
Separating Business Process from User Interaction
Utilizing Process-Aware XSLT Style-Sheets

Karl Aberer, Anwitaman Datta, Zoran Despotovic
Swiss Federal Institute of Technology (EPFL)

1015 Lausanne, Switzerland
fkarl.aberer, anwitaman.datta, zoran.despotovicg@epfl.ch

Abstract

In the web context, it is difficult to disentangle presen-
tation from process logic, and sometimes even data is not
separate from the presentation. Consequently, it becomes
crucial to define an abstract model for business processes,
and their mapping into an active user interface presenta-
tion, using the principle of separation of concern between
the process logic, data and its presentation aspects. We
endeavor to extend declarative (rule based) XSLT to ac-
commodate the separation of process information from the
data structure and presentation, and thus propose to design
process aware stylesheets, in a minimally invasive manner.
The isolation of the three otherwise entangled aspects of
web-processes makes it easy to develop and maintain web-
applications in a more independent manner, where each in-
dividual developer can focus on his/her primary responsi-
bility, like describing the process, maintaining a database,
or creating user interface (web-pages) without being levied
any substantial effort to learn new technology.
Keywords. Web-based information systems, e-commerce
systems, user interface, XSLT, workflow management, in-
formation commerce.

1 Introduction and Motivation

One of the main reasons for the success of XML, as
well as its predecessor SGML, is the separation of doc-
ument structure from document layout. In this way, the
logical structure of the document content or the document
data is represented in a layout-independent format. The
generation of the layout, e.g. in HTML, is performed by
specialized document processing languages, like XSLT [3].
This approach has the well-known advantages of separa-
tion of concerns: development and processing of the data
can make use of application-specific data schemas (”appli-
cation markup”). Thus changes in the presentation do not
affect the logical structure of the documents (a form of data
independence). Multiple layouts for different media can be

generated from the same logical documents.
Considering the function of a service-oriented Web site,

like an e-commerce site, we must be aware that it goes be-
yond the presentation of document content and data. In
fact it represents an active document supporting interactions
among users and backend systems. There exist nowadays
various implementation approaches of such dynamic Web
pages, like CGI scripts, active server pages, servlets and
JSP, just to name the most important ones. The business
processes that are implemented using these techniques are
hidden in the application code (and often the logical data
structures as well). On the other hand the area of workflow
management systems has demonstrated that an abstract rep-
resentation of complex business processes is extremely ben-
eficial in their development, maintenance and implementa-
tion. Also here we find an independence principle realized,
namely the independence of the process structure, usually
expressed in terms of an abstract process model, like Petri-
Nets or state charts, from the implementation of the pro-
cesses, by associating various system and user resources
with the activities to be performed.

This brings us to the question, whether the independence
of the implementation of the active parts of a Web page, in
terms of what interactions a user may perform within a busi-
ness process, from the actual abstract specification of the
process structure would not be a valuable goal to achieve
and if yes, how it may be reached. This is the problem that
we intend to address in this paper. We will show that such a
separation of concerns is indeed possible and that it can be
achieved in fact, in a Web context, with minimally invasive
extensions of existing approaches, in particular the one of
XSLT. In other words, we will extend XSLT in a way, such
that both process and data structure can be transformed into
active Web pages. Doing so, we also intend to maintain the
declarative nature of XSLT, allowing a rule-oriented speci-
fication of the layout-oriented transformations.

We will achieve, following the principle of orthogonal-
ity, a separation of concerns along two dimensions:

� Content and process: Web applications consist of the
content presented and the process underlying the inter-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


action with the user. Only the ensemble of the two al-
lows to fully characterize a service-oriented Web site.

� Structure and presentation: Structure provides a log-
ical view of the application, whereas presentation is
concerned with the user interaction. For both, con-
tent and process, we want to achieve independence of
structure and presentation.

Separation of concerns facilitates the development of
service-oriented Web sites by making it more modular.
Changes that affect one concern do not affect the other ones.
Examples would be:

� changes to the user interface do not affect the logical
representation of the data as well as the processes.

� changes to the process logic (e.g. the control flow) can
be made independently of the specifications of the lay-
out transformations, and even can be done without af-
fecting existing transformations (and similarly for the
data structures, as it is known for XSLT).

� control of the process flow (workflow logic) and gen-
eration of user interface layout can be independently
distributed as required (client, server).

� developers can concentrate on the aspects they are in-
terested in (process structure, data structures, layout).
When developing the process and data structures, lay-
out aspects can be ignored, and when developing the
layout only a partial understanding of the structured
specification is required (e.g. only activity types but
not their detailed dependencies). Also using more ab-
stract models for specifying the structural models fa-
cilitates their understanding.

Declarative specifications increase the modularity of spec-
ifications and allow for increased ease of the evolution in
applications. Thus we will follow the XSLT paradigm.
We will pay attention to avoid any dependencies on heavy-
weight infrastructure, like application servers. Our archi-
tecture will consist mainly of an XSLT interpreter that is
extended by a process control component. It will be light-
weight, making implementation of complete applications,
like C2C business processes, which are purely client-based,
perceivable. Hence our approach will also be an ideal plat-
form to implement business processes in P2P environments.

