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Abstract. The problem of encouraging trustworthy behavior in P2P
online communities by managing peers’ reputations has drawn a lot of
attention recently. However, most of the proposed solutions exhibit the
following two problems: huge implementation overhead and unclear trust
related model semantics. In this paper we show that a simple probabilis-
tic technique, maximum likelihood estimation namely, can reduce these
two problems substantially when employed as the feedback aggregation
strategy. Thus, no complex exploration of the feedback is necessary. In-
stead, simple, intuitive and efficient probabilistic estimation methods
suffice.

1 Introduction

Recent empirical studies have shown that much of eBay’s commercial success
can be attributed to its reputation mechanism (Feedback Forum) as a means
of deterring dishonest behavior. Thus, [1] shows that “reputation profiles are
predictive of future performance”, while [2] and [3] come up with the conclusion
that Feedback Forum completely fulfills its promises: the positive feedback of
the sellers increases their price, while the negative one reduces it.
eBay’s Feedback Forum is just a well known example of reputation systems

[4] as informal social mechanisms for encouraging trustworthy behavior in on-
line communities. Their key presumptions are that the participants of an online
community engage in repeated interactions and that the information about their
past doings is informative of their future performance and as such will influence
it. Thus, collecting, processing, and disseminating the feedback about the partic-
ipants’ past behavior is expected to boost their trustworthiness. The mentioned
eBay example confirms this expectation.
A huge body of work has appeared recently on managing online reputations.

(For a comprehensive overview see [5] for instance). In this paper we will be
more specific and consider only P2P networks. We will first review the relevant
literature (Section 3) and offer a view on how various P2P reputation manage-
ment approaches contribute to building trust. As we will see, most of the them
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suffer from the following two problems: huge implementation overhead and un-
clear trust related model semantics. The main cause of the first problem lies
in the necessity of aggregating the feedback about all peers in the network in
order to assess the trustworthiness of a single peer, while the second problem is
mainly caused by the counterintuitive feedback aggregation strategies resulting
in the outputs that are hard to interpret. In this paper we show on two settings
relevant for P2P communities that a simple probabilistic technique, maximum
likelihood estimation namely, can reduce these two problems substantially when
employed as the feedback aggregation strategy (Sections 4 and 5). Operating on
a small fraction of the feedback available in the network, it lends itself to an effi-
cient implementation. On the other hand, its outputs are probabilities of specific
behaviors of the peers and as such have a clear and well founded interpretation.
Finally, its ability to detect peers’ misbehavior is as strong as that of the best
ones of the existing approaches. Thus, we conclude that no complex exploration
of the feedback is necessary. Instead, simple and efficient probabilistic estimation
methods suffice.
Interestingly, the vast majority of the existing approaches (excluding game-

theoretic works) evaluate their effectiveness assuming that the peers are associ-
ated with probability distributions determining their performance. However, this
assumption on the peer behavior is not explicitly built into the solution meth-
ods they propose. On the other hand, we start with the same assumption and,
instead of aggregating the feedback in an ad hoc manner, we just try to predict
the peer probability distributions as well as we can. This is the key difference
between our and the other solutions.
However, the exact setting in which the technique can be successfully used

rules out forming huge collusive groups among peers. Instead, it implies their
independent acting.

2 P2P Computational Models of Trust

In the following we introduce a general view on P2P computational models of
trust, broad enough to cover all specific works we are aware of. The purpose
of the section is to describe in general the problem the decentralized trust and
reputation management considers. Section 3 then describes particular classes of
solutions of the problem.
An underlying assumption of the computational models of trust is that

the peers engage in bilateral interactions, which results in forming a directed
weighted (trust) multigraph. Its node set coincides with the set of peers and the
set of edges with the set of interactions between the peers. In a general form,
the weight assigned to any edge consists of an ordered pair: a flag represent-
ing the context of the corresponding interaction and the interaction outcome
as perceived by the source. The set of all interaction outcomes is assumed to
be common knowledge among the peers. We assume at most two possible in-
teraction contexts: (1) recommendations, when the destination node acts as a
recommender of other nodes capable of performing a specific task or other rec-



ommenders, and (2) the task performances themselves. We also assume that the
latter must be present while the former is optional.
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Fig. 1. Computational model of trust

