
Abstract In this paper, a signature file method for indexing
document database systems is presented. For this purpose, the
concept of presentative word hierarchy is introduced, based on
which signature file hierarchies can be established. Together
with the concept of query signature hierarchy, it improves sig-
nificantly the retrieval efficiency of documents stored structur-
ally in object oriented databases.

1 Introduction

With the advent of information highways and digital libraries,
the issues of managing and accessing huge hypermedia docu-
ment bases become important. An interesting way to do so is to
integrate database technology into document management and
bring the very nature of database systems into this area, such as
query processing, efficient management of secondary storage,
version and update control, etc. In order to optimize query eval-
uation in document databases, indexing mechanism should be
supported to speed up the retrieval of documents structurally
stored.

Most, if not all, indexing techniques in databases are based on
tree or network structure. Key values in the index are linked
with complex pointer in order to support flexible query styles.
On the other hand, in a conventional document system, indexes
are built over representative words assigned to documents rath-
er than over key values since they are normally unavailable.
Now we accommodate a set of documents in an object oriented
database, trying to make explicit the logical structure of the in-
formation stored in documents and enable the usage of high
level logical query languages. How can we establish indexing
mechanism in such a database? More exactly, how the tree or
network structure can be imposed on the indexing schema for
documents?

To this end, we propose a signature file approach for indexing
documents stored structurally in an object oriented database.
The motivation is as follows:

1. Tight coupling of document retrieval and database tech-
nique should be explored to achieve high performance.

2. Signature files can be feasibly organized into a hierarchi-
cal structure and therefore suitable for indexing docu-
ments stored structurally. Furthermore, when we
accommodate a document into an (aggregation) class hi-

erarchy, all objects of a class is of a measurement of me-
dium size, especially appropriate for constructing
signature files (see [12]).

3. Signature files compare favorably to the competitors (e.g.,
full text scanning [20], inverted files [15], and pat trees
[13, 16]) in several respects: lower space overhead, effi-
cient searching and simple maintenance [12].

Signature file techniques have been extensively investigated in
information retrieval [11, 12] and database research [17, 24].
However, to the best of our knowledge, it has not been exten-
sively researched in the combination of documents and databas-
es. To implement this integration, the concept of presentative
word hierarchy is presented, based on which signature file hier-
archies can be constructed for document elements as for objects
in object oriented databases. Furthermore, in order to optimize
the query evaluation in such an integrated system, we introduce
another concept: query signature hierarchy which can be used
to get rid of non-relevant objects as early as possible during a hi-
erarchy traversal. This technique is quite different from that dis-
cussed in [24], in which the field replication technique is used
to reduce the number of objects visited during a query evalua-
tion. But these two methods can be combined to develop an ef-
ficient method for evaluating queries in object oriented
databases (see 6.1).

The rest of this paper is organized as follows. In Section 2, we
survey related work. In Section 3, we describe the storage stra-
tegy of documents in object oriented databases. In Section 4, we
discuss briefly the query language. The indexing technique for
a tight coupling of IRS and OODBMS is studied in Section 5.
In Section 6, we present our algorithms for evaluating queries
with the index hierarchy used and for maintaining signature file
hierarchies. Section 7 is devoted to the performance evaluation.
Finally, Section 8 is a short conclusion.

2 Related Work
Within the past two decades, a lot of work has been done on doc-
ument management and document database systems. According
to [21], three kinds of methods can be recognized: DBMS-ori-
ented, IRS-oriented and integration approaches.

By the DBMS-oriented approach, the database system is used to
manage the structure of documents while the texts are stored
separately in an information retrieval system (IRS), as done in
[18, 8, 10, 23]. In these systems, the query is expressed in terms
of the database schemas constructed for representing document
structures and then translated into another form executable in
the IRS. Therefore, more powerful expressiveness beyond SQL
is in general required in developing the corresponding query
languages. However, due to the loose coupling, the indexing
technique can not be fully used to optimize the query evaluation.

By the IRS-oriented approach, an IRS is extended to additional-
ly obtain DBMS functionality. In [7], Croft et al. describe the in-

Layered Index Structures in Document Database
Systems

Yangjun Chen and Karl Aberer

IPSI Institute, GMD GmbH
64293 Darmstadt, Germany

 {yangjun, aberer}@darmstadt.gmd.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tegration between the inference net model retrieval system
INQUERY and the database system Iris [14]. In this method,
Iris is used to store elements of documents, and indexing and re-
trieval are done by the INQUERY. In [19], another combined
DB/IRS-system is introduced, but the database functionality
does not yet level up to the state-of-the-art database technology
and the integration with structural search is not considered in
detail.

By the integration approach, the documents are stored entirely
or partially in the databases. In [3, 21, 5], the system Hyper-
Storm is described in detail. In this system, documents are
stored structurally or partially structurally in VODAK object
oriented system [22] and indexes are established using inverted
file technique or by coupling an IRS with the system through
defining extra classes for it. In the method proposed in [1, 2],
the text is partially loaded into the corresponding O2 database
[4] whenever a query is submitted to the system. But the full-
text index is only built for the files storing SGML documents,
which can be used to do some optimization for loading texts
into databases.

In contrast, in the work presented in this paper, to improve per-
formance, we do a “tight” coupling” of IRS and databases by
not only storing the entire documents, but also building indexes
physically for them as in traditional databases. Due to the spe-
cial characteristics of structured documents, the indexes con-
structed for them (in a database) differentiate a lot from those in
a conventional database. On the other hand, they are also differ-
ent from those in a tradition text retrieval system as the docu-
ments are stored structurally rather than in flat files.