The rest of the paper is organized as follows. In Section
2 we discuss related work, then in Section 3 we provide a
generic overview of basic abstractions we devised. Section
4 contains the description of the workflow model we use.
Section 5 introduces details of the implementation archi-
tecture explained with an illustrative example in section 6.
Implementation related details are given in Section 7. Sec-
tion 8 concludes the paper with a summary and indicating
the scope of future work.

2 Related Approaches

After it started as a network-based information system
offering only static content (pure HTML), the web has now

become a platform for highly sophisticated applications de-
livering dynamic content to its users. In this section we dis-
cuss different solutions that enable dynamic behaviour of
the web - both commercial solutions as well as some of the
latest research on that issue. In particular, we will evaluate
these approaches with respect to the separation of concern
principles that we have addressed in the introduction.

The separation of the content from the presentation does
not seem to be a major problem nowadays. The appear-
ance of XML is usually (and wrongly) tied with solving this
problem. Essentially, any Web-DBPL integrator tool (such
as Microsoft’s Internet Database Connector (IDC) or Al-
laire’s Cold Fusion Web Database Construction Kit) or any
Web database publishing tool (Microsoft Access is a typi-
cal example) provide a solution for this problem. No matter
what kind of database connectivity they use (proprietary or
not) they can be looked at as belonging to a large group of
scripting (or programming) language based HTML exten-
sions, main representatives of which are ASP or JSP as well
as Java servlet based solutions. Also a number of research
efforts were directed to support the design of data-intensive
Web sites. However user interaction is considered there for
the purpose of data navigation only (see for example [4] for
a comprehensive overview).

But the real problems start when it comes to the separa-
tion of the business processes from the presentation. Let us
discuss some relevant solutions.

The first group of solutions - CGI scripts and servlets1 -
does not offer anything to help developers separate the busi-
ness processes from the presentation. With servlets for ex-
ample, the entire page must be composed in a servlet. More
precisely, HTML tags and presentation code are embedded
within Java code. The most important consequence is that
if a developer wanted to make any change in the appearance
of the page he would have to edit and recompile the servlet,
which obviously presents not only a development but also
maintenance and evolution nightmare.

A considerable improvement was brought by server side
scripting solutions - ASP and JSP in the first place. Es-
sentially, JSP [6] offers a possibility to encapsulate the ap-
plication logic into software components (JavaBeans) with
well-defined interfaces expressed in XML (tag libraries)
that can be easily used by the page designers. Thus, ap-
plication logic is separated from the presentation and both
application logic and presentation can be changed without
affecting each other. But there is still one problem. JSP
does not support process definition on a high abstraction
level which makes it difficult (if not impossible) to specify
process-aware UI mapping with JSP. Client side scripting
can help here but such solutions become cumbersome even
for simple business processes.

1Servlets are usually considered in literature as a replacement for CGI
because they are in many aspects a better solution. From the perspective
of the problem that we are considering here, however, they belong to the
same group.



An interesting approach that bears some similarity to
ours is the WSUI initiative [2]. WSUI defines a web com-
ponent model that couples network services with interaction
and presentation. The presentation of a component is de-
fined as a set of XSLT stylesheets that work independently
of the business logic of the component, which essentially
means that, as with JSP, the second of our two objectives
is achieved. But there are some unnatural limitations of the
approach taken there. Namely, the layout of the components
is not defined in terms of the state the component can be in,
but in terms of events that it can respond to.

Diaz et al [8] present an interesting approach that advo-
cates the same principles as ours. They essentially provide a
possibility to define a process of WSUI components. Com-
pared to our approach, the main difference is the fact that
they start in the design from active HTML pages and bind to
those the process logic explicitly, whereas we intend to gen-
erate those pages from a rule-based specification. Thus our
approach is more flexible and efficient in particular when
generating multiple layouts for different platforms.

3 Abstract Process Description

The separation of the business process logic from the im-
plementation of the activities is usually considered as the
main contribution of the workflow management technol-
ogy. The business process is specified at a high level of
abstraction, using either GUI tools or workflow definition
languages. The main result of this step is the definition of
control and data flow dependencies among activities. Ac-
tivities themselves are defined separately and their defini-
tion is not a part of the process definition. In runtime a
workflow engine invokes the activity implementations ac-
cording to the dependencies defined in the process specifi-
cation. The workflow management approach ascertains that
process definition and the implementation of the activities
can be maintained and changed independently.

3.1 The Role of Interactive Web Documents in
Workflow Implementation

One possibility to implement a workflow activity, that
is performed interactively by a human, is to provide an in-
teractive Web document (a ”Web page”). The document
allows a user to provide workflow-relevant data and thus
decide on the further process execution. Interactions of
the user initiate the return of workflow-relevant data to the
workflow engine and indicate the completion of activities.

On the other hand interactive Web documents serve the
purpose of data presentation to an interactive user. If the
interactive Web document is implementing a workflow ac-
tivity data is typically related to the purpose of this activity,
e.g. by presenting data relevant for making decisions. Users
can also interact with the interactive Web document in order

to navigate through the data as it is presented. By using a
mechanism for layout generation (like XSLT) data structure
is separated from layout for presentation and navigation.

Thus an interactive web document clearly plays two
roles in the implementation of workflow activities: with re-
spect to separating content from presentation it serves as
presentation medium, and with respect to separating activity
implementation from workflow structure it serves as activity
implementation. This double role should also be reflected
in the mechanisms used to generate interactive Web doc-
uments. XSLT addresses only generation of presentation
format from structured data. We intend to extend XSLT to
also generate interaction capabilities for activity implemen-
tation, in order to separate process structure from activity
implementation.

