
Abstract
In this paper, we present a query system that has been im-

plemented in a practical biological database - GPCRDB.
Distinguishing features of this system include: smart query
relaxation and smooth integration of navigation with con-
ventional language-based query functions. Query relax-
ation is required due to the fact that queries are not always
effective (in other words, expected results are frequently not
achieved), particularly in scientific databases like biologi-
cal databases, in which complex domain knowledge is
heavily used. On the other hand, navigation capability is
desired as complex data sets are involved, especially in a
WWW based environment where multiple hyperlinks are of-
ten employed. For efficient implementation, the “fuzzy
equivalence class” concept has been applied that captures
an important type of domain knowledge.

1. Introduction

Biological databases are among the most important
classes of scientific databases. A variety of biological data-
bases has been developed that provide database support for
research activities conducted in different biological disci-
plines and practical applications in the pharmaceutical in-
dustry. Well-known examples include GDB [PMFR92],
GenBank [NCBI92, WZ98]], GSDB (Genome Sequence
Data Base), GCRDb [GC98], GPCR mutant database
[GP98] and GPCRDB [GPCR98]. Protein or DNA se-
quence data are the primary data that reside in these data-
bases while various related data such as annotations, mutant
information and physico-chemical characteristics are often
added as well. All these systems are equipped with informa-
tion retrieval mechanisms to help biologists to solve their
problems.

In this paper, we report a new query system that has been
implemented in a practical biological database system -
GPCRDB. In this system, query relaxation is important due
to the fact that a query submitted to the system is usually do-
main knowledge related. As a consequence, “nothing
found” may be frequently encountered to the user, whereas
a different formulation of the query might have provided the
data of interest. Navigation is another interesting aspect of
our system which is implemented as an ideal supplement to
the conventional query mechanism. It guides the user to the
right subjects of his/her interest. Navigation helps the user

to drill-down into a data sub-space for more details on a cer-
tain aspect. It is useful for GPCRDB users not only because
the data sets to be handled are complex, but also because
various hyperlinks that point to other GPCR-related resourc-
es available on the WWW are frequently involved.

Distinguishing features of the query system include:

(1) A smart query engine is developed that, when activated
on user’s request, can relax a user query intelligently
(with the help of the domain knowledge). Different
from the relaxation idea described in [YK98], we con-
sider similarities among different concepts: similarity
among keywords and among residue types. For the first,
two hierarchies are constructed: family tree and thesau-
rus hierarchy. Then, the relaxation can be done bottom-
up along the tree structures. For the second, a new con-
cept, the so-called fuzzy equivalence classes is devel-
oped to capture the relationships among residue types.

(2) The top-down presentation style adopted in our query
system allows a user to first get a general impression
about the results of his/her query as quickly as possible;
then use it as a starting point to obtain the data of his/her
particular interest more efficiently.

(3) Navigation capability is smoothly integrated into our
query system within the top-down presentation frame-
work.

Both the top-down style and the navigation capability
are strongly domain-oriented. Using them, a user can
quickly get familiar with the complex domain knowl-
edge and can easily access the relevant data sub-space.

(4) Over-adaptation is a common problem with regard to
adaptive systems. In our case, this issue is concerned
with over-relaxation, which can be avoided by conduct-
ing relaxation step by step. The first iteration explores
the most credible alternative that relaxes the original
query in a certain aspect; the next iteration favors
another aspect, and so on. When all alternatives are
tried, all possible relevant data regarding the original
input query are retrieved. The advantage of this
approach is that the user can interrupt the relaxation
process as soon as the results of interest have been
obtained.

A Query System in a Biological Database

Dunren Che, Yangjun Chen and Karl Aberer
GMD-IPSI, Dolivostr. 15, 64293 Darmstadt, Germany

{che, yangjun, aberer}@darmstadt.gmd.de

Published in the proc. of the SSDBM’99 international conference brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(5) We have also developed suitable access structures for
the main data - sequences and sub-sequences, by which
redundant store of sequences is avoided and the
sequence data (as a whole) can be quickly reconstructed
from the sub-sequences whenever needed.

The remainder of the paper is organized as follows. First, in
Section 2, a general description of the system is given. Then,
in Section 3, we describe the main functions supported by
the GPCRDB query system. Next, in Section 4, we show the
advanced query interfaces that are representative and can re-
flect some of the design styles of our system. Section 5 re-
ports some implementation issues. Finally, a short
conclusion is set forth in Section 6.

2. GPCRDB system description

In this section, we describe the GPCRDB system in gen-
eral. This includes the query system requirements, the data
space of GPCRDB, and the query system architecture.

2.1. Query system requirements

GPCRDB has been developed as an advanced data man-
agement system for G-Protein Coupled Receptors (GPCRs)
within the European Bioinformatics Program. The biologi-
cal goal of this project is to rationalize the drug discovery
process (which previously was mainly guided by “trial and
error”) as GPCRs are the main target in the human body for
today’s medicines. The system will be routinely queried by
academic users (biologists) and industrial users (pharma-
cists) and is intended to be accessible on WWW. This coop-
erative project requires the gathering of data related to all
aspects of GPCRs, the verification of data quality and con-
sistency, the annotation of individual data items, and, last but
not least, an effective query system. Within this large project
we are mainly responsible for the query system.

