-

-~
brought to you by .i. CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

View metadata, citation and similar papers at core.ac.uk

Arbeitspapiere der GMD
GMD Technical Report
No. 763

Karl Aberer, Gisela Fischer

Object-Oriented Query Processing: The Impact of Methods
on Language, Architecture and Optimization

July 1993

GERMAN NATIONAL RESEARCH CENTER

gj\‘/JD FOR COMPUTER SCIENCE

https://core.ac.uk/display/147904302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The “Arbeitspapiere der GMD — GMD Technical Reports” primarily comprise prelimi-
nary publications, specific partial results and complementary material. In the interest
of a subsequent final publication the “Arbeitspapiere/Technical Reports” should not
be copied. Critical comments would be appreciated by the authors.

No part of this publication may be reproduced or further processed in any form or by
any means without the prior permission of GMD. All rights reserved.

© Copyright |eu] 1995

Addresses of the authors:

Dr. Karl Aberer
GMD-IPSI
Dolivostral3e 15
D-64293 Darmstadt

Email: aberer@darmstadt.gmd.de
Phone: ++49/6151/869-935
Fax: ++49/6151/869-966

Gisela Fischer
GMD-IPSI
Dolivostral3e 15
D-64293 Darmstadt

Email: fischerg@darmstadt.gmd.de
Phone: ++49/6151/869-933
Fax: ++49/6151/869-966

Address all correspondence to:

Dr. Karl Aberer
GMD-IPSI
Dolivostral3e 15
D-64293 Darmstadt

Email: aberer@darmstadt.gmd.de
Phone: ++49/6151/869-935
Fax: ++49/6151/869-966

Abstract

Although nearly all object-oriented datamodel s proposed so far include behavioral aspects, most object-
oriented query languages, algebras and query optimization strategies simply adapt relational concepts
sincethey focuson the complex structures of objectsand neglect the behavior. We claimthat thisapproach
is not sufficient since it does not reflect the much richer semantics methods can carry which have to be
takenintoaccount for really efficient query processing. Thequitestraightforward approachweconsideris
tointegrate methodsin an algebraic framework for query processing and to makethere partial knowledge
about methods availablein theform of equivalences. We examinetwo important questionswhich emerge
from taking this approach. First, how isit possible to integrate algebraic set operators with methods de-
fined in database schemas within an object-oriented datamodel ? Second, what istheimpact on the archi-

tecture of the query processor when the algebra becomes an extendible component in query processing?

1 Introduction

Query processing in object-oriented database management systemsisan activeresearch area. Thegoal is
to bring together the main features of object-oriented database management systems, namely adatamod-
el, which supports objects with complex structure and behavior, and extensibility, with a declarative and
efficient query language. The concept of declarative query languages has proven to be successful in the
framework of relational database management systems. Asquery processinginrelational and nested rela-
tional database management systemsis considered as starting point, currently most approaches for ob-
ject-oriented query processing focus mainly on the structural part of object-oriented data models and do
not take account of the much richer semantics methods can carry and which haveto be taken into account
for really efficient query processing in non-standard applications. Thus conclusionsasin [32] aredrawn:
“In retrospect, the extent of similarities between relational and object-oriented query processing should
not have comeasasurprise, if werecognizethat, regardless of datamodels, query processingisessential-

ly aprocess of mapping a declarative query expression into a sequence of procedural executions.”

Although the knowledge from relational query processing is an important starting point, we claim that
there are many new issues to consider, which play only aminor rolein relational query processing. De-
spite many effortsin the area of object-oriented query processing during the last yearsthey are still quite
far from being satisfactorily solved. Simply adapting relational query processing concepts by taking a
structural view is not sufficient for data models providing structure and behavior. Any query processor
that claimsto support the features of an object-oriented database management system should satisfy the

following objectives. support for complexly structured objects with methods defined on these objects,

extensibility with respect to the processing resources and strategies, modularity of processing compo-
nents, declarativity and efficiency. Asan overall observation this meansto step from hard-coded to flex-

ible and adaptable query processors.

Inthis paper wewant to shift the attention away from the structural view and focus on behavioral aspects.
We will analyze theimpact of behavioral extensions on the different components of the query processor.
Simply allowing method callsin query statementsasit isproposed in many query languagesisby far not
enough. Methods have an impact on the whol e architecture of the query processor, starting from the lan-
guage, over optimization up to execution. Thereforewewill come up with amodular reference architec-

ture for aquery processor. Based on this architecture we will analyze some of the componentsin detail.

Oneof themainissuesisthechoiceof adatamodel and aquery language. Therewerely ontheframework
of the object-oriented database management system VODAK which is currently developed and imple-
mented at GMD-IPSI, its manipulating language VML and its query language VQL. VQL is an object-
oriented query language, devel oped onthebasis of the SQL paradigm. We show how VQL alowstofully

exploit the features of the underlying object-oriented data model VML, in particular methods.

For query optimization we take acompletely algebraic viewpoint. However, we want to get away froma
builtinagebrafor two reasons. First, extensibility makesit necessary to givethe user the meansto extend
the query algebra, and the means towards this end are methods. Second, the query optimizer should also
be able to use knowledge about application specific methods. Thus we represent the algebra within the
VML datamodel completely by methods in amethod algebra. Based on this method algebrawe discuss
different possibilities how knowledge about methods, given in form of equivalences, can be used by the
query optimizer. Thus the meaning of semantic query optimization as known from relational database

systemsradically gains in importance if we take methods into account.

Search strategy aswell ascost and execution model s should be exchangeabl e or modifiableastheapplica-
tionswecarry inmind will take placein different environments, e.g., on distributed platforms, which will
of course lead to changing needs from applications. We will sketch shortly how to come to acompletely

self-contained description of the query processor within the object-oriented data model.

Theremainder of the paper isorganized asfollows: In Section 2, wereview therelated work. In Section 3,
we propose amodular reference architecture. In Section 4, weintroduce the VML datamodel and in Sec-
tion 5, the VQL query language, including some aspects of processing the query input. In Section 6, we
discuss how to model aquery algebrain our object-oriented data model leading to the notion of method

algebra. In Section 7, we discuss equival ence-based query optimiziation based on the method algebra. In

Section 8, we give an outlook on apossible design of the other components of the query processing archi-

tecture and finally, in Section 9, we give some concluding remarks.

