
A Query-Adaptive Partial Distributed Hash Table for
Peer-to-Peer Systems

Fabius Klemm, Anwitaman Datta, Karl Aberer

School of Computer and Communication Sciences
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

{Fabius.Klemm, Anwitaman.Datta, Karl.Aberer}@epfl.ch

Abstract. The two main approaches to find data in peer-to-peer (P2P) systems
are unstructured networks using flooding and structured networks using a dis-
tributed index. A distributed index is usually built over all keys that are stored
in the network whether they are queried or not. Indexing all keys is no longer
feasible when indexing metadata, as the key space becomes very large. Here we
need a query-adaptive approach that indexes only keys worth indexing, i.e. keys
that are queried at least with a certain frequency. In this paper we study the cost
of indexing and propose a query-adaptive partial distributed hash table (PDHT)
that does not keep all keys in the index. We model and analyze a scenario to
show that query-adaptive partial indexing outperforms pure flooding and “in-
dex-everything” strategies. Furthermore, our scheme is able to automatically
adjust the index to changing query frequencies and distributions.

Keywords: peer-to-peer (P2P), partial distributed hash table (PDHT), query-
adaptive indexing, metadata.

1 Introduction

There have been several proposals to store and retrieve data in decentralized unreli-
able peer-to-peer networks. In most of the solutions the two alternatives so far have
been to index all or nothing. In unstructured networks, such as Gnutella, peers use
flooding or multiple random walks [ChRa03, LvCa02] to resolve queries and do not
build and maintain any index. These mechanisms can be used for arbitrary, complex
search requests on metadata as they are not restricted to certain keys to find values in
the network. On the other hand queries generate a large number of messages.
In structured peer-to-peer networks [Aber01, RaFr01, RoDr01, StMo01], also called
distributed hash tables (DHTs), peers collaborate to construct and maintain a distrib-
uted index, which allows very efficient searches, but are, however, restricted to
searches on the indexed keys [HaHe02]. Moreover, traditional DHTs do not consider
the query distribution and devote equal resources to all keys. Such drawbacks of
DHTs are discussed in [ChRa03].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 - 2 -

When it comes to indexing metadata, a big difficulty lies in selecting useful keys for
the index. Which metadata is actually used in queries depends on the application. Fur-
thermore, the popularity of keys can change dramatically over time. Let us consider a
distributed, decentralized peer-to-peer news system. Peers generate news articles,
which are described by metadata. These metadata files consist of element-value pairs,
such as title = “Weather Iráklion”, author = “Crete Weather Service”, date =
“2004/03/14”, and size = “2405”. Queries may contain predicates on the different
metadata attributes, such as element1 = value1 AND element2 = value2. In case we
decide to index a specific metadata attribute we generate keys by hashing single or
concatenated key-value pairs, such as proposed in [FeBi04]. From this little example
we can already see that indexing key1 = hash(title = “Weather Iráklion” AND date =
“2004/03/14”) makes much more sense than indexing key2 = hash(size = “2405”) as
key1 is much more likely to be queried.
In this paper we propose an algorithm that selects the keys that are worth indexing
(such as key1). We first study the cost of maintaining a key-value pair in the index in
the presence of peers going on-/off-line and frequent key updates. Routing table main-
tenance costs are considerable, as P2P clients are extremely transient in nature
[ChRa03]. Searching a key in the index is much cheaper than searching an unstruc-
tured network. However, we claim that the cost of keeping a rarely queried key (such
as key2) in the index can become higher than the cost saving offered by efficient in-
dex search. We therefore introduce an analytical model, to decide whether a key with
a given query frequency is worth indexing. Second, we propose an extension for
DHTs, which does not index all keys occurring in the network but is able to select
those keys that are worth indexing. Our partial indexing approach also adjusts to
changing query distributions, which are typical of contemporary P2P applications,
such as file sharing.
Note that our proposal is generic enough such that it can be used for any of the DHT
based systems. The main contribution of this paper is to analyze the cost of indexing,
which allows to decide whether a key is worth indexing and thus to realize a hybrid
peer-to-peer system based on a query adaptive partial DHT. The main objective of the
analysis has been to provide an intuitive understanding of such hybrid designs of P2P
systems, and we make several simplifying assumptions to obtain a qualitative under-
standing. Given the diversity of existing DHT system designs, a generic analysis for
all DHT based systems is beyond the scope of this work. Therefore, we concentrate
on what can be called the traditional DHTs [Aber01, RaFr01, RoDr01, StMo01].
However, the analysis is generic enough such that it can be adapted to suit most other
DHT proposals. We point out such simplifying assumptions wherever applicable.
The paper is structured as follows: In Sections 2 and 3 we shall present an analytical
model for partial indexing. Section 4 examines a realistic example of partial indexing.
In section 5 we propose a decentralized selection algorithm that dynamically chooses
keys worth indexing and purges unnecessary keys from the index. Section 6 finishes
with discussion and conclusions.