3 Document Storage in Databases
In this section, we discuss briefly the mapping of an SGML
document into an object oriented schema. To do this, we should
first make clear what components an SGML document is com-
posed of and how its structure is represented. For a simple illus-
tration, see a possible DTD for letter documents shown in Fig.
1(a).

An SGML document is defined as having elements and at-
tributes [9]. Elements are always marked up with tags; and an
element may be associated with several attributes to identify
domain-specific information. For example, element letter has
two attributes: filecode and secret (see line 3 of Fig.1(a)). Fur-

1. <!DOCTYPE letter [
2. <!ELEMENT letter - - (date, greeting, body, closing, sig)>
3. <!ATTLIST letter

filecode NUMBER #REQUIRED
secret (yes | no) “no”>

4. <!ELEMENT body - - (para)+>
5. <!ELEMENT (date, greeting, closing, sig) - - (#PCDATA)>
6. <!ELEMENT para - - (#PCDATA | emph)*>
7. <!ELEMENT emph - - (#PCDATA)>

9. <!ENTITY salute “Dear”>

8. <!ATTLIST emph
italic (yes | no) “yes”>

(a)

]>

letter

date greeting body closing sig

para

#PCDATA emph

#PCDATA #PCDATA #PCDATA #PCDATA

#PCDATA

(b)

Fig. 1. DTD and hierarchy structure

ther, we distinguish between primitive and complex elements. A
primitive element contains only data of primitive types such as
integer, string and ‘#PCDATA’ (which is more or less compara-
ble to string) while a complex element contains one or more sub-
elements which are primitive or complex by themselves. For ex-
ample, elements date, greeting, closing and sig are all primitive
(see line 5). But element letter is a complex element (see line 2).
It contains five sub-elements, of which body is itself complex
(see line 4). In addition, attention should be paid to the line start-
ing with ‘<!ENTITY’ which introduces a “replacement text”
(see line 9). That is, if a string of the form ‘&salute;’ appears in
any concrete document belonging to the DTD, this string will be
substituted with “Dear” (see [9] for SGML entity definition.)
The mapping strategy can be summarized as follows:

1. Corresponding to a primitive element, a primitive class will
be generated, which has a primitive attribute for each at-
tribute appearing in ‘ATTLIST’ and an extra primitive at-
tribute (normally named text) for its content. A primitive
attribute is an attribute whose value can not be further broken
down into sub-values. For example, for the element emph, a
primitive class of the following form will be generated:

class Emph (name: <string>, italic: <boolean>, text:
<#PCDATA>),
where text is defined for the element content.

2. Corresponding to a complex element, a complex class will
be created, which has a primitive attribute for each attribute
appearing in ‘ATTLIST’ and a complex attribute for each
sub-element. A complex attribute has user-defined classes as
its domain. If a complex element contains also non-AT-
TLIST primitive data besides sub-elements, corresponding
primitive attributes will be defined. For example, for the el-
ement letter, a complex class of the following form will be
generated:

class Letter (name: <string>, filecode: <string>, secret:
<boolean>, date: <OID>, greeting: <OID>, body: <OID>,
closing: <OID>, sig: <OID>).

3. Constraints may be associated with an attribute to specify its
value limitation. For example, for the element body (see line
4), we will have a class of the form: (name: <string>, para:
<OID>). A constraint should be associated with attribute
para, declaring that the number of attribute values of a Para
object must be equal to or larger than one to reflect the se-
mantics of occurrence indicator “+”. The same approach ap-
plies to the other SGML occurrence indicators “*” and “?”
(see [9] for their definitions.) Furthermore, the default be-
havior of an attribute should also be declared, such as stan-
dard display, read and write methods, as well as default
values.

By the above mapping strategy, three points should be noticed:

(i) The handling of SGML connector “|” is deliberately ig-
nored. That is, we define an attribute for each sub-element
appearing in the content model of an element, no matter
whether they are connected with “|” or not. For example, the
class generated for para will have two attributes for (#PC-
DATA | emph). The reason for this is that any concrete ele-
ment of this type will contain either #PCDATA or emph and
we can always store the corresponding data in one of them.
Therefore, an extra data type: union as suggested in [1] for
accommodating this kind of elements is not necessary.

(ii) We can suppress the structure of a DTD by collapsing part
of subtrees. We distinguish between two kinds of structure
suppressions: subtree and part-subtree compression. By the
subtree compression, we create only one class for a subtree.
For example, instead of generating a class for every element
in the subtree rooted at para (marked grey in Fig. 1(b)), we
define only one class for para with an attribute text (besides

the attributes for those in ‘ATTLIST’); the entire subtree
will be treated as a flat text and stored as the attribute value
of text. By the part-subtree compression, we define a prim-
itive attribute for a subtree in the corresponding parent class
and no classes are generated for the elements in the subtree
at all, including its root. For example, we can define a prim-
itive attribute, in the class for letter, for the subtree rooted
at date element (circled with a brocken line in Fig. 1(b)).
This may reduce the number of objects and thus decrease
space costs and improve query evaluation, depending on
different applications.

(iii) This mapping approach is also suitable for HyTime [9]
since the architecture forms of it (such as clink, ilink, tree-
loc, dataloc and so on) are defined in an SGML manner al-
though they play a different roll of semantics. That is, they
work as mata-declaration instead of declaration. But at the
syntactic level, they are similar to element types of SGML.
Therefore, the corresponding classes can be defined for
them without difficulty. Of course, special treatment is
needed in that case, which is, however, beyond the scope of
this paper.