Figure 1 presents an example. The way we should understand this figure
is as follows. Node a had three interactions with node b: once node b acted
as a recommender of other entities (flag r) and node a’s contention with the
recommendation was evaluated 0.8 and twice node b provided the service in
question to node a (flag d) and a’s evaluations of the service provisions were 1
and 0.9 respectively.
The core of any computational model of trust is in the answer to the following

question: how can a given peer use the information on direct and recommenda-
tion experiences between the peers, that it can retrieve from the network, to
evaluate the trustworthiness of any other peer? A bit of caution is needed here:
we do not say that every peer knows the whole trust multigraph. Instead, we
assume that it is reconstructed (the whole graph or a part of it) by querying the
other peers, which may misreport. Generally, the direct experiences of the nodes
which interacted with the given node (nodes u and v in the case of node j from
Figure 1) should be propagated through the graph down to the computation
source (node i) by using the recommendation experiences along the paths to
filter them out. Different works propose different strategies for doing this. We
classify them in Section 3. We stress that most of the existing works do not model
explicitly the context of recommendations but rather use direct experiences as
filters. This can be thought of as weighting one’s reports by his trustworthiness
rather than his ability to recommend. As well, we emphasize that most of the
works use binary (zero-one) evaluations of the individual interactions. In the
example of Figure 1 this would mean that all the numbers are zero or one.
It is important to note that the formed trust graph does not coincide with

the underlying P2P network. We see the underlying P2P system as manag-
ing a distributed database of (data key, data value) pairs. The problem is how
to distribute this database among the peers so that the basic database opera-



tions (e.g. search) are efficient and the storage space required at each peer is
small in comparison with the size of the database. Two fundamental approaches
exist to achieve this: (1) unstructured [6], in which the data is distributed ran-
domly over the peers and broadcasting mechanisms are used for searching and
(2) structured [7], [8], [9], that build up distributed, scalable data access struc-
tures to route search requests. Having clarified this, it should be clear that the
trust graph can be actually stored in the underlying P2P system. In the case
of an unstructured P2P overlay every peer can store its outgoing edges from
the trust graph (the identifier of the destination node and possibly time stamp
may act as the key), while in the case of a structured P2P overlay the triples
(destination, source, timestamp) may act as the keys for the trust graph edges
and be stored at peers just as dictated by the P2P network [10]. In both cases
weights of the edges may act as the values. Thus, exploring the trust graph
reduces actually to searching the underlying P2P network. More specifically, re-
trieving feedback about any specific peer is subdued to searching for the data
items with the keys starting with that peer’s identifier. This can be done effi-
ciently in a structured P2P network. In the rest of the paper we will assume
this.

3 Trust Models Classification

3.1 Classification Criteria

A clear categorization of P2P computational models of trust based on managing
peers’ reputations must consider in the first place the models’ behavior with
respect to the following three dimensions: the incurred implementation costs,
the resistance to various attacks and the trust related model semantics.
As P2P networks normally involve millions of nodes particular attention

should be paid to cutting down the total implementation overhead introduced
by the employed reputation management solution. It consists of: the communi-
cation costs associated with the process of retrieving the necessary feedback, the
involved storage costs, and the computation overhead related to the feedback
aggregation. Resistance to attacks normally implies an analysis of the model
responsiveness to various forms of misbehavior of the peers. The following two
types of misbehavior have been established in the literature as relevant: indepen-
dent cheating in interactions or badmouthing other peers and forming collusive
groups to badmouth specific peers and boost trust values of some other ones.
For example, peers u and v in Figure 1 may misreport their experiences with
peer j independently or they may collude and misreport in correlated ways.
The last mentioned dimension deserves more explanation as it is accompanied