2 Related Work

Themain body of work in object-oriented query processing focuseson structural aspectsandisthusclose-
ly related to work on relational query processing (e.g. [29]). A large number of query languages and ob-
ject-oriented algebraswhere proposed inthisdirection[13][31][33][35][37][39][41][45]. Closely rel ated
to thisare works on different variants of indexing techniques for path expressions[7][8][30]. Thiswork
has already developed into a stable framework for query languages on the structura part of object-ori-
ented databases, for overviews see [9][27]. In [43] an architecture closely related to relational architec-
tures is proposed. Implementations that follow these proposals are found in Orion/lItasca [5][32], O2
[4][14][16], OSCAR [26] and Cocoon [40].

Work concentrating on the impact of methods in the framework of object-oriented query processing is
somehow rare. Some theoretical aspects are covered in [6]. An approach suggesting precomputation of
methodsfor indexingisdescribedin[10]. A proposal toreveal knowledge about the execution of methods
behavior to the query processor is described in the REVELATION project [23].

Apart from thisgeneral picture for standard object-oriented query processing we have to take account of

different developmentsin related areas.

In particular relevant for usiswork on extendible database systems. Here, we mention the extended rel a-
tional system POSTGRES, with an extendible datamodel that isexploitedin query processing [42]. Inthe
EXODUS/VOLCANO projects generic support for query processing in extendibl e relational and object-
oriented database systems was investigated and prototypes for query optimization and execution were
developed [15][21][24]. In[12] aquery optimizer that was built on this prototypes for the Open OODB
system is described. An extendible database programming language is described in [44]. A proposal for

modelling extendible search strategies of query optimizersisfoundin [36].

Rule based query optimization is fundamental in extendible database systems. Background on thisis
found in[19][22][24]. A particularly interesting implementation was given for structural object oriented
datamodelsin [30].

Semantic query optimization isanother important issue for our work. For an example of semantic query
optimizationinrelational systemssee[11]. In[20] al so semantic knowledge of operationson abstract data

typesis considered. In [43] semantic knowledge about classes is exploited for query optimization.

3 A Reference Architecture

In order to provide a clearly defined framework for the subsequent discussion and to clearly identify the
different components of query processing that can be affected by methods we propose in this section a
reference architecturefor aquery processing. It isdesigned according to our objectivesand identifiesthe
main orthogonal components needed for query processing. In the following sectionswe will discuss the
impact of methodson different componentsof thisarchitecture. Anillustration of thearchitectureisfound

in Figure 1.

Asafirst component we consider the query language asit is offered to the user. Thismay bean SQL-like
textual query language, aDML programming language extension, an application interface in ahost lan-
guage or avisua query interface. Important is support for set-oriented access and full exploitation of all
structural and behavioral featuresof adatabase schemaof the underlying object-oriented datamodel. The
guery expressionisparsed and transformed into aninternal representation. Then the semantic correctness
of the query is checked. This step hasto take account of the database schema. Next asimplification step
takes place. This step simplifiesthe representation of the user input such that it can betrandated to ade-
fault algebraic expression of thequery algebra. Thequery algebrahasto haveat | east the expressive pow-

er of the query language but it has also to be extendible by operations defined in the database schema.

The optimization process can be considered as a search problem: the search space for a specific expres-
sionisproduced by aset of equival ences between algebraic expressionsand consists of the set of expres-
sionswhich are semantically equivalent under the given set of equivalences. Thesearch isfor the expres-
sionwith minimal cost according to agiven cost model. The search strategy isan algorithm which hasto
perform thistask. We do not consider aspecific strategy, asdifferent strategies may be appropriatein dif-
ferent contexts. However, each strategy must be able to deal aswell with the extendible set of algebraic

operators, an extendible set of equivalences and an extendible cost model.

We separate the algebra from the execution model. The execution model describes the trandlation of the
algebraic expression in apiece of executable code. The execution models may realize completely differ-
ent paradigms of computations, e.g. object-at-a-time vs. set-at-a-time (data-flow vs. functional). It may
happen that two algebraic operators aretranslated in the same way in aspecific model. Closely related to
the execution model isthe cost model which, in dependence of adatabase state, quantifiesthe cost of each

operator to be executed.

Semantically equiva-

lent queries
e Parsing
Semantic analysis &~ Query Language*
« Simplification % \
Simplified
query \ .
e Transformation to Data model* ',
algebra ‘. "
Default algebra Y
expression Algeb[a*
e
Equivalence !
rules* |
Search space . ;
4 N L W
| Algebra Algebra Algebra | Search strategy*
| expression #1 expresson #2 |~ |expression #m / 4
S —— /

e Optimization Cost model*

“Optimal” expression AN
__— Executi on model*
e Generation of executable & !

code \

\}
\

Executable code

/ .
. - Database
e Result generation A

— next processing step

Query output

----®» influences

— -~ dependson
e encapsulated query
processing step

x» extendible or exchangeable
component

Figure 3: Reference Architecture for a Query Processor and Optimizer

Inthefinal step theoptimized al gebraexpression ismapped to an executableexpression by referringtothe
execution model. The executable expression produces the desired query result. These two steps can be
performed by the query processor either in aninterpretative way, by looking up the appropriate execution
for an algebraic operator and immediately executing it, or by compilation, where the executableis first

produced and then executed afterwards.

4 The Data M odel
TheVODAK Modelling Language VML consistsof aDDL part whichisused to definedatabase schemas

and acomputationally complete DML part for theimplementation of methods and application programs.

In the following we describe the data model which is underlying VML.

Objectsrepresent material or immaterial real world entities or abstract concepts which are stored persis-
tently. They possess unique identifiers and have properties and methods which describe their structure
and behavior. Properties and methods may be public or private, while method implementations always
remain hidden. Public properties are accessible through system-defined methods, hence the accessto ob-
jectsisprovided through methods only. Method invocationsin VML are denoted by o—m(args) whereo
isthe object identifier of the receiver object, misthe name of the method and args are the method argu-

ments.