This task needs to satisfy the following requirements:

(1) Appropriate handling of various, domain-specific, non-
standard data types, e.g., G-protein sequences and hier-
archical classification of the sequences.

(2) A simple, intuitive user-computer interface since the
typical users of the GPCRDB are non-computer-experts
and in particular not experienced in using either com-
plex interfaces or query languages.

(3) Flexible query processing, in particular, smart query
relaxation when the users demand more relevant
matches. This function is highly desired since the users
often have difficulty in systematically exploring all
alternatives due to the domain complexity.

(4) Support of a suitable amount of user interactions so that
the users can conduct the relaxation process toward the
aspects of their particular interests.

(5) The capability of navigation among the obtained results
as the users accessing the database often have difficulty
in precisely specifying their information needs. They
may get a large set of results but containing lots of
unwanted or less interesting ones. This navigation capa-
bility, on the other hand, allows them to focus step by
step on a specific point of interest. In other words, the
system allows them to access the database in an explor-
ative manner.

To cover all these requirements, we have designed a sim-
ple, form-based, access to the database. Supported queries
(forms) range from elementary keyword query, over a num-
ber of specialized queries focussing on a single or a combi-
nation of specific aspect(s) of GPCRs, to more advanced
ones that can combine up to six different query criteria.

2.2. Data space of GPCRDB

Multidimensionality generally exists with real-world da-
ta. Data to be handled in GPCRDB involve various, domain-
specific, and non-standard data types, including protein se-
quences, secondary structure motifs, and hierarchical classi-
fications of the GPCR proteins (e.g., the so-called family
tree).

The primary residents in the GPCR data space are the G-
protein sequences, which are associated with various feature
data (as mentioned above). These feature data or GPCR re-
lated data constitute a multidimensional data space. The var-
ious features are conceptually grouped into three clusters.
Textual feature data such as sequence’s identifiers, key-
words, and a variety of annotation information that is made
by the domain experts. Hierarchical feature data like family
classification (the family tree) and the thesaurus hierarchy
(according to which the sequence set is partitioned). Dis-
crete feature data, e.g., residue mutants (relating to another
database), ligand (binding information) and secondary
structures (named sub-sequences) as well as other physico-
chemical characteristics of sequences.

Queries (for sequences or related data) can concern any
of these features or sequences, e.g.,

- Retrieve sequences belonging to a specific (sub)family
and matching a given keyword;

- Search for sequences that contain a specific residue pat-
tern (given as a regular expression) and a specific second-
ary structure pattern;

- Find sequences that match a given residue pattern and
contain mutations within the pattern;

- Display the ligand binding information of the sequences

that satisfy a particular condition (as above).

2.3. System architecture

As an implementation platform we chose the Informix
Universal Server (IUS) database management system (see
[IUS97]). IUS is an object-relational database management
system that combines the efficiency, stability and scalability
of relational database systems with the extensibility features
(that allow to extend the built-in type system with user-de-
fined data types) of OODB systems. We use the extensibility
of IUS to support the domain-specific data types required in
GPCRDB, such as the long sequence data type. The new data
types are seamlessly integrated in the SQL query language,
which we use to implement the database access functions. In
addition, the IUS offers the WebDataBlade (a powerful
framework for developing WWW-based database applica-
tions), which allows us to effectively develop WWW-based
user interfaces to GPCRDB.

The architecture of the GPCRDB query system is depict-
ed in Fig. 1. It is designed to run on WWW. On the client

side, users formulate their queries by simply filling out the
query forms embedded in HTML pages. When submitted,
the queries are first optimized according to some semantic
knowledge on the spot by calling a corresponding Java
script. This kind of optimization checks the validity of input
parameters and reorders the condition terms involved in an
input query in such a way that the cheapest terms will be
evaluated first. This process uses the local computation re-
sources and can quickly warn the user when any input is not
appropriately offered. Valid queries are then transmitted to
the Web server that further forwards the queries either to the
IUS Webdriver (that calls for other WebDataBlade compo-
nents, see [IUS97]) or to the smart query engine. The IUS
Webdriver, as one of the WebDataBlade components, works
as a gateway between Informix databases and the Web server
while the smart query engine performs query relaxation and
evaluation optimization if complex pattern matching (see be-
low) is involved.

Queries submitted to the Web server are normally inter-
preted by the IUS Webdriver that accesses the GPCRDB da-
tabase and returns query results as Web pages to the client’s
Web browser. However, if the user activates the smart query
engine explicitly, the control will be taken over by the smart

 Web Browser

Web
Server

IUS
Webdriver

ENGINE GPCRDB

Query request

Query results
(in HTML pages)

CLIENT
SERVER

Fig. 1. GPCRDB query system architecture

Query pages
(HTML forms)
JavaScripts SMART

engine, and the following steps will be performed:

1. If a keyword is involved in a query, the thesaurus hierar-
chy (see 3.1) will be applied and the relaxation will be
conducted as described in 3.2.1.

