
webXice : an Infrastructure for Information Commerce on the WWW

Andreas Wombacher, Paraskevi Kostaki, Karl Aberer
GMD-IPSI

German National Research Center for Information Technology
Integrated Publication and Information Systems Institute

Dolivostrae 15, D-64293 Darmstadt
wombach, kostaki, aberer@darmstadt.gmd.de

Abstract

Systems for information commerce on the WWW have to
support flexible business models if they should be able to
cover a wide range of requirements imposed by the different
types of information businesses. This leads to non-trivial
functional and security requirements both on the provider
and consumer side, for which we introduce an architecture
and a system implementation, webXice. We focus on the
question, how participants with minimal technological req-
uisites, i.e. solely standard Web browsers available, can
be technologically enabled to participate in the informa-
tion commerce at a system level, while not sacrificing the
functionality and security required by an autonomous par-
ticipant in an information commerce scenario. In partic-
ular, we propose an implementation strategy to efficiently
support persistent message logging for light-weight clients,
that enables clients to collect and manage non-reputiable
messages as proofs. We believe that the capability to sup-
port minimal system platforms is a necessary precondition
for the wide-spread use of any information commerce in-
frastructure.

1. Introduction

Electronic systems are becoming more and more signif-
icant in industrial, commercial and scientific applications.
As modern markets move rapidly onto electronic platforms,
E-Commerce and eBusiness are becoming key terms in to-
day’s economy reflecting this tendency. E-Commerce ad-
dresses the trading of physical goods, such as books, food,
computers and appliances. Trading information goods, like
news, software, or reports, is even more attractive over elec-
tronic channels, since goods can be distributed through the
same infrastructure. We will use the notion of information
commerce for this specialized form of electronic commerce.

Models and infrastructure for Information Commerce,
constitute an area of active research and development that
comprises many technical challenges. These are related to

delivery, copyright issues, tamper-resistance, adequate pay-
ment facilities, non-repudiation and proof of actuality of the
information. A limitation of the current situation is that
users are overwhelmed by an enormous quantity of unstruc-
tured, uncertified data. We argue that this may be acceptable
for the average citizens, it is certainly not for professional
users. Organizations, professionals but also private citizens
willing to gain a profit from the knowledge of information
or to rely important decisions on information demand value-
added services like personalization, evaluation, categoriza-
tion and combination of information. In addition, they re-
quire that the origin of the information is trusted and that
the information is fresh, in order to ensure that they base
their decisions on up-to-date and accurate information.

Within the European research project OPELIX [23] we
develop an infrastructure for information vendors who sell
original of information, information mediators, who buy, re-
combine and resell information, and information brokers
who provide directories of information vendors together
with added-value information. We assume that information
has an associated value, that requires controlled access in an
individualized manner and guarantees concerning the qual-
ity and authenticity of the information, but that the informa-
tion is not that sensitive, that it requires strong protection
mechanisms to disable unauthorized access. The different
properties associated with an information product and the
corresponding interaction between buyers and sellers will
be specified in a highly configurable business offer specifi-
cation language. This is an adequate assumption for many
application types, like portal sites, electronic new services,
stock market information services, software evaluation ser-
vices, or directory services.

In this paper we describe webXice [24], a first imple-
mentation of a communication and information distribution
platform that supports the requirements described.

Within the webXice engine (web-enabled extended ICE
protocol) the XML-based Information and Content Ex-
change (ICE) protocol, a W3C note, is implemented and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


extended. The ICE protocol [10] describes how information
providers and consumers communicate to exchange infor-
mation using a differentiated information exchange model.
ICE has been proposed by various vendors of systems sup-
porting information business, mainly for the publishing in-
dustry and for catalog data exchange.

The webXice infrastructure builds on existing Web tech-
nology. We will specifically describe which client-side
architecture has been developed in order to enable light-
weight clients to participate in the communication required
to perform information commerce using an interaction pro-
tocol like ICE. Whereas the server implementation can rely
on full fledged server technology, including database ser-
vices and server-side components, a client solely equipped
with a standard Web browser has to deal with a number of
limitations like

� No capability to actively respond on requests

� Persistency mechanism are lacking (e.g. database sys-
tems)

� The runtime environment has limited capabilities (e.g.
Web browser, Java)

� Restricted access the operating system resources (e.g.
through applets)

Despite of those limitations we will describe how a mini-
mal support with regard to supporting the business logic and
specifically security can be provided. The minimal client is
enabled to correctly participate in the message exchange, to
verify correctness of messages and to log messages persis-
tently to collect proofs in case of dispute with the business
partners.

The contents of the paper are organized as follows. In
Section 2 we give a high-level description of an information
commerce marketplace, describing the overall scenario we
have in mind. Then we describe in Section 3 the webXice
architecture in two typical instantiations covering the sce-
nario’s requirements. Section 4 describes the main models
realized within the webXice system, including the message
exchange model, the business process model and the logical
inter-message relationships. The description of the imple-
mentation of the various webXice components is given in
Section 5. Section 6 describes in detail what solutions have
been chosen to instantiate webXice on a light-weight client.
In Section 7 we illustrate the use of the system by means of
a sample scenario. Finally, we conclude with related work
in Section 8 and an outlook on future work in Section 9.