Objects with common structure and behavior are instances of the same class. An object is an instance of
only oneclass. The structure and behavior of the instances of classesis specified in parametrized object
types. Thusobject typesand classesare different concepts, whichisknown asthedual model. Thissepara-
tion between types and classes can also befound in, e.g., COCOON [40] and OSCAR [26]. Asaconse-
guence for example different classes may use the same object type. Classes are objects themselves and
bel ong to metaclasses. Thusthey canalso bereceiver objectsfor messages, e.g., the system-defined meth-
od instances() can be sent to each class C with C—instances(). For details on the relation between object

types and classes, and the metaclass concept see [3][34].

Domainsare used for the declaration of variables, which keep transient values, of properties, which keep
persistent values, and of methodsin object interfaces. We distinguish primitive domains, like Integer and
String, class domains, which consist of object identifiers, and complex domains built up from other do-
mainswith domain constructorslike set, tuple, array or dictionary. To values of primitive domains built-
in primitive operations can be applied, like addition or multiplication for Integer. To values of complex
domains the access operations to the domain constituents can be applied, like access to components of

tuples. To class domains, which consist of all (potential) object identifiers belonging to instances of a

specific class, method calls can be applied. Any expression built up from primitive operations, access

operations, method calls and pathsis called a VML expression.

In VML usually part of the state of an object is made public in form of properties. Aswe have aready
mentioned, for public properties the DBMS generates corresponding methods for reading and writing
automatically. In order to ease property accesswe allow accessto the properties of an object by using the
standard dot notation, i.e., instead of directly calling the system-generated read method we can read the
property p of the object variable x of aclass domain by x.p. Note that this does not viol ate object encap-

sulation.

Properties and method declarations in object types need the specification of domains. This is accom-
plished either by using primitive domains or through object-type parametrization. The object-type pa-
rameters represent domains which satisfy constraints given by object types. During class definition these

parameters are substituted by class domains. This substitution is called type-to-class mapping.

Figure2 givesan exampleof asimpleVODAK schema. It showsthedefinition of theclass Personand the
object typePerson_Typewhichisused astheinstancetype of Person. Inthe classdefinition of Personthe
object-type parameter P of Person_InstType is mapped to the class Person, thus leading to arecursive
definition of thisclass. Person_Type definesthe public properties name, father, mother, the private prop-
erty birthday, and the public methods setBirthday, age and children. The properties mother and father
reference other instances of the class Person using object identifiers. setBirthday assignsavalueto birth-
day (weassumedateisauser-defined datatype), age computesthe actual age of aperson (sincethemean-
ing of this method is clear we only describe itsimplementation), and children computes all children of a
person with a VQL-query expression. SELF denotes the actual object, i.e., the receiver object of the

method.

The implementation of VODAK is based on C++. The VML compiler analyzes database schemas and
applicationswritten in VML syntactically and semantically, translates (DML-) VML codeto executable

C++ code, and generates adata dictionary, i.e., a persistent system catalog, for a database schema.

5 TheVODAK Query Language VQL

The query language V QL supports declarative access to object-oriented databasesin the VODAK data-
base management system. For pragmeatic reasonsV QL isbased on a SQL-like approach [18]; infact, itis
similar in appearance to POSTQUEL [42] and the query language of ORION as presented in [33]. VQL

alowsthe exploitation of all features of the underlying data model described in the previous section, in

particular method calls. Additionally, compared to standard SQL it provides features which are either
convenient or necessary in order to efficiently access VML databases. Among these are path expressions
of variable length, existential and universal quantifiers and arbitrary nesting of queries. Extensions for
aggregationsand recursionswill beintegrated in thefuture. For spacelimitationswe also do not consider

nested queries in this paper.

Sinceweallow arbitrary method invocationin querieswe cannot determinein advancewhether aquery is
apureretrieval query or whether updates are performed due to the execution of the methods contained in
the query [18]. In order to reflect this semanticsin the syntax we replaced the SQL -keywords SELECT/
UPDATE by the more general keyword ACCESS.

A VQL query hastheform

X:= ACCESS—- FROM —WHERE

and thus is an extension of VML. We now describe the different clauses of a query in more detail:

ACCESS
This clause contains an VML expression that computes the single values of the set which will be
assigned to the query result X. If the expression returns avalue of domain D the query returnsavalue

of domain { D}. The expression contains variables bound in the FROM clause.

FROM
This clause contains the declaration of range variables which are bound to the input sets against
which the query isposed. A query is posed against classes by taking the extensions of the classes as
input. The extensionsare given assetsover theclassdomains, i.e., assets of object identifiers. These
sets of object identifiers are obtained by sending the system defined method instances() to the class

objects or by any valid VML expression returning sets of object identifiers.

10

OBJECTTYPE Person_Type [P: Person_Type]
INTERFACE
PROPERTIES
name: STRING;
father: P;
mother: P;
METHODS
setBirthday(d: date);
age(): INT;
children(): {P};
IMPLEMENTATION
PROPERTIES
birthday: date;
METHODS
setBirthday(d: date); { birthday :=d;};
age(): INT; {// compute the age in years using the actual date and birthday;};
children(): {P};
{ RETURN
(ACCESS ¢ FROM c IN P WHERE c.father==SELF OR c.mother==SELF;)

}
END;

CLASS Person
INSTTYPE Person_Type [Person]

END,;

Figure 4: Definition of the object type Person_InstType and the class Person

WHERE
specifiesthe conditions according to which elements shoul d be sel ected from theinput sets specified
inthe FROM clause. The WHERE clause consists of atomic predicates combined with the Boolean
operators AND, OR and NOT. Atomic predicates are ==, !=, <, <=, >, >=, ISIN, ISSSUBSET and
any method call with Boolean result type. We assume for the operands and parameters strict domain
compatibility. The WHERE clause may also contain existential and universal quantifiers over vari-

ables which are bound to finite sets.

11

In any place of aquery where avalue of aspecific domainisrequired, e.g., aset in the FROM clause, a
Boolean valuein the WHERE clause, an operand of an atomic predicate or aparameter of amethod call,
also an VML expression may appear. This expression can involve method calls, path expressions or do-
main constructors and has to deliver values of appropriate domains. A formal specification of VQL is

found in [1].