 - 3 -

2 To Index or Not to Index?

In this section we propose an analytical model to decide whether a key is worth index-
ing. Keys that are not queried frequently enough are not worth indexing as they only
increase the size of the index. The bigger the index, the more peers are necessary to
store the index. On the other hand, if there are no queries, there is no need to maintain
a DHT.
Depending on the query distribution, each key is queried with a certain frequency. We
are now interested in finding the lowest query frequency fMin a key must have to be
worthwhile indexing.
The decision to index a key depends on the following variables:

• cIndKey: The cost of storing one key in the index for one round1.
• cSUnstr: The cost of searching a key in an unstructured network.
• cSIndx: The cost of searching the index.
• fQryk: The number of queries for key k per round (query frequency).

A key k should be indexed if it is queried frequently enough to amortize the indexing
cost:

fQryk ⋅ (cSUnstr – cSIndx) – cIndKey > 0 (1)

If a key is not queried frequently enough, it is better not to index it. Since cSUnstr –
cSIndx > 0 the minimum frequency a key must have to be worthwhile indexing is:

fQryk >
cSIndxcSUnstr

cIndKey
−

(2)

Therefore we set fMin to the smallest value fQryk such that (2) holds.
We now assume that queries for keys are Zipf distributed with parameter α [Srip01]
and that there are keys number of unique keys. The probability of a query for the key
at position rank is therefore:

∑
=

−

−

= keys

x

rank

x

rankprob

1

α

α

(3)

With numPeers peers and an average query frequency of fQry per peer per round, all
peers together send a total of numPeers ⋅ fQry queries each round. A key therefore has
the following probability of being queried at least once per round:

() fQrynumPeers
rankrank probprobT ⋅−−= 11 (4)

With (4) we now set maxRank to the highest rank such that probTrank ≥ fMin, i.e.
maxRank is the number of keys worth indexing. The probability that a random Zipf
distributed query can be answered from the index is:

1 One round is a fixed period of time. We shall later set one round to one second.

 - 4 -

∑

∑

=

−

=

−

= keys

x

maxRank

x

x

x
pIndxd

1

1

α

α

(5)

3 Model

As we have seen in the preceding section, the decision to index depends on the cost of
indexing a key (cIndKey), the cost of searching the unstructured network (cSUnstr),
and the cost of searching the index (cSIndx). We are now looking for realistic models
for these parameters assuming standard solutions for P2P overlay networks being
used. As is a standard practice in P2P systems we consider the number of messages as
the main cost (as opposed to storage and processing cost).

3.1 cSUnstr

We assume that the unstructured network has a Gnutella-like topology, where each
peer has a few open connections to other peers. However, the Gnutella flooding-based
query algorithm is not optimal even for unstructured networks. We therefore assume
that a search algorithm is used that consumes less network traffic, such as multiple
random walks as presented in [LvCa02]. We will explain in the next section that we
replicate keys with a certain factor at random peers. We furthermore assume that the
search algorithm in the unstructured network finds any key if it exists in the network.
When searching an unstructured network, some peers receive several copies of the
same query, depending on the network connectivity [LvCa02]. We therefore use a
message duplication factor dup. With numPeers and a random replication with factor
repl the cost of searching an unstructured network is then:

dup
repl

numPeerscSUnstr ⋅= [msg]
(6)

3.2 cSIndx

Search in traditional DHTs is with logarithmic cost2. With maxRank keys in the index,
a given replication factor, and each peer having a storage capacity of stor keys, we
need numActivePeers peers to store the index. We assume that if the total number of

2 Recently, several DHTs with sub-logarithmic search costs have been proposed, such as in

[Man04]. However, in this paper we concentrate on traditional DHTs [Aber01, RaFr01,
RoDr01, StMo01] as both the qualitative insights and the proposed algorithm will hold even
though the quantitative results will change.