From the above discussion, we see that in a document database,
a class is either a primitive class or a complex class. Objects in
the respective classes are called primitive objects and complex
objects. A primitive class, such as integer and string, is not fur-
ther broken down into attributes or substructures. A complex
class is defined by a set of attributes, which may be (short)
primitive, (long) text, or complex with user-defined classes as
their domains. The relationship between a class C and some
complex attribute domain C’ of it is called aggregation rela-
tionship. Using arrows connecting classes to represent this re-
lationship, an aggregation hierarchy can be constructed to show
the nested structure of the classes.

4 Expressing Queries
In a traditional document retrieval system, the query processing
is mainly based on the tree pattern matching. That is, a struc-
tured document can be viewed as a labeled tree. The height of
a document tree is equal to the number of the different element
types appearing in its DDT plus one. The root represents the top
level element in the DDT, its children represent the second lev-
el, and so on. The leaves represent the individual (representa-
tive) words. The interior nodes are labeled by the level names
while the leaves are labeled by the words. To retrieve docu-
ments, a partial pattern of the desired document trees are spec-
ified. All documents satisfying the pattern are returned.

If Td and Tp are trees, an embedding of Tp in Td is an injective
function f from the nodes of Tp to the nodes of Td. An embed-
ding f preserves a binary property E between nodes, if for any
pair of nodes n1 and n2 of Tp, we have E(n1, n2) holds in Tp if
and only if E(f(n1), f(n2)) holds in Td. A typical property is the
parent-child relationship. Another example is the labeling pres-
ervation. If we number the children of a node from left to right,
we can also check the preservation of left-to-right ordering.
This concept can be extended to a set of properties. Let S be a
set of properties to be preserved. An S-embedding is an embed-
ding that preserves the properties of S. Given a pattern tree Tp,
a target tree Td, and a set S of properties, Tp is included in Td if
and only if there exists an S-embedding of Tp in Td.

To implement such a retrieval model, we define the concept of
search conditions below.

Definition 1 (Search condition) A search conditions in a query
is expressed as conjunction of predicates of the form: <path op-
erator value>. The path is of the form: p1.p2pn, where each
pi (i = 1, 2, ..., n-1) represents a class name and pn is an attribute
name. In general, an operator represents a (set) relation opera-
tion {⊆, ⊇, =, <, ≤, >, ≥, ≠} and a value is a set of individual

(representative) words, a boolean expression over individual
(representative) words, or another path.

For example, the query: retrieve all letters received in 1993,
which contain strings “SGML” and “database” can be expressed
as follows:

select *
from Letter, Letter.Date, Letter.Body.Para
where Letter.Date.text ⊇ {“1993”}

and Letter.Body.Para.text ⊇ {“SGML”, “database”}

The search condition against the classes Letter, Date and Para
consists of two predicates, one involving the nested attribute text
of Date and the other involving the nested attribute text of Para.
(Note that in the above query, if we apply the second kind of
structure suppression to the subtree rooted at date, the first pred-
icate can be changed into a simpler form: Letter.date ⊇
{“1993”}.)

We can extend the above relation set to include more complicat-
ed conceptual relations such as synonym, near synonym, taxono-
my and so on [6]. We can also use path variable to express an
unknown path. Further, the length of paths represented by a path
variable can be specified using an expression like P(i), where P
is a variable and i is an integer to indicate the length of paths to
be evaluated. But for the purpose of this paper, we will not go
any deep in these directions so that we can concentrate ourselves
on the organization of signature file hierarchies. In addition, we
are particularly interested in a kind of restricted search condi-
tions, called simple search condition which can be used to opti-
mize query evaluation in our indexing framework discussed in
the next section. A simple search condition is a conjunction of
predicates of the form: <path operator value>. The path is of the
form: p1.p2pn, where each pi (i = 1, 2, ..., n-1) represents a
class name and pn is an attribute name. The operator represents
a (set) relation operation {⊇, =} and the value is of the form {w1,
..., wm} or w1∨ ... ∨ wm. Such a predicate is known as simple
predicate.

Obviously, the search condition of the above query is a simple
search condition.

The tree structure of the search conditions and the objects storing
documents suggest that answering a query on a class involving
paths of length more than one requires traversal of a subgraph
rooted at the target class. Two approaches to evaluate a query
with paths are conceivable: top-down and bottom-up evaluations.
For illustration, let’s consider the above example again. To an-
swer the query in a top-down manner, all of the objects in class
Letter have to be searched and those whose date attribute con-
tains “1993” will be singled out. Then, the system retrieves the
Body objects referred by the Letter objects found in the previous
scan and checks their para attribute, which leads to retrieving
part of Para objects referred by the found Body objects. Finally,
those Para objects containing both “SGML” and “database” are
returned. In the bottom-up approach, all objects in class Para are
retrieved to examine if they contain both “SGML” and “databas-
es”. Without backward reference support, the OIDs of retrieved
Para objects have to be kept in a set and search the correspond-
ing objects in class Body, whose OIDs should also be stored in
another set. Then, the objects in class Letter will be retrieved to
examine those, whose date attribute contains “1993”, having the
stored Body OIDs as attribute values. As a result, the returned
objects are letters received in 1993 and at the same time contain-
ing strings “SGML” and “databases”.

A lot of factors affect the performance of the top-down and the
bottom-up approaches: the search conditions specified on the
classes and their selectivities, the sizes of the classes along the
paths from the target class to the nested attributes, and whether
backward references are supported in the system, as well as
whether indexes are available for the classes involved in the que-

ry. If no indexes and backward references are available, the bot-
tom-up approach will have to scan through all objects located
in the classes on the paths. The top-down approach is in general
more efficient because only forward references are needed, but
the actual cost will depend on the other factors listed above.

