language VML consists of a DDL part which is used to define database schemas

and a computationally complete DML part for the implementation of methods and application programs.

In the following we describe the data model which is underlying VML.

Objects represent material or immaterial real world entities or abstract concepts which are stored persis-

tently. They possess unique identifiers and have properties and methods which describe their structure

and behavior. Properties and methods may be public or private, while method implementations always

remain hidden. Public properties are accessible through system-defined methods, hence the access to ob-

jects is provided through methods only. Method invocations in VML are denoted by o→m(args) where o

is the object identifier of the receiver object, m is the name of the method and args are the method argu-

ments.

Objects with common structure and behavior are instances of the same class. An object is an instance of

only one class. The structure and behavior of the instances of classes is specified in parametrized object

types. Thus object types and classes are different concepts, which is known as the dual model. This separa-

tion between types and classes can also be found in, e.g., COCOON [40] and OSCAR [26]. As a conse-

quence for example different classes may use the same object type. Classes are objects themselves and

belong to metaclasses. Thus they can also be receiver objects for messages, e.g., the system-defined meth-

od instances() can be sent to each class C with C→instances(). For details on the relation between object

types and classes, and the metaclass concept see [3][34].

Domains are used for the declaration of variables, which keep transient values, of properties, which keep

persistent values, and of methods in object interfaces. We distinguish primitive domains, like Integer and

String, class domains, which consist of object identifiers, and complex domains built up from other do-

mains with domain constructors like set, tuple, array or dictionary. To values of primitive domains built-

in primitive operations can be applied, like addition or multiplication for Integer. To values of complex

domains the access operations to the domain constituents can be applied, like access to components of

tuples. To class domains, which consist of all (potential) object identifiers belonging to instances of a

9

specific class, method calls can be applied. Any expression built up from primitive operations, access

operations, method calls and paths is called a VML expression.

In VML usually part of the state of an object is made public in form of properties. As we have already

mentioned, for public properties the DBMS generates corresponding methods for reading and writing

automatically. In order to ease property access we allow access to the properties of an object by using the

standard dot notation, i.e., instead of directly calling the system-generated read method we can read the

property p of the object variable x of a class domain by x.p. Note that this does not violate object encap-

sulation.

Properties and method declarations in object types need the specification of domains. This is accom-

plished either by using primitive domains or through object-type parametrization. The object-type pa-

rameters represent domains which satisfy constraints given by object types. During class definition these

parameters are substituted by class domains. This substitution is called type-to-class mapping.

Figure 2 gives an example of a simple VODAK schema. It shows the definition of the class Person and the

object type Person_Type which is used as the instance type of Person. In the class definition of Person the

object-type parameter P of Person_InstType is mapped to the class Person, thus leading to a recursive

definition of this class. Person_Type defines the public properties name, father, mother, the private prop-

erty birthday, and the public methods setBirthday, age and children. The properties mother and father

reference other instances of the class Person using object identifiers. setBirthday assigns a value to birth-

day (we assume date is a user-defined data type), age computes the actual age of a person (since the mean-

ing of this method is clear we only describe its implementation), and children computes all children of a

person with a VQL-query expression. SELF denotes the actual object, i.e., the receiver object of the

method.

The implementation of VODAK is based on C++. The VML compiler analyzes database schemas and

applications written in VML syntactically and semantically, translates (DML-) VML code to executable

C++ code, and generates a data dictionary, i.e., a persistent system catalog, for a database schema.

5 The VODAK Query Language VQL
The query language VQL supports declarative access to object-oriented databases in the VODAK data-

base management system. For pragmatic reasons VQL is based on a SQL-like approach [18]; in fact, it is

similar in appearance to POSTQUEL [42] and the query language of ORION as presented in [33]. VQL

allows the exploitation of all features of the underlying data model described in the previous section, in

10

particular method calls. Additionally, compared to standard SQL it provides features which are either

convenient or necessary in order to efficiently access VML databases. Among these are path expressions

of variable length, existential and universal quantifiers and arbitrary nesting of queries. Extensions for

aggregations and recursions will be integrated in the future. For space limitations we also do not consider

nested queries in this paper.

Since we allow arbitrary method invocation in queries we cannot determine in advance whether a query is

a pure retrieval query or whether updates are performed due to the execution of the methods contained in

the query [18]. In order to reflect this semantics in the syntax we replaced the SQL-keywords SELECT/

UPDATE by the more general keyword ACCESS.

A VQL query has the form

X := ACCESS – FROM – WHERE

and thus is an extension of VML. We now describe the different clauses of a query in more detail:

ACCESS

This clause contains an VML expression that computes the single values of the set which will be

assigned to the query result X. If the expression returns a value of domain D the query returns a value

of domain {D}. The expression contains variables bound in the FROM clause.