 - 5 -

peers is greater than the number of peers necessary to store the index (numPeers >
numActivePeers), only numActivePeers peers participate in building and maintaining
a DHT. For the remaining peers, to perform searches, it is sufficient to know at least
one online peer that is participating in the DHT (i.e. the set of numActivePeers). The
cost of searching the index in a binary key space3 is then:

cSIndx = ()eersnumActivePLog22
1
⋅ [msg]

(7)

3.3 cIndKey

The cost of keeping a key in the index for one round depends on the following two
factors:

3.3.1 Routing table maintenance cost: cRtn
Peers continuously join and leave the system. To assure a certain level of routing reli-
ability, the peers must keep their routing tables up-to-date. One possible strategy is to
probe routing entries with a given rate to detect offline peers [MaCa03]. The chal-
lenge thereby is to adapt the probe rate to the current network situation, for example
by estimating the network size and the peer’s online characteristics. The amount of
probe messages depends on the routing table size, which is O(Log(numActivePeers)).
Stale routing entries can be replaced with low overhead by piggybacking routing in-
formation on queries. Therefore, we need only messages to detect stale routing entries
(by probing) but assume no additional messages to repair those routing entries. The
amount of probe messages is an application dependent environment constant (such as
determined in [MaCa03]), which we call env.
Suppose that we need numActivePeers peers to build a DHT big enough to index
maxRank keys. The maintenance cost for routing tables per key per second is then:
The cost to detect stale routing entries (env) multiplied by the size of the routing table
Log2(numActivePeers) times the number of participating peers (numActivePeers) di-
vided by the number of keys kept in the index (maxRank):

cRtn = env ⋅ Log2(numActivePeers) ⋅ numActivePeers / maxRank [msg/s] (8)

3.3.2 Update cost: cUpd
The second part of cIndKey is the cost of inserting, overwriting, or deleting a key in
the index thereby assuring consistency among the replicas. An update works as fol-
lows: The replicas in the index maintain an unstructured replica subnetwork among
each other. When updating a key, it is inserted at one responsible peer in the index at
the cost of searching the index (cSIndx) and then gossiped to the other responsible
peers in the subnetwork of replicas. Therefore, the update cost also depends on the
replication factor repl, which is given by the application.

3 For simplicity we assume a binary key space. However, the analysis can also be generalized

for a k-ary key space.

 - 6 -

[DaHa03] studied the cost of updates between replicas based on a hybrid push/pull
rumor spreading algorithm. Peers that are offline and go online again pull for missed
updates. We assume a message duplication factor of dup2 for flooding the replica
subnetwork. Given that fUpd is the average update frequency per key per second the
cost of updating a key is:

cUpd = (cSIndx + repl ⋅ dup2) ⋅ fUpd [msg/s] (9)

Thus we obtain the cost of indexing a key per round:

cIndKey = cRtn + cUpd [msg/s] (10)

The cost of searching the unstructured network (cSUnstr) is usually considerably
higher than the cost of searching the index (cSIndx) and the cost of keeping a key in
the index (cIndKey). However, we will see that searching rarely queried keys in the
unstructured network is cheaper than proactively keeping them in the index. There-
fore, only keys that are queried at least with a certain frequency fMin should stay in
the index.

