
Accepted for International Workshop on Issues and Applications of Database Technology (IADT’98), Berlin, Germany, July 6–9, 1998.

TRANSPARENT INTEGRATION OF CONTINUOUS MEDIA SUPPORT
INTO A MULTIMEDIA DBMS

Silvia Hollfelder, Florian Schmidt, Matthias Hemmje, Karl Aberer
GMD - German National Research Center for Information Technology

Integrated Publication and Information Systems Institute (IPSI)
Dolivostr. 15, D-64293 Darmstadt, Germany

e-mail: {hollfeld, fschmidt, hemmje, aberer}@darmstadt.gmd.de

 ABSTRACT
Multimedia Database Management Systems (MM-

DBMS) have to efficiently provide the specific functionali-
ties required by time-dependent multimedia data types. Dur-
ing presentation playout, this requires support for
continuous data delivery and media-oriented optimization
of presentation quality according to users’ requirements. In
this work, we describe our way to integrate this type of sup-
port transparently with other MM-DBMS functions like me-
dia editing and querying. This has been achieved by extend-
ing an existing data model, in particular by means of stream
abstractions for editing and presentation, and by extending
the system architecture by means of supporting stream pro-
cessing components, e.g., for intra-media synchronization
by adaptation. This approach has been implemented as an
extension of existing commercial object-relational DBMS
technology.

1 INTRODUCTION
In commercial DBMS there is a clear trend to provide

specialized functionality, which has usually been offered as
separate software packages and required substantial
development efforts for the integration with database
applications, as integrated database extensions. Examples
are particularly found in the management of nonstandard or
multimedia data types, e.g., text retrieval, image handling,
statistical functions. This development is a key factor for the
rapid spreading of object-relational database technology
among all major database vendors, and it is the reaction to
the requirements of new applications utilizing distributed
multimedia technology, like digital video production
[S96][SH94], education and training or digital libraries
[BAN95]. For static data and media, this approach is
relatively straightforward as it does not heavily affect the
fundamental processing paradigms used in conventional
DBMS. For handling continuous media, like, e.g., video and
audio, additional characteristics and requirements related to
the presentational aspects of these media need to be

considered. Currently, there are two “schools” to that respect
(for a nice discussion see also [O96]):

1. Media presentation is not a problem that is to be
considered by the DBMS. The DBMS provides a storage
framework for the media, including metadata required for
search and manipulation. Presentation is supported by
external systems, like video servers, or within distributed
multimedia applications.

2. The DBMS has to support presentational aspects, since
this is a fundamental aspect of accessing the media data
managed by the DBMS. Presentational requirements like
synchronization are to be considered as a new type of
constraints that need consistent support by the DBMS
[MS96].

From our perspective there are several arguments in favor of
the second school.

1. Presentations of composite multimedia objects require
the coordinated scheduling of the available resources
based on the characteristics of and relationships between
the involved media. Since this information is stored in the
database the DBMS itself most efficiently performs the
scheduling. For example, when presenting a video with
text inserts the DBMS needs to support a buffering scheme
for the video that exploits the stream semantics and
expected user interactions. In addition, it has to schedule
the delivery of the text inserts such that they can be
presented timely.

2. In case of concurring requests, the DBMS is the right
place to optimize the database usage and usage of available
different media, for example by performing quality
adaptations [TKCWP97].

3. Different abstractions are used in the different stages of
processing media data. For example, an MPEG video
stream is edited at the frame granularity, retrieved at the
granularity of scenes or shots, and distributed over a
network for presentation at the granularity of group-of-

–––
This work has partly been funded by the European Union within the framework of the ESPRIT Long Term Research
Project HERMES, No. 9141 [http://www.ced.tuc.gr/hermes/hermes.html].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Accepted for International Workshop on Issues and Applications of Database Technology (IADT’98), Berlin, Germany, July 6–9, 1998.

pictures. The different data structures representing these
abstractions, which are also relevant for presentation
purposes, need to be kept consistent during updates.

4. Exploiting application-specific characteristics of
multimedia objects for distribution and presentation of the
media increases the necessity of integrated presentation
support in the DBMS. Examples are quality adaptations
for parts of presentations resulting from a retrieval request
parametrized by their relevance, buffering strategies tak-
ing into account possible future interactions based on
application semantics, e.g., favorite hyperlinks, or
resource scheduling taking user profiles or usage statistics
into account.

In this paper, we show the feasibility of the integration of
presentational support for multimedia data with a standard
commercial object-relational DBMS (Informix Universal
Server IUS). Basic support in the spirit of school 1 is
provided by the Informix Universal Server by means of the
Video Foundation Blade [VFUG97]. We actually take
advantage of the mechanisms provided by this database
extension to simplify the physical integration of the media
server and obtain additional abstraction and querying
capabilities. The additional presentational support that we
provide addresses the continuous data transport required
during the presentation of continuous media streams, client-
side buffering mechanisms exploiting stream and interac-
tion semantics, and client-side quality adaptation
mechanisms to overcome fluctuations in the network and
server resources. Most of the concepts were already devel-
oped when we extended the object-oriented DBMS
VODAK [V95] to a (proprietary) MM-DBMS [RKN96].
This paper shows that the concepts for presentational sup-
port, developed in this earlier proprietary work, can be
smoothly integrated into standard platforms, taking
advantage of the available functionality of these systems.
Thus there is no principal difficulty in a modular extension
of modern, extensible DBMS with presentational support
for multimedia data.