FROM

This clause contains the declaration of range variables which are bound to the input sets against

which the query is posed. A query is posed against classes by taking the extensions of the classes as

input. The extensions are given as sets over the class domains, i.e., as sets of object identifiers. These

sets of object identifiers are obtained by sending the system defined method instances() to the class

objects or by any valid VML expression returning sets of object identifiers.

11

OBJECTTYPE Person_Type [P: Person_Type]

INTERFACE

PROPERTIES

name: STRING;

father: P;

mother: P;

METHODS

setBirthday(d: date);

age(): INT;

children(): {P};

IMPLEMENTATION

PROPERTIES

birthday: date;

METHODS

setBirthday(d: date); { birthday := d;};

age(): INT; {// compute the age in years using the actual date and birthday;};

children(): {P};

{ RETURN

(ACCESS c FROM c IN P WHERE c.father==SELF OR c.mother==SELF;)

 }

END;

CLASS Person

INSTTYPE Person_Type [Person]

END;

Figure 4: Definition of the object type Person_InstType and the class Person

WHERE

specifies the conditions according to which elements should be selected from the input sets specified

in the FROM clause. The WHERE clause consists of atomic predicates combined with the Boolean

operators AND, OR and NOT. Atomic predicates are ==, !=, <, <=, >, >=, IS-IN, IS-SUBSET and

any method call with Boolean result type. We assume for the operands and parameters strict domain

compatibility. The WHERE clause may also contain existential and universal quantifiers over vari-

ables which are bound to finite sets.

12

In any place of a query where a value of a specific domain is required, e.g., a set in the FROM clause, a

Boolean value in the WHERE clause, an operand of an atomic predicate or a parameter of a method call,

also an VML expression may appear. This expression can involve method calls, path expressions or do-

main constructors and has to deliver values of appropriate domains. A formal specification of VQL is

found in [1].

We allow arbitrary method calls to define the input sets in the FROM clause. However, we impose a de-

pendency restriction for the FROM clause in order to exclude recursion. The variable bindings, i.e., the IN

clauses, have to allow a reordering such that the following condition holds: a variable on the right-hand-

side of an IN clause may only appear on the left-hand-sides of IN clauses, which follow the IN clause

where the variable is bound. For example, the FROM clause FROM c IN p→children(), p IN Person can

be reordered to FROM p IN Person, c IN p→children() which satisfies the condition. We will consider

relaxations of this condition, which basically comes down to a topological ordering of the dependencies,

when we introduce recursive VQL queries in the future.

The semantics of a VQL query is given by an object calculus expression. Object calculus is a specification

mechanism derived from relational tuple calculus based on predicate calculus. Several variants of object

calculus were investigated also taking account of method calls in the query, e.g., [9][37][43]. In this paper

we do not specify the details of this calculus, e.g., with respect to atomic predicates, resolving path expres-

sions, safety of calculus expressions and later translation to an algebra expression. We only sketch how a

query is mapped to a calculus expression by an example

ACCESS expr(x,y,z)

FROM x IN A, y IN B, z IN C

WHERE pred(x,y,z)

is the set of data that satisfies

{r | r =expr(x,y,z) ∧ x ∈ A ∧ y ∈B ∧ z ∈ C ∧ pred(x,y,z)}

Of course all transformations of VQL queries in the simplification process have to be consistent with this

semantics.

After the query is parsed according to the above VQL syntax the semantic correctness is analyzed. In this

step the validity of the input sets, the domain compatibility of operands and parameters, in particular also

for nested method calls and path expressions, as well as the availability of methods for objects is checked

according to the schema information stored in the data dictionary. Also the dependency restriction on in-

put sets is checked here. After semantic analysis a simplification step takes place.

13

Simplification replaces shortcuts for the user, like using class names instead of method calls for producing

class extensions, by the proper VQL expressions. It reorders the FROM clause according to the dependen-

cy restriction. The most extensive part of simplification applies to the WHERE clause, where atomic

predicates are analyzed and simplified and the condition is brought into prenex disjunctive normal form.

6 The Query Algebra

A simplified VQL query is mapped to an internal algebraic representation for subsequent algebraic opti-

mization. The query algebra we propose consists of the following constituents:

• Kernel algebra: It is provided by the system and has to be powerful enough to express any simplified

VQL query, which is translated using these generic operations. Operators of this algebra have only

values from set domains as arguments.

• Application algebra: These are the user-defined application specific methods. Operators of this alge-

bra take values of arbitrary domains as parameters.

• Execution algebra: These are user-defined operators taking values from set domains as arguments.