by quite some disagreement in the literature. Deriving from [11], we view trust
as being inseparable from vulnerability and opportunism associated with the
interacting parties. Consequently, we say that peer A (trustor) trusts peer B
(trustee) if the interaction generates a gain to be shared with and by peer B
and exposes peer A to a risk of loss, if peer B takes a too large portion from the
joint gain. Building on this, we see trust management as a set of actions related



to: 1) reducing the opportunism of the trustee, 2) reducing vulnerability of the
trustor and, after these two issues have been properly addressed, 3) deciding if
and when to enter an interaction.
Clearly, the main goal of any reputation management mechanism is partial

or, if possible, complete reducing of the opportunism of the interacting parties.
The degrees at which different mechanisms achieve this vary. We see the following
classes: social networks formation, probabilistic estimation techniques and game-

theoretic models, which are discussed next.

3.2 Social Networks

This class of approaches normally implies that the entire trust multigraph is
reconstructed and that all reputation information available in it is aggregated
(Figure 1). A natural interpretation of the aggregation process involves the fol-
lowing steps: 1) enumerating all paths from the trust computation source to the
target node, 2) aggregating the trust values along the paths to give a path wide
gossip and 3) merging these gossips into a final value.
Where is the exact position of this class with respect to the tree dimensions

introduced above?
Normally, their implementation overhead is high. Because a trust-computing

node has to retrieve the entire trust network, the communication costs are very
high. Besides, because the number of paths between the trust-computing source
and target can be exponential, the reputation aggregation process is too costly.
These two problems are even more strongly emphasized if the context of recom-
mendation is present - see [12] for an example.
[13], modeling only direct experiences, offers important theoretical insights

on this issue by characterizing the combinations of path and across-path aggre-
gation strategies that may lead to a non-exponential trust computation algo-
rithm (we note that many other works use such combinations: e.g. [14], used
for Web pages ranking, and [15]). Central to the approach is the claim that,
for specific combinations of the aggregation strategies, exploring all the paths is
equivalent to finding a convergent power of the trust matrix, derived naturally
from the trust graph.1 (Here, the matrix “multiplication”’ operation is derived
from the path and across-path aggregation operations.) However, the proposed
algorithm requires the synchronous participation of all peers, making it hardly
implementable in a P2P network. Instead, we believe that an incremental com-
putation is something worth further investigation.
[16] offers important insights with respect to this. The gist of this approach

consists of computing the trustworthiness of a given node as the average of
its performances as seen by its neighbors in the trust graph, weighted by the
trustworthiness of the neighbors themselves. The authors also develop a simple
caching scheme in which the trust values of the neighbors of the trust computa-
tion target are taken from a cache (default values are used in the case of cache

1 It is assumed that the interaction multigraph is transformed into a graph by aggre-
gating first the interaction outcomes between the pairs of nodes.



miss) and their computed trust values replace the corresponding values existing
in the cache.

How robust is this class of approaches in presence of various misbehaviors?
[15] and [16], the only works providing informative simulation results, report
good performance of the corresponding approaches when the fraction of mali-
cious peers is small (below 45% approximately) and the malicious peers inde-
pendently cheat in the interactions and distort their ratings of other peers. [16]
further reports the complete breakdown of the mechanism when the cheaters
take more than a half of the overall population or when they collude. On the
contrary, [15] claims almost full effectiveness of their mechanism when the ma-
licious peers make the larger fraction of the population and collude in various
ways. This results from, in our opinion, the fairly unrealistic assumption that a
number of pretrusted peers exist each of whom is assigned some non-zero trust
by the rest of the community, including the malicious peers. (This is so called
“random walker” model used for Web pages ranking.)