2. High-level description of an electronic infor-
mation commerce marketplace

In Figure 1 we illustrate the main functions of an infras-
tructure supporting an electronic marketplace for informa-
tion commerce performing business in an open environment

with several parties involved in processing several trades. In
this scenario an information mediator obtains information
from two suppliers and then sells the enriched information
to a user. Trusted third parties are involved in the trading
process in order to enable the issueing of certificates and the
financial clearing. Timely delivery of information is critical
(indicated by the clock symbol) as freshness of information
is an important quality measure.

Before an actual delivery of information can be per-
formed a search and negotiation phase is performed, which
is indicated by the functions in the box. This phase, in turn,
consists of:

� searching business offers that suit the users’ demands;

� matching the information offer and the user’ demands;

� negotiating the open parameters in the business offer.

Important aspects of the negotiation besides payment and
delivery terms, are the copyright terms implied by the in-
formation offering, quality parameters and the means used
to protect and authenticate the information good. After
an offer has been negotiated, the two parties settle a busi-
ness contract, which is then executed. The business offers
and business contracts are expressed in a ”business offer
description language”. The business offer description lan-
guage provides models to define which information services
are, respectively, offered by the business (business offers)
and requested by the users. A business offer describes the
type of information sold by a business and under what con-
ditions, with which quality guarantees and with which sub-
scription facilities the information is made available.

The actual execution of business contracts requires a
number of functions that perform the following operations
by interpreting the ”business offer description language”:

� Delivery of the information according to the contract
terms to the user, both in push and pull mode, within
time constraints and with the desired information qual-
ity.

� Payment, by involving a financial clearing organisa-
tion.

� Authentication, by involving an authentication service.

� Mediation, for processing business offers that provide
information combined from different sources and with
added-value.

A simple sample scenario for such a marketplace, that
we have implemented with the approach described in this
paper, is electronic procurement, where catalogue informa-
tion is exchanged between different parties. Typically prod-
uct specific data is stored centrally and maintained within
a legacy system of the manufacturer, who can provide his



customers, e.g. vendors or stores, with the updated product
information electronically. Large companies can afford a
continuous connection to the Internet and typically maintain
servers available from the Internet (e.g. for hosting the web
presence), something that small companies not necessarily
have. Furthermore, large companies invest more in system
integration than small ones, because they gain a higher ben-
efit from automated and error-free integration of high vol-
ume data. To support both types of companies the manu-
facturer should electronically provide the updated product
information in an appropriate way. The resulting solution
has to support communication between servers as well as
communication between a server and a minimal client. The
provision of this information has to be performed according
to business contracts that are established and implemented
through the marketplace infrastructure.

information
offer

information
demand

supplier
agents

user
agents

search, match, negotiate
delivery
contract Internet marketplace

user

brokering

financial clearance
(e.g. smartcard, eCash)

supplier 1

supplier 2
brokering

mediation

supplier

Figure 1. Main functions of an electronic mar-
ket place for information commerce.

3. Architecture of an information commerce
system

In this section we outline the architecture of webXice, a
prototype system for implementing the scenario described
in the previous section. We based this system initially on
an existing business offer specification language, namely
the ICE (Information and Content Exchange) protocol. The
ICE protocol describes a communication protocol for use
by content providers and their users and will be described
in detail later. Though it is limited in scope with respect
to our purposes, e.g. no payments are supported, it is suffi-
cient as a starting point and is currently being extended with
respect to additional requirements.

The webXice architecture is designed in a way that al-
lows to make maximal reuse of existing infrastructures
for content representation, information dissemination, pay-

ment, copyright, authentication, and security. Only the spe-
cific components required to process business offer descrip-
tions are developed.

The system is based on a distributed architecture. In
particular, it is composed of a number of servers at the in-
formation providers side and a number of clients, one for
each user. The core of the system is the webXice library
that provides the basic functionality that is common to both
the client and server side of the system. The detailed func-
tions of the webXice library will be described in Section 4.
The core library contains a business offer language inter-
preter, which interprets a business offer specification for a
certain information product and executes the corresponding
workflow. In doing that it uses different services for deliv-
ery, payment, authentication and copyright that are accessed
through defined API’s. By this architecture the system is as
open as possible for extensions and as modular as possible
for the specific configurations of the different users. The
services used by the webXice system are the following.

� Services for information distribution. Though contents
can in principle be delivered directly within messages
exchanged by the webXice systems, this is not neces-
sarily the most efficient way of delivery. As in the ICE
protocol we also allow to send references to content,
that are used by the consumer to access the delivered
information. In addition, specialised delivery systems,
like push systems [11,12] can be integrated, in order to
optimize the physical delivery of large contents over
the Internet.