2 GENERAL CONCEPTS
In the following, we go into some details of the basic

concepts supporting the storage and presentation that have
been integrated as multimedia database extensions to give
presentational support to multimedia objects.

2.1 CONTINUOUS LONG FIELDS ABSTRACTIONS
We provide a data type Continuous Long Field (CLF) as

a generic representation for any kind of continuous media,
like audio, video or animations. This datatype supports op-
erations for editing and presentation, like “insert”, “re-
quest”, or “delete”. Thus it combines the concepts of long
fields and streams. Structural metadata, like the format and
other recording parameters, are stored with every CLF
object. Different media encoded in a single stream (like, e.g.,
with MPEG encoding) are modelled as separate CLF
objects, to enable the individual retrieval and manipulation
of each of the media parts. For editing purposes, a CLF ob-

ject is segemented into a sequence of manipulation units,
called Continuous Object Data Units (CODU). The
granularity of these units is determined individually for each
type of media, e.g. Motion-JPEG frames, MPEG-1 frames or
audio samples. At this level of granularity, it is possible to
manipulate the data stream, e.g., by inserting, deleting or
appending CODUs.

Fig. 1 : Modelling of Continuous Long Fields

Continuous Long Field

CODU

Audio

Block of samples
Sample

M-JPEG

Frame
Frame

MPEG

Group of Pictures
Frame

CODU CODU CODU CODU CODU CODU CODU CODU

COPU
CODU

COPU COPU

Media Type

For continuous presentation, our approach supports a cli-
ent-pull mechanisms, i.e., the client continuously requests
chunks of data which are provided by the server in a best-ef-
fort manner. Since requests in the granularity of CODUs are
not very effective and presentation engines, like, e.g., MPEG
players or other video and audio devices, handle larger units
of data, a second abstraction is introduced to support
presentation. An atomic unit requested during synchronous
presentation is called a Continuous Object Presentation Unit
(COPU). One COPU may consist of several CODUs as
illustrated in figure 1. Furthermore, the figure shows that a
continuous long field consists of several COPU and CODU
objects.

The CLF data type that provides the above abstractions
has been implemented as part of our database extension for
basic continuous media support. It provides, in particular,
storage support for the raw media data and associated meta-
data, like, e.g., content descriptions, physical characteristics
or presentational characteristics. More details on the imple-
mentational aspects will be provided in section 3.

2.2 BUFFER MECHANISM
An intelligent buffering mechanism for continuous

media streams not only has to optimize access to physical
storage it also has to take into account the presentational
requirements of the media stream. We use an algorithm
called Least/Most Relevant for Presentation (L/MRP)
[MKK95] for preloading and replacing of COPUs in the
client buffer. Its goal is to support a synchronized
presentation of the media stream.

The algorithm considers the current presentation state
and likely interactions when deciding which COPUs need to
be preloaded and replaced in the client buffer. For that pur-
pose, it assigns a relevance value to each COPU. COPUs
with least relevance are replaced first and those with highest
relevance value are preloaded first. The relevance value rep-
resents the possibility that a COPU may be required in the
future. Hereby it is considered that user interactions change
the presentation process. Relevance values are distinguished
into dynamic and static ones. Dynamic relevance values are
derived from the presentation point and the relevance of the

Accepted for International Workshop on Issues and Applications of Database Technology (IADT’98), Berlin, Germany, July 6–9, 1998.

COPU for the progression of the presentation. For example,
the COPUs following the presentation point in the current
presentation direction have the highest dynamic relevance
which decreases with increasing distance to the presentation
point. COPUs already presented can still have a fairly high
relevance to make them available for change of direction or
fast rewind user interactions. Static relevance values are
assigned independent of the current presentation point, for
example, to working points within the streams that are more
likely to be referenced. The functions assigning relevance
values can be modelled according to the typical needs of the
application.

2.3 BUFFER-TRIGGERED ADAPTATION
Since we do not assume the availability of reservation

mechanisms for stream delivery, bottlenecks may occur
during presentation. Therefore, we use a client-based
adaptation mechanism [DHH93] to dynamically change the
presentation quality in order to reduce the data volume that
needs to be delivered from the server to the client. In this
way, intra-media synchronization can be maintained by
reducing disk utilization, memory consumption or required
network bandwidth.