4 Evaluation of the model

We now provide a simple scenario in order to instantiate our model with concrete pa-
rameters. In doing so, we choose values as have been observed in the context of P2P
networks by various researchers [LvCa02, MaCa03, Srip01]. Thus, we endeavor to
provide a simple and practical decentralized solution under realistic assumptions for a
longstanding drawback of DHTs, that of judiciously indexing metadata.
We imagine a news system with the following characteristics: It should be able to
store 2,000 unique news articles, randomly replicated with a certain factor. We as-
sume that there exists a mechanism to determine a proper replication factor for the in-
dex and content files (news articles) to meet target levels of availability and to avoid
unnecessary high update cost [VaCh02]. Such mechanisms lie beyond this work and
are therefore not further discussed. Index and content are replicated with the same
factor to assure the same search reliability in structured and unstructured networks. In
our analysis we use a replication factor of 50.
As discussed in Section 1, for each article we generate 20 keys from the metadata de-
scribing the article. It is a standard approach in information retrieval to avoid indexing
stop words, such as “the”, “and”, etc. We assume that the set of such stop words is
globally known to all peers in the system and are ignored. To index 2,000 news arti-
cles we therefore get 40,000 keys. Each peer has a storage capacity of 5 articles plus a
cache of 100 key-value pairs that can be used for indexing. With replication factor of
50 we therefore need 20,000 peers to store and index all articles.
Each article is replaced every 24 hours on average. New articles are actively repli-
cated together with their metadata files. The average query frequency per peer varies
from one query every 30 seconds, in very busy periods of the day, to one every 2
hours, in calmer times. Thus, with 20,000 peers and 40,000 keys, the average key
query/update ratio varies between 1440/1 and 6/1. Furthermore, the queries are Zipf-
distributed with alpha = 1.2 as observed in [Srip01].

 - 7 -

For this analysis we use the route maintenance cost that [MaCa03] studied for Pastry.
Using a Gnutella trace with 17,000 peers, they analyzed that around 1 message per
peer per second is necessary. With (8) we therefore get a routing maintenance con-
stant of env = 1/Log2(17,000) ≈ 1/14. This constant might be different in other main-
tenance approaches and environments. In this scenario, the maintenance cost (cRtn)
clearly outweighs the update cost (cUpd).
We first assume that each peer knows which keys it can find in the index and for
which it has to do a broadcast search4. This assumption is not realistic but at the mo-
ment we are interested in the best performance possible with partial indexing (lower
bound in terms of messages in the given system model). We will discuss in the next
section a more realistic environment, in which peers do not know whether a key is in
the index. The following table summarizes the parameters:

Table 1. Parameters of the sample scenario.

Description Param. Value
Total number of peers numPeers 20,000
Number of peers building the DHT numActivePeers
Number of unique keys keys 40,000
Storage capacity for indexing per peer stor 100
Replication factor repl 50
α of query Zipf distribution α 1.2 [Srip01]
Frequency of queries per peer per second fQry 1/30 1/s to 1/7200 1/s
Avg. update freq. per key fUpd 1/(3600 ⋅ 24) 1/s
Route maintenance constant env 1/14 [MaCa03]

Message duplication factors dup
dup2

1.8 [LvCa02]
1.8

We can now calculate the total cost for pure indexing and broadcast searches as well
as for partial indexing:
Total cost of indexing all keys: Cost of the full index per second, where maxRank =
keys, plus the cost of searching the index (cSIndx). The total number of queries per
second is fQry ⋅ numPeers:

indexAll = keys ⋅ cIndKey + fQry ⋅ numPeers ⋅ cSIndx [msg/s] (11)

Total cost of searching all queries in the unstructured network:

noIndex = fQry ⋅ numPeers ⋅ cSUnstr [msg/s] (12)

4 We use “broadcast search” and “search in the unstructured network” interchangeably.

 - 8 -

Total cost for ideal partial indexing:
We index only the maxRank most popular keys, which costs cIndKey per key per sec-
ond. If a query can be answered from the index (with probability pIndxd), we have
only the index search cost (cSIndx). Otherwise (1 - pIndxd) we have to search the un-
structured network (cSUnstr).

partial = maxRank ⋅ cIndKey + pIndxd ⋅ fQry ⋅ numPeers ⋅ cSIndx +

(1 - pIndxd) ⋅ fQry ⋅ numPeers ⋅ cSUnstr [msg/s]

(13)

We used the analytical model to evaluate the behavior of the system for a changing
query load (fQry). The following figures show the results.

1
ÅÅÅÅÅÅÅÅÅÅ30

1
ÅÅÅÅÅÅÅÅÅÅ60

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ120

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ300

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ600

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1800

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3600

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ7200

queryfreq. @1êsD

10000

20000

30000

40000

cost@msgêsD

partial

noIndex

indexAll

Fig. 1. Query frequency per peer (x-axis) vs. total sent messages per second (y-axis) when all
keys are indexed (indexAll, solid), when all queries are answered by broadcast (noIndex, dashed
stars), and for ideal partial indexing (partial, dashed squares).