3.2 Implementing Workflow Activitites using In-
teractive Web Documents

The way data is presented to a user within an Ecommerce
application depends on the current state of the workflow
process. Therefore we have to provide for the UI devel-
oper using XSLT a means to express this dependency in the
stylesheets he/she is developing. On the other hand when
implementing a workflow activity an interactive Web docu-
ment must be enabled to interact with the workflow engine.
Therefore we have to extend XSLT also to include interac-
tions with the workflow engine. It may seem that, with such
an extension of the stylesheet functionality, we are sacri-
ficing the ease of the UI creation process and putting more
burdens on the UI designer. However, we do not think that
this is the case if we provide the UI developer with clear
and simple abstractions of the workflow and use simple con-
structs for interacting with the workflow engine.

We can identify two main ingredients of a work-
flow: activities (with dependencies among them, con-
trol flow) and the data passed between the actions (data
flow). Additional concepts such as participants (whether
human beings or IT applications) are used to further de-
termine the concept of activities. Thus, the UI designer
needs first of all to understand about the workflow, the
type of activities occuring and the workflow-relevant data.
For the activities this requires knowledge of the activity
names and invocation parameters. This gives a set B =
fb(x1; x2; : : : ; xk) j b is a business activityg . For the work-
flow relevant data this requires the knowledge of workflow-
relevant data objects D = fd1; d2; : : : ; dng. What a UI
designer doesn’t need to bother about are the details of the
process definitions, i.e. the different data and control flow
dependencies.

Based on this knowledge he must be able to interact with
the workflow engine at least in the following ways.

1. Initiate the performance of business activities in B.
For doing that he must in particular be able to provide
values for the invocation parameters of the activities



from set B derived from the earlier interactions with
the user or the WF engine.

2. Obtain and manipulate the values of workflow relevant
data in D. This data is required for the implementation
of activities.

3. The evaluation of conditions on the process state.
These are predicates C = fp(x1; x2; : : : ; xk)g where
p are (Boolean combinations of) predicates on the ac-
tivity execution state. The most basic predicates on the
activity execution state is to determine whether an ac-
tivity has been executed or not. Depending on the ac-
tivity state model of the WF model this can be refined
to take into account more activity states.

For a more fine-grained interaction of the interactive Web
document with the workflow engine additional functional-
ity can be provided, for example, functions for analysis of
workflow history. The specific instantiation of these inter-
actions depends on the underlying workflow model and the
capabilities of the workflow interpreter used. More on this
will be given in Section 4, when we describe the specific
workflow model that we use and its semantics.

3.3 Process-Aware XSLT Style Sheets

We give now a pattern of how to extend the XSLT style
sheet mechanism in order to make it interacting with a
workflow process. It covers the interaction possibilities a
UI designer needs that have been mentioned before. This
pattern should be applicable for most kinds of workflow
models and interpreters.

Conditional sections of style sheets depending on the
workflow process and data state. This enables the UI de-
signer to make the document rendition dependent on the
workflow execution. Syntactically we represent this as a
new element type

<xslt-wf:for-each select="Rep(p(x1; : : : ; xk))">

... </xslt-wf:for-each>2

The representation of a predicate p(x1; : : : ; xk), determined
by the function Rep, depends on the specific implementa-
tion. We will give later an example were we use for the sake
of compatibility with XSLT an XPath-oriented representa-
tion. The important point is that a predicate may be true
for multiple instantiations of the parameters x1; : : : ; xk. In
such a case, as for ordinary XSLT templates, the content of
<xslt-wf:for-each> is instantiated for every instantia-
tion of the parameters once. The order of these instantia-
tions is implementation-dependent. We may also just test
whether a predicate is satisfied for specific parameters by
using

<xslt-wf:if test="Rep(p(x1; : : : ; xk))">

...</xslt-wf:if>

2We use the namespace prefix xslt-wf only in this generic descrip-
tion section. Each specific workflow model will have its own namespace
prefix.

The subelements of <xslt-wf:if> are then included when
there exist parameters, for which the predicate evaluates
true. In contrast to the use of <xslt-wf:for-each> and
the use of <xsl:if> in ordinary XSL we will also allow
a template rule to be contained within an <xslt-wf:if>
element, such that the rule becomes only applicable if the
test predicate is satisfied in the workflow state.

Retrieval of data from workflow state. When pro-
cessing an <xslt-wf:for-each> element the processing
clearly will depend on the values of x1; : : : ; xk. Therefore
we provide within the scope of the element these values as
implicitly defined XSLT variables with name Rep(xi), i.e.
it is available as if it were defined as

<xsl:variable name="Rep(xi)" select="..."/>

and takes the value of the parameter for which the tem-
plate condition is evaluated to true. For retrieval of other
data from the workflow state we also may explicitly retrieve
these values into variables by

<xslt-wf:variable name=".." select="Rep(query)"/>

or inline it directly into the resulting document by

<xslt-wf:value-of select="Rep(query)"/>.

In both cases the expressiveness of expressions query and
their representation in XSLT by Rep(query) depends on
the concrete implementation of the mechanism. Natural ex-
amples of languages for Rep(query) are the use of XPath
and XQuery.