� Payment services. Minipay [2,3] is one approach to
standard micro-payment protocol we use for webXice.
It is originally designed to support electronic payment
on the Internet. However, this model can be adapted
to other payment schemes, like pay-per-view, volume-
based, or flat fee schemes. For larger payments, also
credit card based payments, like SET [13], can be in-
tegrated.

� A security infrastructure. The security infrastructure is
based on the standard X.509v3 public key certificates.
It is used for signing of messages, according to DigSig
[9], and the signing of applets in order to provide se-
cured applets.

Based on the webXice library different instantiations of
webXice systems are realized supporting the different roles
in the information commerce scenario, as well as taking into
account different system platforms. In the simplest configu-
ration, a merchant server interacts with a light-weight client.
This configuration would typically be used in a B2C appli-
cation. This configuration is illustrated in Figure 2.

The merchant side of this configuration consists of a sup-
plier system that has access to a payment system and a



Minimal
Customer

Browser

OPELIX
engine

Supplier

OPELIX
engine

Clearing
house

Payment
Gateway

Deliverer

Delivery
engine

Customer side Merchant side

Payment
Client

Figure 2. A light-weight client architecture

delivery system. The payment and delivery systems can
be owned by the merchant or be outsourced to service
providers. The delivery system will in this configuration be
a Web server that can be accessed by the customers browser.
The payment system performs the clearing of payments,
and provides accounting facilities. Besides the basic pro-
cessing capabilities for the interaction with a customer pro-
vided in the current version of webXice, the supplier system
will be enabled to offer information products and mediate
information products, i.e. combine information from other
merchants to create new information products.

Technically, the current prototype of the merchant side
is implemented using a servlet infrastructure. The system
is running without problems on different platforms, like
the Apache web server and the jserv servlet engine, the
Netscape Enterprise web server with the jrun servlet engine
and the IBM WebSphere application server.

The client side of this configuration is implemented as
a ”thin” client, that requires as only infrastructure a Web
browser and a payment client, that provides access to the
payment gateway of the server. In addition to the core func-
tions of webXice this system provides facilities for inter-
active access, through a simple web interface via the web
browser. The merchant side has to take measures to com-
municate with such a client, also in situations where it is
partially disconnected.

How the functionality of a webXice client can be realized
with this minimal infrastructure without sacrifycing func-
tionality and security will be discussed in greater detail in
Section 5.

For customers that represent larger organizations with
corresponding infrastructure, e.g. in B2B applications, a
different architecture is chosen, that is illustrated in Figure
3.

Here on the customer side webXice runs on an Intranet
server that can be accessed by the different members of
the organization to perform the transactions. The Intranet
server in turn is connected through a stable connection to
the suppliers server. Also the Intranet server of the com-
pany keeps all the necessary information and logs all the
transactions that are taking place. Since in this scenario the
customer side may afford to install specialized delivery sys-
tems, also more advanced methods of content delivery can

Customer 1

Provider
Browser

OPELIX
engine

Supplier

OPELIX
engine

Clearing
house

Payment
Gateway

Deliverer

Delivery
engine

Customer side Merchant side

Customer 2

Browser
Payment

client
Delivery

client

Figure 3. A B2B architecture

be supported, like push systems or dedicated ICE engines
of external providers.

4. The webXice library

The webXice library provides the core function of the
information commerce infrastructure. It implements the
information trading process through message exchanges
among the trading partners and calls to the backend sys-
tems for payment, delivery and authentication. For commu-
nication it uses the Internet as infrastructure. For message
representation it uses the XML document format. The we-
bXice engine realizes the following main processing phases
as illustrated in Figure 4.

workflow
management

persistent
logging

XML parsing

communication
(HTTP)

accessing
relationshsip

info

XML encoded messages

Figure 4. Model of the internal workflow

1. Message exchange: the webXice engine provides
generic capabilities to exchange messages according
to a generic request/response protocol over the Internet
communication infrastructure (HTTP) and to convert
messages back and forth from the document represen-
tation (in XML) to an internal object-oriented repre-
sentation (in DOM [27] ) for further processing.

2. Business process: the webXice engine implements a
business process for trading information. Each step in



this process consists of a message exchange and an in-
teraction with backend systems or the end user. The
engine controls whether incoming messages are in ac-
cordance with the current state of the business process
and initiates the sending of the correct messages in
the current state, such that the participant behaves cor-
rectly according to the business protocol.

3. Persistent logging: the webXice engine keeps a per-
sistent representation of the business process state by
storing the exchanged messages. In addition it pro-
vides management functionality to efficiently access
the persistent state for analysis and verification pur-
poses.

In the following we describe in more detail each of the
processing phases and their underlying models.

4.1. Business process model (ICE)

The business process supported by the webXice engine
depends on the business model used for information trading.
Thus a flexible language for describing such processes is re-
quired, a so called business offer description language. In
the current version of webXice the main focus of webXice
was on the elementary infrastructure required by an infor-
mation commerce system rather than on developing sophis-
ticated languages for describing business processes. Thus
we have used an established standard information com-
merce language for the implementation of webXice, namely
the ICE standard.