Our smooth adaptation technique assigns different
presentation qualities to different intervals of client-buffer
fill levels. The rationale of this approach is that with high
buffer utilization the danger of a bottleneck is lower, while
with a lower buffer utilization the danger of loosing intra-
media synchronization increases, and the buffer needs to be
filled up faster with lower quality data. The intervals used in
the adaptation specification overlap. Thus, if the buffer fill
level is close to the border of an interval, frequent quality
switches are avoided by using hysteresis [AFK95]. The
quality adaptations are modelled separately for each media.
This enables a transformation of QoS (Quality of Service)
parameters, specified by the user, to the adaptation intervals.
Adaptation can occur along the temporal dimension (e.g.,
frame dropping) or along the spatial dimension (e.g.,
reduction of resolution). In case of dropping, additional
constraints can be introduced by specifying the minimum
distance in between dropped frames to, e.g., reduce jitter. A
detailed description of the adaptation framework is given in
[HKR97]. Figure 2 illustrates the architecture of the
adaptation feedback and its interaction with the buffering
mechanism described in section 2.2. The presentation
process starts with a filled client buffer. The presentation
engine continuously requests COPUs for their synchronized
presentation and handles user interactions. While the
COPUs are presented, the preloader asynchronously
prefetches COPUs from the server in the client buffer. The
adaptation control module controls the buffer size, and,
based on the adaptation specification, determines which
quality has to be requested. If server CPU, server disk or net-
works have temporary bottlenecks, the client’s buffer
utilization starts to decrease. In this case the presentation
quality is gracefully degraded. In case of dropping the re-
quest of COPUs, logically empty COPUs are inserted into
the buffer to increase buffer utilization.

ÉÉÉÉÉÉÉÉÉÉÉ

Fig. 2 : Adaptation Feedback Mechanism

 COPUs

Request to server

Buffer

Presentation

ÉÉÉÉÉCOPU request

Preloader

Current Interval

COPU from server

COM

Adaptation
Quality

Buffer Utilization

User InteractionsCOPU reference

Adaptation
Specification ÉÉÉÉÉÉAdaptation Control

The adaptation mechanism has been implemented as part
of a continuous media presentation environment of the data-
base client. It constitutes a further component in our data-
base extension for basic continuous media types by support-
ing intra-media synchronization. Another component, the
Reactive Adaptive Playout Manager [RAPM], is responsi-
ble for inter-media synchronization and scheduling of com-
posite presentations. It is built on top of the client buffer in
our MM-DBMS [TK96].

3 INTEGRATION OF MULTIMEDIA DATA
SUPPORT

3.1 OBJECT-RELATIONAL DBMS
Object-relational DBMS are designed to combine the ad-

vantages of industrial-strength relational DBMS with the
extensibility and expressive powers of object-oriented
DBMS. In spite of their high flexibility most object-oriented
DBMS lack important features, like powerful declarative
access mechanisms, or suffer from scalability problems
[D95]. Though the expressiveness and design of object-ori-
ented data models are usually considered to be better, in
particular with regard to constructed data types, for most
multimedia applications the ability to introduce new abstract
data types in object-relational database management
systems appears to suffice. The multimedia-related data
types, including the necessary operations on them, are added
to the kernel at runtime, and can hence be used in the same
way as other system-defined data types, e.g., within SQL
commands or the database application programmers’ inter-
face. The operations are alternatively performed either on
the server in case of data intensive processing or on the client
in case of computational intensive processing.

For the implementation of basic continuous-media
database extensions described in this paper, we used the
Informix Universal Server, which has recently become
available. Database extensions for the Informix Universal
Server are called DataBlades and bundle the
implementations of abstract data types both with support
functions for the client and standard SQL application
schemas.

3.2 THE VIDEO FOUNDATION DATABLADE
The Informix Video Foundation DataBlade (VF DB)

provides a basic framework to integrate continuous-media
servers with Informix Universal Server. It provides a

Accepted for International Workshop on Issues and Applications of Database Technology (IADT’98), Berlin, Germany, July 6–9, 1998.

standardized schema for the control of external storage
managers as well as a common interface for the manipula-
tion of the relevant metadata related to physical properties,
content or usage of the media streams. This openess in the
architecture of the Video Foundation Blade allowed for its
use as a basis for the integration of the presentation-oriented
mechanisms described before with the Informix Universal
Server. The Video Foundation DataBlade itself explicitely
omits any support related to the presentation of media
streams.

The software architecture of the Video Foundation Data-
Blade consists of three main components: The Informix Uni-
versal Server, an external storage manager and the applica-
tion program. The Informix Universal Server stores all
metadata. It manages and controls the access to the external
storage managers and devices. The external storage manag-
ers handle the storage and continuous delivery of the various
media streams. Whenever an application wants to access
continuous objects, it can access them indirectly through the
Informix Universal Server Video Foundation DataBlade
schema and its access functions. If the access is time-critical,
a direct connection to the responsible storage manager
(through an appropriate client-server connection) can be
mediated through the Informix Universal Server and the
Video Foundation DataBlades metadata, as well. If the ap-
plication requests only metadata, the Informix Universal
Server will serve the request on the basis of the Video
Foundation DataBlade schema.