2. If a pattern, expressed as a regular expression, is involved,
the sub-sequence (or sequence) and the corresponding
position tree (see 5.2) will be retrieved and the relaxation
will be conducted as described in 3.2.2.

3. If a secondary structure is involved, each relaxation itera-
tion will lead to an expansion for both the two borders of
the secondary structure by one residue position (see
3.2.3). That is, a larger secondary structure is generated
and substitutes for the old one.

During the relaxation, users’ interference is allowed so that
they can conveniently choose among multiple alternatives and
provide extra guidelines for subsequent relaxation of a query
if the system’s default method is not desired.

The smart query engine is implemented outside IUS; it
uses IUS only for accessing data from GPCRDB database.
When a user is not satisfied with the obtained results of his
query, he can invoke the smart engine that will intelligently
and iteratively relax the user’s query using relevant domain
knowledge. The smart engine will provide the user with an en-
larged result set as long as the query is relaxable according to
some domain knowledge. Users can also conduct the relax-
ation process toward a specific direction by making additional
choices while activating the smart engine.

Navigation capability is also supported in our query sys-
tem. According to the domain requirement, navigation mainly
operates on the family tree. Climbing up the tree is to interac-
tively relax the query results according to their families while
climbing down the tree focuses on a specific subset of the que-
ry results. The latter is an example of the opposite of relax-
ation - restriction.

Retrieval of other related information is also possible. This
includes the various feature data stored in GPCRDB and other
related data (stored in other relevant Web databases). Access
to related databases is accomplished as embedded hyperlinks,
pointing to exact information items in related databases,
which implies another type of navigation supported in our sys-
tem.

3. Main functions

To systematically present the main functions of GPCRDB
query system, we first characterize the main data modeled in
GPCRDB in a formal way that will be used for later discus-
sions, then describe the relaxation strategies, and finally the
navigation support. The emphasis of this section is being
placed on query relaxation.

3.1. Characterization of primary data in GPCRDB

for query relaxation

From an abstract point of view, a biological database is a
set of protein sequences of characters from ℜ = {A, ..., Z}1.
Each character stands for a “residue type”. A biologist may
issue a query against the database to get knowledge on se-
quences, sub-sequences, or any other relevance of a protein
structure.

Formally, a biological database can be defined as a triple
of the form: <S, HF, HT>, where S is a set of protein sequenc-
es belonging to ℜ*, HF is a family tree imposed upon S and
HT is a thesaurus hierarchy.

For illustration, see a possible set of protein sequences as
shown in Fig. 2.

In terms of the biological classification, S can be partitioned
into several subsets which, in turn, can be organized into a
hierarchy, called the family tree and denoted HF(S). Fig. 3
shows a fragment of the family tree stored in our GPCRDB
database [GPCR98].

In this figure, each leaf node of a family tree is a type corre-
sponding to a subset of S; the family root covers all the
GPCR sequences, each of its child nodes corresponds to a
biological category, a class of the GPCRs, which may fur-
ther be partitioned into different families, subfamilies, and
so on.

In addition, we can also partition S according to a hierar-
chically organized thesaurus, called the thesaurus hierarchy
and denoted HT(S). See Fig. 4 for illustration.

1. Characters B, J, O, U, X and Z are excluded from this alphabet, ℜ.

s1 = ADCFGKLPHGK
s2 = DDCHFGKLNHGK
... ...
sn =

Fig. 2. G-Protein sequences

Family

Class A

Class B

Class C

Class D

Class E

Class Y

Class Z

Amine
Adrenoceptors

Acetylcholine

Vertebrate

Vertebrate

Alpha

Calcitonin

Corticotropin releasing factor

Metabotropic glutamate
group I

group II

G alpha type 1

Bacterial rhodopsin type 1

Fig. 3. A Fragment of the GPCR family tree

Root

type 1

type 2

Adrenoceptors

In Fig. 4, instead of giving a concrete example, we illustrate
the generalization hierarchy first using an abstract represen-
tation. Let A, B, C, D, E, F, G, H, ... stand for the terms con-
tained in this thesaurus, and SA, SB, SC, SD, SE, SF, SG, SH,
... for the synonym sets of term A, B, C, D, E, F, G, H, ...,
respectively. For each main entry in the thesaurus, there is a
corresponding node in the HT hierarchy, and a set of syn-
onyms of the term are associated. Numbers attached to dot-
ted arrows indicate the relaxation steps to be tried during
relaxation process (see 3.2.1). Following are several such
term examples and their synonym sets:

A = Melanocortin

SA = { };

E = ARCH

SE = {Adrenocorticotropic homone, Melanocortin-2};

F = Adrenocorticotropic homone

SF = {ARCH, Adrenocorticotropin};

G = Melanocortin-2

SG = {ARCH};

H = Adrenocorticotropin

SH = {Adrenocorticotropic homone};

A similarity relationship is defined between a pair of terms
if one is a synonym of the other.

One important difference between HF and HT is that in the
former a sequence is not allowed to belong to multiple
(sub)families at the same level while in the latter, multiple
memberships are allowed.