The computed values have unclear semantics and are hard to interpret. They
cannot be interpreted as the (estimated) probabilities of the trustworthy behav-
ior of the target peers and the question what exactly they represent is left open.
Let us also mention an interesting detail related to [13] and [15]: when the trust
graph is irreducible and apperiodic the powers of the corresponding trust ma-
trix converge to a matrix in which all the rows are the same and sum up to 1
(the primary eigenvector of the matrix). Thus the trust values of the peers have
global meaning - they are independent of the computation source. On the other
hand, because all the values sum up to 1, it seems as if the trust was distributed
among the peers. But, if we have the values for all the peers and they are ap-
proximately close we are in doubt whether the whole network is trustworthy or
it is malicious.

This leads us to conclude that the computed values lack a plausible inter-
pretation on an absolute scale and that the only scenarios in which they can be
used must involve ranking the trust values of many peers and selection of the
most trustworthy one(s) among them.

3.3 Probabilistic Estimation

Probabilistic estimation techniques present certain improvement with respect
to the meaningfulness of the computed values. Namely, they output probability
distributions (or at least the most likely outcome) over the set of possible be-
haviors of the trusted agents. The importance of such models becomes clear if
we recall the presented view on trust - if the opportunism of the trustee cannot
be reduced completely then it becomes important for the trustor to be able to
estimate the risks of the interaction and decides whether to enter it or not. If
the individual outcomes of the interaction are assigned the probabilities and the
trustor can assign them utilities as well then this task becomes easy - the trustor
just needs to compute whether entering the interaction has a higher utility than
staying out.



In principle, it is possible to construct a probabilistic model in which all the
paths between the trust computation source and target. However, we are not
aware of any such attempt and doubt that it would suffer from an exponential
computation overhead, just as outlined previously. But, we believe that con-
structing such a model is unnecessary and that in most of the relevant settings it
is sufficient to consider only two small fractions of the formed trust (multi)graph
- those around the trust computation source and target. One of the goals of this
paper is exactly to show this. Needless to say, another clear advantage of doing
the trust computation this way is its implementation efficiency.
It is a bit surprising that very few works on using well known probabilistic

estimation techniques for decentralized trust computation exist. [17] presents
the well-known method of Bayesian estimation as the right probabilistic tool for
assessing the future trusting performance based on past interactions. Only direct
interactions were studied - the question of including recommendations was not
considered.
[18] goes a step further by taking into account the ”second-hand” opinions

also. However, the strategy for merging own experiences with those of other
witnesses is intuitive (giving more weight to own experiences, though plausible,
is still intuitive) rather than theoretically founded.

3.4 Game-Theoretic Models

Game-theoretic reputation models make a further clarification in the interpre-
tation of the agents’ trustworthiness in the sense that, if the reputation system
is designed properly, trust is encoded in the equilibria of the repeated game the
agents are playing. Thus, for rational players trustworthy behavior is enforced.
The real challenge here is how to define the feedback aggregation strategies that
will lead to socially desirable outcomes carrying trust.
[19] presents the proper game-theoretic framework for analyzing reputa-

tions(repeated games with incomplete information), while [20] and [21] offer
certain characterizations of the equilibria payoffs in the presence of reputation
effects.
[22] focuses on a specific game and derives its equilibria. Apart from this the

author also raises questions concerning the overall game-theoretic reputation
systems design, such as incentivizing players to leave feedback, dealing with
incomplete feedback etc. However, an underlying assumption of this work is that
a central trusted authority does the feedback aggregation. We see this as a major
obstacle to transferring game-theoretic models to decentralized environments.

4 Model I - Honest or Dishonest Peers

Let us now consider a P2P network consisting of peers having associated innate
probabilities of performing honestly in their interactions with others. Let θj de-
note the probability of peer j. Assume that peer j interacted with peers p1, . . . , pn

and its performances in these interactions were x1, . . . , xn, where xi ∈ {0, 1} (1



denoting the honest performance and 0 the dishonest one). When asked to report
on peer j’ performances witnesses p1, p2, . . . , pn may lie and misreport. Assum-
ing that they lie with specific probabilities, say lk for peer pk, the probability of
observing report yk from peer pk can be calculated as:

P [Yk = yk] =

{

lk(1− θj) + (1− lk)θj if yk = 1
lkθj + (1− lk)(1− θj) if yk = 0.