Execution of a workflow action as part of a user in-
teraction. This enables the UI designer to couple active
elements of the user interface (like forms and links) with
workflow actions. Syntactically we represent this by intro-
ducing a new element type:

<xslt-wf:submit action="b(x1; : : : ; xk)"

actionElement="ID">

... </xslt-wf:submit>

The submit element binds the execution of the action b to
an HTML form element that is identified by identifier ID
and that is contained within the element. We make here use
of the XML ID/IDREF mechanism for linking. The vari-
able values x1; : : : ; xk are either taken from the referenced
action element (e.g. HTML form) or from an XSLT vari-
able, either explicitly defined or implicitly defined by the
<xslt-wf:for-each> element.

4 Business Offer Language (BOL)

4.1 BOL Overview

We use the Business Offer Language, BOL [1, 10], to en-
code our process description. BOL is a flexible rule-based
abstraction to specify business processes. It is particularly
well suited for information commerce as its main abstrac-
tion primitive is the exchange of an information good. A



complete description of BOL and BOL encoding is neither
the purpose nor scope of this paper. Here we describe the
basic concepts of BOL tailored to suit the understanding of
rest of the paper.

Init

Promised

Requested

Obligation

Delivered

Promise

Request

Promise

Deliver

Request

Deliver
Promised
and requested

Deliver

Figure 1: State transitions diagram

Four notions play the central role in BOL - goods, roles,
actions, and rules.

The notion of information good includes all goods that
are exchanged electronically in a given information com-
merce business process. Possible examples range from
registrations or newsletters, to payments and certificates.
Each information good is generally characterized by a set
of attributes or parameters: G(p1 : T1; : : : ; pn : Tn), where
their domains Ti include all standard primitive data types
as well as domain specific types. For example, the good
registration(n : Name) has one parameter drawn from the
set of all valid (human) names.

In order to specify such an information good exchange
action, we need to describe the provider and receiver of
the information goods. Thus all the participants of such ex-
changes are modeled by roles. In a typical portal example,
we may consider ”Website” and ”Visitor” as the roles.

Since the provider and receiver are autonomous, a min-
imal mechanism is required in order to establish an agree-
ment on information good exchanges. This is done using
actions (namely request, promise, and deliver) on in-
formation goods, where a (request + promise) pair on
any particular information good implies the obligation to
deliver the same.

The state transition diagram shown in Figure 1 associates
with every information good an elementary business pro-
cess. In this process all information goods are first by de-
fault in an initial state (”init”) and can move by different
transition sequences to the final delivered state. Note that
not for all paths necessarily an obligation occurs. Obliga-
tion is only a conceptual notion. Adherence to the obliga-
tion in the real life transactions, and any legal actions in the
event of breach of obligation by real life participants play-
ing the role of BOL Role(s) are beyond the scope of BOL,
and are case specific. However the BOL contract and his-
tory log may be used as evidence in any legal proceeding.

In order to create processes with dependencies among
different information goods we must have a possibility to
create dependencies among executions of different actions.
For that purpose there exist two types of rules. Actions that
correspond to an explicit interaction of the participants, i.e.
a message exchange, are enabled by rules of the form

state ! [action]

where the state expression is a Boolean combina-
tion on the state predicates promised, requested and
delivered, on relations that are defined on the parame-
ter domains of the information goods and on the tempo-
ral parameters that occur in the state predicates. An empty
predicate state evaluates to true. Implicit actions (or state
changes) that are not connected to an interaction but result
from other state changes are described by so-called substi-
tution rules

state ! impliedState

roles:
Visitor, Website;

goods:
Registration (MemberID : STRING, Email : EMAIL) :
                    Visitor -> Website,
Payment (CreditCardInformation : INTEGER) :
                    Visitor -> Website,
Book (Title : STRING, Number : INTEGER) :
                    Website -> Visitor;

init:
promised(Website,Visitor, Book(Title, Price, 1), START),
requested(Visitor, Website, Registration(MemberID, EMAIL),
          START);

rules:
-> [deliver(Visitor, Website, Registration(MemberID, Email))]

delivered(Visitor, Website,Registration((MemberID, Email), t)
-> [deliver(Visitor, Website, Payment(CreditCardInformation))]

promised(Website, Visitor, Book(Title, Number), t)
-> [request(Visitor, Website, Book(Title, Number))]

requested(Visitor, Website, Book(Title, Number), t)
-> [deliver(Website, Visitor, Book(Title, Number))]

substitution:
requested(Visitor, Website, Payment(CreditCardInformation,t)
and delivered(Website, Visitor, Book(Title,Number), NOW)
and Number < 20 and NOW < t+1month
=> promised(Website, Visitor, Book(Title, Number+1),t)

delivered(Visitor, Website, Payment(CreditCardInformation))
=> promised(Website, Visitor, Book(Title, Number),t)

delivered(Visitor, Website, Registration((MemberID, Email),t)
=> requested(Website, Visitor, Payment(CreditCardInformation), t)

Figure 2: Sample business process

Example Scenario: A website offers electronic books to
its members. Membership is free, and the visitors get K
electronic books for free. However, free access to books
expires after a period of one month since registration. After
accessing K books, or expiry of the first month, whichever
occurs earlier, the visitor needs to provide valid credit card
information to the website. Then the visitor may request as



many books he likes. The corresponding BOL specification
is given in Figure 2. We make a few important observations
regarding this example. Only four different interactions can
occur, as specified in rules. Since those are explicit com-
munication actions among the participants they will be of
particular importance in the implementation of the user in-
terfaces. Most of the business logic is encoded into the
substitution rules. These specification are mostly relevant
for the workflow engine. There exists in this example one
case where an obligation occurs: whenever the Website has
promised to deliver a book and the Visitor requests a book,
the delivery of the book becomes obligatory.

