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Abstract. With new standards like RDF or OWL paving the way for
the much anticipated Semantic Web, a new breed of very large scale
semantic systems is about to appear. Traditional semantic reconcilia-
tion techniques, dependent upon shared vocabularies or global ontolo-
gies, cannot be used in such open and dynamic environments. Instead,
new heuristics based on emerging properties and local consensuses have
to be exploited in order to foster semantic interoperability in the large. In
this paper, we outline the main differences between traditional semantic
reconciliation methods and these new heuristics. Also, we characterize
the resulting emergent semantics systems and provide a couple of hints
vis-à-vis their potential applications.

1 Introduction

Global economics needs global information. The time is over when enterprises
were centralized and all the information needed to operate an enterprise was
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stored in the enterprise database. Nowadays, all major economic players have
decentralized organizational structures, with multiple units acting in parallel and
with significant autonomy. Their information systems have to handle a variety
of information sources, from proprietary ones to information publicly available
in web services worldwide. Grasping relevant information wherever it may be
and exchanging information with all potential partners has become an essential
challenge for enterprise survival. Shortly stated, information sharing, rather than
information processing, is IT’s primary goal in the 21st century. Not that it is a
new concern. It has been there since data has been made processable by a com-
puter. What is (relatively) new is the focus on semantics, which takes the issue far
beyond the syntactic functionality provided by exchange standards or standard
formatting à la XML. The reason that makes semantics re-emerge so strongly is
that now information has to be sharable in an open environment, where inter-
acting agents do not necessarily share a common understanding of the world at
hand, as used to be the case in traditional enterprise information systems.

Lack of common background generates the need for explicit guidance in un-
derstanding the exact meaning of the data, i.e., its semantics. Hence the current
uprising of research in ontologies, for instance. Ontologies are the most recent
form of data dictionaries whose purpose is to explain how concepts and terms
relevant to a given domain should be understood. However, ontologies are not
the panacea for data integration [1]. Consider a simple example from traditional
data management: an enterprise database will most likely contain data about
employees, and every user will be expected to understand the concept of “an
employee”. Yet a closer look at the concept reveals a number of possible am-
biguities, including whether specific types of personnel (e.g., students in their
summer jobs, trainees, visitors) have to be considered as employees. Without
an agreement between the interacting units as to the correct mapping between
these concepts, interpretation may not be decidable.

Ontologies are forms of “a-priori” agreements on concepts, and therefore,
their use is insufficient in ad-hoc and dynamic situations where the interacting
parties did not anticipate all the interpretations and where “on-the-fly” integra-
tion must be performed [2]. In fact, the commensurability of knowledge and the
desirability of developing efficient solutions for the open environment preclude
an approach which realistically captures the space of interpretations in a finite
structure. Semantic errors compound even intuitively well understood concepts.
In the absence of complete definitions, elicitation of explicit and goal-driven con-
textual information is required for disambiguation. In human conversations, the
context may be implicit, elicited through a dialogue between the interlocutors, or
gathered from additional information sources. The new computing environment
in the Internet demands similar capabilities. Increasingly, information systems
are represented by agents in their interactions with other autonomous systems.
These agents must therefore be capable of building the context within which
“on-the-fly” integration could occur. What ought then be the appropriate mech-
anisms and tools that agents must possess to accomplish the task of resolving
semantic conflicts in a dynamically changing environment, such as the Internet
and the Web?
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The above discussion serves as a motivation for the general principles enun-
ciated thereafter which could drive the development of the next generation of
semantic reconciliation methods. The rest of this paper is organized as follows:
We first take a look back at classical data integration techniques in Section 2 and
summarize the rationales and principles of the new emergent semantics trend
in Section 3. Section 4 gives some details on an important aspect of emergent
semantics systems, namely self organization. Opportunities and challenges re-
lated to emergent semantics systems are outlined in Section 5 and 6. Finally, we
present three case studies in Section 7 before concluding.

2 Classical Information Integration

The need to integrate heterogeneous information sources is not new; For decades,
researchers have been working on building data integration systems providing
uniform query interfaces to a multitude of data sources, thereby freeing the user
from the tedious task of interacting and combining data from the individual
sources. Given a user query that is formulated in the query interface (also called
the mediated schema), these systems use a set of semantic mappings to trans-
late the query into queries over source schemas, then execute the queries and
combines the data returned from the sources, to produce the desired answers to
the user. Numerous research activities have been conducted along those lines,
both in the artificial intelligence and database communities. Much progress has
been made in terms of developing conceptual and algorithmic frameworks; query
optimization; constructing semi-automatic tools for schema matching, wrapper
construction, and object matching; and fielding data integration systems on the
Internet.

2.1 Information Integration from a Database Perspective

The motivation for data integration from a database perspective is old and re-
flects the activities from the 90s, when various databases were integrated. Most
of the databases integration systems described in the literature (see, e.g., [3,4,5,
6,7]) are based on a unified view of data, called mediated or global schema, and
on a software module, called mediator that collects and combines data extracted
from the sources, according to the structure of the mediated schema. The existing
mediator-based information integration systems can be distinguished according
to: 1) the type of mappings between the mediated schema and the schemas of
the sources (Global As View versus Local As View), and 2) the languages (there-
fore, the expressivity) used for modeling the mediated schema and the source
descriptions.

2.2 Global as View Versus Local as View

According to [8], information integration systems can be related to two main
approaches for modeling inter-schemas correspondence: Global As View (GAV)
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and Local As View (LAV). The GAV approach has been the first one to be pro-
posed and comes from the Federated Databases world. The mediated schema is
defined in function of the schemas of the sources to integrate, i.e., each relation of
the mediated schema is defined as a view on the relations of the sources schemas.
The advantage of this approach is the simplicity of query reformulation which
simply consists of replacing each atom of the query by its definition in terms of
the relations of the sources schemas. Its drawback is its lack of flexibility with
respect to the addition or deletion of sources to the mediator: adding (or delet-
ing) a source to the mediator may affect the definitions of all the relations of the
mediated schema. The LAV approach is dual and has opposite advantages and
drawbacks. It consists of describing the contents of the sources in function of the
mediated schema. In such an approach, adding a new source is quite straightfor-
ward because each source is described independently of each other. The price to
pay for this flexibility is the difficulty of the query answering processing which
requires a more complex process of rewriting queries using views (see [9] and [10]
for more details on the problem of answering queries using extensions of views).