They do not introduce application specific semantics but express alternative execution strategies as

those expressible in the kernel algebra.

The execution and the application algebra both are defined within the framework of VML schemas,

whereas for the kernel algebra we have different options, which we will discuss later. It is important to

observe that modelling the query algebra, including the kernel algebra, is crucial if we want to extend the

query algebra by user defined methods and to exploit application specific knowledge in the optimization

process.

6.1 Set Operators

To discuss modelling of the algebra in VML we first have to analyze the structure of algebraic operations

as they typically appear in set–oriented query processing.

The query algebra is based upon set operators which take values from set domains as arguments. The

signature of such an operator with arity n is in general of the form

OP(f1,...,fm; {D1},...,{Dn}) : {D}.

where {D1},...,{Dn} are the set valued domains, {D} is the result domain and f1,...,fm are the parameters

of the operator. The interpretation of such operators is given as mappings on the set-valued domains.

14

The parameters play an important role as they are used to define whole families of operators. A parameter

is in general given in the form of a pattern for a VML expression with variables x1,...,xn corresponding to

the domains D1,...,Dn

fi(x1,...,xn) : Fi,

where Fi is the result domain of the expression. So, a parametrized operator OP corresponds in general to a

family OP={OPi}, where OPi has the signature

OPi({D1},...,{Dn}) : {D}.

More precisely the family OP is dependent on a particular schema as for each schema the expression pat-

tern leads to a different set of matching expressions.

For illustration of the concepts we give a small example, namely different types of selection operations

(with D an arbitrary domain)

(1) SELECT({D}, expr(x): BOOLEAN): {D}

(2) SELECT_EQ({D}, expr(x): INT, val): {D}

(3) SELECT_EQ_AGE({Person}, x–>m(): INT, value): {Person}

Many variations of relational and object oriented (set manipulation) algebras can be described within this

framework. In this paper we do not discuss a specific algebra but concentrate on the means to integrate an

(arbitrary) algebra into VML. What distinguishes the different variants is mainly the degree of parame-

trization of the operators. On the one end we have highly parametrized operators (e.g. [13][44]), together

with set union and intersection. These operators typically have the following form

 FILTER(pred(x1,...,xn): BOOLEAN , expr(x1,...,xn): D , {D1},...,{Dn}) : {D}

to which a simplified VQL query can be immediately mapped. The other extreme is, e.g., as proposed in

the relational case, a pure algebra restricted to single-attribute, single-tuple constant relations, selection

with single comparisons, natural join, projection, union, difference and renaming [38]. There the map-

ping from a VQL expression to the algebraic form is less straightforward.

Both extremes are not desirable for equivalence based optimization. A highly parametrized algebra will

increase complexity in application of rules while a puristic algebra introduces many different operators

which increases complexity of the algebraic expressions. A reasonable choice of operators for the kernel

algebra is a question for further investigation for which we intend to provide a framework. Which particu-

lar choice is made is not important for the rest of the paper. For the sake of giving examples we assume the

15

existence of a selection operation SELECT with different degrees of parametrization, as already

introduced.

6.2 Modelling the Query Algebra in VML

In the following we discuss the representation of set operators within VML. Basically there are the fol-

lowing three possibilities available.

As Domain Operators:

In this case set operators are provided as built-in operators manipulating sets of data values directly.

Some simple operators, like set union, are already provided in this form. This approach has the fol-

lowing drawback: there is a mismatch between the built-in set operators that are provided by the sys-

tem and the user–defined set operators that can be supplied by the user only in the form of methods.

The optimizer (as well as the execution model) has to deal with two different concepts for the same

purpose. Additionally in VML the primitive domains and the operations are not extendible, thus any

change of the query algebra leads to a change of the data model.

As Class Methods:

In this case set operators are modelled as class methods, i.e., the receiver object and the arguments of

the operators are classes. The set operations are performed on the extensions of the classes. In order to

reuse results of operations directly the result of those methods must again be a class. That means each

query processing operation produces a new (intermediate) class holding the result. In VML the con-

sequences are disastrous, as each object may belong only to a single class. Each result value has to be

represented by a newly created object.

As Powerset Methods:

A compromise of the previous two solutions is the following: we introduce a powerset class P_C for

each class C.

CLASS P_C

INTERFACE

PROPERTIES

rep: { C }

METHODS

Select(“parameter”) : P_C

// other set operators

END;

16

That means, an instance p_S of the powerset class P_C represents an arbitrary subset S of the exten-

sion of C. The set operators are modelled as methods of the powerset classes. These methods for set

processing operations are sent to the representative objects p_S. In each intermediate step a result set

corresponds to one new instance of P_C, which is only a small overhead. The generated result ob-

jects again can be receiver objects for set processing operations.