We allow arbitrary method callsto define the input setsin the FROM clause. However, weimpose ade-
pendency restriction for the FROM clausein order to excluderecursion. Thevariablebindings, i.e., thelN
clauses, haveto allow areordering such that the following condition holds: avariable on the right-hand-
side of an IN clause may only appear on the left-hand-sides of IN clauses, which follow the IN clause
wherethe variableisbound. For example, the FROM clause FROM c IN p—children(), p IN Person can
be reordered to FROM p IN Person, ¢ IN p—children() which satisfies the condition. We will consider
relaxations of this condition, which basically comes down to atopological ordering of the dependencies,

when we introduce recursive VQL queriesin the future.

Thesemanticsof aV QL query isgiven by an object cal culusexpression. Object cal culusisaspecification
mechanism derived from relational tuple cal culus based on predicate calculus. Several variants of object
calculuswereinvestigated al so taking account of method callsinthequery, e.g., [9][37][43]. Inthispaper
wedo not specify thedetailsof thiscal culus, e.g., with respect to atomic predicates, resolving path expres-
sions, safety of calculus expressions and later trandation to an algebra expression. We only sketch how a
guery is mapped to a calculus expression by an example

ACCESS expr(x,y,2)

FROM xINA,yINB,zINC

WHERE pred(x,y,2)

isthe set of data that satisfies
{r|r=expr(x,y,z2) A xe AryeBaze C A pred(x,y,2)}

Of courseall transformations of VQL queriesin the simplification process have to be consistent with this

semantics.

After the query isparsed according to the above VQL syntax the semantic correctnessisanayzed. Inthis
step the validity of theinput sets, the domain compatibility of operandsand parameters, in particular also
for nested method callsand path expressions, aswell asthe availability of methodsfor objectsis checked
according to the schemainformation stored in the data dictionary. Also the dependency restriction onin-

put setsis checked here. After semantic analysis a simplification step takes place.

12

Simplification replaces shortcutsfor the user, likeusing classnamesinstead of method callsfor producing
classextensions, by theproper VQL expressions. It reordersthe FROM clause according to the dependen-
cy restriction. The most extensive part of simplification applies to the WHERE clause, where atomic

predicates are analyzed and simplified and the condition is brought into prenex disjunctive normal form.

6 The Query Algebra

A simplified VQL query ismapped to an internal algebraic representation for subsequent algebraic opti-

mization. The query algebra we propose consists of the following constituents:

o Kernel algebra: Itisprovided by the system and hasto be powerful enoughto expressany simplified
V QL query, which istrand ated using these generic operations. Operators of this algebra have only

values from set domains as arguments.

e Applicationalgebra: Thesearetheuser-defined application specific methods. Operatorsof thisalge-

bratake values of arbitrary domains as parameters.

e Execution algebra: These are user-defined operators taking values from set domains as arguments.
They do not introduce application specific semantics but express aternative execution strategies as

those expressible in the kernel algebra.

The execution and the application algebra both are defined within the framework of VML schemas,
whereas for the kernel algebra we have different options, which we will discuss later. It isimportant to
observethat modelling the query algebra, including the kernel algebra, iscrucial if wewant to extend the
query algebraby user defined methods and to exploit application specific knowledge in the optimization

process.

6.1 Set Operators
To discussmodelling of thealgebrain VML wefirst have to analyze the structure of algebraic operations

asthey typically appear in set—oriented query processing.

The query algebrais based upon set operators which take values from set domains as arguments. The

signature of such an operator with arity nisin general of the form

where{D1},...,{Dp} arethe set valued domains, { D} istheresult domain and fy,...,f,, arethe parameters

of the operator. The interpretation of such operatorsis given as mappings on the set-valued domains.

13

The parameters play animportant role asthey are used to definewhol e families of operators. A parameter
isingenera givenintheform of apatternfor a VML expression with variablesxy,...,.xp corresponding to

the domains Dy,...,Dp,

fi(xlr'-axn) : FI!

whereF; istheresult domain of the expression. So, aparametrized operator OP correspondsin general toa

family OP={ OR;}, where OP,; has the signature
OP({D4},...{Dn}) : {D}.

More precisely thefamily OP isdependent on aparticular schemaasfor each schemathe expression pat-

tern leads to a different set of matching expressions.

For illustration of the concepts we give asmall example, namely different types of selection operations

(with D an arbitrary domain)
(1) SELECT({D}, expr(x): BOOLEAN): { D}
(2) SELECT_EQ({D}, expr(x): INT, val): { D}

(3) SELECT_EQ_AGE({Person}, x—>m(): INT, value): { Person}

Many variations of relational and object oriented (set manipulation) algebras can be described withinthis
framework. Inthis paper we do not discuss a specific a gebrabut concentrate on the meansto integrate an
(arbitrary) algebrainto VML. What distinguishes the different variantsis mainly the degree of parame-
trization of the operators. On the one end we have highly parametrized operators (e.g. [13][44]), together

with set union and intersection. These operators typically have the following form
FILTER(pred(Xa,...,Xn): BOOLEAN , expr(x1,...,Xp): D, {D1},...{Dn}) : {D}

towhich asimplified VQL query can beimmediately mapped. The other extremeis, e.g., asproposed in
the relational case, a pure algebra restricted to single-attribute, single-tuple constant relations, selection
with single comparisons, natural join, projection, union, difference and renaming [38]. There the map-

ping from aVQL expression to the algebraic form is less straightforward.

Both extremes are not desirable for equivalence based optimization. A highly parametrized algebrawill
increase complexity in application of rules while a puristic algebraintroduces many different operators
which increases complexity of the algebraic expressions. A reasonable choice of operatorsfor thekernel
algebraisaquestion for further investigation for whichweintend to provide aframework. Which particu-

lar choiceismadeisnot important for therest of the paper. For the sake of giving examplesweassumethe

14

existence of a selection operation SELECT with different degrees of parametrization, as already

introduced.

6.2 Modelling the Query Algebrain VML
In the following we discuss the representation of set operators within VML. Basically there are the fol -

lowing three possibilities avail able.

As Domain Operators:
Inthis case set operators are provided as built-in operators manipulating sets of datavaluesdirectly.
Some simple operators, like set union, are already provided in thisform. This approach hasthe fol-
lowing drawback: thereisamismatch between the built-in set operatorsthat are provided by the sys-
tem and the user—defined set operators that can be supplied by the user only in the form of methods.
The optimizer (aswell asthe execution model) hasto deal with two different concepts for the same
purpose. Additionally in VML the primitive domains and the operations are not extendibl e, thus any

change of the query algebra leads to a change of the data model.