In fact, organizing data as above covers the main complex
interrelationships of data: aggregation (similar to the family
tree), generalization (the thesaurus hierarchy when seen
from an epistemological point of view) and set-formation
constructs.

In the biology domain, a sequence si ∈ S is typically par-
titioned into several sub-sequences, the so-called secondary
structures, reflecting particular biological properties of si;
and very often a query is formulated using such sub-se-
quences as query conditions. (How to partition a sequence as

(virtual) Root

A {SA} B {SB} C {SC} D {SD}

E {SE} F {SF} G {SG} H {SH}

Fig. 4. Illustration of the GPCRDB thesaurus

➀

➁ �
�

hierarchy

secondary structures is determined by biologists according
to the 3D structure of the sequence and other biological
properties. Normally, a secondary structure is named and the
name indicates some biological meaning.)

Therefore, si is represented as

si = si1si2 ... ,

where each sij represents a sub-sequence.

At last, due to the similarity among the residue types, we
partition alphabet ℜ into several fuzzy equivalence classes
(FECs) I1, ..., Im for some m ≥ 1. The membership function
of Ik (k = 1, ..., m) is defined as follows [Co93]:

f: 2ℜ → [0, 1].

The following are several examples of FECs.

I1: {A}; f(I1) = f({A}) = 1.

I2: {S, T}; f(I2) = f({S, T}) = 0.9.

... ...

I4: {E, D}; f(I4) = f({E, D}) = 0.9.

I5: {G, P}; f(I5) = f({G, P}) = 0.9.

I6: {E, I, W}; f(I6) = f({E, I, W}) = 0.8.

... ...

With regard to relaxation, we consider queries that contain:

- keywords and/or

- secondary structures and/or

- residue patterns expressed as regular expressions or as
a fuzzy regular expression (see below).

Residue patterns may apply either to a particular secondary
structure or a sequence as a whole.

For evaluating a query containing keywords, HT will be
searched and HF may be navigated by the user according to
the query results obtained from the query system.

To find the sequences matching a pattern, we have built a
position tree over each protein sub-sequence to speed up the
evaluation (see 5.2).

As has been mentioned before, the users sometimes need
some help or a clue how to obtain the results of interest. This
lead to the development of an additional component of the
GPCRDB: smart query engine. It iteratively and intelligent-
ly relaxes (reformulates) the user’s query using pertinent do-
main knowledge (e.g., the fuzzy equivalence classes of
residue types) on the above three aspects of a query.

In the following subsection, we first concentrate on the
relaxation of keywords (along HT), then on residue types,
and finally on secondary structures.

3.2. Query relaxation

sini

For query relaxation, we concentrate on the condition
part of queries. So we simply represent a query as a condi-
tion in the form: (c11 ∧ ... ∧) ∨ ... ∨ (cj1 ∧ ... ∧),
where each ckl is a basic query form (discussed below).

Generally speaking, relaxation can be done either syntac-
tically or semantically. Typical syntactic relaxation is made
by replacing a ‘∧’ with ‘∨’, or simply dismissing a less im-
portant ∧−term (if the terms are weighted), say, some ckl. By
the semantic relaxation, pertinent domain knowledge is
used.

One typical form of ckl is p(a,v), where p stands for a
concrete predicate such as “equal to” or “similar to”, a
indicates an attribute of an interesting type of data items, and
v is typically a value. Generally, either p, a, or v can be
relaxed (replaced by a more general counterpart). In our
case, both keyword and residue pattern relaxation will relax
v, while secondary structure relaxation relaxes a (in addition
to v).

Consequently, three kinds of basic query forms are dis-
tinguished in our system: those containing a keyword, those
containing a residue pattern (expressed as a regular expres-
sion), and those containing a secondary structure. In the fol-
lowing, we discuss the relaxation technique for each of
them. First, in 3.2.1, the keyword query is addressed. In
3.2.2, we give a formal description of the pattern relaxation.
Finally, in 3.2.3, we briefly outline the relaxation of second-
ary structures.

3.2.1. Keyword relaxation

The keyword query form is expressed just as a keyword
kw.

For such a query form, the relaxation is very straightfor-
ward. We calculate the level numbers for all nodes in the hi-
erarchy HT (the root is level 0.) When a keyword query kw
is issued, all the sequences below it in HT will be returned.
If the user expects more matches, the query is relaxed in the
following way. Assume that kw is at level k. First, the se-
quences below all the synonyms of kw are returned. During
the next iteration, one of the closest nodes to kw, say the left
brother node v (if existent, otherwise the right brother node
is used) of kw is called upon and all the sequences below v
will provide the additional output. During the third iteration,
another node, the right brother node of kw if existent, which
is regarded as the second closest to kw, will be considered.
During the fourth iteration, we jump to the parent node of v
no matter whether an additional brother exists, and all se-
quences covered by the parent node are returned. This pro-
cess is repeated until the expected results are obtained or the
involved keywords are not further generalizable due to the
absence of more brothers or parent nodes. But an exception
is made for the sub-root nodes at level 1, because generali-
zation of these nodes to the unique root node will make a

c1i1
c ji j

keyword query return all the sequences stored in the
GPCRDB, which trivializes the keyword query and leads to
a tremendous burden for the query engine. Note also that the
third brother (if existent) in a subtree is always bypassed
during this generalization process. The order of trials made
during this process is depicted in Fig. 4. That is, first ➀ is
tried, then ➁, next �, and last �; the same process can be
repeated next time with the newly interpolated parent node.