The expressions and rules are interpreted by the BOL in-
terpreter which checks for the validity of incoming actions,
maintains present workflow state and the workflow history,
and determine potential actions (from the rules and work-
flow history).

4.2 BOL-aware XSLT Extensions

In section 3.1 we described our basic XSLT extensions
enabling workflow-aware XSLT stylesheets. In this section
we describe BOL specific instantiations related to the con-
structs introduced. The workflow relevant data objects cor-
respond to the goods that have been defined. For each good
type multiple instances of the good can be instantiated at the
same time. Therefore the state of the goods can be given as
relations.

D = fRG jG(x1; : : : ; xnG) 2 Goodsg; RG = f(x1; : : : ; xnG)g

Note that tuples in these relations may contain NULL val-
ues if the corresponding good parameters have not been set
in the course of the execution of the process corresponding
to one good (see Figure 1). The set of actions is given by

B =
S

frequest(G(x1; : : : ; xnG));

G(x1; : : : ; xnG) 2 Goods promise(G(x1; : : : ; xnG));

deliver(G(x1; : : : ; xnG));

set(G(x1; : : : ; xnG))g

The semantics of the actions request, promise, and
deliver is the execution of the corresponding BOL action
on the good G. The set action inserts (or updates) a data
tuple into the corresponding tuple relation RG. This allows
to specify action parameters in a stepwise, interactive man-
ner before actually submitting an action. Different types of
atomic predicates can be used to check the workflow exe-
cution state. First, we have predicates to check whether a
specific action has been performed for a good. These have
the good parameters and the execution time as parameters:

C1 =
S

frequested(G(x1; : : : ; xnG); t);

G 2 Goods promised(G(x1; : : : ; xnG); t);

delivered(G(x1; : : : ; xnG); t)g

Second, we have predicates that check whether the execu-
tion of actions on certain good types is enabled according

to the BOL rules. These predicates have no parameters.

C2 =
S

fenabled(promise(G));

G 2 Goods enabled(request(G));

enabled(deliver(G))g

Third, we have a predicate to check the status of the work-
flow execution with one free parameter returning the error
status value.

C3 = ferror(x)g

As far as the representation function Rep for predicates is
concerned we use the following XPath-like notation: For a
predicate in C1 we have
Rep(requested(G(x1; : : : ; xnG); t)) = /requested/G.

The parameters are uniquely determined and need therefore
not to be explicitly mentioned. Within the scope of the ele-
ment, where the predicate is introduced, we may access the
parameters through variables with default name $G.name,
where name is the name of the good parameter used in the
BOL good specification. For the time parameter we use the
name $requested.G.
For a predicate in C2 we have
Rep(enabled(request(G))) = /enabled/request/G

and for C3 we have Rep(error(x)) = /error. We
may also construct Boolean combinations of these predi-
cates in <xslt-bol:if> element conditions, as with or-
dinary XSL. For obtaining explicitly data values using
xslt-wf:value-of or xslt-wf:variable we use also
XPath expressions assuming a proper XML encoding of the
additional state information made available by the workflow
engine is given. As far as the XSLT representation is con-
cerned namespace xslt-wf is replaced by xslt-bol. We
give now a few examples for the use of the XSLT extensions
interfacing with the BOL workflow engine.
Example: First we give an example for the evaluation of
a condition within a <xslt-bol:for-each> element.
The nesting determines of how the interleaving of the
processing of registrations and payments is ordered.

�

�

�

�

<xslt-bol:for-each select=
"/delivered/Registration">

<xslt-bol:for-each select=
"/enabled/request/Payment">

...
<xsl:if test="contains($Registration.Email,

’epfl.ch’)and $requested.Registration
=’01.01.2001’">

You will be billed in Swiss Francs
</xsl:if>
<xsl:if test="$Payment.CreditCardInfo=’’">

// xslt-bol:submit example as shown next.
</xsl:if>

...
</xslt-bol:for-each>

</xslt-bol:for-each>

Within the scope of the element the value of
$Registration.Email is available for processing and we
can use it like an XSLT variable. Using these variables in
the condition has the same effect as including, for example,



<xsl:variable name=’$Registration.Email’
select=’zoran@epfl.ch’/> where zoran@epfl.ch
is the value of the workflow variable. In order to check
whether the workflow variable has been set we can check
whether its value equals the NULL value represented as
empty string ’’.

xslt-bol:submit elements provide an abstraction
to the UI designer to create active elements in a desired
look-and-feel manner for BOL actions and to pass the
user’s inputs to the BOL interpreter. Here we give an
example:

�

�

�

�

<xslt-bol:submit action="deliver(Payment(
$CreditCardForm.CreditCardInformation))"
actionElement="pay" from="Visitor"
to="Website">

<form name="CreditCardForm">
Credit Card Information:

<INPUT type="text" name="CreditCardInformation"/>
<INPUT type="submit" value="Submit Credit

Card Information" actionID="pay"/>
</form>

</xslt-bol:submit>

The action attribute specifies a complete BOL action
that is to be performed. The type of action and the BOL
goods along with the parameter passing specifications must
be provided. Parameter passing specifications bind actual
parameter values to the BOL goods parameters. Parame-
ters defined both in XSL or in form elements and param-
eters implicitly defined within our workflow extension el-
ements (xslt-bol) can be used in the action invocation.
The actionElement attribute contains the unique identi-
fier and determines, by means of the actionID attribute of
an INPUT element, the rendition element which is associ-
ated with the specified BOL action. In the above example,
a simple form submit element is tied with this action. Con-
sequently, the UI will have a rendition of a simple submit
button of the form. The ’event’ of clicking of this button
will be associated, transparently to the UI designer, with the
passing of relevant information to the BOL interpreter. In
BOL every action must be directed from one participant to
another. The from and to attributes specify the originating
and target participant of the action respectively.