2.3 Relational Versus Object-Based Mediated Schema

The selection of the language used to modeling the mediated schema and the
source descriptions is a very important aspect: the expressitivy of such a language
will restrict the kind of semantic relationships that can be described among data
elements. We can distinguish between those approaches providing a relational
view of data sources and those systems using an approach based on objects.
The most representative information integration systems of the relational ap-
proach are: Razor [11], Internet Softbot [12], Infomaster [13] and Information
Manifold [14]. They all follow a LAV approach. The Razor and Internet Soft-
bot systems use datalog (without recursion) for modeling the mediated schema,
the views describing the sources contents and the users queries. Infomaster and
Information Manifold are based on extensions of datalog. Infomaster exploits
integrity constraints in addition of datalog rules. Information Manifold extends
datalog by allowing that some predicates used in the rules are concepts defined
by using description logics constructors. The most representative information in-
tegration systems of the object-based approach are: TSIMMIS [6], SIMS [15,16],
OBSERVER [17] and MOMIS [18]. TSIMMIS is based on the object-oriented lan-
guage OEM for describing the mediated schema and the views, and on the OEM-
QL query language. It follows a GAV approach. The SIMS and OBSERVER
systems use a description logic for modeling the mediated schema, the views
and the queries. SIMS follows the LAV approach while OBSERVER follows the
GAV. The MOMIS system is based on the use of a very expressive description
logic (ODL-I3) for describing the schemas of the sources to integrate. It follows
the GAV approach.
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2.4 Information Integration from Knowledge Representation
Perspective

The schematic and semantic heterogeneity is one of the difficulties in the in-
tegration of heterogeneous information sources. Normally, the information in
every information source is stored with regards to its users’ requirements, dis-
regarding access from other sites or their integration. Two critical factors for
the design and maintenance of applications requiring Information Integration
are conceptual modeling of the domain, and reasoning support over the con-
ceptual representation. It has been demonstrated that knowledge representation
and reasoning techniques can play an important role for both of these factors.
Two relevant works that follow the knowledge representation approach are from
Calvanese et al. [19] and Rousset and Reynaud [20].

2.5 Information Integration and the World Wide Web

With the progress in global interconnectivity, the scale of the problem has
changed from a few databases to an open and dynamic environment of millions
of heterogeneous information resources. Current keyword-based approaches are
usually found to provide a poor quality of result. However, the key challenges
to be faced are at the semantic level, where people would increasingly expect
the information systems to help them not at the data level, but at the informa-
tion, and increasingly knowledge levels which call for semantic interoperability.
In essence, we need an approach that reduces the problem of knowing the con-
tents and structure of many information resources to the problem of knowing
the contents of easily-understood, domain-specific ontologies, which a user fa-
miliar with the domain is likely to know or understand easily. Recent papers
focused on some of the issues characterizing data integration over the Web. For
example [21] identifies the problem of similarity matching among XML data.
The proposed algorithm is able to find the commonalities and differences which
give rise to a numerical rank of the structural similarity. [22] investigates the
heterogeneity problem of information sources from the query answering point
of view. To handle semantics inconsistencies between the same attributes used
at different sites, task ontologies are used as a communication bridge between
them. Information Retrieval is also a well established domain [23] that now has a
new field of application: Web-based IR. [24] isolates four different approaches of
this problem in the Web context: (1) human or manual indexing, (2) automatic
indexing using classical IR techniques, (3) intelligent or agent-based indexing
such as using Crawlers and Robots and (4) meta-data, RDF (Resource Descrip-
tion Framework) and annotation-based indexing. Meta information (and hence
semantic Web) can also be important in the prospect of information integration:
[25] proposes web servers export specific meta-data archives describing their con-
tent. In order to offer better processing and integration of information, a unified
representation for Web resources (data and services) is becoming a necessity. The
use of ontologies to provide the means to machines of understanding the data
they are manipulating is increasing. With the emergence of Semantic Web [26],
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the study of ontologies and their uses has increased, since they provide a shared
and common understanding of a domain that can be communicated between
people and application systems.

2.6 The Future of Data Integration

To date, all the integration technologies have been offered by various indepen-
dent vendors and products. Even if the information technology organizations
can appropriately match the right integration technology to the problems
related to information integration, it still has the problem of how many skilled,
specialist resources are needed to implement these technologies and integration
scenarios, as well as how many different vendors must be contracted. Each of
these separate technologies has its own user interface to the developer, brings
its own development environment (often graphical), has its own meta data
repository to document the interface, its own security framework, and its own
management framework. Developing intelligent tools for the integration of
information extracted from multiple heterogeneous sources is a challenging
issue to effectively exploit the numerous and dynamic sources available on-line
in global information systems.

3 The Emergence of Emergent Semantics

Nowadays, several research areas such as peer-to-peer data management, infor-
mation agents, Semantic Web or Web data mining and retrieval all address the
problem of semantic interoperability in widely distributed information systems
with large numbers of agents1 [27,28] using remarkably similar ideas. Global in-
formation is seen as highly evolutionary: documents of already existing sources
may be updated, added or deleted; new sources and services may appear and
some may disappear (definitively or not). Semantic interoperability is viewed as
an emergent phenomenon constructed incrementally, and its state at any given
point in time depends on the frequency, the quality and the efficiency with which
negotiations can be conducted to reach agreements on common interpretations
within the context of a given task. We refer to this type of semantic interoper-
ability as “emergent semantics”. In the following we outline what we believe are
the key characteristics underlying this concept.

3.1 Principle 1: Agreements as a Semantic Handshake Protocol

Meaningful exchanges can only occur on the basis of mutually accepted proposi-
tions [29]. The set of mutual beliefs constitutes the “agreement” or “consensus”
between the interacting agents. It is the semantic handshake upon which shared
1 The term “agents” refers to both humans through computed-mediated communica-

tion and to artificial surrogates acting as information and/or service consumers and
producers. The term “peers” is used as a synonym.
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emerging and dynamic ontologies can be established and exchange context can
be constructed. In practice, the agreement can be over the real-world meaning of
some model, as it is typically assumed in conceptual modeling, on schema map-
pings, on consistent data usage or on any other meta-data information relevant
to the task at hand. The strength of the agreement will depend on the strength
of the accepted propositions, their quality and trustworthiness.

3.2 Principle 2: Dynamic Agreements Emerge from Negotiations

Information exchange between agents is necessary to negotiate new agreements
or to verify preexisting ones. This is a recognition that the information environ-
ment is dynamic, and thus, assumptions must be constantly validated. Agree-
ments evolve as agents learn more about each other and as interests broaden or
become more focused. Interaction is required to identify and resolve semantic
conflicts, to negotiate and establish consensus on the data interpretation, and to
verify whether a consensus leads to the expected actions. Communication can
be realized in terms of explicit message exchanges or implicitly by reference to
distributed information resources.

Note that in our context, agreements are no longer “static”. Unlike onto-
logical commitments, these agreements are likely to change dynamically as the
network of information parties evolves. Also, agreements do not need to be “bi-
nary”, i.e., it is not the case that either there is or isn’t consensus about the
meaning of a particular term. In fact there might be fuzzy notions of consensus,
such as weak, strong, etc. which may have a bearing on the semantics. Finally,
agreements do not necessarily result from negotiations of “equals”. In general
it is assumed that (in the committee approach) all the people contributing to
creation of ontology/enterprise model have equal expertise. This is definitely
not the case in an emergent semantics scenario, where different people from a
variety of backgrounds will be contributing to the negotiations, and thus to the
agreements generated.