3.2.2. Residue pattern relaxation

A pattern query form is represented as a pair of the form:
<ss, E> or <_, E>, where ss is a sub-sequence name, E is a
regular expression representing a pattern and “_” means
“any sub-sequences”. If the query form is <_, E>, the data-
base will be searched for those sequences containing the pat-
tern E. If <ss, E> is submitted, ss will be checked to see
whether it contains E. If so, all the sequences containing ss
as a sub-sequence will be returned. The following are two
examples of pattern queries:

<Transmem-1, A*D*C>,

<N-terminus, [AD]*TT*>,

where “Transmem-1” and “N-terminus” are two sub-se-
quence names and A*D*C and [AD]*TT* are two regular
expressions (see [AHU74]).

For the purpose of relaxation, we define the following
concepts.

Definition 3.1 (fuzzy regular expression) Let E be a regular
expression. Let li (i = 1, 2, ..., m) be the different characters
appearing in E. By replacing each li with its fuzzy equiva-
lence class , we get another regular expression E’, called
the fuzzy regular expression (FRE).

Definition 3.2 (mixed regular expression) Let E be a regular
expression. Let li (i = 1, 2, ..., m) be the different characters
appearing in E. By replacing some ’s (j = 1, ..., h; h < m)
with the corresponding fuzzy equivalence classes we get an-
other regular expression E’, called the mixed regular expres-
sion (MRE).

Note that each fuzzy equivalence class I is associated
with its membership function value f(I), based on which a
value for a mixed (fuzzy) regular expression is calculated.

Definition 3.3 (value of mixed regular expression) Let E be
an MRE(FRE). Let Ii (i = 1, ..., h) be the fuzzy equivalences
appearing in MRE(FRE). Then the value of the MRE(FRE)
is defined to be min{f(I1), ..., f(Ih)}.

Based on this definition, the relaxation of a pattern query
can be specified as follows.

Let M be the set of all MREs generated from the regular
expression to be evaluated. We sort M such that the f(I) val-
ues of all elements in M are in a non-increasing order. As-

Iki

li j

sume that M1, ..., Mh are ordered MREs in M, which can be
dynamically produced and evaluated during a relaxation
process. Below is a simplified description of the algorithm.

Algorithm pattern-query-relaxation

{
i ← 1; success ← 0;
repeat

evaluate Mi;
if result is O.K. then success ← 1
else i ← i + 1;

until success = 1 or Mi does not exist
}

In the next section, we will discuss the evaluation optimiza-
tion of the pattern queries expressed as MREs (FREs).

3.2.3. Secondary structure relaxation

For queries involving secondary structures, not only the
residue patterns can be relaxed, but also the borders of sec-
ondary structures can be expanded.

Assume that s is a sequence, si, sj, sk are three adjacent
secondary structures of s, and sj is one of the interesting sec-
ondary structures in a query. That is,

s = ...sisjsk ...,

si = si1si2 ... sim,with si1 and sim as borders,

sj = sj1sj2 ... sjn,with sj1 and sjn as borders,

sk= sk1sik ... skp,with sk1 and skp as borders.

The border expansion for sj will generate a new substitute
sj

, for sj,

sj
, = simsj1sj2 ... sjnsk1.

The length (i.e., the number of contained residues) of the
secondary structure is increased by 2.

Border expansion of secondary structures is relatively
simple. When this function is switched on by the user, the
borders of each involved secondary structure are expanded
as above. This process can be repeated up to five times as
further expansion is considered uninteresting.

3.3. Navigation

Navigation among the data space of a database system
has been widely accepted as a very useful supplement to lan-
guage-based query mechanisms. The two strategies repre-
sent completely different styles of accessing information
repositories. Navigation is more explorative and user-friend-
ly as compared with language based mechanisms, but is crit-
icized for its low efficiency. The two strategies can benefit
from each other if a smooth integration of them in a single
system can be obtained, which whereas appears still to be a
knotty problem, and quite often to be more craft than sci-

ence.

To achieve this goal in our system, random navigation
within the data space is not allowed. In other words, naviga-
tion in the GPCRDB query system is restricted in the follow-
ing way:

(1) Navigation within the sequence space is only allowed
along the family tree, i.e., climbing up (to visit a super
family) or drilling down (to focus on a specific subfam-
ily). For both, a starting point, i.e., an entrance node into
the family tree has to be located first (see below).

(2) The family tree entrance node is determined by a user-
issued query after evaluation by the system. That is, the
user query needs first be evaluated and the obtained re-
sults are grouped according to their family information
that constitute an interesting data sub-space (called re-
sult-space) and serve as an entrance into the entire fam-
ily tree, and thus into the whole database for navigation.