There might be scenarios where the UI designer may
want to obtain some additional information about the cur-
rent state of the process. For example, he may want to know
how many actions of certain type(s) have been already
performed. For that purpose we use xslt-bol:value-of
primitive. For example
<xslt-bol:value-of

select="/History/Book/Delivered/Count">

provides a means to count the number of deliver
actions on a BOL good called Book assuming a log is
made available by the workflow engine with a proper
XML encoding. If access to WF-Interpreter’s history
log is not made available, then such information may be
obtained only by modifying the business description, like

by appending additional parameters associated with the
good Book (in this case).

5 Implementation Architecture

The diagram shown in Figure 3 summarizes the architec-
ture of our approach. For the purpose of describing business
processes we use the business offer language (BOL) that
was introduced in the previous section and is interpreted by
the workflow engine. The key component is the XSLT-BOL
interpreter which interfaces in a state-dependent manner be-
tween the workflow engine and the user interface interpreter
(a Web browser, for example). The UI designer provides
to the XSLT-BOL interpreter two files, called XSLT-BOL
and Root-XML, that essentially specify the mapping from
the process states to the presentation. The Root-XML file
contains static information about look and feel and possi-
bly some data relevant to the process and user interface.
The XSLT-BOL contains the process-aware template rules
as introduced before. Based on the state of the process,
XSLT-BOL is transformed by the XSLT-BOL interpreter
into different XSLT stylesheets that, when applied to the
Root-XML, produce the final rendition.

BOL Process

Designer

BOL

Interpreter

UI
Designer

XSL-BOL Root-XML

XSLT-BOL
Interpreter

User
Interface

Interpreter

action

BOL Process

Description

state html
(wml)

Figure 3: Architecture of the solution

In runtime, the XSLT-BOL interpreter performs the fol-
lowing steps to create the active user interface.

First, pre-processing the XSLT-BOL: the XSLT-BOL In-
terpreter is used to pre-process the UI designer’s XSLT-
BOL file, and transform it into a conventional XSLT file.
In this step it evaluates state-based conditions and instan-
tiates the XSLT templates accordingly and introduces the
necessary state variables into the stylesheet.

Second, transforming Root-XML with the projected
XSLT: The Root-XML file is then transformed using the
generated XSLT stylesheet. However there is a subtle ma-
nipulation at this stage, whereby, the xslt-bol:submit
primitives are modified to create ordinary elements of the
presentation technology, for example, forms, if the presen-
tation technology is of the html family. In this step also the
necessary code for interacting with the workflow engine is
introduced (using JavaScript). In addition two more issues
can be addressed at this step to support the development of
consistent user interfaces:



1. To assure correctness, only actions corresponding to
valid BOL actions (at a given instant) are made active,
ascertaining that only valid actions may be performed.

2. If the UI designer forgets to provide
xslt-bol:submit and associated rendition for
any particular BOL action, a default is created for the
same, in order to ensure completeness. This ensures
that all valid actions may be performed at the UI.

A possible variation of this approach is instead of gen-
erating directly the final rendition from the Root-XML file
to generate from the Root-XML file an intermediary format
that can be further processed (again using stylesheets) for
specific end-point technololgies (like HTML and WML).

6 Application

Now we demonstrate the use of the basic mechanism in-
troduced with a concrete example. By doing so we also
discuss a number of methodological issues that have to be
addressed when using process-aware XSLT templates. We
base the discussion on the example introduced in Section 4.

6.1 Knowledge Required by the UI Designer

Though the UI designer need not understand the whole
BOL description, he needs some minimal knowledge of the
process description semantics. In our process description,
we have the following
1. BOL Goods (parameters associated with the BOL goods
are enclosed in brackets)

� Registration(MemberID, Email)
� Book (Title, Number)
� Payment (CreditCardInformation)

2. The BOL roles participating in this process
� Visitor
� Website

3. The actions that can be performed and thus require in-
teraction between the involved participants. These are the
actions occuring in the rules section on the left-hand side.

� deliver(Visitor, Website,
Registration(MemberID, Email))

� deliver(Visitor, Website,
Payment(CreditCardInformation))

� request(Visitor,Website,
Book(Title,Number))

� deliver(Website,Visitor,
Book(Title,Number))

The BOL rules guiding the process are not necessarily to
be known by a user interface designer in detail (though their
knowledge might be of help).