(1)

Now, given a random sample of independent reports y1, y2, . . . , yn we have that
the likelihood function of this sample is

L(θj) = P [Y1 = y1]P [Y2 = y2] · · ·P [Yn = yn]. (2)

The maximum likelihood estimation procedure now implies simply finding θj

that maximizes this expression. This number is the maximum likelihood estimate
of the unknown probability. Note also that the own experiences are seamlessly
integrated into this model - the trust computing source peer i just has to put
pi = 1 for his own experiences xi.
Let us locate this model in the three-dimensional space introduced in Section

3.1.
First, referring back to Figure 1, if peer i is computing the trustworthiness of

peer j then the model assumes the peer i first retrieves from peers u and v their
reports on peer j’s performances with them. (This is the meaning of y1, y2, . . . , yn

in (2)). Thus, the necessary reputation information on which the model operates
consists in this case of the edges entering node j. Keeping in mind what we said
in Section 2 about how the overlay network is used to store the trust data we see
that retrieving these edges (feedback) coincides with searching the overlay for
the data items with the keys starting with j. Further, as we will see shortly, not
all such data items have to be retrieved. Good predictions can be achieved even
with 10-20 reports retrieved. We stress that this is a considerable improvement
as compared to what most of the existing approaches do - we retrieve only a
small fraction of the feedback about the trust computation target, while they
retrieve the entire feedback about all the nodes.
On the other hand, we assume that peer i deduces the misreporting proba-

bilities lk from own interactions (by comparing its own performances with the
reports about them). These ”averages” can be maintained for specific peers (lks
are different) or at the level of the whole network (lks are all same). In the simu-
lations below we assume the second possibility. In this case the involved storage
costs per peer are negligible - only a single value is kept and used to approximate
the situation in the network.
Thus, in a word, the model incurs small communication overhead and virtu-

ally no storage costs.
Second, the output values of the model are probabilities and as such they do

have a plausible interpretation on the absolute [0, 1] scale. Therefore, it is easy
to interpret and use them without comparing with the other peers’ values.
Third, Equation (2) implies the independence of the reports Y1, Y2, . . . , Yn.

Thus, the assumed setting is non-collusive and the simulation results we present



next hold for this setting. We note that extensions to collusive settings are pos-
sible by integrating the collusion possibilities into (2).

4.1 Simulation Results

We checked the performance of the method in a variety of parameter settings.
As the estimation quality measure we chose the mean absolute error of the
estimated probabilities of the peers performing honestly and their actual values.
The following parameters are considered: 1) the number of peers - 128 (constant
throughout the simulations), 2) the number interactions per peer - varied at
increments of 20 from 20 to 100, and 3) fraction of liars - varied at increments of
0.1 from 0.1 to 0.5. All the results are averaged across 20 simulation runs. The
interactions among the peers were generated at random, we did not consider any
particular structure of the resulting trust network.

Note that the second parameter, number of interactions per peer, is not cor-
related with the numbers of peers. For higher network sizes the same results
would be obtained with the same numbers of interactions per peer. Put differ-
ently, the absolute amount of feedback is what determines the results, not its
relative size as compared to the size of the network.

Figure 2 shows the results for the case when the peers’ probabilities of per-
forming honestly are generated at random in the interval [0, 1].Note that the liars
were generated so that they always lie (lk from (1) equals the fraction of liars).
We have also experimented with varying ljs and did not observe any important
difference.
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Fig. 2. Simulation results - peers’ trustworthiness drawn randomly from [0,1]

We emphasize that the plot is symmetric across the line “fraction of liars =
0.5”. This is simply a consequence of the introduced probabilistic assumptions
and non-collusive peer behavior - if a peer believes that the majority of the peers



are liars then it should take the reverse of their reports as true. Interestingly, no
existing approach exhibits this behavior.