In other words, there exist two navigation spaces, one is the
entire database (organized into the family tree), the other is
the result space which is also organized into a family sub-
tree. Navigation conducted in this way turns out to be very
reasonable and efficient (as compared with random naviga-
tion).

In fact, a third type of navigation, i.e., hyperlink based
navigation on the Web is conveniently supported. The result
presentation is deployed as follows. At the top level, the top
summary page involves hyperlinks pointing to sub-summary
pages (at a lower level) if the result space is sufficiently
large. Each sub-summary page in turn contains all the
matches of the query in a specific subfamily (corresponding
to a concrete entrance node into the family tree); or if the re-
sult sub-space is still large, the sub-summary page may
again contain hyperlinks to a set of further detailed sub-sub-
summary pages, and so on. Sub-summary pages at each lev-
el may contain various hyperlinks pointing to relevant en-
trances in a related (remote) GPCR database such as
tinyGRAP [GP98], and links to complex data fields of the
sequences such as the 3D structures and the sequences them-
selves which are normally large and do not easily fit into the
same page.

In short, the design of our system (and interfaces) follows
the “top-down” style. Let’s use the metaphor of “finding in-
teresting trees in a forest” - first, try to get some general
knowledge about the forest as a whole; then use this knowl-
edge to help localize to one part of the forest; next to a more
restricted part, and so on, until the real interesting individual
trees are reached.

4. System interface

In addition to the domain requirements mentioned in 2.1,

attention to some epistemological and psychological princi-
ples should be paid to construct a user-friendly query sys-
tem. Following are the additional elements of our
consideration:

1. A frequently encountered troublesome situation during
an information search is the response of “nothing found”
to a user’s query. In practice, “nothing found” may be the
result of an improperly formulated query or of really non-
existent data. To reduce the false negatives (no data found
due to ineffective query), intelligent query relaxation has
been developed.

2. An important issue with regard to query relaxation is that
careful design should be made to avoid over-relaxation.
In our system, prompted iterations have been recognized
as a practical approach to this issue. (An action is prompt-
ed if it follows an explicit user request [BMR96]).

3. In a certain sense, a user’s query represents his self-es-
teem. The behavior of the query system should first strict-
ly conform to the original form of the user’s query; the
decision whether or not to apply the relaxation function
to a query is at best left to the user. Here, a useful meta-
phor for the role of our smart query engine is to only ask
“May I help?” and be prepared to offer the help to a user.

4. Navigation has to take place in the right situation and at
the right time, i.e., when it is necessary. Smooth integra-
tion of this function into a language-based query system
is still a knotty problem for designing a concrete system.

The GPCRDB query system allows users to query the
GPCR database through a variety of ways: “family”, “key-
word”, “secondary structure” (sub-sequence), “ligand”
(binding information) and “mutants”. In addition, an ad-
vanced (compound) query page is provided for formulating
query expressions consisting of up to six different condi-
tions that can be logically interconnected with “∧” or “∨”,
constituting a classic “and-or” normal form. For example, if
c1 ∨ c2 ∧ c3 is input, it will be treated as c1 ∨ (c2 ∧ c3). That
is, “∧” takes precedence over “∨”.

To show our design style and the features of our query
system, the advanced query page is taken as a representative
example.

The interface shown in Fig. 5 contains a query that can be
restated as follows:

Find GPCR sequences that have the keyword ‘ARCH’
(contained in any one of the annotation fields; to each
sequence a number of annotation fields are attached)
and contain the pattern ‘R*SS’; furthermore, the sec-
ondary structure (sub-sequence) “N-terminus” of the
sequences contains the pattern ‘PP’.

The first response of the query system to an input query is a
top-level summary page that presents to the user links to var-

ious pages containing more details about all hits of the query
(the number of the sequences satisfying the query). Fig. 6 is
an example of such summary pages. In the displayed family
column, two links are provided pointing to the top level fam-
ily and a subfamily, respectively, and serve as entrances to
the family tree. In the number of hits column, the numbers
(also links) are clickable and navigate to a lower level sum-
mary page of the obtained matches in a specific subfamily.
This summary page also contains a button at the bottom that
the user can use to invoke the smart query engine to relax a
query if he/she wants more relevant results.

When activating the smart engine, users may make extra
selections from an additional option button just beside the
Smart Query Engine button (see Fig. 6). This additional but-
ton allows a user to select the aspects that should not be re-
laxed. This means that the three kinds of relaxation

Fig. 5. The Advanced query page (forms) of GPCRDB

Fig. 6. Result page of ordinary query (without relaxation)

(operating on a different as-
pect of a query) discussed in
the last section can be freely
switched on/off. By default, all
the three kinds of relaxation
are to be performed if the
smart engine is invoked.