3.3 Principle 3: Agreements Emerge from Local Interactions

The principles stated so far are analogous to those formulated for introducing the
concept of ontological commitments [30], except that “emergent semantics” as-
sumes that commitments are dynamic and are established incrementally. The key
challenge for emergent semantics remains scalability. The complexity of “emer-
gent semantics” and communication costs preclude the option for an agent to
seek agreements simultaneously with a large number of other agents. The com-
binatorial nature of such an endeavor will limit the viability of the approach in
distributed environment. Thus, pragmatics dictate that “emergent semantics”
be kept local to reduce communication costs and that global agreements are
obtained through aggregations of local agreements. As a result, even if agents
are only aware of a small fraction of a network directly, they will nevertheless be
able to interoperate over the whole network indirectly by exploiting aggregate
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information. This raises the immediate question on how to technically perform
aggregation and inference of new agreements.

3.4 Principle 4: Agreements Are Dynamic and Self-Referential
Approximations

Making an appeal to context in resolving semantic conflicts is a recognition that
traditional schema or conceptual analysis leave open several possible interpreta-
tions of a mapping between the information sources of two interacting agents.
However, the problem with context in general is that the space of possibilities
is very rich, and that it has no well defined boundary. Since agreements rely
on the context of interaction, their boundaries are also fuzzy. The way out of
this conundrum may lie in the fact that we view “emergent semantics” as an
incremental and goal or query-directed process which sufficiently constrains the
space of possibilities.

Two interacting agents may achieve an agreement in one application and fail
in another even if the set of identified semantic conflicts are basically the same.
Interpretations may depend on the context. In turn, agreements are dynamic.
Local consensus will be influenced by the existing context of existing global
agreement, thus the process of establishing agreements is self-referential.

3.5 Principle 5: Agreements Induce Semantic Self-Organization

Considering the dynamics and self-referential nature of emergent semantics, it
is not far-fetched to view it as the result of a self-organization process. Self-
organization is a principle that has been studied in many disciplines, in partic-
ular physics, biology, and cybernetics for a long time, and has been attracting
substantial attention in computer science as well (see Section 4. Informally, self-
organization can be characterized by a complete distribution of control (which
corresponds to complete decentralization) and by the restriction to local inter-
actions, information and decisions. Global structures can then emerge from such
local interactions.

Francis Heylighen characterized self-organizations as follows: “The basic
mechanism underlying self-organization is the noise-driven variation which ex-
plores different regions in a system’s state space until it enters an attractor.”
In the case of emergent semantics, the state space consists of all local commu-
nication states reached in consensus building. The attractor is obtained when
agents locally reach acceptable agreements that are as consistent as possible with
the information they receive. The attractor actually embodies what we call the
global semantic agreement. The noise-driven variation results from randomness
of interactions induced by environmental influence (e.g., network connectivity)
and autonomous decisions.

3.6 A Canonical and Well-Known Example

We illustrate the principles of emergent semantics by referring to one particularly
successful example of emergent semantics, namely link-based ranking as used in
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Google [31]. A global semantic agreement is obtained for a simple property of
Web documents, namely their “general importance”. The local communication is
performed by Web document authors implicitly by referring to other Web doc-
uments through hyperlinks. The global agreement is determined by using the
PageRank algorithm.1 It provides a ranking of all Web documents. This ranking
is approximate, as surely not all authors would agree on it, it is dynamic as the
Web evolves, and it is self-referential as the impact of a link is derived from the
importance of its Web document. The self-referential nature of link-based rank-
ing actually leads to problems when link spammers exploit their knowledge on
the Google ranking method in order to influence the rankings in their interests.

We can compare Google’s approach to the one taken by Web directories, such
as Yahoo. In web directories the decision on importance of Web documents with
respect to some ontological concept (the directory) is taken globally, manually
and centrally. This clearly limits the scalability of the approach.

Other approaches similar to Web document ranking are currently appearing
in other Web applications. For example, several works on trust and reputation
mechanisms relies on similar principles as Google’s ranking approach. A practical
application of reputation-based trust management is found with Ebay. More
complex tasks, such as Web document classification and clustering based on
emergent semantics principles are reported in the literature.

3.7 Extending the Scope of Emergent Semantics

A next natural step beyond ranking-based methods ignoring the structure of
the content would be to apply the principle of emergent semantics to obtain
interpretations for structured data. The Semantic Web is currently laying foun-
dations for the use of semantically richer data on the Web, mainly through the
use of ontologies for meta-data provisioning. The effort of establishing semantic
agreement is largely related to the development of shared ontologies. The ques-
tion we pose is whether principles of emergent semantics could be a solution for
obtaining semantic agreement in the Semantic Web with its richer data models
in a more scalable fashion.

One possible avenue of how this might be achieved is currently being opened
in the area of peer-to-peer data management, where local schema mappings
are introduced in order to enable semantic interoperability. We may see such
local schema mappings as the local communication mechanisms for establishing
consensus on the interpretation of data. Once such infrastructures are in place,
the principles of emergent semantics become directly applicable. Relying on local
consensus, automated methods may then be employed in order to infer more
expressive and accurate global semantic agreements.

1 The fact that the ranking is computed on a central server is from the perspective of
establishing a semantic agreement just an implementation issue.
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4 Self Organizing Systems in Nature and Computer
Science

As stated above, self organization is an essential property of emergent semantics
systems. A self organizing system essentially consists of a system that evolves
towards displaying global system behaviours and structures that are more than
an aggregation of the properties of its component parts. Such systems gener-
ally have complex dynamic characteristics that allow them to evolve from a
given state towards attractors, which exhibit stable patterns in structure and
behaviour. There can be more than one attractor, in a given self organizing
system each having its region of attraction. An important element of these self
organizing systems is that there is no external influence or central controller that
leads to these patterns. Rather these patterns are arrived at through interactions
between components such that these components only have local information,
knowledge or local rules. The collection of information arising from local rules
and knowledge leads to the emergent properties of the global system as a whole.

Several examples can be found in science and nature of self organizing sys-
tems. A few examples are discussed below: Two examples from Physics are [32]
a) magnetization and b) Bernard Rolls. In magnetization, spins (the equivalent
of tiny magnets) are randomly changing orientation at high temperatures. At
a lowered temperature these align themselves to reinforce each other’s magne-
tization leading to a magnetized bar. Bernard rolls are circular movements of
liquid flows, which result from the heated liquid moving from a hot bottom of
the container to the top whilst the cooler liquid from the surface moves down
setting up a circular pattern. In each case the particles are reacting locally with-
out an external or central controller but their interactions lead to the stable
patterns at the global system level. Examples from biology or chemistry [33]
include the stripped patterns in Zebras, Fish and the ocular dominance columns
of the brain. These patterns are produced due to the individual responses of the
cells to local conditions and the response of the neighbouring cells. Again there
is no central controller involved and the patterns are an emergent property of
the collection of cells. An example from nature consists of a flock of birds that
flies in a certain formation. These birds develop into this formation and preserve
it despite several changes in direction and environmental factors. Again there is
no leader or controller that marshals the birds into these formations.