From the above discussion it becomes clear that we favor the last approach. We introduce system classes

for modelling arbitrary sets of objects with the corresponding set processing operations. Moreover, we

have to consider more general classes which allow, e.g., the modelling of arbitrary sets of tuples of objects

in order to represent the results of join operations.

This approach of course does not imply that the implementation of the set operators has to be realized in

the same way as user-defined methods using the DML. This is similar to the situation for other system-de-

fined classes, e.g., the class method instances() is also realized by a built-in implementation. The advan-

tage of the approach is a uniform model and interface for the query optimizer as well as for the user and a

homogeneous integration of user-defined methods with system-defined set operations.

After having defined a framework for representing set operators of the query algebra by methods we en-

counter the following problem: as already discussed parametrization plays an important role for the de-

scription of set operators. These parameters, when considered as method arguments, are not in domains of

constant values but in domains of functions (see, e.g., the different SELECT operators given earlier). For

built-in operators we can provide built-in mechanisms to deal with such parameters, but for method argu-

ments we have to extend the VML data model. For example, we want to express the query

ACCESS p FROM p IN Person WHERE p→age()==30

by method calls corresponding to set operators. This can be done in the following ways depending on the

degree of parametrization assuming that P is an instance of P_Person, which is the powerset class of Per-

son:

(1) P→Select(“p→age()==30”)

(2) P→Select_Eq(“p→age()”,30)

(3) P→Select_Eq_Age(30)

Only (3) can actually be expressed with domains of constant values. For a conceptually clean representa-

tion of (1) and (2) function domains are needed. In the following we denote such a domain by giving the

signature of the functions of this domain, e.g., the unary functions on Person returning Integer are denoted

17

by Person ⇒ INT. Using such function domains we can write the signatures of the first two method calls

as

(1) Select(cond: Person ⇒ BOOLEAN)

(2) Select_Eq(cond: Person ⇒ INT, val: INT).

Values of function domains are represented by any valid VML-expression containing placeholders for the

function arguments (which is basically a lambda notation). The corresponding method calls then are

(1) P→Select(#→age()==30)

(2) P→Select_Eq(#→age(), 30)

Currently VML does not support function domains explicitly, but they will be provided in the future.

Finally a further issue has to be discussed. So far we have modelled the powerset classes individually for

each application class. This may be appropriate for some application-specific set operators, but not for the

general system-defined set operators, which are defined uniformly for all classes. At this point the meta-

class mechanism of VML can be employed in order to define this system-wide uniform behavior of

classes in metaclasses. The same mechanism is used, for example, to model system-inherent class meth-

ods like instances(). It is outside the scope of this paper to discuss this issue in detail.

6.3 Method Algebra
As a result of modelling set operators as methods our query algebra has now turned into a method algebra.

Expressions of the method algebra are a subset of general VML expressions. Within this algebra we can

now identify exactly the three parts mentioned at the beginning of the section. The kernel algebra consists

of the system-defined methods for representing a basic set operators; the execution algebra consists of

additional set operators which are user defined, and the application algebra consists of all user-defined

methods. The latter appear inside parameters of set operators, but as we have parameters now available as

ordinary method arguments, they become a fully integrated part of the method algebra. This will be one

key for using application-specific knowledge in query optimization.

In this framework, also a distinction between a logical and physical algebra is no longer given. (Logical

and physical algebra are taken from the terminology of [23]; expressions of the physical algebra often are

referred to as query evaluation plans.) User-defined methods will always provide implementations and

thus for those the two algebras collapse into one. Instead of a separate logical algebra we consider equiva-

lence relations on the expressions of the method algebra which can be used to impose a structure on the

search space.

18

7 Algebraic Optimization
In the method algebra all operators are equally righted. Furthermore, we no longer consider parametriza-

tion of set operators, but have integrated parameters as a part of the algebra. Therefore we can use the same

mechanism to describe equivalences for built-in operations as for user-defined operations. For the kernel

algebra we will assume a fixed kernel equivalence set, whereas for user-defined methods we consider

user-defined equivalences for methods. This leads to the notion of semantic query optimization.

In relational systems semantic query optimization is proposed to exploit semantic properties defined in

the schema, e.g., constraints on attributes. But this approach plays a minor role in relational optimization

and usually is not considered in object-oriented optimization (for an exception see [20]). The crucial ob-

servation is that query optimization in behavioral object-oriented database systems has to exploit seman-

tic knowledge about methods for query transformation. We provide semantic knowledge of methods in

the form of user-defined equivalences.

In the following we want to analyze in which ways semantic knowledge about methods can contribute to

query optimizations.