Most of the index schemas in the literature are space consum-
ing. Therefore, the number of attributes (classes) to be indexed
must be kept to a minimum. Consequently, only queries involv-
ing some indexed attributes and classes benefit from these in-
dexing mechanism. To avoid this inefficiency, the system has to
build and maintain indexes on every attributes (classes), which
is however infeasible due to storage limitation. In this paper,
we present a different secondary mechanism, namely, signature
file hierarchies, to improve the general performance of docu-
ment database query evaluation at affordable storage overhead.

5 Representative Words and Signature File
Techniques

As is well-known, in a traditional document system, it is im-
portant to assign representative words to documents, capable
of representing document contents and used to obtain access
whenever documents are wanted. Then, signature files can be
built over them and organized into a hierarchy, corresponding
to the hierarchical structure of a document stored in databases.
In the following, we discuss the concept of representative
words in 5.1. In 5.2, the signature file technique will be de-
scribed.

5.1 Representative Word Hierarchy
Given a set of documents doci (i = 1, ..., n), we can identify a
set of (representative) words Wi for each doci to discriminate it
from others by computing weight for each word:

weightik = fik ⋅ signalk,

where fik represents the frequency of word k appearing in doci
and signalk is the signal value of word k, which can be comput-
ed as shown in [20]. For example, the presentative words of a
letter document may be a set (denoted Wletter) like {January,
27, 1993, Jean, SGML, databases, information, regards, Gen-
ise}, determined by applying the above formula to the actual
document set. In some cases, we can use almost all words in the
document only with high-frequency words (called stop list) re-
moved. The words appearing in the stop list are poor dicrimi-
nators and cannot possibly be used by themselves to identify
document content.

Assume that the class C created for all doci (i = 1, ..., n) has m
subclasses C1, ..., Cm in the aggregation hierarchy. Let o be an

object of C, in which doci is accommodated. Let (k = 1, ...,
lj) be the objects of Cj referred by o. Then we can partition Wi
into m subsets Wi1, ..., Wim as follows. We regard each part docij

of doci accommodated in ∪ ... ∪ (j = 1, ..., m) as a

single document and identify a set of representative words Wij
for each docij to distinguish it from other docip’s (p ≠ j) using
the above formula for computing word weights in a similar
way, but with the following two rules observed:

(1) If w ∈ Wi and w appears in ∪ ... ∪ , but w ∉
Wij, then add w to Wij: Wij ← Wij ∪ {w}.

(2) If w ∉ Wi, but w ∈ Wij, then delete w from Wij: Wij ←
Wij − {w}.

For example, Wletter may be partitioned into {January, 27,
1993}, {Jean}, {SGML, databases, information}, {regards},
{Genise} for those texts accommodated at classes Date, Greet-
ing, Body, Closing and Sig, respectively (see Fig. 1(b)).

Further, we partition Wij into , ..., by taking each part

o j
k

o j
1 o j

2 o j
l j

o j
1 o j

2 o j
l j

W ij
1 W ij

l j

of the document accommodated in an object as a single doc-
ument and using the above formula again to compute weights.
Similarly, rules (1) and (2) should be followed. Now we consider

 (k = 1, ..., lj). For each of them, the entire process stated
above can be applied to do a deeper partition. For illustration, as-
suming Cj has subclasses Cj1, ..., Cjq, then we can further parti-

tion into , ..., . If (s ∈ {1, ..., q}, t = 1, ...,

rs) are the objects of Cjs referred by some , then can be

further partitioned into , ..., . We illustrate this

process as shown in Fig. 2(a). Fig. 2(b) is a possible hierarchy
for our running example.

For each W, its signature can be calculated as discussed in 5.2,
based on which we construct signature files for each class (sub-
class) by collecting the relevant signatures together.

5.2 Signature File Hierarchy
Signature files are based on the inexact filter. They provide a
quick test, which discards many of the nonqualifying elements.
But the qualifying elements definitely pass the test although
some elements which actually do not satisfy the search require-
ment may also pass it accidentally. Such elements are called
“false hits” or “false drops”. In a document database, an element
is stored as an object and represented by a set of representative
words assigned to the text stored in it. The signature of a repre-
sentative word is a hash-coded bit string of length k with m bit
set to “1”, stored in the “signature file” (see [11]). An object sig-
nature is formed by superimposing the signatures of its repre-
sentative words. Object signatures of a class will be stored
sequentially in another signature file. Fig. 3 depicts the signature

o j
k

W ij
k

W ij
k W ij1

k W ijq
k o js

kt

o j
k W ijs

k

W ijs
k1 W ijs

krs

Wi

Wi1 Wim

Wi1

... ...

...

Wi11 ... 1

...

...

{January,27,1993,Jean,SGML,databases,information,regards,Genise}

{January,27,1993} {Jean} {SGML,database,information} {regards} {Genise}

{SGML,database} {database,information}

{SGML,database}{ } {database,information}{ }

we assume that
Para has two
objects: o1 and o2.

(a)

(b)
Fig. 2. Representative word hierarchy

{SGML, databases, information}

OLetter

Date Greeting Body Closing Sig

Para

OPara1

Emph Emph

 1 Wi1
l1 Wim

 1 Wim
lm

Wi11
 1 Wi1q

 1
Wi11

l1 Wi1q
l1...

Wi11
 11

Wi11
1r1 Wi1q

l11
Wi1q

l1rq

111 ... 1

...
... ...

... ...