6.2 Role of Root-XML File

The Root-XML file is supposed to factor out all static
data that is common to all generated Web documents and

that contains no presentation-specific code. Among these
kind of data we find the following.
Common elements: There is certain information, which
the UI designer may potentially want to reuse. It is
preferable to have such static information, or other data,
in the Root-XML. For example, a welcome message for
the Visitor, or a message on the services provided by
the Website, copyright information, disclaimers, an error
message, may be put in this category. Other contents of
this category may be some ordinary HTML (like forms).
Though it is not illegal to have such content in our Root-
XML, the drawback in having such end-point technology
specific content is that it will defeat the purpose of using
the same Root-XML and different processing templates to
create User Interfaces for variants of technologies.
Data: In our example, it will be necessary to have a
catalogue of Books that the Website offers. So, one keeps
the catalogue information (data) in the Root-XML.
Layout structure: The logical structure of the Website and
the common structure underlying the Web page layout is
kept in the Root-XML. This ensures that the designer will
use a consistent organization of the Web page throughout
the process execution.

�

�

�

�

<ROOTXML>
<CATALOGUE>

<BOOK> <TITLE> ... </TITLE> </BOOK>
<BOOK> <TITLE> ... </TITLE> </BOOK>

</CATALOGUE>
<MAINPAGE>

<HEADER/>
<REGISTRATION/>
<DELIVERYSTATUS/>
<FOOTER/>

</MAINPAGE>
<MESSAGES>

<ERROR> Illegal operation!</ERROR>
</MESSAGES>

</ROOTXML>

Since there is no restriction on this document, Root-XML
potentially can be any well formed XML document, from a
trivial document to any complex document the UI designer
may wish to create. The example above gives a possible
Root-XML file for our sample business process.

6.3 BOL State Aware Templates

Now we give a small template rule for the state when
good Registration has not been delivered. The template cre-
ates a form in the UI while processing the Registration
element in Root-XML so that the Visitor may deliver
Registration. The fact that the form supports the
action to deliver the BOL goods Registration is en-
coded in the xslt-bol:submit element. This form is
instantiated conditionally, depending on whether the good
Registration is yet to be delivered. Further, the header,
which appears above the MemberShipForm form, gives
the visitor some information about what he is supposed to



do. Such information, as we will see, will keep changing in
our example scenario, in a state based manner. We also see
how href elements may be used to bind user interactions
to business actions.

�

�

�

�

<xslt-bol:if test="/enabled/deliver/Registration">
<xsl:template match="HEADER">

<b>You are a new member. Please register to
access e-books.</b>

</xsl:template>
<xsl:template match="REGISTRATION">

<xslt-bol:submit action="deliver(Registration(
$MemberShipForm.MemberID,
$MemberShipForm.Email))" from="Visitor"
to="Website" actionElement="register">

<form name="MemberShipForm">
<input type="text" name="MemberID"/>
<input type="text" name="Email"/>
<a href="none" actionID="register">

Register</a>
your MemberID and Email.

</form>
</xslt-bol:submit>

</xsl:template>
</xslt-bol:if>

6.4 Data Flow between Style Sheet and Workflow

The following is an example where a workflow template
is matched and the value is transferred from the workflow
state to the web document ($Book.Number). It also
enables the user to select a book from the catalogue.
Further, it demonstrates of how a data collection in the
root document can be used to interactively select workflow
relevant data values. The value retrieved into the XSL
variable $BookTitle is then provided as a parameter to
the activity invocation.

�

�

�

�

<xslt-bol:if test="/enabled/request/Book">
<xsl:template match="HEADER"> You have accessed

<xslt-bol:value-of select="$Book.Number"/>
book(s) for free since registration.
You still may freely access following books:

</xsl:template>
<xsl:template match="CATALOGUE">

<xsl:apply-templates/>
</xsl:template>
<xsl:template match="BOOK">

<xsl:variable name="BookTitle"
select="./TITLE/*"/>

<xslt-bol:submit action="request(Book
($BookTitle,$Book.Number))"
from="Visitor" to="Website"
actionElement="bookselect">

<a href="none" actionID="bookselect">
<xsl:value-of select="$BookTitle"/>

</a>
</xslt-bol:submit>

</xsl:template>
</xslt-bol:if>

6.5 Avoiding Process Logic in Style Sheets

Let us now look at another template that covers the case
when a book cannot be requested.

�

�

�

�

<xslt-bol:if test="not(/enabled/request/Book)">
<xsl:template match="HEADER">

<b> Oops! No more free Books.
Please give a valid Credit Card Number.

</b>
</xsl:template>
<xsl:template match="REGISTRATION">

<xslt-bol:submit action="deliver(Payment(
$CreditCardInfoForm.CreditCardInformation))"
from="Visitor" to="Website"
actionElement="payment">

<form name="CreditCardInfoForm">
<TEXTAREA name="CreditCardInformation"/>
<INPUT type="submit" value="Submit Credit
Card Information" actionID="payment" />

</form>
</xslt-bol:submit>

</xsl:template>
</xslt-bol:if>

The UI designer knows that free books are available to
Visitor, limited by some number and time. After that
the user needs to deliver a valid credit card information.
Depending on the state, the UI designer needs to provide a
means to request a book, or deliver credit card information.
He distinguishes this based on which actions are enabled.
Alternatively, he might have reconstructed from the work-
flow state the business conditions, like checking how many
books have been delivered or when the registration has been
performed. This is not illegal to do, it will simply be bad de-
sign. It introduces unnecessary dependencies between the
workflow specification and the layout specification.