When activated, the smart
query engine will return to the
user the first alternative (query
results) of relaxing his/her
query, as is illustrated in Fig. 7
(the keyword generalization is
switched off.) With the same
input query as in Fig. 6, the re-
sult page in Fig. 7 contains a
much larger set of matches (22
hits vs. the original 6 hits in
Fig. 6). This page also presents
the original query predicate
and the relaxed one (just exe-
cuted) as an explanation to the
achieved relaxation. This
helps the user not only to un-
derstand the performed relax-
ation but also to formulate
more pertinent queries in the
future. In the presented relaxed
query predicate (see Fig. 7),
expression rp(‘*R*SS*’,
‘*R*[ST][ST]*’,2) shows that
the input residue pattern
‘*R*SS*’ is relaxed as
‘*R*[ST][ST]*’ using the
fuzzy equivalence class num-
bered 2 (i.e., residue type ‘S’ is
replaced in this pattern by its
fuzzy equivalence class
‘[ST]’), and ss(DOMAIN1) in-
dicates that the border expan-

sion for secondary structure DOMAIN1 2 in this query has
been performed once (if the border expansion has been per-
formed two times, we will have ss(ss(DOMAIN1)) instead of
ss(DOMAIN1).)

5. Implementation

In this section, we address two aspects concerning the sys-
tem implementation: sequence storage structure and pattern
matching optimization.

5.1 Sequence storage structure

2. DOMAIN1 is the old name of N-terminus that is still used inter-
nally in our system, but update will be made soon.

Data to be handled in the GPCRDB involve various, do-
main-specific and non-standard data types. These include
protein sequences, secondary structure motifs (sub-sequence
variants), and hierarchical classifications of the GPCR pro-
teins (i.e., the so-called family tree), mutant and ligand
(binding information), and other chemical/physical charac-
teristics. These data are classified as two types: i.e., the
GPCR sequence data and GPCR-related data. Most of the
GPCR related data are annotations made by the domain ex-
perts, such as keywords, descriptors, ligand (binding infor-
mation), and mutant data. Typical queries issued by the
intended users indicate a search in the database for particular
sequences, e.g., those containing a given residue pattern in
the sequences or in a specific range (secondary structure) of
the sequences. GPCR related data may be queried in a simi-
lar way but have to be combined with sequence information.
As long as the sequences have been identified, other related
data of the sequences can be easily obtained through the IDs
(identifiers) of the identified sequences.

Therefore, in the following, we only show the main stor-

Fig. 7. Result page of a relaxed query returned by GPCRDB Smart Query Engine

Sequence ID

Keywords

Sequence

Sub_seq S1

Sub_seq S2

Sub_seq S3

... ...

Sub_seq S16

S1 S2 ... S16

S11
S12

S13

S1n

S21
S22

S23

...

S2n

S161
S162

S163

S16n

Fig. 8. Storage structure of GPCR sequence

Main database table

...

...

database

age structure of sequences
(depicted in Fig. 8).

For each sequence, a
unique ID, a number of key-
words, the primary sequence
data, and 16 substructures
(sub-sequences) are logically
defined. A sequence is physi-
cally decomposed as 16 sub-
sequences (i.e., secondary
structures). They are sepa-
rately stored in 16 buckets,
S1, S2, ..., S16. This matrix
storage structure can effi-
ciently support the two pri-
mary types of sequence
matching that are of interest
to the users of GPCRDB:

1. Search for sequences that contain a given residue pattern
(a regular expression).

2. Search for sequences that contain a given residue pattern
in a specific sub-sequence (a secondary structure) of the
sequences.

In the main database table (see Fig. 8), the “sequence” field
simply holds the internal sequential number assigned by the
system for each sequence. Using this number, the system can
easily locate the 16 sub-sequences and quickly construct the
sequence data (as a whole) using the 16 sub-sequences when
they are needed to perform an entire sequence matching. The
matrix storage structure greatly facilitates quick pattern-
matching of sequences as a whole and of any of the 16 sub-
sequences. In our system, pattern search in sub-sequences is
even more frequently required for the evaluation of user que-
ries.

If a query initiates a pattern matching with entire sequenc-
es, the 16 sub-sequence buckets are read out in parallel; whole
sequences are constructed on the spot, and pattern matching is
then carried out sequentially against each of the sequences.
Once a match is found, the relative position of each involved
sub-sequence in its sub-sequence stream is mapped to the ID
of the corresponding sequence that is unique in our database.

If a pattern matching is against a sub-sequence, only the
corresponding bucket of the sub-sequence needs to be read
out, and pattern matching is then carried out in a similar way.

For border expansion of a sub-sequences, the predecessor
and successor (if existent) of the sub-sequences are addition-
ally read out for the construction of an expanded sub-sequenc-
es’ stream.

5.2. Query evaluation optimization

We distinguish between two kinds of query optimization
in our system. They are

1. the semantic query optimization and

2. efficient (fuzzy) pattern matching.

In general, an issued query takes the form: (c11 ∧ ... ∧)
∨ ... ∨ (cj1 ∧ ... ∧), where each ckl is a basic query form.
It is either a keyword or a pair of the form: <ss, E>, where ss
is a sub-sequence name or a symbol “_” meaning “any” and
E is a (fuzzy) regular expression representing a pattern.

By the semantic optimization, the order of the conjunctive
and disjunctive basic query forms in the original query will
be changed so that the keyword queries are always evaluated
first. Then, the pattern queries with sub-sequence names will
be executed. Next, the pattern queries with no sub-sequence
names will be performed on the results returned from the
previous execution. This kind of optimization is performed
on the client site so that the network transmissions are mini-
mized and the server resources remain available.