{January,27,1993} {Jean}{SGML,database,information} {regards} {Genise}

ODate OGreeting
OBody OClosing OSig

OPara2

{SGML,databases} {databases,information}

OEmph OEmph

generation and comparison process of an object having a text
attribute value which is represented by three words, say
“SGML”, “database”, and “information”.

When a query arrives, the object signatures are scanned and
many nonqualifying objects are discarded. The rest are either
checked (so that the “false drops” are discarded) or they are re-
turned to the user as they are. Concretely, a query specifying
certain values to be searched for will be transformed into a que-
ry signature sq in the same way as for representative words. The
query signature is then compared to every object signature in
the signature file. Three possible outcomes of the comparison
are exemplified in Fig. 3: (1) the object matches the query; that
is, for every bit set in sq, the corresponding bit in the object sig-
nature s is also set (i.e., s ∧ sq = sq) and the object contains re-
ally the query word; (2) the object doesn’t match the query (i.e.,
s ∧ sq ≠ sq); and (3) the signature comparison indicates a match
but the object in fact doesn’t match the search criteria (false
drop). In order to eliminate false drops, the object must be ex-
amined after the object signature signifies a successful match.

The purpose of using a signature file is to screen out most of the
nonqualifying objects. A signature failing to match the query
signature guarantees that the corresponding object can be ig-
nored. Therefore, unnecessary object accesses are prevented.
Signature files have a much lower storage overhead and a sim-
ple file structure than inverted indexes. They can be particularly
good for medium size data sets [12]. Notice that, in a document
database, all the objects of a class is just of such a measurement
of size.

In terms of the representative word hierarchy, a signature file
hierarchy can be constructed as follows:

(i) For every representative word w, there exists a pair <wsig,
pos>, where wsig is the signature of w and pos is w’s posi-
tion within the text stored in the corresponding object. Such
a pair may be maintained in the corresponding object if the
number of representative words is rather small in compari-
son with the text stored in it; otherwise, it is not worth while
maintaining such entries.

(ii) Let o be an object and W = {w1, ..., wk} be the set of repre-
sentative words associated with it. There exists an entry
<osig, oid>, where osig is the signature of o and oid is the
object identifier of o. osig is obtained by superimposing the
signatures of wi (i = 1, ..., k).

(iii) Let C be a class and o1, ..., ol be its objects, there exists a
signature file S such that each oi (i = 1, ..., l) has an entry
<osig, oid> in S.

(iv) Let Si and Sj be two signature files associated with classes
Ci and Cj, respectively. If there exists an arrow from Ci to
Cj, then there is implicitly an arrow from Si to Sj.

As an example, see the signature file hierarchy shown in Fig. 4,

text: ... SGML ... databases ... information ...

representative word signature:

SGML

database

information

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature (OS)

∨

Fig. 3. Signature generation and comparison

queries:

SGML

XML
informatik

query signatures:

010 000 100 110

011 000 100 100
110 100 100 000

matchin results:

match with OS

no match with OS
false drop

which is constructed in terms of the representative word hierar-
chy shown in Fig. 2(b).

Note that such a hierarchy can be refined by further partitioning
each signature file S into several segments Seg1, ..., Segm such
that each Segi contains only the signatures of all those objects re-
ferred by the same object belonging to the parent class. In this
way, the scanning within a signature file can be done more quick-
ly.

6 Document Retrieval and Signature Maintenance
In this section, we first discuss the document retrieval based on
the signature file hierarchies described in Section 5 and intro-
duce a new concept: query signature hierarchy to optimize the
query evaluation. Then, the algorithm for maintaining signature
file hierarchies will be outlined.

6.1 Retrieval
As we mentioned before, there are two methods to evaluate a
query: top-down and bottom-up approaches. The top-down ap-
proach is to retrieve all of the objects along the path from the tar-
get class to its nested attributes specified in the search condition
of the query. Then, the value of the nested attribute is checked to
decide if it is a desired object or not. With the signature file, the
query is evaluated as follows. A query signature sq for the query
Q is generated. sq is compared with every signature stored in the
signature file associated with the target class. If a signature
matches with sq, traverse the path to verify the nested attribute.
In the following, a trivial algorithm for top-down retrieval is first
described. Then, a refined version of it is discussed in detail.

Algorithm top-down-retrieval;
input: an object query Q;
output: a set of OIDs whose texts satisfy the query.

1. Compute the query signature sq for the query Q.

2. For every entry <osigi, oidi> of the signature file associated
with the target class. Compare sq with osigi. If osigi match-
es sq, then put oidi in a temporal set S.

3. For each object in S, traverse the path from the object to the
nested attributes specified in Q to eliminate false drops.

Example 1 Consider the query given in Section 4. First, we con-
struct sq = s1993 ∨ sSGML ∨ sdatabase = 100 110 000 100 ∨ 010 000
100 110 ∨ 100 010 010 100 = 110 110 010 110. It matches the
entry in the signature file of Letter shown in Fig. 4. Then, the cor-
responding OID will be put in S. In step (3), the paths from Letter
to Date and from Letter to Para will be traversed and the objects
of Date and Para will be checked to eliminate false drops. The
object signature of Date shown in Fig. 4 matches s1993. Then, the

Fig. 4. Signature file hierarchy

words: signature:

January
23
1993
Jean
SGML
database
information
regards
Genise

110 000 000 110
110 110 000 000
100 110 000 100
110 100 000 100
010 000 100 110
100 010 010 100
010 100 011 000
100 100 001 100
100 100 010 100

010 000 100 110
100 010 010 100

Para

... ...