As Class Methods:
Inthiscase set operatorsare modelled as class methods, i.e., thereceiver object and the arguments of
theoperatorsareclasses. The set operationsare performed on the extensions of theclasses. Inorder to
reuseresults of operationsdirectly theresult of those methods must again beaclass. That meanseach
guery processing operation produces anew (intermediate) class holding theresult. In VML the con-
segquencesare disastrous, as each object may belong only to asingleclass. Each result value hasto be

represented by a newly created object.

As Powerset Methods:
A compromise of the previoustwo solutionsisthefollowing: weintroduce apowerset classP_C for

each class C.

CLASSP_C

INTERFACE

PROPERTIES
rep: {C}

METHODS
Select(“parameter”) : P_C
/Il other set operators

END;

15

That means, aninstance p_S of the powerset classP_C represents an arbitrary subset S of the exten-
sion of C. The set operators are modelled as methods of the powerset classes. These methods for set
processing operations are sent to the representative objectsp_S. In each intermediate step aresult set
correspondsto one new instance of P_C, which isonly asmall overhead. The generated result ob-

jects again can be receiver objects for set processing operations.

From the above discussion it becomes clear that we favor the last approach. Weintroduce system classes
for modelling arbitrary sets of objects with the corresponding set processing operations. Moreover, we
haveto consider more general classeswhich allow, e.g., themodelling of arbitrary setsof tuplesof objects

in order to represent the results of join operations.

This approach of course does not imply that the implementation of the set operatorshasto berealized in
the sameway asuser-defined methodsusingthe DML. Thisissimilar to thesituation for other system-de-
fined classes, e.g., the class method instances() is al so realized by abuilt-in implementation. The advan-
tage of the approach isauniformmodel and interfacefor the query optimizer aswell asfor theuser and a

homogeneous integration of user-defined methods with system-defined set operations.

After having defined aframework for representing set operators of the query algebraby methodswe en-
counter the following problem: as already discussed parametrization plays an important role for the de-
scription of set operators. These parameters, when consi dered asmethod arguments, are not in domains of
constant values but in domains of functions (see, e.g., the different SELECT operatorsgiven earlier). For
built-in operatorswe can provide built-in mechanismsto deal with such parameters, but for method argu-

ments we have to extend the VML data model. For example, we want to express the query
ACCESS p FROM p IN Person WHERE p—age()==30
by method calls corresponding to set operators. This can be donein the following ways depending on the

degree of parametrization assuming that P isaninstance of P_Person, whichisthe powerset classof Per-

son:
(1) P—Select(*p—age()==30")

(2) P—Select_Eq(“p—age()”,30)

(3) P—Select_Eq Age(30)

Only (3) can actually be expressed with domains of constant values. For aconceptually clean representa-

tion of (1) and (2) function domains are needed. In the following we denote such adomain by giving the

signature of thefunctionsof thisdomain, e.g., the unary functionson Person returning I nteger are denoted

16

by Person = INT. Using such function domainswe can write the signatures of thefirst two method calls

as
(1) Select(cond: Person = BOOLEAN)

(2) Select_Eg(cond: Person = INT, val: INT).

Valuesof function domainsarerepresented by any valid VM L-expression containing placeholdersfor the

function arguments (which is basically alambda notation). The corresponding method calls then are
(1) P—Select(#—age()==30)

(2) P—>Select_Eq#—age(), 30)

Currently VML does not support function domains explicitly, but they will be provided in the future.

Finally afurther issue hasto be discussed. So far we have modelled the powerset classesindividually for
each application class. Thismay beappropriatefor some application-specific set operators, but not for the
general system-defined set operators, which are defined uniformly for all classes. At this point the meta-
class mechanism of VML can be employed in order to define this system-wide uniform behavior of
classesin metaclasses. The same mechanism isused, for example, to model system-inherent class meth-

odslike instances(). It is outside the scope of this paper to discuss thisissue in detail.

6.3 Method Algebra
Asaresult of modelling set operatorsas methodsour query algebrahas now turnedinto amethod algebra.

Expressions of the method algebra are a subset of general VML expressions. Within this algebrawe can
now identify exactly thethree parts mentioned at the beginning of the section. Thekernel algebraconsists
of the system-defined methods for representing a basic set operators; the execution algebra consists of
additional set operators which are user defined, and the application algebra consists of all user-defined
methods. Thelatter appear inside parametersof set operators, but aswe have parametersnow availableas
ordinary method arguments, they become afully integrated part of the method algebra. Thiswill be one

key for using application-specific knowledge in query optimization.

Inthisframework, also adistinction between alogical and physical algebraisno longer given. (Logical
and physical algebraaretaken from theterminology of [23]; expressions of the physical algebraoften are
referred to as query evaluation plans.) User-defined methods will always provide implementations and
thusfor thosethetwo algebras collapseinto one. Instead of aseparatelogical algebrawe consider equiva
lence relations on the expressions of the method algebra which can be used to impose a structure on the

search space.

17

7 Algebraic Optimization

Inthe method algebraall operatorsare equally righted. Furthermore, we no longer consider parametriza-
tion of set operators, but haveintegrated parametersasapart of thealgebra. Thereforewe can usethesame
mechanism to describe equivalencesfor built-in operations asfor user-defined operations. For the kernel
algebra we will assume afixed kernel equivalence set, whereas for user-defined methods we consider

user-defined equivalences for methods. This leads to the notion of semantic query optimization.

In relational systems semantic query optimization is proposed to exploit semantic properties defined in
the schema, e.g., constraints on attributes. But this approach playsaminor rolein relational optimization
and usually isnot considered in object-oriented optimization (for an exception see[20]). The crucial ob-
servation isthat query optimization in behavioral object-oriented database systemshasto exploit seman-
tic knowledge about methods for query transformation. We provide semantic knowledge of methodsin

the form of user-defined equivalences.

In thefollowing we want to analyze in which ways semantic knowledge about methods can contributeto

guery optimizations.

7.1 Complete Specification of Methods

In general the behavior of methods is defined operationaly, i.e., by a piece of code. Thisis considered
reason enough not to inspect thisbehavior asit appearsto beintractablein adeclarativeframework. How-
ever, a close inspection shows, that in many cases methods by no means exploit the full complexity of
operational specifications but can be specified fully by an equivalent expression in the method algebra.