The ICE (Information and Content Exchange) protocol
[10] serves us two purposes. First, we use and extend the
basic communication patterns of the ICE standard as a basis
for the model of controlled message exchanges used by we-
bXice, which will be described in Section 4.2. Second, we
will use the specific ICE message types as one possible in-
stantiation of a business offer language. Since ICE has been
designed for closed marketplaces, this language will be ex-
tended in future versions in order to support additional func-
tions, like payment and authentication. The basic commu-
nication patterns will however remain, also for the extended
languages, and thus the subsequently described webXice in-
frastructure can be reused. We describe in the following the
main characteristics of this protocol shortly.

The ICE protocol is a communication protocol for use by
content providers (called syndicators) and their users (called
subscribers). The ICE protocol is a closed user group pro-
tocol, which defines the roles and responsibilities of the
participants, the syndicators and subscribers, the message
formats and the method of content exchange, but leaves
other dimensions like payment, authentication or metadata
for content description open as orthogonal dimensions. The
two main phases of the protocol are subscription establish-
ment and management and data delivery.

An interaction between syndicator and subscriber starts
by establishing a subscription. Typically the subscriber first
obtains a catalog of offers from the syndicator and then sub-
scribes to a particular offer by proposing it to the syndica-
tor. Alternatively the two parties may engage in a parame-
ter negotiation protocol. After the subscriber subscribes to
a particular offer the data delivery phase starts. ICE uses
a package concept. Packages encapsulate contents of arbi-
trary type. A sequenced package model allows syndicators
to support both incremental and full update models. ICE
also defines push and pull data transfer models and detailed
temporal and quantitative constraints on delivery.

One extension of ICE that is currently under develop-
ment is the integration of payment messages. Such an ex-
tended language then allows the provider to flexibly de-
scribe a variety of different payment models, including the
well known ones like detail-based, pay-per-view, volume-
based, quality-dependent, time-based, and flat subscription
fees, or a combination of these.

4.2. The webXice communication model

The ICE protocol is a request/response protocol that
allows for fully symmetric implementations, where both
the syndicator and subscriber can initiate requests. This
request/response model of ICE is mapped to the HTTP
post/response model. WebXice supports the symmetric ICE
request/response model generically by abstracting from the
specific message types of the ICE standard. In addition it
supports and generalizes the unsolicited message model in-
troduced in ICE, which we describe briefly in the following.

Depending on the available infrastructure a server may
not be able to issue requests to clients. This is for example
the case for a minimal client (also called a minimal sub-
scriber) implementation based on Web browsers only. A
way to address this problem is proposed in the ICE protocol
specification by means of the unsolicited message concept.
A server can set an unsolicited flag within a response. So it
indicates that it wants to send a request to the client. In re-
sponse, the client sends an unsolicited-now message, which
is then answered by the unsolicited-request of the server
(this is a real response with regard to the underlying infras-
tructure). This response is then answered by the client send-
ing an unsolicited-response (this is a real request in the un-
derlying infrastructure). The server can now continue send-
ing unsolicited-request or it can stop the unsolicited com-
munication by sending an unsolicited-finish message to the
client. We depict this mechanism formally by an automaton
describing the possible message sequences in Figure 5. The
arrows marked by the boxes belong to the requests of the
underlying infrastructure, while the others are responses.

For general applicability in webXice repetitive se-
quences of unsolicited-requests and unsolicited-responses
are possible. Also a unsolicited-finish response message is



request

response

unsolicited-now

unsolicited-response

unsolicited-request

response with
unsolicited-flag

Client Server

unsolicited-
finish

request

response

Figure 5. The webXice communication model

introduced to remain consistent with strict request-response
model. (This corrects in fact a minor flaw in the current ICE
specification.)

4.3. Logging of messages

All messages that are exchanged are persistently stored
in a log. For example, when the messages are digitally
signed (e.g. according to the DigSig [9] standard), they can
be later used as non-repudiable evidence in case of disputes,
if the business protocol is designed carefully. An analysis
of what properties of a protocol are sufficient in order to
enable non-reputiability in an open market environment is
given, for example, in BAKO [4,5].

In order to analyze message exchanges, to verify their
correctness or to provide proofs in case of disputes, the per-
sistent message log has not only to record the messages ex-
changed, but also to be able to manage the relationships that
exist among the messages. There exist different types of re-
lationships, that need to be considered:

1. Communication relationships: these are the re-
quest/response pairs and the sequences of messages
exchanged in an unsolicited request processing. They
are based on the generic communication model that
webXice is based on.

2. Semantic relationships: they are based on the refer-
ences used in messages to relate messages to earlier
messages for business purposes. In the ICE protocol
as used in webXice the following references occur: (a)
offer messages in the offer phase may be related to spe-
cific catalogs, (b) messages of the subscription phase
refer to a specific subscription-id (example messages
are ice-change-subscription, ice-cancellation, ice-offer
with subscription-id), (c) messages in the delivery
phase are related through the package sequence model
of the ICE protocol as well as by the subscription-id.