There are several different examples of self organizing systems in computer
science and related disciplines. Specifically one can distinguish: a) Self Orga-
nizing Neural Networks such as Kohonen Nets and Edelman Nets b) Hopfield
Neural Nets and Boltzmann Nets c) Particle Swarms d) Evolutionary Compu-
tation e) Cellular Automata f) Peer to Peer Networking. The self-organizing
feature map, also known as Kohonen network [34], was developed by Teuvo Ko-
honen. The Kohonen network has the ability to find clusters in the data as well
as structure and to perform an ordered or topology-preserving mapping, thus
revealing existing similarities in the inputs. The topology preserved with this
network need not correspond to a physical arrangement; it can correspond to
a statistical feature of the input set. In a typical Kohonen network, units are
arranged in a two-dimensional grid. However, it is possible to use one or more
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dimensions. This grid of units is usually referred to as a Kohonen layer. All units
in the input layer are fully connected to the units in the Kohonen layer of Fea-
ture Map. Feedback is restricted to lateral interconnections with immediately
neighbouring units in the Kohonen layer. Each link between an input and a Ko-
honen layer node has an associate weight. The net input into each neuron in the
Kohonen layer is equal to the weighted sum of the inputs. Learning proceeds
by modifying these weights from an assumed initial distribution with the pre-
sentation of each input pattern vector. A central aspect of a Kohonen network
is that it uses competitive learning. As learning involves adjustment of weight
vectors, the importance of determining the winner resides in the fact that only
the neurons within a small region around the winner are allowed to learn this
particular input pattern. There are two types of Hopfield networks [35], the first
is a discrete output, stochastic network whilst the second has a deterministic
continuous form. A key element of the Hopfield network is feedback. This essen-
tially means that the weighted output from every neuron in the network is fed
back to the input of each neuron. Another important element is the network’s
updating technique, i.e., for a modified input, when does the network change
its output? In the discrete stochastic network, each neuron samples its input
at random times. Furthermore the sampling times of each neuron are indepen-
dent of every other neuron, i.e., the system is asynchronous. The motion of the
state of the system with N neurons in state space describes the computation
being performed. Any model must describe evolution of the state with time.
Hopfield proposed a model with stochastic evolution. In analogy to spin glass
models, Hopfield introduced the generalized energy function. Therefore the it-
eration must lead to stable states. The energy function can be visualized as a
surface. The stable states correspond to the local minima on this surface. Each
stable state can be considered as an attractor with its own basin of attraction. A
Hopfield net can converge to a local minimum that is not an optimal solution. A
process described by metaphor from metal annealing can be applied using a net
algorithm similar to Hopfield’s to encourage convergence to a global minimum.
The network, a Boltzmann machine, has a probabilistic update rule which some-
times allows jumps into higher energy states rather than lower ones as a strategy
to escape local minima. The thermal noise added to the network is initially high
and it is slowly decreased to encourage thermal equilibrium in the net.

Particle Swarm [36] and evolutionary computation are both adaptive opti-
mization techniques. Particle Swarm is inspired by bird flocking and fish school-
ing phenomena whilst evolutionary algorithms are inspired by genetic evolution.
Particle Swarm and Evolutionary Computation both start from an initial ran-
domly generated population, have a fitness function which represents closeness to
the optimal volume and carries out selection from the current population based
on the best fitness value until a stopping criteria is met. In evolutionary compu-
tation and genetic algorithms, these operators namely reproduction, crossover
and mutation are utilized to generate new candidates for the population. Note
that the whole retained population is used to search for the optimum. In contrast
in particle swarms each particle’s velocity is updated by the best historical value
and the current global best value.



Emergent Semantics Systems 25

Cellular automata consist of a two dimensional arrangement of cells. Each
cell interacts with cells in proximity and has transition rates that determine its
state. Camazine et al. [33] have shown how cellular automata can be used to
model stripped and mottled patterns that appear in animals.

Peer to Peer networks and their self organizing properties are discussed later
in this paper.

5 Opportunities

Despite the specificities mentioned in Section 3, Emergent Semantics can still
benefit from the heuristics and results of many different research fields. We detail
below how dynamics in decentralized settings, data mining or lexical resources
can all in their own ways help building Emergent Semantics systems.

5.1 Dynamics in Decentralized Settings

Semantics do not emerge from purely random settings, but rather from environ-
ments exhibiting specific, well-known properties. Locality has been referred to
(Section 3) as an essential component of emergent systems. Semantic networks
– as many social or natural networks – build up from large numbers of purely
local, pair-wise interactions. Scale-free networks [37] have been designed specif-
ically for studying systems resulting from such a construction process. These
networks differ from random networks in the sense that they first start from a
small nucleus of nodes, and expand then with the arrival of new nodes that join
the network following some preferential attachment law. We can expect seman-
tic networks to expand following a similar process, where new nodes connect
to already existing nodes because of some semantic affinity. Results from scale-
free graph theory range from network formation to statistical connectivity and
could be directly applied to model the shaping of semantic networks as well as
to highlight some of their essential attributes, like scalability which is one of the
inherent properties of such graphs.

Also, locality may be seen as a real opportunity to leverage investments while
establishing semantic interoperability. This is important both in cases where
communication used to establish semantic agreement requires human interven-
tion or when it is automated. When human intervention is required, it is in-
strumental to minimize it, as human attention is one of the scarcest resources
today [38]. On the other hand, automated methods to locally establish seman-
tic interoperability (e.g., schema matching or natural language translations) are
computationally very intensive and would directly benefit from decentralization
and from localized view on global agreements.

The fact that no central component is at hand for coordinating the vari-
ous interactions in the semantic system imposes some autonomous behaviors on
its constituents. Autonomy has been studied in bio-inspired [39] and decentral-
ized peer-to-peer [40,41] approaches, which are particularly good at decomposing
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large or complex problems otherwise hard to tackle using standard centralized so-
lutions. Autonomy also directly refers to intelligent and multi-agent systems [42]
in general, where coordination and distributed problem planning/solving are
tackled using distributed artificial intelligent techniques.

Randomness clearly induces a certain loss of efficiency but leads to a higher
failure resilience and robustness of the system. This relates to the dynamics
of decentralized environments and to the fact that a large fraction of nodes
may be faulty or off-line at any given point of time in such settings. Built-in
load-balancing and replication algorithms [43] usually handle the problem from
a data-availability point of view, while overall connectivity is typically not at
stake, as long as a reasonable fraction of preferred (i.e., highly connected, cf.
above) nodes still function properly in the system.

Naturally, locality, autonomy and randomness may all be seen as harmful to
different degrees to the global integrity and completeness of the system. Even if
algorithms have been devised for taking care of data availability and integrity
in highly dynamic environments [44], global semantic integrity in heterogeneous
environments remains for the time being a challenging research problem. The
lack of any agreed-upon global schema or ontology makes it very difficult for
the participating parties to reach a global consensus on semantic data. Initial
approaches rely on some pre-defined corpus of terms serving as an initial context
for defining new concepts [45] or make use of gossiping and local translation
mappings to incrementally foster interoperability in the large [46,47].