5 Model II - Normally Distributed Services

There are settings in which the peers’ behavior or their performances within
certain contexts are characterized by a globally known finite number of types. An
example of such a setting would be the speeds of the network connections of the
peers. Namely, there are a fixed number of the connection types with prespecified
speeds. (However, the speed of any given connection is only theoretically fixed,
in practice it varies due to different conditions in the network.) In this section we
present a general model of such settings and show how the maximum likelihood
estimation can be used in this case. The simulation results, given in Section 5.2,
show that the technique performs even better than in the setting of Section 4.
Intuitively, this is a consequence of the stronger constraints imposed on the peers
behavior.
Consider a P2P network consisting of N peers p1, . . . , pN . They provide ser-

vices to one another and we are assuming that each observed service quality
is distributed according to a normal distribution N (µi, σ), 1 ≤ i ≤ Ns. Thus,
there are Ns different distribution from which the service qualities are drawn, all
of them having the same standard deviation σ but different means µ1, . . . , µNs

.
These distributions will be denoted by Ni so that, for any 1 ≤ k ≤ Ns the
symbol Nk will denote the normal distribution N (µk, σ).
We further assume that the means are innate to the peers so that whenever

a given peer, say peer pj , provides a service then the service quality observed by
its consumer will be a random variable distributed according to N (µk, σ), where
µk is peer pj ’s mean.
As in the precedent model, we are assuming that a fraction of the peer

population pl are liars, while the rest of the populations are honest participants.
The fraction of liars is learned by comparing the own performances and the
reports about them. We will assume the following behavioral patterns of the
two groups of peers. Consider an interaction between service provider pi and
consumer pj in which pj observes the quality level x. If peer pj is honest then it
will report value x when asked to report on peer pi’s. On the other hand, if pj

is a liar then it will first choose a distribution Nk at random and then report a
random value generated from this distribution.
Our task is, just as before, to show that a maximum likelihood based esti-

mation method can be used to accurately predict the future performance of the
service providers given the reports of their past provided qualities. Note that a
very similar setting was considered in [23], where a machine learning technique
was used instead.

5.1 Estimation Derivation

Let θ denote the unknown mean of a given peer. To determine the likelihood of
any report on that peer’s performance we must first determine the distribution



of the reports. Denoting by Y the corresponding random variable we have:

P [Y ≤ y] = plP [Y ≤ y| false report] + (1− pl)P [Y ≤ y| correct report], (3)

where

P [Y ≤ y| correct report] =
Ns
∑

i=1

P [Y ≤ y|Y is N (θ, σ)] (4)

and

P [Y ≤ y| false report] =
Ns
∑

i=1

1

Ns

P [Y ≤ y|Y is Ni]. (5)

Taking derivatives we obtain the following probability density function:

fY (y) = pl

Ns
∑

i=1

1

Ns

1

σ
√
2π

e
−

(y−µi)
2

2σ2 + (1− pl)
1

σ
√
2π

e
−

(y−θ)2

2σ2 . (6)

Now, having a random sample y1, y2, . . . , yn from this distribution and assuming
that the independence of the samples we compute the likelihood function:

L(θ) = fY (y1)fY (y2) · · · fY (yn). (7)

The final task is to select the unknown parameter θ ∈ {µ1, µ2, . . . , µNs
} such

that this likelihood function is maximized.
We stress that whatever has been said in Section 4 on the the model’s main

properties applies also here. In short, low implementation overhead and mean-
ingful interpretation of the output values remain the main properties of this
model too. Its prediction quality is given next.