1
ÅÅÅÅÅÅÅÅÅÅ
30

1
ÅÅÅÅÅÅÅÅÅÅ
60

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
120

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
300

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
600

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1800

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3600

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
7200

queryfreq. @1ê sD

0.2

0.4

0.6

0.8

1
savings

compared to noIndex

compared to indexAll

Fig. 2. Savings of ideal partial indexing compared to indexing all keys (indexAll, solid) and
compared to broadcasting all queries (noIndex, dashed).

Fig. 1 shows the cost when indexing and broadcasting all queries, and with ideal par-
tial indexing. Ideal partial indexing is considerably cheaper for all query frequencies
as the savings in Fig. 2 show. In Fig. 3 we can see that the index size decreases with

 - 9 -

lower query frequencies as the index only stores the keys worth indexing. As the que-
ries are Zipf distributed even a small index can answer a high percentage of queries.

1
ÅÅÅÅÅÅÅÅÅÅ30

1
ÅÅÅÅÅÅÅÅÅÅ60

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ120

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ300

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ600

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1800

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3600

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ7200

queryfreq. @1êsD

0.2

0.4

0.6

0.8

1
indexedkeys

pIndxd

index size

Fig. 3. Percentage of indexed keys with ideal partial indexing (index size, solid) and percentage
of queries that can be answered from the index (pIndxd, dashed).

5 Selection algorithm

In the preceding section we made the idealizing assumption that every peer knows
whether a key should be indexed. In this section we now present a simple decentral-
ized algorithm to select keys worth indexing.

5.1 How to select worthwhile keys?

When a peer wants to answer a query, it first searches the index. If there is no result,
the peer initiates a broadcast search and inserts the resulting key-value pair into the
index. Each key has an expiration time keyTtl, which determines how long the key
stays in the index. The expiration time of a key is reset to a predefined value when-
ever the peer that stores the key receives a query for it. Therefore, peers evict those
keys from their local storage that have not been queried for keyTtl rounds. This
mechanism has the effect that only frequently queried keys stay in the index whereas
the unpopular keys, which are not worth indexing, time out. This approach does not
take the relative frequency of queries into account, but only the temporal Boolean dis-
tribution of whether there was any query for a particular key.
With (3) and (4), the probability that a query can be answered from the index, i.e. that
the key has been queried at least once in the last keyTtl rounds, is:

()()()∑
=

⋅−−=
keys

rank
rank

keyTtl
rank probprobTpIndxd

1

11
(14)

 - 10 -

The number of keys in the index is:

()()∑
=

−−=
keys

rank

keyTtl
rankprobTkeys

1

11
(15)

Purging timed-out keys leads to poor replication synchronization. To improve the
query success rate, peers propagate queries in the unstructured replica subnetwork if
they cannot answer them. The index search cost therefore increases by the cost of
flooding the replica network:

cSIndx2 = cSIndx + repl ⋅ dup2 [msg] (16)

A peer first searches the index (cSIndx2). If it does not find the key in the index, it
searches the unstructured network (cSUnstr) and inserts the resulting key into the in-
dex (cSIndx2). Therefore, proactive updates (cUpd) are no longer necessary and the
cost of keeping a key in the index consists only of the routing cost (cRtn). The cost of
partial indexing therefore is:

partial = keys ⋅ cRtn + pIndxd ⋅ fQry ⋅ numPeers ⋅ cSIndx2 +

(1-pIndxd) ⋅ fQry ⋅ numPeers ⋅ (cSIndx2 + cSUnstr + cSIndx2) [msg/s]

(17)

Fig. 4 shows the savings with the proposed selection algorithm. We see that the algo-
rithm causes some overhead, but partial indexing still realizes substantial savings, in
particular for average query frequencies.

1
ÅÅÅÅÅÅÅÅÅÅ
30

1
ÅÅÅÅÅÅÅÅÅÅ
60

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
120

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
300

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
600

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1800

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3600

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
7200

queryfreq. @1ê sD

0.2

0.4

0.6

0.8

savings

compared to noIndex

compared to indexAll

Fig. 4. Savings with proposed selection algorithm compared to indexing all keys (indexAll,
solid) and compared to broadcasting all queries (noIndex, dashed).