Fig. 3 : Database Schema of the Video Foundation
DataBlade

describes

VidTextDesc VidAudDesc

VidMedia
(1,1)

has_copies

(0,*)

(1,1)

VidChunkMD

member_of member_of

describes

(0,*)(0,*)

(0,*)

(1,1)

(0,*)

(1,1)

member_ofmember_of

(1,*)(1,*)

(0,*)

(1,1)

(1,*)

(0,*)

(1,1)

contained_in

describes
(0,*)

describes

VidImgDesc

(0,*)

(1,*)

VidPAudio

VidPVideo

(0,1)

(1,1)

specific
media

(0,1)

(0,1)

VidPOther

VidVidDesc

(1,*)
VidMDGeneral

VidStrata

The Video Foundation DataBlade registers all external
storage managers within a so-called “MedVSIRegister”
table. It also stores representations of objects stored exter-
nally as values of the so-called ”MedLoc” datatype. To en-
able a format independent representation of times and peri-
ods of time, the Video Foundation DataBlade defines the
so-called “MedPtr”, “MedTC” and “MedChunk” data types
which are responsible for representing exact times in the

timing format of the corresponding medium, according to
the SMPTE timecode standard.

By means of a “virtual storage interface” (VSI), the Vid-
eo Foundation DataBlade provides access functions like
open, close, read, write, seek, and tell which enable applica-
tions to manipulate contents handled by the storage manag-
ers. The Video Foundation DataBlade predefines the virtual
storage interface for three simple external storage managers:
one for files on the client, one for files on the server, and the
third for media not available in digitized form.

Besides providing these virtual access and management
functions of the virtual storage interface, the Video Founda-
tion DataBlade defines a metadata schema, displayed in fig-
ure 3 , which contains tables for technical and physical me-
tadata (stored in so-called “VidMDGeneral“, “VidMedia”,
“VidPVideo“, “VidPAudio”, “VidPOther”, “VidVCodec”,
“VidACodec”, “VidFormat”, “VidStandard”, “VidPVideo”,
“VidPAudio”, and “VidPOther” tables) as well as for struc-
ture- and content-oriented metadata (stored in so-called
“VidChunkMD”, “VidStrata”, “VidVidDesc”, “VidImg-
Desc”, “VidAudDesc”, and “VidTextDesc” tables). Further
information can be found in [VFUG97].

3.3 SYSTEM ARCHITECTURE
In the following, we describe the system architecture that

integrates creation, editing, continuous presentation sup-
port, and content-based annotation of Continuous Long
Fields in the object-relational DBMS Informix Universal
Server. Our system is based on a client/server architecture
where the server is responsible for the storage of continuous
and discrete data. The client is responsible for requesting
data from the server, for presenting them and for handling in-
teractions with the user. The architecture consists of four
parts, the Informix Universal Server, the Video Foundation
DataBlade, the external storage manager and the CLF Data-
Blade. The CLF DataBlade, in turn, consists of three parts,
the DBMS functionality extending the object-relational
DBMS, the presentation support module located on the cli-
ent, and the continuous transport module connecting the pre-
sentation support module to the external storage manager
during a presentation. Figure 4 displays the system compo-
nents and their relationships. Additionally, an application is
shown to display the interfaces to the system.

The “raw” multimedia data streams are stored in external
storage servers, not in the object-relational DBMS itself.
This approach enables the use of specialized storage systems
for multimedia objects capable of meeting the data delivery
demands posed by presentations of continuous media ob-
jects. For example, an average compressed MPEG video re-
quires the delivery of about 1.4 MB per second. We chose the
Experimental Object Store (EOS) Storage Server from
AT&T as an external storage manager because it can handle
arbitrarily large objects effectively and provides random ac-
cess to them [BP94].

The object-relational DBMS manages storage and re-
trieval of all metadata related to the multimedia objects. This
is achieved by extending the DBMS with the Video Founda-
tion DataBlade and CLF DataBlade. All discrete operations
on the Continuous Long Fields that are not subject to time

Accepted for International Workshop on Issues and Applications of Database Technology (IADT’98), Berlin, Germany, July 6–9, 1998.

Fig. 4 : System Architecture

discrete operators (SQL)
(e.g. get, append)

Connection

Legend:

Module Application

IUS

Video Foundation

external storage manager

server side

Continuous Transport Module

control
data transport
continuous data

client side

Application
(e.g. video on demand

Client

system)

Server

CLF DataBlade

DataBlade

CLF DataBlade

client side

Continuous Object Manager
CLF DataBlade

Continuous Transport Module
CLF DataBlade

DBMS functionality

constraints, are performed by means of the DBMS function-
ality of the CLF DataBlade. For synchronous access opera-
tions, the object-relational DBMS grant direct access to the
object stored on the external storage manager by the Contin-
uous Object Management module on the client.