7.1 Complete Specification of Methods

In general the behavior of methods is defined operationally, i.e., by a piece of code. This is considered

reason enough not to inspect this behavior as it appears to be intractable in a declarative framework. How-

ever, a close inspection shows, that in many cases methods by no means exploit the full complexity of

operational specifications but can be specified fully by an equivalent expression in the method algebra.

This results in equivalences of the form

o→m(arg) � expr

where the VML expression expr does not contain the method m, but may contain the receiver object o and

the arguments arg. Such equivalences appear in two different contexts. In the first case, which we call

method expansion, the equivalence is applied in forward direction, that means the intention is to replace a

“black box” method call by a transparent expression in order to enable the optimizer to find a more effi-

cient execution of the query. In the second case, which we call expression contraction, the rule is applied

in backward direction, that means the intention is to replace a complex expression by a “black box” meth-

od call, which should perform better than the direct execution of the complex expression. The application

direction of the equivalence as a rule is of course a conceptual distinction which is only of importance for

the designer of a rule system, but not from an algebraic viewpoint.

19

7.1.1 Method Expansion

We illustrate this with the following three typical examples:

(1) Path methods: Often methods are used to compute reference chains to other objects. A simple exam-

ple is the method grandfather which could be defined for the instances of the class Person as follows

grandfather(): Person; {RETURN (SELF.father.father)};

(2) Queries: Since the query language is a part of the DML, it is very natural that many methods will be

expressed by queries, e.g., the method children in the example of Figure 2.

(3) Message passing methods: In VML there exists a mechanism which allows to automatically delegate

a method call at run time to another object based on dynamically generated semantic relationships.

These semantic relationships are realized through metaclasses [34]. For example, the class Student

may be a role specialization of Person, and thus inherits all Person properties logically but not physi-

cally (as Person and Students are disjoint classes). The method call name to a student is then for-

warded to the corresponding person.

The semantics of these methods can be described by the following equivalences, namely

(1) p IN Person: p→grandfather() � p.father.father

(2) p IN Person: p→children() � Person→Select(#.father==p OR #.mother==p)

(3) s IN Student: s→name() � (s→roleOf())→name()

Note that the rules do not necessarily only reflect the actual implementation of the method. Alternatives

can be specified for the same methods, as is illustrated by the following example (under some mild as-

sumptions on the marital status):

(4) p IN Person:

p→siblings() � p.father→children()

p→siblings() � p.mother→children()

Making knowledge about the semantics of such methods available in the schema, and thus to the optimiz-

er, offers a great potential for the optimization of methods by revealing the semantics of their implementa-

tion without violating encapsulation. Note that such rules also can blur the clear distinction between a

level of set operators and a level of parameters containing user-defined methods, as illustrated in example

(2).

20

7.1.2 Expression Contraction

Since object-oriented database systems explicitly support extensibility it is natural that also the set opera-

tors which are usually considered as built-in constructs alternatively may be provided in form of methods.

For example, consider a user-defined class method for exploiting indices with signature

Select_Ind_Age(val: INT): P_Person

which retrieves all instances of a the class Person for which the property age has value val. Then the se-

mantics of this operation can be specified with the following equivalence, assuming a conventional Select

operator on the powerset P_C of a class C is given.

(5) P_Person–>Select(#–>age()==val) � Person→Select_Ind(val)

7.2 Partial Specification
of Methods

In many cases it may not be possible to specify the behavior of methods completely. Still it might be pos-

sible to formulate equivalences involving the methods which are of the form

expr1(m) � expr2(m).

Such equivalences formulated for set operators play an important role in query optimization, e.g., to ex-

press join associativity. So, as methods may exhibit similar properties, due to the fact that they can possess

multiple parameters (whereas attributes have to be considered in this context as unary functions) and can

realize set operators, it is natural to allow such equivalences also for (user-defined) methods.

We illustrate this point by the following examples. Assume a method common_anc is given that computes

the (closest) common ancestor of two persons. This method is of course commutative but not associative:

(6) p IN Person, q IN Person: p→common_anc(q) � q→common_anc(p)

Commutativity can be exploited, e.g., when several appearances of this method call appear in a query, i.e.

we can avoid repeated execution of the same method call.

We give another example which involves set operators. Assume a powerset class P_Person of the class

Person is given. Let the method children be available in the interface of P_Person. This method, when

invoked on an instance P of P_Person, computes the union of the children of all persons in P and returns

the result as an instance of P_Person. Then we can define the following equivalence (using the Union

method generically available for powerset classes),

(7) P IN P_Person, Q IN P_Person:

(P→children())–>Union(Q→children()) � (P–>Union(Q))→children()

21

In this case the optimization can apply the rule to reduce the effort of duplicate eliminations, when applied

on the parent level as opposed to the children level.