5.2 Data Mining

Once some initial level of semantic agreement has been reached, individual en-
tities can make use of data mining techniques to refine the agreements. Data
Mining for Emergent Semantics aims at enhancing semantic interoperability by
exploiting:

1. content data (of texts, multimedia, relational table);
2. structural data (e.g. links between texts, coordination between multimedia

objects, multirelational structures, network data);
3. usage data (e.g. usage of texts, video, data).

In addition, to overcome data sparseness, which is often a problem for achiev-
ing semantic descriptions from data mining, there is the possibility to

4. actively collect data (also cf. Active Learning [48]).

For instance, data mining based on Web resources to achieve emergent semantics
uses globally available Web data and structures to define new local semantics.
Blueprints for this paradigm are found in works such as the following:

1. Web Content Mining: Some researchers use explicit, linguistically motivated
natural-language descriptions to propose semantic relationships ([49,50,51,
52]).
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2. Web Structure Mining: In [53,54], the Web structure itself is used to deter-
mine a focus for harvesting data. Thus, specialized semantic relationships,
such as recommendations coming from a particular Web community can be
derived.

3. Web Usage Mining: [55]
4. Active Learning: Others use the Web to cope with data sparseness problems

in tasks that require statistics about possible semantic relationships ([56,57,
58,59]).

Currently, people work on combinations, e.g. content and structure mining [60]
or content mining and active learning [61].

Particularly relevant work in this area of global approaches of emergent se-
mantics are the areas of ‘traditional’ Ontology Learning — mostly, though not
only, from texts (see [51,62]).

Other techniques for bilateral semantic alignment can also be used. The ba-
sic idea of bilateral semantic interoperation is to generate an alignment between
two different semantic descriptions based on a number of heuristics (see in par-
ticular the survey [63]). These generations can be based on identity of lexical la-
bels, agreements on common semantic structures, indirect mapping via thesauri
or overlap of extensional descriptions such as found through machine learning.
Multi-lateral consensus tries to generalize from bilateral semantic interopera-
tion. Some of the basic ideas here include the composition of individual bilateral
agreements — be it by forwarding through gossiping [46,47] or by more centrally
directed algorithms [64,65,66].

5.3 The Influence of Usability Perspectives on Locally Axiomatized
Semantics

We use the term semantic axiomatization in order to refer to a formal descrip-
tion accounting for the intended meaning of a vocabulary, represented in a
machine-processable manner2. Same semantics can be axiomatized in different
ways. This usually reflects different usability perspectives, such as granularity,
scope, representation primitives and constructs, reasoning and computational
scenarios, and so forth. In other words, local semantic axiomatizations are
substantially influenced by “what the semantic is being axiomatized for” and
“how it will be used”. Bylander and Chandrasekaran argued in [68] that:
“Representing knowledge for the purpose of solving some problem is strongly
affected by the nature of the problem and the inference strategy to be applied
to the problem.” We believe that establishing formal semantic interoperability
among different local semantic axiomatizations mostly fails due to the diversity
of usability perspectives, although all axiomatizations might intuitively agree
at the domain/knowledge level3.
2 This definition is derived from Guarino’s definition of the term ontology as found

in [67]
3 See [69] for the definition of “knowledge level”
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Intuitive definitions and agreements about the intended meaning of certain
vocabularies are implicit assumptions shared among human cognitive agents.
Such informal definitions and agreements can be found in lexical resources (e.g.,
dictionaries, lexicons, glossaries, lexical databases). Linking or grounding the vo-
cabulary used in local axiomatizations with terms found in lexical resources can
help achieving basic semantic interoperability between different axiomatizations.
For example, by using (euro)WordNet synsets [70] as a shared vocabulary space,
autonomous semantic axiomatizations will be able to interoperate at least freely
from language ambiguity and multilingualism.

Using lexical resources as shared vocabulary spaces could be seen as an at-
tachment law of emergent semantics networks; or, it could be advised in case
of failure or uncertain semantic interoperations. The basic (or maybe the only)
requirement for a lexical resource to be used as such, is that it should provide
(1) a discrimination of word/term meaning(s) (2) in a machine-referable manner.
Lexical resources that only list vocabularies and their similarities are irrelevant
to our purposes. Semantic or linguistic relationships between word forms (such
as hyponymy, meronymy, and synonymy) could be significant but not essen-
tial. Our basic target is to enable emergent semantics networks to communalize
word/term senses, which are largely independent of usability perspectives.

In comparison of using lexical resources with the use of axiomatized domain
theories (i.e., ontologies), building adequate ontologies is difficult and very ex-
pensive, while many reliable and comprehensive lexical resources are available.
Further, lexical resources are generally easier to extend than ontologies.

As a related work, Jarrar et al proposed in [71,72] an ontology engineering
approach that uses the notion of “ontology base” as a controlled vocabulary
space shared between application axiomatizations. An ontology base is intended
to capture context-specific domain vocabularies, i.e., lexical rendering of domain
concepts.

6 Threats and Limitations

In this section, we investigate characteristics and problems of emergent seman-
tics systems from two distinct points of view. We first illustrate which are the
threats and limitations strictly inherent to emergent semantics systems. Then,
we describe issues related to decentralized and peer-to-peer architectures and
how those issues can influence emergent semantics systems. Table 1 summarizes
the results of our analysis.

6.1 Emergent Semantics Systems: Threats and Limitations

Representational Model. First, there is the need to commit to a particular
representational model, i.e., a relational data model like the relational algebra,
a semi-structured data model like Lore [73], a semi-structured data model like
RDF [74] with its schema language RDFS [75], or a full-blown knowledge repre-
sentation language like OWL (Web Ontology Language) [76]. The trade-off along
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Table 1. Emergent semantics systems and P2P Infrastructures: threats and limitations

Threats and Limitations
ES Systems Representational Model

Common Upper Ontology & Extensibility
Data Integration & Querying

Provenance Information & Trust
Incompleteness

Consensus Derivation
P2P Infrastructures Degree of Centralization

Degree of Inter-Peer Coupling
Data Availability & Updates

Anonymous Entities

these lines is one between expressiveness and efficiency. While on the one end the
relational algebra is a model for which highly efficient systems exist, it will hardly
be sufficient to prescribe semantic definitions. At the other end, OWL allows for
comprehensive definitions, including e.g. cardinalities and arbitrary Boolean ex-
pressions for defining classes — but currently there is no system on the horizon
that efficiently handles more than several dozen of tuples at the instance level.
Furthermore, there are currently no algorithms that would infer complex con-
straints from observed data with reasonable accuracy. Thus, representational
models like RDF(S) currently appear to constitute the appropriate paradigm for
defining some semantics as well as handling reasonably sized data stores.