In addition to the supported DBMS functionality the
CLF DataBlade offers continuous presentation support on
the client side. This is implemented by the Continuous Ob-
ject Management (COM) module on the client and the Con-
tinuous Transport Module. The Continuous Object Manager
implements the client buffer management, described in sec-
tion 2.2, and the adaptation techniques described in section
2.3.

The Transport Module connects the Continuous Object
Manager with the external storage manager. It implements
fast data access, fast delivery over the network, and transport
of data requests from the client to the server and vice versa.
The Transport Module sets up a continuous data connection
to the external storage manager utilizing an appropriate net-
work. The data connection and a corresponding control con-
nection work in parallel to the other components of the
DBMS and the application program. One data connection
can consist of several logical channels to support composite
presentations. Using this connection, time-dependent data
are transferred from the server to client buffers. The control
connection is responsible for transferring user commands as
well as system control commands.

The application accesses a Continuous Long Field
through the SQL interface of the Informix Universal Server.
In this way all editing is performed on the objects. For pre-
sentation, the applications initialize the Continuous Object
Management module based on the metadata of the object to
be presented. The Transport module is initialized and the ap-
plication is able to use the Continuous Object Management
mechanism to request data, to set quality of service parame-
ters or to communicate user interactions to the system.

3.4 THE CONTINUOUS LONG FIELD DATABLADE

DBMS functionality
Manipulation operations for multimedia objects

provided by the Video Foundation DataBlade are on byte
granularity and are comparable to simple file access
mechanisms. The CLF DataBlade extends this functionality
towards manipulation at the granularity of CODUs.
Furthermore, it provides for the implementation of the
virtual storage interface to the external storage manager
EOS, and for the management of replicates of the same
stream in different qualities.

For supporting editing and presentation, the basic
metadata modelled in the Video Foundation DataBlade is
extended by additional attributes. The integration of the
additional metadata in the Video Foundation DataBlade da-
tabase schema is illustrated in figure 5 .

Fig. 5 : Database Schema of Video Foundation and
CLF DataBlade

system data
(1,1) (1,1)

physical data

(1,1)(1,1)

(1,1)

has_copies
(1,1)

VidMedia specific
media

(0,1)

(0,1)

(0,1)

general data

(1,1)

(1,1)

VidPOther

(1,1)VidMDGeneral VidPAudio

VidPVideo

tables from the Continuous Long Field DataBlade

tables from the Video Foundation DataBlade

CLFSYS_codustringsCLF_codustrings

Two tables are defined as extensions to the schema of the
Video Foundation DataBlade. The table CLF_codustrings
holds the metadata the user has to supply to enable the sys-
tem to handle, edit and present the continuous long field cor-
rectly. The table CLFSYS_codustrings holds information
that is generated and maintained by the system, e.g., the
entry number_of_codus that will be updated by any insert or
append operation.
create table CLF_codustrings of type CODUSTRING_Type
(PRIMARY KEY (object_name),

FOREIGN KEY (VideoID)
(*references VidMDGeneral of the VF DataBlade*)

FOREIGN KEY (MediaID)
(*references VidMedia of the VF DataBlade*)

);

create table CLFSYS_codustrings of type
CODUSTRING_SYSType

(FOREIGN KEY (object_name)
(*references CLF_codustrings*)

);

The row types describing the tables are ”CODUS-
TRING_Type” and ”CODUSTRING_SYSType”. They
hold the metadata provided by the user and maintained by
the system, respectively. The entries VideoID and MediaID
are references to tables defined in the Video Foundation Da-
taBlade. The row types are defined as follows.

Accepted for International Workshop on Issues and Applications of Database Technology (IADT’98), Berlin, Germany, July 6–9, 1998.

create row type CODUSTRING_Type
(object_namevarchar (255),

(*name of the object*)
maximum_codu_size integer,

(*maximum size of the CODUs*)
variable_codu_size boolean,

(*CODU size variable or not*)
codus_per_second integer,

(*presentation speed in CODUs p/sec*)
content_type integer,

(*type indicator: video, audio, other*)
set_of_keywords set (varchar (255) not null),

(*keywords *)
VideoID integer,
MediaID integer

);

create row type CODUSTRING_SYSType
(object_name varchar (255),

number_of_codus integer,
(*number of CODUs in the object*)

replicates list (REPLICATE_Type not NULL),
(*list of minor quality replicates*)

);

The datatype REPLICATE_Type serves as a representa-
tion of lower quality replicates of a Continuous Long Field.
The CLF DataBlade defines two functions for the creation
and deletion of Continuous Long Field instances. The func-
tion create_codustring generates a new Continuous Long
Field in the database. The user has to provide metadata for
the creation of an instance: the object’s name, the maximum
CODU size of the object, the variable CODU size indicator,
the presentation speed and the media type indicator. Addi-
tionally, the user has to provide the identification of the ex-
ternal storage server consisting of a name and an identifica-
tion number on which the object is to be stored.
Create_codustring enters metadata provided by the user into
the Video Foundation DataBlade and the CLF DataBlade
schema tables and induces the creation of an initially empty
external object. A sample call of create_codustring looks
like this:

execute function create_codustring (’my_cs’, 20, ’f’, 1, 0,
’id_of_storage_server’, 1);