8 Optimization and Execution of Queries: An Outlook
The query optimizer is described by three different components. The algebra with its equivalences, the

cost model, which can be considered as partial description of the execution of methods and operators (see

also [23]), and the search strategy. We have already argued that for a uniform presentation of the algebra

also the system-defined operators of the query algebra, i.e., at least their interfaces, should be provided as

methods. Therefore it is quite natural to provide all equivalences, also those only affecting the kernel alge-

bra, within database schemas.

As far the cost model is concerned, it is also natural to specify the cost of user-defined methods within the

database schemas, as for those methods the execution model is clearly defined by the execution model

inherent to VML. However, this model, which is straightforward evaluation of expressions, is not ap-

propriate for processing large amounts of data. Therefore a different execution model, e.g., based on pipe-

lining strategies, will be employed for the set-processing operators of the kernel algebra. So the cost mod-

el for these operations will be provided in the form of interfaces, whereas the implementation of the cost

model, as well as the implementation of the operations themselves, are provided by the system compo-

nents of the database system. However, in the long run, execution models for processing large data sets

including their specification within database schemas will emerge from a very different area. VODAK is

currently also extended to support multimedia datatypes [2], in particular continuous data, which requires

new execution paradigms, e.g., dataflow oriented approaches. It will be an interesting direction of re-

search to find a common basis for these approaches and approaches that are applied in processing of large

data sets as they occur in query execution.

Up to this point we have discussed the integration of two of the three components of query optimizers,

namely algebraic equivalences and cost models, at least based on their interfaces, into the VML data mod-

el. Of course also search strategies can be specified within object-oriented data models, which was already

proposed in [36]. This last step would make the query optimizer a component described individually for

each schema within the VML data model. Thus the VML description of the components of the query opti-

mizer (and eventually of the query execution model) will become a self-descriptive component of a data-

base similar to the data dictionary. For each schema the description of the query optimizer components is

different. Therefore inspecting the corresponding information at run-time would be required if we pro-

vide the optimizer as a fixed component of the database system. This is not desirable as the optimizer itself

22

has to perform as efficiently as possible. Thus we plan to generate for each schema an individual optimiz-

er, and consider an optimizer generator (a kind of compiler) as a system component of the database man-

agement system.

9 Conclusion & Future Work
In this paper we have described the impact of methods on the different components of query processing in

an object-oriented database management system. Using a modular reference architecture we have de-

scribed the impact on different parts of query processing. For the query language VQL we have identified

several relaxations from the strict SQL paradigm that become necessary when considering methods.

Among these are dismissing a distinction between select and update queries, arbitrary method calls at any

place in the query, and, resulting from this, dependency restrictions in the FROM clause. Then we have

presented a completely new approach to implement query algebras within an object-oriented data model,

which allows to represent set operators as methods. We have identified necessary features of the data mod-

el in order to support this approach, namely powerset classes, function domains and metaclass mecha-

nisms. This approach allows homogeneous access to system-defined and user-defined operations. We

have also clarified the role of parameters of set operators used in query algebras and described how they

become part of the method algebra. Based on the method algebra we have identified three typical ways

how semantic knowledge about schemas can be expressed in form of equivalences involving methods,

which can subsequently be exploited in optimization. Thus we are giving the notion of semantic query

optimization a new dimension in the context of methods. Finally, we have sketched a picture describing

our overall goal: an architecture for query processing, which is as extendible and modular as object-ori-

ented database management systems claim to be and which exploits the object-oriented data model for the

specification of query optimizers individualized and tuned toward specific applications.

We are currently implementing a query processor based on VQL in the VODAK system. As a starting

point for an implementation of the concepts presented in this paper we plan to use the Volcano Query

Optimizer Generator [24] since it allows rapid development of a query optimizer. It also supports to a

large degree extendibility with freely definable algebras and rule systems and interfaces to freely defin-

able support functions.

Still many questions have to be solved towards reaching our goals. First, the necessary extensions of the

data model have to be provided, e.g., for representing equivalences, cost models, search strategies and

finally execution models. Then the appropriate search strategies have to be investigated. In this regard a

central question will be an appropriate framework for the specification of equivalence patterns. Among

23

the questions we have not considered in this paper are the treatment of nested queries, the management

and reuse of query results, and the impact of updates on the semantics of queries. In the future also query

processing with time dependent data, which will appear in multimedia applications, will have to be con-

sidered. Methods in queries are only a first step in this direction. Nevertheless, we think that we provide in

this paper a framework which will enable to study such questions in a systematic manner.

References
[1] K. Aberer, G. Fischer: “VQL: VODAK Query Language, Version 1.0”, internal report GMD–IPSI, 1993.