Common Upper Ontology & Extensibility. Emergent semantics systems
can make use of text mining and existing lexical information to incrementally
come up with a consensus on the data they share (cf. Section 5). However, some
common understanding is usually necessary to bootstrap the process, thus the
need to agree on some upper-ontology (e.g., [77]).

Furthermore, once mining has yielded new conceptual structures, the results
should be added in an appropriate way to the existing background information
for later re-use. This second step requires extensible representations. In addition,
to counter the need for integrating multiple mining results, the second step
requires an agreement on how the conceptual structures are stored (according to
the representational paradigm) and how the very particular lexicon structures
are named (according to the upper ontology or a vocabulary of meta metadata
for emergent semantics systems).

For instance, WordNet [70] allows for one concept to be referred to by several
lexical terms (e.g. the lexical terms ‘hard’ and ‘difficult’ may refer to one concept)
and it allows for on lexical term to refer to multiple concepts (e.g. ‘hard’ may refer
to the concepts for ‘difficult’ and for ‘non-soft’). There exist first considerations
to provide a data model to this end (cf. [78]), but no final conclusion exists yet
in this matter.
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Data Integration & Querying. In an emergent semantics system, different
entities may have different knowledge levels on other parties schemas and map-
pings. The problem of defining how to answer to a query posed on the schema
of a specific entity arises.

One approach to solve this problem is the one used in traditional data inte-
gration systems [79]: a global schema is constructed starting from the schemas
locally exported by the different data sources (see also Section 2). The assump-
tions in the case of the emergent semantics paradigm are completely different: no
global schema is a-priori constructed in order to make the system work, instead
it is an inherent function of the system to construct a global knowledge “dynam-
ically” while working. In this case, mappings cannot be defined with respect to a
global schema, therefore the research problem of mappings definition and reso-
lution arises. Semantic Gossiping [46,47] could be a promising approach to reach
semantic interoperability in a network of semantically heterogeneous parties.

Provenance Information & Trust. Provenance information may be impor-
tant in order to cluster or categorize data according to where they came from.
Results could be that particular quality/trust ratings are given for particular
provenances or that semantic structures are treated individually based on where
they came from. Such pieces of information are particularly difficult to gather
and verify in open and dynamic environments such as emergent semantics sys-
tems. Ehrig et al. [80] present a quite specific metadata model based on RDF(S)
to this end. Siebes and van Harmelen[81] and Tempich et al.[82] are examples
on how to exploit such models for negotiating meanings and routing semantic
queries, respectively.

It is also on provenance information that one can build trust mechanisms
or ratings for the various entities in the system. Also, mechanisms should be
developed in order to check mappings and results received from other peers;
Misbehaving peers could populate the community with erroneous mappings or
bogus schemas and could answer queries with fake data. Such situations must be
detected and actions must be taken to exclude malicious peers and remove fake
data from the system. Coming up with good heuristics for solving these issues
is especially complex given the dynamics of emergent semantics infrastructures
(cf. also Section 6.2 below).

Incompleteness. Incompleteness in an emergent semantics context is related
to the impossibility to obtain all the information available in the system due to
a lack of knowledge on the information that peers commonly share and to a lack
of global semantic interoperability. In a traditional data integration system, with
a global schema summarizing all the available information, the incompleteness
problem does not occur in these terms: It is usually known a priori which pieces
of information can be provided by whom. The absence of complete indexes on
resources in emergent semantics systems and the presence of replicated copies
of the same semantic information, could cause system inefficiency. Therefore, on
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one hand we have to assure a high level of completeness in information search-
ing; on the other hand, it is also desirable to avoid network request flooding.
The adoption of specific semantic query models need to be investigated in or-
der to consider possible tradeoff among search strategies, optimal request load
balancing and system robustness to failures.

Consensus Derivation. Related to the Incompleteness problem presented
above, Consensus Derivation can be considered as a key component when deriv-
ing semantics that emerge from the interactions of people and from the various
messages generated to express their opinions. Given a set of observations by a
set of people, requirements on a consensus computation scheme could be:

– The ability to compute the consensus semantics or reality based on an anal-
ysis and aggregation of the individual events observed.

– Based on the computed reality, estimate the individual expertise of the peo-
ple involved based on how close their opinions corresponded to the central
reality.

– Update the consensus and associated expertise estimates whenever current
observations change and new observations are added to the mix.

Work done in cultural anthropology and approaches such as Delphi methods
and Repertory Grids need to be explored to come up with effective algorithms
for consensus derivation. Besides semantics, consensus computation might also
have some impact on other issues such as trust, quality and assessment of satis-
faction. All these issues can in turn influence the computation of new consensus,
thus outlining once more the self-referential property of agreements in emergent
semantics systems.

6.2 Peer-to-Peer Systems as Infrastructure for Emergent Semantics
Systems: Threats and Limitations

As stated above (Section 5), we expect emergent semantics properties to appear
in large-scale, decentralized and dynamic environments. Thus, P2P systems rep-
resent a natural infrastructure on which to base emergent semantics systems.
By P2P, we do not only consider the well-known file-sharing applications, but
also all the access structures and distributed systems where participating nodes
can be both clients and servers. In other words, all nodes provide access to some
of the resources they own, enabling a basic form of interoperability. Below, we
illustrate some peculiarities and issues of P2P infrastructures and we analyze
how they could influence emergent semantics systems.

Degree of Centralization. A first architectural problem in P2P systems is re-
lated to the degree of decentralization: decentralized, centralized and hierarchical
models are all possible [83]. The topology of centralized systems causes the well-
known problems of bottlenecks and single points of failure. On the other hand,
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fully decentralized systems are difficult to implement and their performances
are relatively low. This is also proven by the fact that many P2P systems are
built with an hybrid approach (such as Napster, KaZaA, or eDonkey). Also,
P2P softwares should not require any significant set up or configuration of ei-
ther networks or devices [84]. Though much progress has been made in designing
P2P systems, such constraints still complicate the implementation of “actual”
emergent semantics systems.

Degree of Inter-Peer Coupling. The degree of inter-peer coupling takes into
account how much tight can a peer interaction be. For example, with systems
such as Kazaa, the interaction is not tight since users only search for data and
establish temporary connections. On the other hand, with distributed workflow
systems, each node can have significantly more sophisticated and longer interac-
tions with other nodes, thus originating tighter interactions. We can expect some
applications of emergent semantics systems to require such tight interactions,
thus the necessity for the system infrastructure to support various inter-peer
coupling models.

Data Availability & Updates. Even if an efficient indexing mechanism is de-
veloped, in many cases data can be unavailable, simply because the peers storing
such data are offline or unreachable. In order to achieve better data availability,
peers should replicate their own data in the community. The replication could
be controlled by the originator or the data could be replicated through gossiping
mechanisms by other peers. Very popular data might need to be highly repli-
cated. It is also possible to exploit standard fault tolerance techniques, such as
software replication [85] in order to enhance data availability and reliability.

Introducing replication makes updates more complicated, because of the ne-
cessity to update replicas as well. Some approaches already exist that work under
probabilistic guaranties [44].