Based on these relationships traces of consecutive mes-
sages referring to each other need to be produced by a log

manager upon request.

5. Implementation of a light-weight webXice
client

The implementation of a server side webXice engine can
rely on a powerful infrastructure, including database sys-
tems and application servers. Such an approach is neither
easy to use for inexperienced users, nor flexible and several
problems appear whenever there is an upgrade. Since we
are interested to keep the information commerce market in-
frastructure as open as as possible, we should, especially on
the client side, not be forced to rely on such an infrastruc-
ture. Therefore we explore the architecture of a light-weight
webXice engine, that can be fully implemented based on a
typical Internet client environment consisting of a standard
Web browser, without sacrificing the needed functionality
that has been described in Section 4 and without compro-
mising security.

5.1. Implementation platform

Four software solutions were considered for the devel-
opment of the proposed light-weight webXice client: (i)
applets, (ii) plug-ins, (iii) activeX controls and (iv) Java
applications running on the client side (probably access-
ing a local database via JDBC). Java applications provide
full access to system resources like file system and local
databases, but may be operating system dependent, and re-
quire the customer to install proprietary software and to
manually start up application programs. ActiveX is pro-
prietary to the Microsoft platform and thus limited in use.
PlugIns are not necessarily platform dependent and have
limited access to local resources. Applets can be flexibly
downloaded, thus the user is relieved from version man-
agement, they require no local resources, and with the Java
security model (sandbox), access to local resources can be
controlled. The main limitation we have to consider for ap-
plets, is keeping them small in order to avoid long download
times. Thus, it turned out that applets are the most appro-
priate choice for our purposes.

5.2. Storage management

The next step is to examine the different types of per-
sistent storage accessible by applets. The main options we
have at hand here are:

� local database system

� local file system

� cookies, which can be addressed directly or via
JavaScript

A local (standard) database system provides high storage
capacity and functionality, but is typically not available on a



thin client installation and imposes administrative overhead.
Thus we omitted this possibility.

Allowing foreign code to access the local file system is
a critical point. Therefore the Java environment provides
the sandbox model. The Java sandbox is responsible for
protecting a number of resources (like, net access and file
access). It does so at a number of levels depending on the
visitors confidence [1]. Typically a signed applet is allowed
to access more resources (e.g. like the local file system)
than an unsigned one.

Cookies are used to store server information on the
client side. They are easily accessible through HTTP and
JavaScript. Cookies can later on be retrieved, modified and
deleted by all servers matching the domain name captured
in the cookie. By the usage of JavaScript cookies can also
be accessed by the client directly, but are then no longer
readable by the corresponding server. Cookies are limited
by machine and browser dependent parameters on the max-
imal number of stored items and the maximum size of an
item.

With all this in mind, there remain three different alter-
natives based on applet technology for persistent message
logging:

� exclusive use of cookies

� exclusive use of local file system

� use of both cookies and local file system

The first alternative is based on applets on the client side
that use cookies as persistent storage. The main problem
are the limitations of cookies when used to store data. First,
cookies have an expiry date, which has to be set. In case
only short term storage is needed, e.g. till the end of a trans-
action, this is not a severe restriction. Second, the number
of cookies is limited, e.g., for the Netscape browser there
are no more than 20 cookies allowed for a specific page
and the total number of cookies stored within one file is
limited to 300 cookies. Third, there exist also browser de-
pendent limitations in the size of the cookies. For example,
Netscape limits the cookie size to 4096 bytes. So cookies
can be easily used without generating security problems on
the client side, but the size of the persistent store is very lim-
ited and dependent on the browser type. This approach can
be used for very short term business relations that require
small amounts of persistently stored data for logging.

The second alternative is the use of the local file system.
An applet, which is downloaded from the merchant web site
accesses directly the local file system to store data persis-
tently. The main problem here is security. As described ear-
lier, the applet is running in a sandbox, where the user has
to grant access rights to the sandbox. In case the applet has
total access to the local file system it is able to read, write
and delete all data. For security one can use only applets

signed by a trusted third party, but this in turn may limit the
function that is supported by the applets.

For practical reasons and in order to enable merchants to
differentiate themselves it is desirable that merchants pro-
vide applets with merchant-specific functions. Such added-
value functions could be specialized visualization of the
offer messages, support of optimized subsets of the gen-
eral information commerce protocol, or support for vendor-
specific delivery mechanisms. Therefore we do not want to
rule out the possibility that a vendor provides the specific
applet that implements the basic workflow but provides ad-
ditional specific functions for the optimized interaction with
the customer.

To cover this we combine both approaches. We use un-
signed applets from untrusted business partners, which are
allowed to store their transaction data in cookies and we use
standard applets from trusted third parties to make trans-
action data in cookies persistent via the file system. In
this way we combine the ability to support flexible mer-
chant specific applets for trading and the security that ac-
cess to critical resources is granted only to trusted applets.
The only drawback is that some additional coordination and
communication among the two applets is needed.