6.6 Eliminating Repetitive Conditions

The encapsulation of ordinary and XSLT-BOL elements
can possibly be nested.

�

�

�

�

<xsl:template match="MAINPAGE">
<xslt-bol:if test="/error">

<html><head>
<title>ERROR !!!</title></head>
<body bgcolor="red">
<h3><xsl:value-of select="/error"/></h3>

</body>
</html>

</xslt-bol:if>
<xslt-bol:if condition="not(/error)">

<html><head>
<title>Electronic Books Online</title></head>
<body bgcolor="azure">
<xsl:apply-templates>

</body>
</html>

</xslt-bol:if>
</xsl:template>

If there is similar behavior for multiple nodes (of Root-
XML) depending on their state, we may like to have a
xslt-bol:if encapsulating xsl:template. This was
used in several of the previous examples. In such a
case these templates are only applicable if the state predi-
cate in the xslt-bol:if element evaluates true. On the
other hand, if the same context node of Root-XML needs
to be processed differently in different BOL states, we
may encapsulate xslt-bol:if or xslt-bol:for-each



inside conventional xsl:template. We illustrate this
point in the example of this subsection. In the above
example, the UI designer wants to render the presen-
tation in red, whenever an error occurs. Further he
wishes to show the error message in bold (html header),
and doesn’t want to further process anything else. So,
if an error occurs after the good Registration has
been delivered, there will be other XSLT templates en-
closed in a state-dependent xslt-bol:if that are appli-
cable, however they won’t be applied in this case since
there is no xsl:apply-template for this case. On
the other hand, if no error occurs, the UI will have an
azure rendition, and the other templates will be processed
(xsl:apply-template) according to the template
rules applicable in the given state.

7 Summary and Further Work

In this paper we proposed a generic mechanism to make
XSLT process-aware. We started with an abstract process
description and a mechanism to translate it to an active UI
using the stylesheet approach. Then we demonstrated the
practicality of the approach using BOL as the process de-
scription language supported by a process interpreter and
a process aware style sheet interpreter. We extended the
already existing features of XSLT in a minimally invasive
manner. The present BOL process interpreter as well as
the XSLT-BOL interpreter are organized as groups of XSLT
based components, and thus are easily integrated together,
where the XSLT-BOL interpreter preprocesses BOL-aware
XSLT stylesheets and transforms the Root-XML document
(as described in Section 5). The proper use of the mecha-
nism is an issue orthogonal to the mechanism itself. It al-
lows both ’good’ and ’bad’ designs. Most importantly, it
allows to separate concerns and supports orthogonality and
modularity of the design of process-oriented web applica-
tions.

There are several aspects that need to be addressed in
our future work, in particular implementation aspects. As
the current implementation is heavily based on mechanism
that are inherently slow (servlet and XML-XSLT process-
ing) one of our primary concerns will be to evaluate the per-
formance and try to improve it by refining the XSLT based
part of the implementation. If a server processes multiple
BOL process instances simultaneously and there are mul-
tiple users who are to be catered the same content we may
optimize the processing by reusing renditions that have been
produced for different process instances.

References

[1] K. Aberer, A. Wombacher: A Language for Information Com-
merce Processes, Third International Workshop on Advanced
Issues of E-Commerce and Web-based Information Systems
San Jose, California, USA, June 21-22, 2001.

[2] E. Anuf, M. Chaston, D. Moses: Web Service User In-
terface WSUI 1.0, http://www.wsui.org/doc/20011031/WD-
wsui-20011031.html, 2001.

[3] J. Clark: WXSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt, 1999.

[4] P. Fraternali: Tools and Approaches for Developing Data-
Intensive Web Applications: A Survey ACM Computing Sur-
veys, Vol. 31, No. 3, September 1999.

[5] G. Huck, I. Macherius and P. Fankhauser: PDOM:
Lightweight Persistency Support for the Document Object
Model, Proc. of the 1999 OOPSLA Workshop ”Java and
Databases: Persistence Options; on the 14th Annual ACM
SIGPLAN Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’99), Denver, 1999.

[6] E. Pelegri-Llopart, L. Cable: JavaServer Pages Specification,
version 1.1, http://java.sun.com/products/jsp, 1999.

[7] E. Di Nitto, A. Wombacher, M. Jazayeri, M. Hauswirth, Z.
Mikls, I. Podnar: An Architecture for Information Commerce
Systems, Sixth International Conference on Telecommunica-
tions (ConTEL 2001), Zagreb, Croatia, 2001.

[8] J.J. Rodriguez, O. Diaz: Seamless Integration of Inquiry
and Transaction Tasks in Web Applications, Juan Jose Ro-
driguez, Oscar Diaz, Proc. 9th IFIP 2.6 Working Conference
on Database Semantics, Hong Kong, 2001.

[9] A. Wombacher, P. Kostaki, K. Aberer: WebXIce: An Infras-
tructure for Information Commerce on the Web, Proceedings
of the 34th International Hawaiian Conference on System Sci-
ences, Maui, USA, 2001.

[10] A. Wombacher, K. Aberer: Modelling the ICE standard with
a formal language for information commerce, Proc. of 2nd
International Conference on Electronic Commerce and Web
Technologies (EC-Web 2001), Munich, Germany, September
4-6, 2001.

[11] WfMC Members, Workflow Management Refer-
ence Model, The Workflow Management Coalition,
http://www.wfmc.org/standards/docs.htm.