Anonymous Entities. Anonymity is often associated to P2P systems, be-
cause of their open nature and the lack of any central authority. Anonymity can
be defined with respect to a communicating pair in the P2P system. Specifi-
cally, three kinds of anonymity are possible: sender anonymity, which hides the
sender’s identity; receiver anonymity, which hides the receiver’s identity; and
mutual anonymity, in which the identities of the sender and the receiver are
hidden to each other and to other peers.

From a system perspective, the major drawback of peer anonymity is the
limitation in implementing security controls in upper layers. In an emergent
semantics context, retrieving the peers’ identity might be essential to enable
trust mechanisms or counter malicious attacks (see above Section 6.1).
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7 Examples/Cases Studies Evaluation

In this section we present three possible application scenarios for the concept of
emergent semantics. The case of Service Discovery shows how emergent seman-
tics could help to improve data freshness and quality of the discovery process.
The second example from the digital library area indicates in which way emer-
gent semantics can support the integrated access on heterogeneous libraries.
Elicitation of interpretation semantics in scientific collaborations is presented in
the last example.

7.1 Semantic Service Discovery

Semantic Web Services combine Web Services technology with machine-under-
standable meta data annotation emerging in Semantic Web research. Just as
the WWW moves towards offering dynamic content and Web Services instead of
static content alone, part of the Semantic Web vision is to establish a network
of semantically annotated services. In such a network agents are able to combine
the functionality of several Web Services in order to achieve complex high-level
goals in an automated way without human intervention.

This fully automated scenario involves discovery, composition and execution
of Web Services [86] and requires formal descriptions of service semantics for
software agents to reason about. Discovery includes the task of locating Web
Services that provide certain capabilities and fulfil the constraints specified by
the requestor. Composition comprises the combination of several services to a
more complex one [87]. Execution involves the invocation of an identified service
by an agent including proper message exchange with the service’s interface [88].

The usage of Web Services involves a requesting and a providing party both
of which can be either human users or software agents. Automated discovery
is a means for the requestor to find potential providers by querying a registry.
Providers advertise the capabilities of their services to the registry whereas re-
questors formulate the goals they want to achieve. For a description of the seman-
tics of goals and capabilities they make use of an ontological vocabulary based
on some underlying knowledge representation formalism. Doing so they refer to
commonly used domain ontologies that capture general knowledge about the
corresponding domain of discourse, as e.g. delivery of products. Discovery then
reduces to the task of matching goals and capabilities expressed as ontological
descriptions [89].

Besides the actual business-level semantics of a service, aspects of choreo-
graphic or compositional semantics can be taken into account as well in the
context of discovery. Part of the discovery semantics of a service could, for ex-
ample, be characterised by its pre and post conditions or by certain parameters
being part of the protocol, as e.g. the occurrence of a credit card number in the
choreography of the service interface.

A concrete service instance determines all parameters - nothing is left open
for the two parties to decide about. In the book-selling example a service instance
specifies exactly which book is going to be delivered to which address and which
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amount of money has to be paid in which form. In this sense descriptions of
goals and capabilities are templates for service instances - they allow several
possibilities of how the service can be carried out. For example, the provider
of the service decides to accept several payment methods and does not specify
in the capability description which one is finally being used. The semantics of
discovery matchmaking can be defined in terms of sets of service instances: a
goal and a capability match if the sets of service instances they allow intersect.
In this case there is at least one possible service instance which they both agree
on. This approach is followed in [90].

In the general case discovery does not directly lead to a concrete service in-
stance. Once a service has been discovered its parameters have to be negotiated
between the requestor and the provider. The outcome of the discovery is not a
service instance to be carried out but just the fact that the two parties can po-
tentially do business with each other [90]. After discovery, negotiation might lead
to a concrete service instance but it does not necessarily have to. For example, a
book selling service provider advertises that it sells books, which is sufficient for
successful discovery involving a requestor who searches for a book selling service
in the internet. However, the particular book the requestor is looking for might
be out of stock.

Currently, several ontological languages for declarative description of Web
Service semantics emerge, such as OWL-S[91] and WSMO [92]. They provide
top-level ontologies for Web Services covering the specification of service profile,
process control flow, message exchange and mediation. Goals and capabilities
can be expressed combining these upper level service ontologies with domain
ontologies.

Considering such a top-level ontology for Web Services there are several tech-
nical approaches to discovery and appropriate description of service semantics.
One of them is to model knowledge about services on the ontological level of
concepts and relations and then perform schema matching. An example is given
in [93] where description logic reasoning is used. Both, goals and capabilities, are
described as description logic concept expressions. To check the intersection of
the two concepts for satisfiability reduces matchmaking for discovery to standard
description logic inferences. Another idea is to use the stronger subsumption in-
ference and to check whether the goal describes a specialized form of the service
advertised by the capability or vice versa. In [89] and [94] modified structural
subsumption algorithms are applied in frameworks that support partial matches
on a discrete scale. Subsumption in either direction is considered stronger than
satisfiability of concept intersection but weaker than an exact match. An alter-
native approach to schema-level matching is to model knowledge about services
on the level of instances. In this case discovery is achieved by querying the ex-
tension of a goal concept expression and applying ontology-based information
retrieval techniques.

Discovery of Web Services benefits from ontological descriptions of service
semantics in that reasoning based on formal semantics can be applied in match-
making algorithms for goals and capabilities. The knowledge captured in domain
ontologies can potentially be used to derive a match where the facts stated in
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the goal and capability alone would not be sufficient to do so. Formal semantics
helps to derive facts that are not explicitly stated.

Incorporating semantics into Web Services is quite a new field and it is still
an open issue how to semantically describe and annotate services in order to
properly discover them by appropriate techniques - two aspects that go hand
in hand. Application of discovery approaches to concrete case study scenarios
have to show which aspects of service semantics have to be exploited and which
reasoning techniques have to be applied to yield good solutions.

7.2 Digital Libraries

The growing availability of cyber infrastructures like GRID, Peer-to-Peer and
Web Services, will lead to more open and flexible digital library (DL) architec-
tures, e.g. BRICKS [95]. Hence DL will opened to a wider clientele by enabling
more cost-effective usage and better tailored DL. Furthermore new types of in-
frastructures allow dynamic federative models of content and service provision
involving a wide range of distributed content and service providers. This has
implications for the realization of digital library functionalities mainly rooted
in the increased heterogeneity of content, services and metadata. Future dis-
tributed DL infrastructures will consists of a large number of loosely coupled
DL systems all over the world. Users of these infrastructures will be able to re-
trieve information from all involved DL. Due to the high degree of distribution,
these infrastructures will often omit centralized management systems. Hence no
central retrieval service and no central authority, which has a complete system
overview, will exist. The decentralization approach poses new challenges to var-
ious areas like information retrieval, security, etc.