To make the (fuzzy) pattern matching efficient, we have
built a position tree [We73, AHU74, CR94] for each se-
quence (due to space limitation, we omit the details of con-
structing a position tree). Since the regular expressions
submitted to the system are normally short, we first trans-
form it into a deterministic finite automaton (DFA) which
takes O(2|P|) time, where P is the regular expression, for
which the DFA is constructed. Then, the position tree will be
searched against the DFA to check whether the regular ex-
pression is satisfied.

6. Conclusion

In this paper, we have described the GPCRDB query sys-
tem that is designed according to the top-down epistemolog-
ical style for result presentation and has an embedded smart
query engine. The smart engine takes care of the query pro-
cessing from IUS query engine upon user request - it itera-
tively relaxes and optimizes a query, then evaluates it and
presents the results as a (top) summary page to the user.
Three kinds of relaxations are handled: keyword relaxation
(concept generalization), residue pattern relaxation, and sec-
ondary structure expansion. The implementation of residue
pattern relaxation is based on a new concept - fuzzy equiva-
lence classes which capture the similarities among residue
types. In addition, a navigation mechanism has been smooth-
ly integrated into our system. Navigation is conducted main-
ly by climbing-up or climbing-down the family tree
hierarchy, by which any detail on any aspect of a hit (a rele-
vant sequence) can be obtained.

The GPCRDB [GPCR98] and the query system are now
operable and available on WWW. The last published work-
ing version of the GPCRDB query system can be invoked at
URL: http://www.darmstadt.gmd.de/~gpcrdb/.

c1i1

c ji j

Acknowledgments: The authors are very glad to acknowl-
edge that Hannelore Eisner has did a lot of implementation
work in the GPCRDB query system. We also would like to
show our gratitude to other partners of this project.

References

[AHU74]Aho, A.V., Hopcroft, J.E. and Ullman, J.D. The Design and
Analysis of Computer Algorithms, Addison-Wesley Publishing
Com., London, 1969.

[BMR96]Brajnik, G., Mizzaro, S., Rasso, C. Evaluating User Inter-
faces to Information Retrieval Systems: A Case Study on User
Support, in Proc. of the 19th Anual International ACM SIGIR
Conference on Research and Development in Information Re-
trieval (1996), pp 128-136.

[Co93]Cottawald, S. Fuzzy Sets and Fuzzy Logic: the foundations of
application - from a mathematical point of view. Braunschweig,
Wiesbaden: Vieweg, 1993.

[GC98]GCRDb, URL: http://www.gcrdb.uthscsa.edu/.

[GP98]GPCR mutant database, URL: http://www-grap.fagmed.
uit.no/GRAP/homepage.html.

[GPCR98]GPCRDB, URL: http://www.sander.embl-heidelberg. de/
7tm/.

[GBS92]Gonnet, G.H., Baeza-Yates, R.A. and Snider, T. New Indi-
ces for Text: PAT trees and PAT arrays, Information Retrieval,
ed.: Frakes, W.B., Baeza-Yates, R.A., Prentice Hall, New Jersey,
1992, pp. 66-83.

[HU69]Hopcroft, J.E. and Ullman, J.D. Formal Language and Their
Relation to Automata, Addison-Wesley Publishing Com., Lon-
don, 1969.

[Kn73]Knuth, D.E. The Art of Computer Programming: Sorting and
Searching, Addison-Wesley Publishing Com., London, 1973.

[IUS97]Informix-Universal Server - Informix Guide to SQL, In-
formix Press, Menlo Park, CA, USA, 1997.

[Mo68]Morrison, D.R. PATRICIA - Practical Algorithm To Retrieve
Information Coded in Alphanumeric. Journal of Association for
Computing Machinary, Vol. 15, No. 4, Oct. 1968, pp. 514-534.

[NCBI92]National Center for Biotechnology Infromation. EN-
TREZ: Sequences User’s Guide, National Library of Medicine,
Bethesda, MD, 1992, Release 1.0.

[PMFR92]Pearson, P., Matheson, N., Flescher, N., and Robbins, R.J.
The GDB huan genome data base anno 1992, Nucleic Acids Re-
search 20 (1992), 2201-2206.

[We73]Weiner P. Linear Pattern Matching Algorithms. Conf. Re-
corder, IEEE 14th Annual Symposium on Switching and Autom-
ata Theory, 1973, pp. 1-11.

[WZ96]Williams, H. and Zobel J., Indexing Nucleotide Dtabases for
Fast Query Evaluation, in Proc. of 5th Int. Conf. on Extending
Database Technology, Avignon, France, March 1998, pp. 275-
288.

[YK98]Yoon, J. and Kim S.-H. A. Three-Level User Interface of
Multimedia Digital Libraries with Relaxation and Restriction, in
Proc. of IEEE International Forum on Research and Technology
Advances in Digital Libraries (ADL’98), April 22-24, 1998, San-
ta Barbara, California, pp206-215.