With the selection algorithm the cost of indexing is higher than with ideal partial in-
dexing (which results in lower savings) for four reasons: I. Not all keys that are sup-
posed to be in the index are in the index at the time they are queried. We chose a
keyTtl of 1/fMin. A key worth indexing can time out before it is queried again. II.
Keys that are not worth indexing are inserted into the index for keyTtl rounds. III. In-
dex search cost (cSIndx2) is higher than ideal search cost (cSIndx). IV. A peer does
not know whether a query is indexed. It therefore always searches the index and then

 - 11 -

also broadcasts the query if necessary. Nevertheless, there are still considerable sav-
ings compared to strategies that index all keys or broadcast all queries (except for
very high query frequencies) as shown in Fig. 4.

5.1.1 Choosing keyTtl

It is important that peers insert keys into the index with the right expiration time
(keyTtl). The value of keyTtl can be calculated by estimating cSUnstr, cSIndx, and
cIndKey. A too small value results in fewer savings at high query frequencies, a too
big value at lower frequencies. Analytical results show that an estimation error of
±50% of the ideal keyTtl decreases the savings only slightly. A mechanism to self-
tune keyTtl based on the query distribution and frequency is part of future work.

5.2 Implementation

We have been implementing a simulator for partial indexing with P-Grid [Aber01].
Preliminary simulation results show that the selection algorithm works well and that
P-Grid adapts to changing query distributions. We are currently implementing exten-
sions to simulate efficient routing table maintenance and algorithms that assure a cer-
tain replication depending on the online characteristics of peers. Once stable, these al-
gorithms will be integrated in the P-Grid P2P system, which has been implemented in
Java (www.p-grid.org).

6 Discussion & Conclusions

We have argued that in structured P2P systems the indexing cost cannot be neglected,
particularly the cost of maintaining routing tables. Depending on the query frequency
of a key, it can be cheaper not to index it. To outline a design for a query adaptive
partial DHT, we first provided an analysis based on global knowledge. Then we pro-
posed a very simple, nonetheless effective mechanism for selective (partial) indexing
based on only locally available information at peers, without the need of global coor-
dination. Our self-organizing and adaptive mechanism does not make the system
theoretically optimal as we do not assume global coordination. However, the results
show that our approach leads to performance benefits and compares well with the
theoretical optimal solution. It adapts to changing query frequencies and distributions,
which is especially useful when indexing metadata, as the range of the key space that
is actually queried depends on the applications and can dramatically change over
time. Future work includes refinements of the analytical model and improvements in
the proposed selection algorithm and its implementation.

 - 12 -

References

[Aber01] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Systems.
Sixth International Conference on Cooperative Information Systems (CoopIS 2001), Trento,
Italy 2001

[ChRa03] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker: Making
Gnutella-like P2P Systems Scalable. Proceedings of ACM SIGCOMM 2003

[DaHa03] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Replicated
Peer-to-Peer Systems. 23rd International Conference on Distributed Computing Systems
(ICDCS), 2003.

[FeBi04] P. Felber, E. Biersack, L. Garces-Erce, K. W. Ross, G. Urvoy-Keller. Data Indexing
and Querying in P2P DHT Networks. ICDCS 2004, Tokyo, Japan

[HaHe02] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica. Com-
plex queries in dht-based peer-to-peer networks. In Proc. of IPTPS '02, 2002.

[LvCa02] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In 16th international conference on Supercomputing, June
2002.

[MaCa03] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of reliability in peer-
to-peer overlays. In IPTPS, 2003.

[Man04] G. S. Manku. The power of lookahead in small-world routing networks. In STOC,
2004.

[RaFr01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In SIGCOMM, Aug. 2001.

[RoDr01] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distrib-
uted Systems Platforms (Middleware), November 2001.

[Srip01] K. Sripanidkulchai. The popularity of gnutella queries and its implications on scalabil-
ity. In O’Reilly’s, www.openp2p.com, 2001.

 [StMo01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceedings of ACM
SIGCOMM 2001.

[VaCh02] A. Vahdat, J. Chase, R. Braynard, D. Kostic, P. Reynolds, A. Rodriguez. Self-
Organizing Subsets: From Each According to His Abilities, To Each According to His
Needs. First International Workshop on P2P Systems, March 2002