One major problem in decentralized DL infrastructures is that most DLs
are using different data schemas as well as different classification systems. The
standard data integration strategies like Global As View resp. Local As View or
approaches to define standards for schemas or ontologies works for many spe-
cialized applications very well but is problematic in decentralized and highly
dynamic environments. DL Nodes may appear and disappear in the system for
several reason like network problems, economic problems, etc.. In these envi-
ronments many local data schemas and ontologies exist. The local DL owners
have their own semantic understanding of their data. Due to the diversity of
information, reaching a global agreement among all is difficult. By viewing se-
mantics as a form of agreement the emergent semantics approach is to enable
the participating data sources to incrementally develop a global agreement in an
evolutionary process that solely relies on pair-wise interactions.

The idea behind to use the emergent semantics approach is the assumption
that local experts have the best knowledge about their data. Hence they know
best the semantic interpretation of the data. Furthermore they have preferred
collaboration partners, whose information and semantic interpretation the local
experts know quite well. This assumption belongs to all nodes within the DL
infrastructure. Hence local experts are able to generate high quality mappings
between their own schema and classifications and those of their partners. Often
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the mappings are already available from previous collaborations and can be
reused in the process.

The mappings are distributed together with the query to the queried library.
The queried library will integrate the mapping in their local mapping table and
performs the query. In addition the query will be send also other neighbours,
which also receive the mapping in this way. The neighbours learn from the re-
ceived mappings how to interpret the semantics of other DL. They are also able
to derive mappings, e.g. the DL A sends a mapping A → B to the DL B. DL
C knows already the mapping for B → C and receives the mapping for A → B.
Hence DL C will be able to derive a mapping A → C by using A → B → C.In
this way every DL will learn about the new mapping, which can be used later on.

Nevertheless also the method of emergent semantics has prerequisites and
limitations. First limitations arise from the mapping itself. So it is not always
possible to generate a complete and 100% accurate mapping, e.g. due to missing
fields or ambiguous semantics. Furthermore mappings between heterogeneous
standards, e.g. between Dublin Core and MPEG7, also leads to problems. Hence
a good practice is to restrict the process to a specific domain, e.g. science of
art. With this restriction several semantic problems can be avoided as all in-
volved persons have a similar understanding domain and of the semantics. Even
if the emergent semantics approach will not solve all interoperability problems in
digital libraries, will it be a very useful method to support ad-hoc collaborations.

7.3 Scientific Collaboration

Semantic reconciliation is crucial in scientific collaboration [96]. Consider the
case of integrated environmental models. These models represent the consensus
understanding of earth systems reached by scientists in the field at some period
in time. They are composed of sub-models, which attempt to capture particular
environmental systems. For example, ground water models describe subsurface
water flow; infiltration models describe the movement of water into soils, and so
on. These sub-models alone describe only small parts of the environment, but
together they can address questions concerning the environment as a whole. The
challenge is to find ways of integrating successfully a subset of these sub-models
to deal with a specific goal while preserving the autonomy of the individual mod-
els. In other words, integration of sub-models must be goal-driven between peers,
and similarly integration of heterogeneous information sources must be query-
driven, while also preserving the autonomy of the individual models and/or
information sources and services. Each goal and each query may require the
elicitation of different interpretations of the models and the information sources
and services within specific contexts [28]. The semantics necessary for integra-
tion emerges incrementally from the interaction of peers, as additional queries
are posed and information sources and services become available. Thus, semantic
reconciliation in model integration is an emergent phenomenon.

Consider, for example, query “Where do the sub-models agree on soil mois-
ture at the beginning of the season?”. The answer will depend on the models
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used and their context assumptions, which in this case include at least the spa-
tial context (where), the attributes’ context (soil moisture), and the temporal
context (at the beginning of the growing season) [97]. These same observations
about the role of context in model integration process recur in other scientific
domains. Integration may be triggered by the activity of a scientist exploring
the Internet and the web for models or services related to a specific real-time
experiment. The models are likely to have been developed autonomously. Model
autonomy must be preserved, as models in natural sciences have deeply rooted
assumptions to allow representation of processes that may only be partially un-
derstood. If the underlying assumptions are not always completely specified,
which is usually the case, then the integration of sub-models may result in se-
mantic errors. In geographic applications or satellite-based information systems,
for example, a variety of semantic errors resulting from model integration have
been investigated [98,99]. Their occurrences are generally pegged to the lack of
unified theories of space, time and accuracy [100]. However, this cannot be the
only reason, as ontologies, constructed on the basis of the potential theories, will
not feasibly be able to capture every possible application context of model inte-
gration. Thus, reliance on ontologies alone will be insufficient to entirely resolve
the problem of semantic conflict [1].

Semantic analysis will require that models be able to self-evaluate to deter-
mine the level of violation of their own underlying assumptions with respect
to an expected behavior defined within an application context. This analysis
is performed within an application context guided by ontologies from cognate
fields. In the environmental example, the application context consists of infor-
mation such as field measurements, remotely sensed imagery, and maps. The
collected information is interpreted within ontologies from cognate fields such as
meteorology, geology, soil science, and ecology. They contribute contextual in-
formation about the properties of a natural environment and their aggregation,
scale and resolution of observations, and generalization. Consider the example of
the RHESSysd system [101]. One spatial aggregation is land unit, which repre-
sents a scale that captures long-range spatial variability. Ground water is stored
at this level, but a refined semantic analysis may require disaggregating a land
unit into its constituent components at lower resolution, such as the land patch.
The disaggregation will be performed on the basis of assumed relations between
water movement and landscape position. Observe that the ontology knowledge
used for disaggregation are assumptions about water movements. These assump-
tions, which are simply process models, may be only ephemeral estimations sub-
ject to reevaluation as new results in the field are obtained. Collectively, all the
knowledge gained represents the application context.

Users of environmental databases and models may have had no role in the
development of the information sources, but nevertheless, need to use them. End-
users contribute contextual information in the form of queries to the information
services. The concept of context elicitation [28,29] is a process, which allows
incremental extraction of relevant information to the query from the information
sources and services. There is need for a notion of semantic distance to measure
the compatibility of queries with the elicited information.
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Queries of scientific literature may not be simple searches for information in a
given topic. At the frontier of scientific discovery, investigators may wish to assess
untested scientific hypotheses, or to uncover hereto unknown relations between
two lines of inquiry. The semantics necessary to validate (or invalidate) these
hypotheses may not be readily available. They are constructed incrementally.
They form the context elicited from the information sources and services through
an interactive (and often non-monotonic) semantic reconciliation process, which
incrementally refines the evidence gathered at each stage.

In summary, context in scientific collaboration is elicited from the application
context through an incremental query-directed semantic reconciliation process.
It is thus emergent. A semantic distance measure is necessary to continuously
measure at any state the semantic compatibility between this context and the
user query. The challenge in the area is the development of scalable convergent
context elicitation algorithms or heuristics.

8 Conclusions

The preceding work results from a large collaborative effort initiated more than
one year ago by the IFIP 2.6 Working Group on Databases. The project has since
then evolved to include external contributions as well. The field of Emergent
Semantics is still clearly in its infancy, and we would welcome remarks as well
as any kind of feedback based on this material.
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