Thisresults in equivalences of the form
o—m(arg) = expr

wherethe VML expression expr does not contain the method m, but may contain thereceiver object oand
the arguments arg. Such equivalences appear in two different contexts. In the first case, which we call
method expansion, the equivalenceisapplied in forward direction, that meanstheintentionistoreplacea
“black box” method call by atransparent expression in order to enable the optimizer to find amore effi-
cient execution of the query. In the second case, which we call expression contraction, theruleisapplied
in backward direction, that meanstheintentionisto replaceacomplex expression by a“ black box” meth-
od call, which should perform better than the direct execution of the complex expression. The application
direction of the equivalenceasaruleisof courseaconceptual distinction whichisonly of importancefor

the designer of arule system, but not from an algebraic viewpoint.

18

7.1.1 Method Expansion

We illustrate this with the following three typical examples:

(1) Pathmethods. Often methods are used to compute reference chainsto other objects. A simple exam-

pleisthe method grandfather which could be defined for theinstances of the class Person asfollows
grandfather(): Person; {RETURN (SELF.father.father)};

(2) Queries: Sincethe query languageisapart of the DML, itisvery natural that many methodswill be

expressed by queries, e.g., the method children in the example of Figure 2.

(3) Messagepassing methods: In VML there existsamechanism which allowsto automatically delegate
amethod call at run time to another object based on dynamically generated semantic relationships.
These semantic relationships are realized through metaclasses [34]. For example, the class Sudent
may bearole specialization of Person, and thusinheritsall Person properties|ogically but not physi-
caly (as Person and Students are digjoint classes). The method call name to a student is then for-

warded to the corresponding person.

The semantics of these methods can be described by the following equivalences, namely
(1) pIN Person: p—grandfather() = p.father.father
(2) pIN Person: p—children() = Person— Select(#.father==p OR #.mother==p)

(3) sIN Student: s—»name() = (s—roleOf())—name()

Note that the rules do not necessarily only reflect the actual implementation of the method. Alternatives
can be specified for the same methods, asisillustrated by the following example (under some mild as-

sumptions on the marital status):

(4) pIN Person:
p—siblings() = p.father—children()
p—siblings() = p.mother—children()

M aking knowledge about the semantics of such methods availablein the schema, and thusto the optimiz-
er, offersagreat potential for the optimization of methodsby revealing the semanticsof their implementa-
tion without violating encapsulation. Note that such rules also can blur the clear distinction between a

level of set operatorsand alevel of parameters contai ning user-defined methods, asillustrated in example

).

19

7.1.2 Expression Contraction
Since object-oriented database systems explicitly support extensihility it isnatural that also the set opera-

torswhich areusually considered asbuilt-in constructsalternatively may be provided in form of methods.

For example, consider a user-defined class method for exploiting indices with signature
Select_Ind _Age(val: INT): P_Person

which retrieves all instances of athe class Person for which the property age has value val. Then the se-
manticsof thisoperation can be specified with thefollowing equival ence, assuming aconventional Select

operator on the powerset P_C of aclass Cisgiven.

(5) P_Person—>Select(#—>age()==val) = Person—Select_Ind(val)

7.2 Partial Specification
of Methods

In many casesit may not be possibleto specify the behavior of methods completely. Still it might be pos-

sible to formul ate equivalences involving the methods which are of the form
expri(m) = expra(m).

Such equivalences formulated for set operators play an important role in query optimization, e.g., to ex-
pressjoin associativity. So, asmethods may exhibit similar properties, dueto thefact that they can possess
multiple parameters (whereas attributes have to be considered in this context as unary functions) and can

realize set operators, it is natural to allow such equivalences also for (user-defined) methods.

Weillustratethispoint by thefollowing examples. Assumeamethod common_ancisgiven that computes

the (closest) common ancestor of two persons. Thismethod isof course commutative but not associative:

(6) pIN Person, qIN Person: p—common_anc(q) = g—common_anc(p)

Commutativity can be exploited, e.g., when several appearances of thismethod call appear inaquery, i.e.

we can avoid repeated execution of the same method call.

We give another example which involves set operators. Assume a powerset class P_Person of the class
Person is given. Let the method children be available in the interface of P_Person. This method, when
invoked on an instance P of P_Person, computes the union of the children of all personsin P and returns
the result as an instance of P_Person. Then we can define the following equivalence (using the Union

method generically available for powerset classes),

(7) PIN P_Person, Q IN P_Person:
(P—children())—>Union(Q—children()) = (P->Union(Q))—children()

20

Inthiscasethe optimization can apply theruleto reducethe effort of duplicate eliminations, when applied

on the parent level as opposed to the children level.

8 Optimization and Execution of Queries. An Outlook

The query optimizer is described by three different components. The algebra with its equivalences, the
cost model, which can be considered as partial description of the execution of methods and operators (see
also[23]), and the search strategy. We have aready argued that for auniform presentation of the algebra
alsothe system-defined operators of the query algebra, i.e., at least their interfaces, should be provided as
methods. Thereforeitisquitenatural to provideall equivalences, alsothoseonly affectingthekernel alge-

bra, within database schemas.

Asfar the cost model isconcerned, itisalso natural to specify the cost of user-defined methodswithinthe
database schemas, as for those methods the execution model is clearly defined by the execution model
inherent to VML. However, this model, which is straightforward evaluation of expressions, is not ap-
propriatefor processing largeamountsof data. Thereforeadifferent execution model, e.g., based on pipe-
lining strategies, will beemployed for the set-processing operators of the kernel algebra. So the cost mod-
el for these operationswill be provided in the form of interfaces, whereas the implementation of the cost
model, as well as the implementation of the operations themselves, are provided by the system compo-
nents of the database system. However, in the long run, execution models for processing large data sets
including their specification within database schemaswill emergefrom avery different area. VODAK is
currently also extended to support multimediadatatypes[2], in particular continuousdata, which requires
new execution paradigms, e.g., dataflow oriented approaches. It will be an interesting direction of re-
searchtofindacommon basisfor these approachesand approachesthat are applied in processing of large

data sets as they occur in query execution.