The function delete_codustring removes a Continuous
Long Field whose name is passed as a parameter from the da-
tabase. It removes all entries in the metadata schema tables
and also removes the external object. The SQL call of de-
lete_codustring looks like this:

execute function delete_codustring (’my_cs’);

The CLF DataBlade defines several functions to enable
the editing of continuous objects. These functions operate on
CODU indices. The editing functions adjust the relevant me-
tadata (i.e. the number of CODUs and the size of the object)
in the schema tables upon successful completion. The fol-
lowing functions are provided: append, insert, delete, in-
sert_from_file, write_to_file, get. Additionally, the CLF Da-
taBlade defines the function make_replicate, which is used
to generate lower quality replicates of a Continuous Long
Field, to be used for adaptation during a presentation. For il-
lustration, we give one example of how the functions are ap-

plied. In the example it is assumed that a table “my_blobs”
exists in the database which contains two data fields: name
of type varchar (255) and b of type blob. This table holds an
entry with the values (“first_blob”, <blob data>).

The function append appends CODUs from a BLOB at
the end of an object. Example use of append:

select append (cs, b)
from CLF_codustrings cs, my_blobs b
where cs.object_name =’first_cs’ and b.name =’first_blob’;

Continuous Presentation Support
Besides the refinements in the data management

facilities described above, the main contribution of the CLF
DataBlade is the integrated support for presentation and
transport of continuous media. On the client side, this
support is provided by means of a Continuous data API
(CAPI). It supports continuous reading of continuous long
field objects for presentation. It uses the Multimedia Data
Direct Access Protocol (MDDA). The protocol provides
methods for fetching the next COPU to be presented and for
controlling the presentation.

The Continuous data API is implemented as a C++
library. Classes are provided to an application to initialize
the Continuous Object Manager, to start a presentation, to
request COPUs from the server, and to pass user interactions
to the Continuous Object Manager. To initialize the Continu-
ous Object Manager, an instance of “class ContinuousOb-
jectManager” has to be created. A Continuous Long Field is
represented by an instance of the “class CODUString”. This
class is initialized using the metadata stored in the table
“CLF_codustrings”. It offers the function “present” which
initiates a presentation of the object. The “class MDDA”
models the protocol interface for a presentation. It offers the
function “getNextCOPU” which retrieves the next COPU in
presentation direction. The function “dropNextCOPU” is
used to inform the system that the first COPU fetched but un-
dropped can be replaced in the client buffer. The protocol
instances for an initialized presentation are retrieved from an
instance of the “class MDDA_Manager” which the ap-
plication has to create. The “class QOS” is used to specify
Quality of Service parameters for a presentation. The
instances of “class COPU” represent the COPUs that are
fetched by using the functionality of “class MDDA”. Figure
 6 shows a simplified example of a presentation implement-
ed using the described classes.

For the purpose of clarity and compactness, the example
was stripped from all irrelevant code. The code fragment ini-
tializes the Continuous data API functionality by creating an
instance of “class ContinuousObjectManager”. The metada-
ta for the continuous object to present (its object_name is
“vid1”) is fetched from the Informix Universal Server by
means of the C++ interface of the Universal Server. An
instance of class CODUString is created using the value of
the “row type CODUSTRING_Type”. A presentation with
the id “video” is initialized, and the corresponding protocol
instance is fetched from the MDDA_Manager. The presen-
tation loop requests all COPUs in normal order. For each
COPU, the pointer to the actual data is passed to the function
“sentToDisplay” and, upon return from that function, the

Accepted for International Workshop on Issues and Applications of Database Technology (IADT’98), Berlin, Germany, July 6–9, 1998.

void player ()
{
 // initialize CAPI functionality
new ContinuousObjectManager ();

// initialize CODUString with metadata from
// table CLF_codustrings

ITRow * row = query–>ExecOneRow (
”select * from CLF_codustrings
where object_name = ’vid1’”);

CODUString * CODUString_to_present =
new CODUString (conn, row);

CODUString_to_present–>present (”video”, 1, 1);
// initialize the COM

MDDA_Manager * mddaMan = new MDDA_Manager();
// new instance of MDDA_Manager

MDDA * mdda = mddaMan–>connectToMDDA (”video”);
// get MDDA representation

While (play) {
do {

copu = theMDDA–>getNextCOPU ();
// request the COPU

if (copu != NULL)
// COPU successfully retrieved

*buffer = copu–>getAddr ();
}
sendToDisplay (buffer);
// present COPU data

}}

Fig. 6 : A Presentation Example

COPU is dropped, meaning the system can replace it in the
client buffer.