5.3. Representation of the Log Data

The standard data representation mechanism we have at
hand is XML respectively DOM as an object-oriented repre-
sentation of XML. In addition to straightforwardly store the
XML structured messages in the log, the different types of
message relationships introduced in Section 4.3 need to be
managed. We provide this support by representing those re-
lationships within the data model of XML/DOM explicitely.

For representing a relationship XML/DOM provides in
principle two different mechanisms, namely primary rela-
tionships, which are the containment relationships within
a document hierarchy, and secondary relationships which
are realized through the ID/IDREF mechanism of XML.
Among these the primary relationships are more limited
since they allow to represent only tree-like structures, but
are more efficiently to process. Therefore we decided to
exploit them as far as possible in the following way.

All the communication relationships, which are linearly
ordered, are mapped to primary relationships. Since in ordi-
nary request/response exchanges this does not impose any
relationship from responses to the next request, additional
semantic relationships can be mapped to the primary re-
lationships. In the current implementation these are of-
fer messages (ice-offer) that are sent in response to cata-
log messages (ice-catalog), subscription change messages
(ice-change-subscription) and requests for packages (ice-
get-package), which are linearly ordered in a canonical way
due to the sequenced package model. The other references,
like subscription-ids in delivery messages (ice-package, ice-



get-package) are implemented as secondary relationships.
Figure 6 shows the abstract representation of the primary

relationships in the DOM representation derived from com-
munication relationships, including an unsolicited message
exchange, with some additional semantic relationships also
including secondary relationships (dashed arrows).

Using a persistent DOM implementation, the logs can
now be easily accessed for inspection using the DOM API
or an XQL query interface through Java application pro-
grams provided as applets [8].

Q

R

Client

Server

Q

R

Q

R

Q

R

ice-get-catalog

ice-catalog

ice-offer

ice-subscription

ice-get-package

ice-packages

Q

R

Q

R

ice-offer

ice-offer
counter-offer

ice-change-subscription

ice-offer

subscription-id

Figure 6. A complete XML message log exam-
ple

6. Sample Implementation

In the following we describe an experimental implemen-
tation of a thin client. It is implemented by means of applets
and uses both cookies and the local file system for storage
as described in the previous section. In the following we
describe the different components of the system as depicted
in Figure 7.

cookies

local file
system

MessagesOrganizer
(persistency, signed)

w
eb

X
ic

e 
ap

pl
et

(w
or

kf
lo

w
, u

ns
ig

ne
d)

Customer

Trusted third party

B
us

in
es

s 
P

ar
tn

er
(M

er
ch

an
t)

w
eb

X
ic

e
se

rv
le

t

PDOM

Figure 7. Architecture of the webXice client

6.1. Persistent representation of log data

As explained in Section 5.3 the messages as well as their
relationships are represented in XML. The standard API for
accessing XML data is DOM. In order to provide conve-
nient access we are using a persistent DOM implementation
(PDOM) [25] to store the log data, rather than storing it di-
rectly as XML document files. In this way the DOM API is
also available for accessing the persistently stored log data,
while the PDOM engine handles secondary storage man-
agement transparently.

The functionality of the MessageOrganizer covers the in-
sertion of new messages, the retrieval of subscription infor-
mation, and the retrieval of messages from the history.

The insertion of a new message starts with the parsing
of the incoming message, and thus the creation of the DOM
representation of the message and the derivation of the mes-
sage relationships. The DOM representation of the relation-
ships is created and then stored persistently together with
the messages using PDOM.

The MessageOrganizer allows to retrieve an ice-
subscription message related to a specific subscription-id,
either through the subscription message itself or any sub-
sequent modifications of the subscription. This function
is for example needed to check the delivery conditions of
a specific subscription during the delivery phase. Since
the subscription-id relationship is explicitly represented in
DOM it can be directly derived from this representation.

The retrieval of messages from the history supports two
functions. First it allows to get all leave nodes of the cur-
rent instantiation of the persistent data log. So the newest
messages for each logical communication task is returned.
Second we offer the possibility to get a history of the ex-
changed messages starting from a specific leave node of the
persistent data log. This function is for example needed to
provide evidence in case of a dispute.

The MessageOrganizer is also responsible to transfer in-
formation from the cookie file to the message log. Since it
is able to access the local file system this function must be
performed by trusted software. Therefore it is executed by
a signed applet that needs to be provided by a trusted third
party.

The applet is controlled in the current implementation
by the user via a simple graphical user interface. The user
is asked to fill in a message directory, where the respective
PDOM file is stored. Furthermore the user interface pro-
vides a button, that allows to initiate the operation of copy-
ing the cookies content to the persistent data log. The applet
reads each cookie of type localhost and checks whether the
message is already transferred or not. If not, it is inserted
into the log. The access is performed in order of entry, such
that the oldest entries are read first.