... ...
110 010 110 110

100 100 001 100

100 100 010 100

110 100 000 100

110 110 000 110

110 110 111 110

Ltter

Date

Greeting

Body

Closing

Sig

... ...
... ...

... ...

... ...

... ...

OID
OID

OID

OID

OID

OID

text stored in this object will be scanned to see whether it con-
tains really this word. If the entry <s1993, pos1993> is stored, the
corresponding word can be directly located and thus the check
can be performed immediately. Otherwise, the text has to be
scanned in a normal way. The same process applies to the ob-
jects of Para.

From this example, we can see that the signature files are used
only to locate the relevant objects of the target class. The opti-
mization possibility provided by the signature file hierarchy is
not employed at all. It is not efficient because all the subtrees
rooted at the relevant objects of the target class have to be
searched exhaustively. To overcome this drawback, we develop
another strategy, by which attention is paid to the query struc-
ture to make the signature file hierarchy useful. To this end, we
define the following two concepts.

Definition 2 (Query hierarchy) Let pred1∧pred2∧ ... ∧predk be
the simple part of the search condition in query Q, where each
predi is a simple predicate. Then, all the paths appearing in the
simple part of the search condition constitutes a (partial) query
hierarchy, denoted Qh.

Definition 3 (Query signature hierarchy) Let p1.p2pn be a
path in a (partial) query hierarchy Qh (from the root to some
leaf). Let <pipn operator value> be a simple predicate ap-
pearing in the simple part of the search condition of Q. If value
is of the form: {w1, ..., wm}, then pn’s signature is equal to ∨
... ∨ . If value is of the form: w1∨ ... ∨ wm, then pn’s signa-
ture is equal to ∧ ... ∧ . The signature of a non-leaf node
in Qh can be obtained by superimposing the signatures of its
child nodes. The query signature hierarchy is denoted Q(s,h).

For example, for our exemplar query, the query hierarchy and
the query signature hierarchy are as shown in Fig. 5(a) and (b),
respectively.

In the following, we give our algorithm for retrieving docu-
ments with the signature file hierarchy used. The main idea of
it is to use the query signature hierarchy to reduce the search
space. For this purpose, two stack structures are needed to con-
trol the depth-first traversal of hierarchies: stackq for Q(s,h) and
stackd for the document hierarchy. In stackq, each element is a
signature while in stackd each element is a set of objects be-
longing to the same class reached during this document travers-
al.

Algorithm top-down-hierarchy-retrieval;
input: an object query Q;
output: a set of OIDs whose texts satisfy the query.

1. Compute the query signature hierarchy Q(s,h) for the que-
ry Q.

2. Push the root signature of Q(s,h) into stackq; push the set
of object OID of the target class into stackd.

3. If stackq is not empty, sq ← pop stackq; else go to (7).

4. S ← pop stackd; For each oidi ∈ S, if its signature osigi
does not compare sq, remove it from S; put S in Sresult.

5. Let C be the class, to which the objects of S belong; let
C1, ..., Ck be the subclasses of C; then partition the OID

sw1swm sw1
swm

Fig. 5. Query hierarchy and query signature hierarchy

Letter

Body Date

Para

Letter

Body Date

Para

110 110 010 110

100 110 000 100

010 110 000 1001993

110 010 110 110

110 010 110 110

SGML Database010 000 100 110 100 010 010 110

(a) (b)

set of the objects referred by the objects of S into S1, ..., Sk
such that Si belongs to Ci; push S1, ..., Sk into stackd; push
the child nodes of sq into stackq.

6. Go to (3).

7. For each leaf object, check false drops.

By this strategy, the optimization is achieved by executing step
(4). In this step, some objects are filtered using the correspond-
ing signature in the query signature hierarchy. In step (5), the re-
ferred objects and the signatures of the child nodes of the query
signature hierarchy will be put in stackq and stackd, respectively.

Example 2 Continue with our running example. But we assume
that a letter element may contain more than one bodies to show
why “top-down-hierarchy-retrieval” works efficiently. A possi-
ble signature file hierarchy may be of the form as shown in Fig.
6.

Using “top-down-hierarchy-retrieval” to evaluate the query, the
second Body object will be filtered since its signature does not
match the signature associated with Body in the query signature
hierarchy shown in Fig. 5(b) (as indicated by the dashed line in
Fig. 6.) Thus, all those Para objects referred by it will not be
checked further (see the part marked grey in Fig. 6.) It is optimal
compared to “top-down-retrieval” since by “top-down-retriev-
al” the checking against all Para objects have to be performed.

This method and the method proposed in [24] (known as Yong’s
method hereafter) can be combined to develop a more efficient
strategy. By Yong’s method, the signatures of the referred ob-
jects are stored in the referring ones. Then, the predicate check-
ing can be performed against their signatures before they are
accessed. In this way, a lot of I/O can be saved.

We illustrate the evaluation processes of the two methods as
shown in Fig. 7.

Form this figure, we can see that the elimination of the non-rel-
evant objects by our method happens just one step earlier than
Yong’s method. That is, the first checking by our method is done
for the objects of the target class, whereas the first checking by
Yong’s method is made for the objects referred by the target class

Fig. 6. Illustration of query evaluation

010 000 100 110
100 010 010 100

Para

... ...

110 010 110 110110 110 111 110

Ltter Body

... ...

... ...

OID

OID110 110 111 110
... ...

... ...

100 110 010 100 OID
... ...