[2] K. Aberer, W. Klas: “The Impact of Multimedia Data on Database Management Systems”, IEEE Workshop

on Multimedia Computing, Pittsburgh, PA, 1993.

[3] K. Aberer, E.J. Neuhold, W. Klas: “Object–Oriented Modeling for Hypermedia Systems using the VODAK

Modelling Language (VML)”, to appear in Object–Oriented Database Management Systems, NATO ASI

Series, Springer Verlag Berlin Heidelberg, August 1993 .

[4] F. Bancilhon, S. Cluet, C. DelobelL: “A Query Language for the O2 Object-Oriented Database System”, Pro-

ceedings of the 2nd International Workshop on Database Programming Languages, pp. 122–138, Salishan

Lodge, Oregon, USA, 1989.

[5] J. Banerjee, W. Kim, K. Kyung-Chang: “Queries in Object-Oriented Databases”, Proceedings of the IEEE

4th International Conference on Data Engineering, pp. 31–18, Los Angeles, USA, February 1988.

[6] C. Beeri: “A formal approach to object-oriented databases”, Data & Knowledge Engineering 5, pp. 353–382,

1990.

[7] E. Bertino, C. Guglielmina: “Path–index: An Approach to the efficient execution of object-oriented queries”,

Data & Knowledge Engineering 10, pp. 1–27, 1993.

[8] E. Bertino, W. Kim: “Indexing Techniques for Queries on Nested Objects”, IEEE Transactions on Knowledge

and Data Engineering, vol. 1, no. 2, pp. 196–214, June 1989.

[9] E. Bertino, M. Negri, G. Pelagatti, L. Sbattella: “Object-Oriented Query Languages: The Notion and the Is-

sues”, IEEE Transactions on Knowledge and Data Engineering, vol. 4, no. 3, pp. 223–237, June 1992.

[10] E. Bertino, A. Quarati: “An Approach to Support Method Invocations in Object-Oriented Queries”, Proceed-

ings of IEEE 2nd International Workshop on Research Issues on Data Engineering – Transaction and Query

Processing (RIDE-TQP), pp. 163–168, Phoenix, Arizona, February 1992.

[11] E. Bertino, D. Musto: “Query optimization by using knowledge about data semantics”, Data & Knowledge

Engineering 9, pp. 121–155, 1992/93.

[12] J.A. Blakeley, W.J. Kenna, G. Graefe: “ Experiences Building the Open OODB Query Optimizer”, preprint,

Dec 1992.

[13] S. Cluet, C. Delobel: “A General Framework for the Optimization of Object-Oriented Queries”, ACM SIG-

MOD 1992, pp.383–392, 1992.

[14] S. Cluet, C. Delobel, C. Lécluse, P. Richard: “ RELOOP, an algebra based query language for an object-ori-

ented database system”, Data & Knowledge Engineering Journal 5 (1990), pp. 333–352.

[15] M. Carey, D. DeWitt. S. Vandenberg: “A Data Model and Query Language for EXODUS”, Proceedings of the

ACM SIGMOD Conference, pp. 413–423, Chicago, USA, 1988.

24

[16] C. Delobel, C. Lécluse, P. Richard: “LOOQ: A Query Language for Object-Oriented Databases, Informal

Presentation”, Proc. of the ACFET Conference on Knowledge and Object-Oriented Database Systems, pp.

333–352, Paris, France, December 1988.

[17] K.R. Dittrich (Ed.): Advances in Object-Oriented Database Systems / Proceedings of the 2nd International

Workshop on Object-Oriented Database Systems, pp. 358–363, Bad Münster am Stein-Ebernburg, Germany,

September 27–30, 1988 (LNCS 334)

[18] G. Fischer: “Updates in Object-Oriented Database Systems Caused by Method Calls in Queries”, Proceed-

ings of the 3rd ERCIM Database Researcg Group Workshop on Updates and Constraints Handling in Ad-

vanced Database Systems, Pisa, Italy, September 28–30, 1992.

[19] J.C. Freytag: “A Rule-Based View of Query Optimization”, Proceedings of the ACM SIGMOD Conference,

pp. 173–180, San Francisco, USA, May 27–29, 1987.

[20] G. Gardarin, R. Lanzelotte: “Optimizing Object-Oriented Database Queries using Cost-Controlled Rewrit-

ing”, Proceedings of the 3rd International Conference on Extending Database Technology (EDBT ’92), pp.

534–549, Vienna, Austria, March 1992.

[21] G. Gräfe: “Volcano, an Extensible and Parallel Query Evaluation System”, Technical report CU–CS–481–90,

University of Colorado at Boulder, 1990.