For the correct working of the applet information about
the type of Web Browser and the operating system is re-



quired. This information can be derived by accessing
the corresponding JavaScript variables, provided by the
JavaScript navigator object.

6.2. Implementation of the application logic

The workflow controller (webXice applet in Figure 9)
is responsible for performing the correct message exchange
according to the business process protocol and providing
the user with a graphical user interfaces via HTML. Since it
accesses only cookie files and the function may be specific
for a specific merchant, it can be provided by the merchant
as an unsigned webXice applet. The merchant can use the
same controller as the webXice servlet on his side.

As an example we implemented the following ICE com-
munication for establishing a subscription within this work-
flow component.

� there is a message ice-get-catalog send to the webXi-
ceServlet,

� the server responds with an ice-catalog message,

� then the client choose an appropriate offer from the
GUI and sends an ice-offer message,

� then the server sends an ice-subscription message
back. (Within this example no negotiation is per-
formed

The exchanged messages are stored in the cookie file.
Therefore the applet extracts from the ICE message the el-
ements payload ID, response/request ID, message ID and
document’s URL. Then the applet passes the parameters to
the cookie object of the browser and places it into the cookie
file. This information is used for validating whether mes-
sages are compliant the business protocol, that is checking
whether the right message is sent or received. The current
applet implementation uses an in-memory representation of
the exchanged messages and stores the messages as persis-
tent log into the cookie file.

Most of the implementation is completed as described,
yet not fully integrated. Most importantly, the PDOM based
storage component is currently used on the server side only
within a servlet and will replace a currently purely file-
based implementation of the MessageOrganizer applet. We
expect no major difficulties with this step as applets using
PDOM have been successfully used in other contexts.

7. Application Scenario

We tested the system for the sample procurement sce-
nario described in Section 2, where catalogue information
is exchanged between different parties. We focussed in this
test on the information delivery components, and omitted
payment functionality. The solution for the large compa-
nies feeds the delivered product information more or less

directly into the internal ERP system, in the concrete case
into the Net.Commerce system of IBM [15] and the Inter-
shop system [26]. The minimal client solution allows the
small vendor to access this information via an applet and
to feed the product information changes manually or using
scripts into his internal system. Within this scenario the
product information is internally maintained in some legacy
system, which we simulated by a simple database applica-
tion.

8. Related Work

Systems for information commerce have been proposed
for high value information goods, like DigiBox [19,20] and
Cryptolopes [17,18]. In these systems the electronic goods
are encrypted and stored in a container, and annotated with
meta-information like description and price. After payment
by the customer, the merchant provides a key for decrypt-
ing the content of the container. This concept does not re-
quire logging on the customer side beyond standard pay-
ment logging performed by the payment wallet, because the
customer receives the good before paying.

For low value electronic goods, less security is required,
because a potential loss of the information is less expensive.
A simple shopping model is given in the ”Common Markup
for micropayment per-fee-links” W3C working draft [14],
which describes standardized markup for the price of con-
tents accessible through Web pages supported by multiple
payment systems. This markup implements a pay-per-link
business model, where the customer is charged before ac-
cessing a specific link. There are several implementations
of this draft, e.g. IBM’s Micro Payments [2,3].

Both types of approaches do not simultaneously address
the issues arising when requiring flexible business models
and trading with low value electronic goods at the same
time. In case of the ”Common Markup for micropayment
per-fee-links” implementation based on Micro Payments
also the question of persistent message logging, in order to
provide some security to the consumer is not addressed.

Different E-Commerce systems, for physical goods, of-
fer a variety of shopping models and system support. In
merchant centric systems the state information is stored
only on the merchant side while the customer does not have
any state information or persistent logging at all. Examples
of this type of systems are Intershop [7], webSphere Com-
merce Server [15], open market [21,22], which are mainly
based on an application server while the client side is con-
sidered to be a simple web browser. The server side man-
ages the states of the different clients and also keep track
of the performed actions, not at a message level, but in an
internal representation. The user can view the state infor-
mation of the ongoing process, like viewing the shopping
cart, inspecting the orders or tracking the delivery process
[16]. The business models used within these systems are



quite static.
A proposal for a more flexible shopping model is pro-

posed by [6]. The model assumes an external and inde-
pendent shopping controller, who provides a specific busi-
ness workflow to the trading partners. So the merchant can
use the external shopping controller if he wants to provide
his goods by the shopping controllers business workflow to
gain a higher flexibility. The shopping controller holds the
state information independently and triggers the different
actions, like e.g. pay and deliver. While the shopping con-
troller is an independent instance within the trade, it can
store the exchanged messages persistently as an evidence
for both parties.