5.2 Simulation Results

We now present the results from a series of tests that show the performance
of the method. We first generate peers, determine the liars and assign service
distributions to the peers. The services are generated in such a way that, if there
are Ns services then their means are random numbers between 1 and Ns (the
standard deviation was varied between 0 and 1 as presented below). Being a liar
and having any specific service are not correlated. Then we generate a number
of interactions at random. The following parameters are considered in the sim-
ulations: 1) the number of peers - 128 (constant throughout the simulations),
2) the number interactions per peer - varied at increments of 20 from 10 to 50,
3) fraction of liars - varied at increments of 0.1 from 0.1 to 1.0, 4) number of
services - 4 (constant throughout the simulations) and 5) standard deviations of
the service distributions - varied at increments of 0.1 from 0.1 to 1.0 with the
default value of 0.3. The fraction of incorrect guesses (misclassification rate) is
used as the quality measure.
Figure 3 presents the dependency of the misclassification rate on the fraction

of liars and the number of interactions per peer considered. The number of
services was 4 and their means were all 0.3.
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Fig. 3. misclassification rate of the expected service quality as a function of the fraction
of liars. Standard deviations of the service distributions - σ = 0.3.

Figure 4 shows how the misclassification rate depends on the standard devi-
ations of the services.
Let us comment on the presented results. First, because the number of the

services is greater than two and the liars lie uncoordinatedly good predictions
can be made even when the fraction of the liars is close to one. Second, the
method becomes very robust as the number of interactions considered increases.
When the inluence of the ”noise” (standard deviation σ) is not too high, the
method is able to separate the distributions quite well.
Though the simulation setting considered in this section is different from

the setting of Section 4 we can still derive some conclusions by comparing the
presented results. The main difference between the two models is as follows: the
model in the previous section assumes infinitely many behavior types (probabil-
ity distributions), while the model in this section implies a known finite number
of behavior types. It is this difference that enables a better performance of the
maximum likelihood estimation in the second case.

6 Discussion and Future Work

We propose in this paper a simple probabilistic method to assess peers’ perfor-
mance in a P2P network (or more specifically their trustworthiness). The method
is based on the well known statistical estimation technique - maximum likelihood
estimation. We test its quality on two settings relevant for P2P communities.
From the test we derive the following as the main properties of the method.

1. The method is able to estimate peers’ characteristics (i.e. their trustwor-
thiness) quite well. For smaller fractions of liars, the method gives good
estimates even when a small number of recent interactions is considered
(around 20). This is particularly important when the assumed peer behavior
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Fig. 4. misclassification rate of the expected service quality as a function of the stan-
dard deviation of the distributions of the services.

is time dependent. In this setting, our method is more capable of capturing
the behavioral dynamics.

2. The implementation overhead of the method is as small as possible. Practi-
cally, it only implies the small communication overhead related to retrieving
the direct experiences of the peers who interacted with the trust computation
target.

3. The considered setting was non-collusive; it assumed that peers did not form
collusive groups but rather acted independently. In this setting, the mecha-
nism gives estimates of the peers’ trustworthiness with errors within 5-10%
even with 30% of liars.

To the best of our knowledge, no existing approach exhibits such properties.
At best, they show similar quality of the trustworthiness estimation (similar or
higher estimation error) but require substantially higher implementation over-
head. On the other hand, most of them can be applied only in specific settings
(e.g. file sharing) because they essentially need ranking of the trustworthiness
values of various peers. Our comparison of the results given in [15], [16] and
[23] and those presented here confirms these claims directly. There is a simple
explanation of this. Namely, the simulation settings we consider coincide (or are
very similar) with those presented in the mentioned works. This is true not only
for the simulation parameters but also for an important aspect of the assumed
behavior of the peers. Precisely, all the works assume that the peers are asso-
ciated with specific probability distributions that determine their performance.
The key difference between our and the other solutions is that we introduce this
assumption explicitly into the trust computation method, while the other works
do not.
However, we did not deal in this paper with the case in which these proba-

bility distributions are correlated among the peers. Put differently, we assumed



here independent acting of the peers, without forming collusive groups. Check-
ing precisely the performance of the presented method in collusive settings and
extending it to be as effective as possible under this assumption on the peers’
behavior make the most important part of the future work. This can be done
either by modeling collusions probabilistically (operating directly on Equations
(2) and (7)) or learning the probabilities of misreporting for every peer in the
network separately rather than for the network as a whole.
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