[22] G. Gräfe, D. DeWitt: “The EXODUS Query Optimizer”, Proceedings of the ACM SIGMOD Conference, pp.

160–172, San Francisco, USA, May 27–29, 1987.

[23] G. Gräfe, D. Maier: “Query Optimization in Object-Oriented Database Systems: A Prospectus”, pp. 358–363

in [17]

[24] G. Gräfe, W. J. McKenna: “The Volcano Optimizer Generator: Extensibility and Efficient Search”, Proceed-

ings of the 9th IEEE International Conference on Data Engineering, pp. 209–218, Vienna, Austria, April

19–23, 1993.

[25] T. Härder, B. Mitschang, H. Schöning: “Query processing for complex objects”, Data & Knowledge Engi-

neering 7, p. 181–200, 1992.

[26] A. Heuer, J. Fuchs, U. Wiebking: “OSCAR: An object-oriented database system with a nested relational ker-

nel”, Proceedings of the 9th International Conference on Entity-Relationship Approach, pp. 95–110, Lau-

sanne, Switzerland, October 1990.

[27] A.Heuer, M. Scholl: “Principles of Object-Oriented Query Languages”, GI–Fachtagung, Datenbanksysteme

für Büro, Technik und Wissenschaft, pp. 178–197, Kaiserlautern, Germany, March 1991.

[28] International Standards Organization: “Database Language SQL2 and SQL3”, international committee doc-

ument, ISO/IEC JTC1/SC21 WG3 DBL SEL–3b, April 1990.

[29] M. Jarke, J. Koch: “Query Optimization in Database Systems”, ACM Computing Survey, vol. 16, no. 2, pp.

111–152, June 1984.

[30] A. Kemper, G. Moerkotte: “Advanced Query Processing in Object Bases Using Access Support Relations”,

Proceedings of the 16th International Conference on Very Large Databases (VLDB ’90), pp. 290–301, Bris-

bane, Australia, 1990.

[31] M. Kifer, W. Kim, Y. Sagiv: “Querying Object-Oriented Databases”, Proc ACM SIGMOD, 1992.

[32] W. Kim, B.P. Jenq, D. Woelk, W.-L. Lee: “Query Processing in Distributed ORION”, Proceedings of the In-

ternational Conference on Extending Database Technology (EDBT ’90), Venice, Italy, 1990.

[33] W. Kim: “A Model of Queries for Object-Oriented Databases”, Proceedings of the 15th International Confer-

ence on Very Large Databases (VLDB ’89), pp. 423–432, Amsterdam, The Netherlands, August 1989.

25

[34] W. Klas: “A Metaclass System for Open Object-Oriented Data Models”, Dissertation, Technical University

of Vienna, January 1990.

[35] H. F. Korth: “Optimization of Object-Retrieval Queries”, pp. 352–357 in [17]

[36] R. Lanzelotte, P. Valduriez: “Extending the Search Strategy in a Query Optimizer”, Proceedings of the 17th

International Conference on Very Large Databases (VLDB ’91), Barcelona, Spain, 1991.

[37] L. Liu: “A formal approach to Structure, Algebra and Communication of Complex Objects”, PhD Tilburg

University, 1993.

[38] D. Maier: “The Theory of Relational Databases”, Computer Science Press, 1983.

[39] S.L. Osborn: “Identity, Equality and Query Optimization”, pp. 346–351 in [17].

[40] M. Scholl, C. Laasch, M. Tresch: “Updatable views in Object Oriented Databases”, Proceedings of the 2nd

International Conference on Deductive and Object-Oriented Databases, (DOOD–2), pp. 189–207, Munich,

Germany, December 1991.

[41] G. Shaw, S. Zdonik: “Object-Oriented Queries: Equivalence and Optimization”, Proceedings of the 1st In-

ternational Conference on Deductive and Object-Oriented Database Systems (DOOD ’89), pp. 264–278,

1989.

[42] M. Stonebraker, L. Rowe: “The POSTGRES Papers”, Electronics Research Laboratory, College of Engineer-

ing; Memorandum No. UCB/ERL M86/85, pp.115 , University of California, Berkeley, USA, June, 1987.

[43] D.D. Straube, M.T. Özsu: “Queries and Query Processing in Object Oriented Database Systems”, ACM

Transactions on Information Systems, vol. 8, no. 4, pp. 387–430, October 1990.

[44] P. Valduriez, S. Danforth: “Query Optimization for Database Programming Languages”, Proceedings of the

1st International Conference on Deductive and Object-Oriented Database Systems, pp. 516–534, 1989.

[45] S.B. Zdonik: “Data Abstraction and Query Optimization”, pp. 368–373 in [17].