Letter

Body

Date

Para110 110 010 110

100 110 000 100 010 110 000 100

1993

110 010 110 110 110 010 110 110
SGML

Database

010 000 100 110

100 010 010 110

matched matched

not matched
this part will not
be visited.

top-down-hierarchy-retrieval:

Yong’s method:

all objects of
the target class

checking signatures of the objets
against the corresponding node
in the query signature hierarchy;
some objects will be removed.

visit referenced

all objects of
the target class

checking signatures of the

them will be removed.

visit referenced
referenced objects; some of

Fig. 7. Comparison of two methods

objects

objects

through storing redundantly the signatures of the referred ob-
jects. Then, in a next step, by the both methods, the referred ob-
jects will be visited. Afterwards, the second elimination
happens. (We note that the referred objects in the previous step
become now the referring ones.) For this time, some of the re-
ferring objects will be removed by our method while by Yong’s
method some of the referred objects will be discarded. Each of
the two processes repeats iteratively.

Clearly, these two methods can be integrated harmoniously.
That is, in each step we check not only the referring objects
against the query signature hierarchy but also the referred ob-
jects if their signatures are available. This can be done by
changing step (5) of “top-down-hierarchy-retrieval” a bit:

5. Let C be the class, to which the objects of S belong; let
C1, ..., Ck be the subclasses of C; check the predicates us-
ing signatures of the referred objects; let So be the set of
the OIDs of those objects who satisfy the checking; then
partition So into S1, ..., Sk such that Si belongs to Ci; push
S1, ..., Sk into stackd; push the child nodes of sq into
stackq.

6.2 Signature Maintenance
Whenever the text of an object is modified, its signature needs
possibly to be changed accordingly. To do this, we have to re-
determine the representative words for the object, which can be
done by regarding the corresponding document as a new one
and invoking the entire process for calculating representative
words as discussed in Section 5. Obviously, it is not efficient.
Another approach is to do the modification “locally”. We scan
the new text of the object to see whether any element of the rep-
resentative word set W is lost from the text due to the modifi-
cation and any new word w which can be used as representative
word occurs. (This can be done with the help of human be-
ings.) In the former case, the lost representative word will be
removed from W. In the latter case, w will be added to W. Then,
the new object signature will be calculated and propagated to
all of its ancestor objects. The following algorithm works in a
two-step fashion and updates signatures in terms of the above
local modification strategy.

Algorithm signature-maintenance;
step 1 - signature-modification: (input: the OID of an object o;
output: o’s new signature)

1. Use the OID to retrieve o.

2. Check the text of o to find whether any representative
word is lost from the text and any new word which can
be used as representative word occurs.

3. If the cases mentioned in (2) happen, change the repre-
sentative word set of the object and construct a new ob-
ject signature in terms of it.

step 2 - signature-propagation: (input: the OID of an object o
which has been updated; output: changing the signatures
of o’s ancestor objects)

1. Use the old signature of o to retrieve o’s parent objects op
and change op’s signature.

2. Recursively apply signature-propagation to op.

For example, if the text stored in one of Para objects o is
changed, the set of its representative words may also be
changed. In this case, its signature should be recomputed,
which leads to the update of some object signatures of class
Body if they refer o through aggregation arrows. Then, some
Letter object signatures have to be changed due to the newly
updated object signatures of class Body.

7. Performance

For the comparison purpose, we consider a linear setting as done
in [24]. That is, the query evaluation will be performed along a
class path as shown in Fig. 8.

In the figure, each class Ci has a complex attribute ai whose do-
main is Ci+1. In addition, we assume that a predicate pi is defined
over Ci and will be executed for evaluating the query. The fol-
lowing is the parameters and assumptions used for the perfor-
mance evaluation.

Pi: Probability that an object in class Ci satisfies pi.

vi: Number of objects in class Ci visited by a nested loop
(brute force) top-down strategy to process the given que-
ry.

Pf: False drop probability of signatures.

Pq: Probability that an object satisfies the checking against
the corresponding signature in the query signature hier-
archy.

d: average out-degree of objects (i.e., the average number
of referred objects of an object).

Ni: Number of objects in class Ci.

Using these parameters, the numbers of objects visited for eval-
uating a query using different methods can be estimated as be-
low.

nested loop top down retrieval (NLTR)

By this method, the number of the visited objects in class Ci for
evaluating a query can be computed using the following formu-
la:

vi = d⋅vi-1⋅Pi−1 (2 ≤ i ≤ n)
= d⋅v1⋅P1⋅ ... ⋅Pi−1

Therefore, the total number of the visited objects is equal to the
following sum:

v = = v1⋅(1 + d⋅).

Yong’s method

Let vi’ be the number of objects in class Ci visited by Yong’s
method. Due to the earlier checks done for the referred objects,
for each class Ci, vi’ can be computed as follows:

vi’ = vi - (1 - Pi)⋅vi + (1 - Pi)Pf⋅vi

= vi⋅(Pi + (1 - Pi)Pf),

where (Pi + (1 - Pi)Pf) is the probability that an object is not re-
moved by checking against the signatures of the referred objects.
Thus, the total number of the objects accessed by Yong’s method
is

v’ = =
v1⋅(1 + d⋅).

combining Yong’s method with top-down-hierarchy-retrieval
(THR)

By combining Yong’s method with top-down-hierarchy-retriev-
al, more benefits can be obtained. Let vi” be the number of ob-
jects in class Ci visited by THR. Then, we have

vi” = vi⋅(Pi + (1 - Pi)Pf)⋅Pq.
Thus, the total number of visited objects is

v” = =

Fig. 8. Class path

... ...
C1 C2 C3 Cna1 a2 a3 an-1

vi

i 1=

n

∑ P j 1–

j 1=

i

∏
i 2=

n

∑

vi′
1=

n

∑
Pi 1 Pi–()P f+() P j 1–

j 1=

i

∏
i 2=

n

∑

vi″
1=

n

∑

v1⋅Pq⋅(1 + d⋅).