Up to this point we have discussed the integration of two of the three components of query optimizers,
namely algebraic equivalencesand cost models, at | east based on their interfaces, into the VML datamod-
€l. Of courseal so search strategi es can be specified within object-oriented datamodel s, which was already
proposed in[36]. Thislast step would make the query optimizer acomponent described individually for
each schemawithintheVML datamodel. Thusthe VML description of the components of the query opti-
mizer (and eventually of the query execution model) will become aself-descriptive component of adata-
base similar to the data dictionary. For each schemathe description of the query optimizer componentsis
different. Therefore inspecting the corresponding information at run-time would be required if we pro-

videtheoptimizer asafixed component of the database system. Thisisnot desirableasthe optimizer itself

21

hasto perform asefficiently aspossible. Thuswe plan to generate for each schemaan individual optimiz-
er, and consider an optimizer generator (akind of compiler) asasystem component of the database man-

agement system.

9 Conclusion & FutureWork

Inthispaper we have described theimpact of methods on the different componentsof query processingin
an object-oriented database management system. Using a modular reference architecture we have de-
scribed theimpact on different parts of query processing. For the query language V QL we haveidentified
several relaxations from the strict SQL paradigm that become necessary when considering methods.
Among these are dismissing adi stinction between select and update queries, arbitrary method callsat any
place in the query, and, resulting from this, dependency restrictionsin the FROM clause. Then we have
presented acompletely new approach to implement query al gebraswithin an object-oriented datamodel,
whichallowsto represent set operatorsas methods. Wehaveidentified necessary featuresof thedatamod-
el in order to support this approach, namely powerset classes, function domains and metaclass mecha-
nisms. This approach allows homogeneous access to system-defined and user-defined operations. We
have also clarified therole of parameters of set operators used in query algebras and described how they
become part of the method algebra. Based on the method algebra we have identified three typical ways
how semantic knowledge about schemas can be expressed in form of equivalences involving methods,
which can subsequently be exploited in optimization. Thus we are giving the notion of semantic query
optimization anew dimension in the context of methods. Finally, we have sketched a picture describing
our overall goal: an architecture for query processing, which is as extendible and modul ar as object-ori-
ented database management systemsclaim to be and which exploitsthe object-oriented datamodel for the

specification of query optimizers individualized and tuned toward specific applications.

We are currently implementing a query processor based on VQL in the VODAK system. As a starting
point for an implementation of the concepts presented in this paper we plan to use the Volcano Query
Optimizer Generator [24] since it allows rapid development of a query optimizer. It also supportsto a
large degree extendibility with freely definable algebras and rule systems and interfaces to freely defin-

able support functions.

Still many questions have to be solved towards reaching our goals. First, the necessary extensions of the
data model have to be provided, e.g., for representing equivalences, cost models, search strategies and
finally execution models. Then the appropriate search strategies have to be investigated. Inthisregard a

central question will be an appropriate framework for the specification of equivalence patterns. Among

22

the questions we have not considered in this paper are the treatment of nested queries, the management
and reuse of query results, and theimpact of updates on the semantics of queries. In the future also query
processing with time dependent data, which will appear in multimedia applications, will haveto be con-
sidered. Methodsin queriesareonly afirst step inthisdirection. Nevertheless, wethink that weprovidein

this paper a framework which will enable to study such questionsin a systematic manner.

References
[1] K. Aberer, G. Fischer: “VQL: VODAK Query Language, Version 1.0", interna report GMD—PSI, 1993.

[2] K. Aberer, W. Klas: “The Impact of Multimedia Data on Database Management Systems’, |EEE Workshop
on Multimedia Computing, Pittsburgh, PA, 1993.

[3] K. Aberer, E.J. Neuhold, W. Klas: “Object—Oriented Modeling for Hypermedia Systems using the VODAK
Modelling Language (VML)”, to appear in Object—Oriented Database Management Systems, NATO ASI
Series, Springer Verlag Berlin Heidelberg, August 1993 .

[4] F Bancilhon, S. Cluet, C. DelabelL: “A Query Language for the O, Object-Oriented Database System”, Pro-
ceedings of the 2nd International Workshop on Database Programming Languages, pp. 122—-138, Salishan
Lodge, Oregon, USA, 1989.

[5] J. Banerjee, W. Kim, K. Kyung-Chang: “Queries in Object-Oriented Databases’, Proceedings of the IEEE
4th International Conference on Data Engineering, pp. 31-18, Los Angeles, USA, February 1988.

[6] C.Beeri:“A formal approach to object-oriented databases’, Data & Knowledge Engineering 5, pp. 353-382,
1990.

[7] E.Bertino, C. Guglielmina: “ Path—index: An Approach to the efficient execution of object-oriented queries”,
Data & Knowledge Engineering 10, pp. 1-27, 1993.

[8] E.Bertino, W. Kim: “Indexing Techniquesfor Queries on Nested Objects’, IEEE Transactions on Knowledge
and Data Engineering, vol. 1, no. 2, pp. 196-214, June 1989.

[9] E. Bertino, M. Negri, G. Pelagatti, L. Sbattella: “ Object-Oriented Query Languages. The Notion and the Is-
sues’, |EEE Transactions on Knowledge and Data Engineering, vol. 4, no. 3, pp. 223-237, June 1992.

[10] E. Bertino, A. Quarati: “An Approach to Support Method Invocationsin Object-Oriented Queries’, Proceed-
ings of IEEE 2nd International Workshop on Research I ssues on Data Engineering — Transaction and Query
Processing (RIDE-TQP), pp. 163-168, Phoenix, Arizona, February 1992.

[11] E. Bertino, D. Musto: “Query optimization by using knowledge about data semantics’, Data & Knowledge
Engineering 9, pp. 121155, 1992/93.

[12] JA. Blakeley, W.J. Kenna, G. Gragefe: “ Experiences Building the Open OODB Query Optimizer”, preprint,
Dec 1992.

[13] S. Cluet, C. Delobel: “A General Framework for the Optimization of Object-Oriented Queries’, ACM S G-
MOD 1992, pp.383-392, 1992.

[14] S. Cluet, C. Delobel, C. Lécluse, P. Richard: “ RELOOP, an algebra based query language for an object-ori-
ented database system”, Data & Knowledge Engineering Journal 5 (1990), pp. 333-352.

[15] M. Carey, D. DeWitt. S. Vandenberg: “ A DataModel and Query Language for EXODUS’, Proceedings of the
ACM S GMOD Conference, pp. 413423, Chicago, USA, 1988.