Annotation Support
The Video Foundation DataBlade provides a framework

for a content based annotation of Continuous Long Fields. A
content annotation for a continuous object always relates to a
time interval on the object, e.g., a news video clip shows Mr.
Clinton from second three through nine. Time intervals are
modeled by the Video Foundation DataBlade by means of
the datatype MedChunk which is composed of two precise
locations on the timeline of the object. The time intervals can
be described by one or more descriptions of four possible
formats: text, image, audio or video. A described time inter-
val is called stratum. It is stored in the table called ”Vid-
ChunkMD” of the Video Foundation DataBlade. Several
stratum values with a common property (e.g., video clips
showing buildings) can be gathered in a relationship called
“strata”. Strata representations are inserted into the table
called ”VidStrata”. A query can, for example, find all video
clips that display buildings from a video archive. The result
of this query would be a set of time intervals corresponding
to videos and one or more descriptions for each time interval.
Detailed description of the strata concept can be found in
[SD92] and [DSP91].

The content-oriented metadata can be queried, but at the
current state the presentation of query results (i.e., time inter-
vals from Continuous Long Fields) is not supported. This is a
future enhancement of the system.

4 RELATED WORK
Quite a number of research prototypes of multimedia da-

tabase management systems have been developed over the

last years, mostly on proprietary platforms. A nice overview,
also with a classification of their most important features is
given, for example, in [PS97]. From this overview one can
take that most MM-DBMSs concentrate on storage and re-
trieval support, while presentation support is less frequent.
One of the systems analyzed in this overview is the AMOS
prototype that has been developed as an extensions of the ob-
ject-oriented DBMS VODAK, and components of which
were also used in the realization of the system described in
this paper.

In [IKO96] a MM-DBMS prototype based on an object-
oriented data model representing temporal, spatial, and
agent models is described. Multimedia applications are
modeled as a set of scripts which provide an interface to the
user. Basically, a script consists of an identifier, temporal and
spatial data, a set of streams, and QoS data. The real-time
support for time-dependent data is done by an agent manager
which negotiates the required QoS specifications with the
system to satisfy the constraints and reserve the resources.
Furthermore, the agent management checks deviations from
expected values.

As an example of a commercial development the Oracle
Universal Server is open for the development of so-called
“cartridges” which are manageable objects. Furthermore,
the language-neutral interface IDL (Interface Definition
Language) of Corba allows the cartridge to identify itself to
other objects in a distributed system. Cartridges can be pro-
grammed in multiple languages such as Java, C/C++, or
SQL. The Oracle Video Server has been extended to manage
new types of data, including video and audio, providing new
ways to manage, manipulate, and deliver data in the net-
worked economy [ORA96]. It will be seen in the future how
the set of requirements for the integration of multimedia ob-
jects is solved.

5 CONCLUSION
In this paper we have shown in detail that supporting the

particular requirements of a MM-DBMS, imposed in partic-
ular for the storage, delivery, and presentation of continuous
media, can be integrated smoothly into today’s standard ex-
tensible database management systems. We consider this an
important step towards a simplified development of multi-
media database applications.

We point out sample extensions of the basic mechanisms
for continuous media handling of the current implementa-
tion that are the subject of our current work. They also illus-
trate the importance of using an open, extensible platform to
deal with new requirements.

An extension that is required for adaptation with more
complex media streams is the support for media-specific
access operations for the preloader which are proposed in the
CLF abstraction of section 2.1. One example are MPEG
streams with dependent frames. These extensions will be
provided within our framework as subtypes of the generic
CLF data type and require additional metadata on the
structure of the stream.

The quality adaptation mechanism is triggered within the
local presentation context of the client. Thus, no global
knowledge on resource consumption is considered. Such a

Accepted for International Workshop on Issues and Applications of Database Technology (IADT’98), Berlin, Germany, July 6–9, 1998.

mechanism needs to be realized on the database server. In
[TKCWP97] a quality adaptation scheme for global quality
adaptation and optimization is described that will be used to
extend the mechanisms described in this paper. In addition,
admission control mechanisms as described in [H97] will be
realized to avoid an overload of the database server. Admis-
sion control techniques are used to guarantee a minimum
quality for the presentation.

Future work will concentrate in particular on dealing
with additional requirements and optimization possibilities
when complexly composed multimedia presentations are in-
volved and the consideration of application characteristics,
e.g., the relevance of parts of a presentation, to support quali-
ty adaptations and optimizations.