An extension of this idea is a shopping controller on both
the merchant and the client side, which can be dynamically
configured. Models for having controllers on both sides are
found in the Open Trading Protocol [29], used for selling
physical goods, and the ICE protocol introduced in Section
4.1 for distributing electronic goods. Both protocols spec-
ify the trading workflow and the messages formats. Cur-
rently, they do not allow a flexible specification the work-
flows. OTP provides six baseline transactions, which are the
main purchase activities, while the ICE protocol provides
only flexibility in the specification of the delivery parame-
ters. Within these models, both parties are forced to hold
state information and should collect evidence. A possible
implementation for the client side is proposed in this paper.

9. Outlook

Based on the infrastructure presented in this paper a
number of extensions will be developed to achieve the
complete functionality required by an information com-
merce systems. Among these are the integration of the
payment functionality at a system level and the signing
of the messages, such that the logged messages become
non-repudiable. With the increasing popularity of mobile
clients a natural question to investigate, how information
commerce clients for even more light-weight platforms, like
WAP [30], can be enabled. At the conceptual level our main
interest is on the development of more general and flexible
business offer models and specification languages that are
particularly suited to represent information products, both
from the content as well as from the process perspective.

References

[1] S. Oaks. Java Security. O’Reilly, 1998.
[2] A. Herzberg and H. Yochai. Mini-Pay - Charging per Click

on the Web. In Proc of 6th WWW Conf, April 1997.
[3] IBM Micro Payments. http://www.ibm.com/software/ web-

servers/commerce/payment/mpay/index.htm.
[4] S. Andre. BAKO - Secure Internet Banking with Privacy En-

hanced Mail. In Proc. of the 7th joint European Networking
Conference, Budapest, 1996.

[5] M. Wichert. BOPD - Browse, Order, Pay and Deliver - A
Purchasing Protocol on the Internet. Protocol Description,
1997.

[6] S. Ketchpel, H. Garcia-Molina, and A. Paepcke. Shop-
ping Models: A Flexible Architecture for Information Com-
merce. In Proc. of the 4th Annual Conf. on the Theory and
Practice of Digital Libraries, 1997.

[7] Intershop Enfinity White paper. http://www.intershop.com/
products/pdf/enfinity whitepaper.pdf.

[8] GMD-IPSI XQL Engine.
http://xml.darmstadt.gmd.de/xql/index.html.

[9] D. Eastlake and J. Joseph Reagle. XML-Signature Syntax
and Processing. http://www.w3.org/TR/xmldsig-core/.

[10] N. Webber, C. O’Connell, B. Hunt, R. Levine, L. Popkin,
and G. Larose. The Information and Content Exchange
(ICE) Protocol. http://www.w3.org/TR/NOTE-ice.

[11] Minstrel. http://www.infosys.tuwien.ac.at/Minstrel/.
[12] M. Hauswirth and M. Jazayeri. A component and commu-

nication model for push systems. In Proc. of the ESEC/FSE
99 - Joint 7th European Software Engineering Confer-
ence (ESEC) and 7th ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering (FSE-7),
September.

[13] SET. http://www.setco.org/ set specifications.html.
[14] T. Michel et al. Common markup for micropayment per-fee-

links. http://www.w3.org/TR/WD-Micropayment-Markup/.
[15] BM WebSphere Commerce Suite. http://www.ibm.com/

software/webservers/commerce/servers/index.html.
[16] UPS Package Tracking.

http://www.ups.com/tracking/tracking.html.
[17] U. Kohl, J. Lotspiech, and M. A. Kaplan. Safeguarding

Digital Library Contents and Users - Protecting Documents
Rather Than Channels. In D-Lib Magazine, September.

[18] IBM Cryptolopes. http://www.ibm.com/ soft-
ware/security/cryptolope/.

[19] O. Sibert, D. Bernstein, and D. Van Wie. Securing the Con-
tent, Not the Wire, for Information Commerce. with pa-
per of research division of www.epr.com. http://www.star-
lab.com/secure-the-content.html.

[20] Intertrust Home Page. http://www.intertrust.com/.
[21] Internet Commerce: The open Market Solution. Technical

White Paper, Open Market Inc., November 1997.
[22] NextPage. http://www.nextpage.com/index nojs.html.
[23] OPELIX Home Page. http://www.opelix.org.
[24] webXice. http://www.darmstadt.gmd.de/oasys/projects/webxice/.
[25] G. Huck, I. Macherius, and P. Fankhauser. PDOM:

Lightweight Persistency Support for the Document Object
Model. In Proc. of the 1999 OOPSLA Workshop ”Java and
Databases: Persistence Options; on the 14th Annual ACM
SIGPLAN Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’99), Denver, 1999.

[26] Intershop Home Page. http://www.intershop.com.
[27] Document Object Model (DOM) Level 1 Specification Ver-

sion 1.0. http://www.w3.org/TR/REC-DOM-Level-1/.
[28] J. Clark. XSL Transformations (XSLT) Version 1.0.

http://www.w3.org/TR/xslt.
[29] D. Burdett. Internet Open Trading Protocol Version 1.0. In-

ternet Draft, 1999. Commerce One.
[30] Wireless Application Protocol technical specification.

http://www.wapforum.org/what/technical.htm.