23

[16] C. Delobel, C. Lécluse, P. Richard: “LOOQ: A Query Language for Object-Oriented Databases, Informal
Presentation”, Proc. of the ACFET Conference on Knowledge and Object-Oriented Database Systems, pp.
333-352, Pearis, France, December 1988.

[17] K.R. Dittrich (Ed.): Advances in Object-Oriented Database Systems / Proceedings of the 2nd International
Workshop on Object-Oriented Database Systems, pp. 358-363, Bad Munster am Stein-Ebernburg, Germany,
September 27-30, 1988 (LNCS 334)

[18] G. Fischer: “Updates in Object-Oriented Database Systems Caused by Method Calls in Queries’, Proceed-
ings of the 3rd ERCIM Database Researcg Group Workshop on Updates and Constraints Handling in Ad-
vanced Database Systems, Pisa, Italy, September 28-30, 1992.

[19] J.C. Freytag: “A Rule-Based View of Query Optimization”, Proceedings of the ACM SGMOD Conference,
pp. 173-180, San Francisco, USA, May 27-29, 1987.

[20] G. Gardarin, R. Lanzelotte: “Optimizing Object-Oriented Database Queries using Cost-Controlled Rewrit-
ing”, Proceedings of the 3rd International Conference on Extending Database Technology (EDBT '92), pp.
534-549, Vienna, Austria, March 1992.

[21] G. Gréfe: “Volcano, an Extensible and Parallel Query Evaluation System”, Technical report CU-CS-481-90,
University of Colorado at Boulder, 1990.

[22] G. Gréfe, D. DeWitt: “The EXODUS Query Optimizer”, Proceedings of the ACM SSGMOD Conference, pp.
160-172, San Francisco, USA, May 27-29, 1987.

[23] G. Gréfe, D. Maier: “ Query Optimization in Object-Oriented Database Systems: A Prospectus’, pp. 358-363
in[17]

[24] G. Gréfe, W. J. McKenna: “The Volcano Optimizer Generator: Extensibility and Efficient Search”, Proceed-
ings of the 9th IEEE International Conference on Data Engineering, pp. 209-218, Vienna, Austria, April
19-23, 1993.

[25] T. Harder, B. Mitschang, H. Schoning: “Query processing for complex objects’, Data & Knowledge Engi-
neering 7, p. 181-200, 1992.

[26] A. Heuer, J. Fuchs, U. Wiebking: “OSCAR: An object-oriented database system with a nested relational ker-
nel”, Proceedings of the 9th International Conference on Entity-Relationship Approach, pp. 95-110, Lau-
sanne, Switzerland, October 1990.

[27] A.Heuer, M. Scholl: “Principles of Object-Oriented Query Languages’, Gl—-Fachtagung, Datenbanksysteme
fir Blro, Technik und Wissenschaft, pp. 178-197, Kaiserlautern, Germany, March 1991.

[28] International Standards Organization: “Database Language SQL2 and SQL 3", international committee doc-
ument, ISO/IEC JTCL/SC21 WG3 DBL SEL-3b, April 1990.

[29] M. Jarke, J. Koch: “Query Optimization in Database Systems”, ACM Computing Survey, vol. 16, no. 2, pp.
111-152, June 1984.

[30] A. Kemper, G. Moerkotte: “ Advanced Query Processing in Object Bases Using Access Support Relations”,

Proceedings of the 16th International Conference on \ery Large Databases (VLDB '90), pp. 290-301, Bris-
bane, Australia, 1990.

[31] M. Kifer, W. Kim, Y. Sagiv: “Querying Object-Oriented Databases’, Proc ACM SIGMOD, 1992.

[32] W. Kim, B.P. Jenqg, D. Woelk, W.-L. Lee: “Query Processing in Distributed ORION”, Proceedings of the In-
ternational Conference on Extending Database Technology (EDBT ’90), Venice, Italy, 1990.

[33] W.Kim: “A Model of Queriesfor Object-Oriented Databases’, Proceedings of the 15th Inter national Confer-
ence on \Very Large Databases (VLDB ’89), pp. 423-432, Amsterdam, The Netherlands, August 1989.

24

[34] W. Klas: “A Metaclass System for Open Object-Oriented Data Models’, Dissertation, Technical University
of Vienna, January 1990.

[35] H. F. Korth: “Optimization of Object-Retrieval Queries’, pp. 352-357 in [17]

[36] R. Lanzelotte, P. Valduriez: “ Extending the Search Strategy in a Query Optimizer”, Proceedings of the 17th
International Conference on Very Large Databases (VLDB '91), Barcelona, Spain, 1991.

[37] L. Liu: “A formal approach to Structure, Algebra and Communication of Complex Objects’, PhD Tilburg
University, 1993.

[38] D. Maier: “The Theory of Relational Databases’, Computer Science Press, 1983.
[39] S.L. Osborn: “Identity, Equality and Query Optimization”, pp. 346-351in [17].

[40] M. Scholl, C. Laasch, M. Tresch: “Updatable views in Object Oriented Databases’, Proceedings of the 2nd
International Conference on Deductive and Object-Oriented Databases, (DOOD-2), pp. 189-207, Munich,
Germany, December 1991.

[41] G. Shaw, S. Zdonik: “Object-Oriented Queries: Equivalence and Optimization”, Proceedings of the 1st In-
ternational Conference on Deductive and Object-Oriented Database Systems (DOOD ’'89), pp. 264-278,
1989.

[42] M. Stonebraker, L. Rowe: “ The POSTGRES Papers’, Electronics Research Laboratory, College of Engineer-
ing; Memorandum No. UCB/ERL M86/85, pp.115, University of California, Berkeley, USA, June, 1987.

[43] D.D. Straube, M.T. Ozsu: “Queries and Query Processing in Object Oriented Database Systems’, ACM
Transactions on Information Systems, vol. 8, no. 4, pp. 387-430, October 1990.

[44] P. Vaduriez, S. Danforth: “Query Optimization for Database Programming Languages’, Proceedings of the
1st International Conference on Deductive and Object-Oriented Database Systems, pp. 516-534, 1989.

[45] S.B. Zdonik: “ Data Abstraction and Query Optimization”, pp. 368-373in [17].

25