REFERENCES

[AFK95] Apteker R. T., Fischer J. A., Kisimov V. S. and
Neishlos H.: Video Acceptability and Frame Rate. In IEEE
Multimedia, Fall 1995, pages 32-40.
[BP94] Biliris A., Panagos E.. EOS User’s Guide. Release
2.2. AT&T Bell Laboratories, Murray Hill, NJ 07974, 1994.
[BAN95] Böhm K., Aberer K., Neuhold E. J.:
Administering Structured Documents in Digital Libraries,
Advances in Digital Libraries, Lecture Notes in Computer
Science Vol. 916, Springer Verlag 1995.
[BKL96] Boll S., Klas W. and Löhr M.: Integrated Database
Services for Multimedia Presentations. In S. M. Chung,
Editor, Multimedia Information Storage and Management.
Kluwer Academic Publishers, 1996.
[D95] Kotz-Dittrich A., Dittrich K. R.: Where
Object-Oriented DBMSs Should Do Better: A Critique
Based on Early Experiences. In Won Kim (ed): Modern
DataBase Systems, ACM Press 1995.
[DHH93] Delgrossi L., Halstrick C., Hehmann D.,
Herrtwich R. G. , Krone O., Sandvoss J., Vogt C.: Media
Scaling for Audiovisual Communication with the
Heidelberg Transport System. In Proc. ACM Multimedia
1993, pages 99-104.
[DSP91] Davenport G., Smith T. G. A. and Pincever N.:
Cinematic Primitives for Multimedia (Stratification Helps
Story-Telling in Multimedia). In IEEE Computer Graphics
and Applications, volume 11, number 4, July 1991, pages
64-74.
[HKR97] Hollfelder S., Kraiss A. and Rakow T. C.: A
Client-Controlled Adaptation Framework for Multimedia
Database Systems. In Proc. of the European Workshop on
Interactive Distributed Multimedia Systems and
Telecommunication Services (IDMS’97), Darmstadt,
Germany, Sept. 10-12, 1997.
[H97] Hollfelder S.: Admission Control for Multimedia
Applications in Client-Pull Architectures. In Proc. of the Int.
Workshop on Multimedia Information Systems (MIS),
Como, Italy, September 1997.

[HL97] Hollfelder S. and Lee H-J.: Data Abstractions for
Multimedia Database Systems. GMD Technical Report, No.
1075, Sankt Augustin, May 1997.
[IKO96] Ishikawa H., Kato K., Ono M., Yoshizawa N.,
Kubota K. and Kond A.: A Next-Generation Industry
Multimedia Database System. In Proc. of Twelfth
International Conference on Data Engineering, New
Orleans, February/March 1996.
[MS96] Marcus S. and Subrahmanian V. S.: Towards a
Theory of Multimedia Database Systems, In V.S.
Subrahmanian, Sushil Jajodia, Editors, Multimedia
Database Systems, Springer, 1996.
[MKK95] Moser F., Kraiss A. and Klas W.: L/MRP: A
Buffer Management Strategy for Interactive Continuous
Data Flows in a Multimedia DBMS. In Proc. Int. Conf. of
Very Large Data Bases 1995 (VLDB), Sept. 1995, pages
275-286.
[O96] Orji C.: Multimedia DBMS – Reality or Hype? In
Nwosu, Thuraisingham, Berrs, Editors, Multimedia
Database Systems, Kluwer, 1996.
[ORA96] Network Computing Architecture. An Oracle
White Paper, September 1996.
[PS97] Pazandak P. and Srivastava J.: Evaluating Object
DBMSs for Multimedia. In IEEE Multimedia Journal, vol 4,
n. 3, Fall 1997.
[RKN96] Rakow T. C., Klas W. and Neuhold E. J.: Research
on Multimedia Database Systems at GMD-IPSI. IEEE
Multimedia Newsletter, Vol. 4, No 1, April 1996, pages
41-46.
[S96] Steinmetz A.: DiVidEd - A Distributed Video
Production System. In VISUAL’96 Information Systems,
VISUAL’96 Conference Proceedings, Melbourne 1996.
[SD92] Smith T. G. A., Davenport G.: The Stratification
System: A Design Environment for Random Access Video.
In Network and Operating Systems Support for Digital
Audio and Video, Third International Workshop
Proceedings, La Jolla, California USA, 12-13 November
1992.
[SH94] Steinmetz A., Hemmje M.: Konzeption eines
digitalen Videoeditiersystems auf Basis des internationalen
Standards ISO/IEE 11172 (MPEG-1). GMD-Studien Nr.
245, St. Augustin, Germany, 1994.
[TK96] Thimm H. and Klas W.: Delta-Sets for Optimized
Reactive Adaptive Playout Management in Distributed
Multimedia Database Systems. In Proc. of Int. Conference
on Data Engineering, New Orleans, Louisiana, 1996, pages
584-592.
[TKCWP97] Thimm H., Klas W., Cowan C., Walpole J., Pu
C.: Optimization of Adaptive Data-Flows for Competing
Multimedia Presentational Database Sessions. In Proc. of
IEEE Int. Conference on Multimedia Computing and
Systems, June 3-6, 1997, Ottawa, Ontario, Canada.
[VFUG97] Video Foundation DataBlade Module User’s
Guide, Version 1.1, June 1997, INFORMIX Press, Menlo
Park 1997.
[V95] VODAK V4.0 User Manual, GMD Technical Report
No. 910, Sankt Augustin, April 1995.