We compare the three methods above using two simple abstract
data sets. By the first data set, each object has only one sub-ob-
ject (i.e, d =1; see Fig. 9(a)). By the second, each object refers
two sub-objects (i.e, d =2; see Fig. 9(b)).

Fig. 10(a) and (b) show the comparison results for the two data
sets distributed in three classes C1, C2 and C3, respectively. By
the performance analysis, we assume that Pi = 0.1 (i = 1, 2, 3),
Pf = 0.01 and Pq = 0.5. Contrary to [24], the visited objects of
class C1 is counted since using the query signature hierarchy a
lot of objects of the target class can also be removed by check-
ing the corresponding signature file, leading to a drastic reduc-
tion of accessed objects in total.

The figure shows that we can achieve high performance by
combining Yong’s method and “top-down-hierarchy-retriev-
al”. From an abstract point of view, the query signature hierar-
chy is a “global” filter while the replication technique
developed in Yong’s method can be thought of as a “local” one.
Both make fewer objects accessed.

8. Conclusion
In this paper, a signature file method is developed to index the
documents stored in object oriented databases. First, the con-
cept of presentative word hierarchy has been introduced, which
can be constructed based on the canonical information theory
[20]. In terms of a presentative word hierarchy, a signature file
hierarchy can be established by hashing each representative
word into a bit string and then superimposing them into object
signatures. By means of organizing the signatures of the ob-
jects belong to a class into a signature file, we obtain a signature
file hierarchy, corresponding to the aggregation class hierarchy
for the documents stored. Such a hierarchy is useful to speed up
the document retrieval by filtering as many non-relevant ob-
jects as possible if the query signature hierarchy is available. In
addition, the method proposed in [24] can be integrated into our
strategy to get a more efficient algorithm for the query evalua-
tion in object oriented databases.

Reference
[1] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte and J.

Simeon, “Querying documents in object databases,” Int. J. on Digital
Libraries, Vol. 1, No. 1, Jan. 1997, pp. 5-19.

[2] S. Abiteboul, S. Cluet and T. Milo, “Querying and Uodating the File,”

... ...
o1 o2 o3

o1

o22

o32

o33

o34(a) (b)

Fig. 9. Two data sets

NLTR
THR

Yong’s methodd = 1

Pq = 0.5
Pi = 0.1
Pf = 0.01

1000

2000

3000

4000

5000

6000

7000

0

1000 5000 10000 15000 20000 1000 5000 10000 15000 20000

1000

2000

3000

4000

0

d = 2

Pq = 0.5
Pi = 0.1
Pf = 0.01 NLTR

THR

Yong’s method

number of objects
in C1, C2 and C3

number of objects
in C1, C2 and C3

number of visited objects number of visited objects

(a) (b)

Fig. 10. Comparison results

Proc. of the 9th VLDB Conference, Dublin, Ireland, 1993, pp. 386-
397.

[3] K. Böhm and K. Aberer, “Storing HyTime Documents in an Obeject-
Oriented Databse,” Proc. of 3th Int. Conf. on Information and Knowl-
edge Management, Gaithersburg, Maryland, ACM, Nov. 1994, pp. 26-
33.

[4] F. Bancihon, C. Delobel and P. Kanellakis, “Building an Object-orient-
ed Database System: The Story of O2,” San Mateo, California, Morgan
Kaufman, 1992.

[5] K. Böhm, K. Aberer, E.J. Neuhold and X. Yang, “Structured Document
Storage and Refined Declarative and NAvigational Access Mechanism
in HyperStorm,” Int. J of VLDB, 1997.

[6] D.A. Cruse, “Lexical Semantics,” Cambridge University Press, 1986.
[7] W.B. Croft, L.A. Smith and H.R. Turtle, “A Loosely Coupled Integra-

tion of a Text Retrieval System and an Object Oriented Database,” Proc.
of 15th Ann. Int. SIGIR, Denmark, June 1992.

[8] C. Damier and B. Defude, “The Document Management Component of
a Multimedia Data Model,” Proc. of 11th Int. Conf. on Research&De-
velopment in Information Retrieval, Grenoble, France, 1988, pp. 451-
464.

[9] S.J. DeRose and D.D. Durand, “Making Hypermedia Work: A User’s
Guide to HyTime,” Kluwer Academic Publishers, London, 1994.

[10] S.C. Deerwester, K. Waclena and M. Lamar, “A Textual Object Man-
agement System,” Proc. of 15th Ann. Int. SIGIR, Denmark, 1992.

[11] C. Faloutsos, “Access Methods for Text,” ACM Computing Surveys,
17(1), 1985, pp. 49-74.

[12] C. Faloutsos, “Signature Files,” in: Information Retrieval: Data Struc-
tures & Algorithms, edited by W.B. Frakes and R. Baeza-Yates, Prentice
Hall, New Jersey, 1992, pp. 44-65.

[13] G.H. Gonnet, R.A. Baeza-Yates, “New Indices for Text: Pat Trees and
Pat Arrays,” in: Information Retrieval: Data Structures & Algorithms,
edited by W.B. Frakes and R. Baeza-Yates, Prentice Hall, New Jersey,
1992, pp. 66-82.

[14] Hewlett-Packard, OpenODB Reference Manual B3185A, 1992.
[15] D. Harman, E. Fox, R. and Baeza-Yates, “Inverted Files,” in: Informa-

tion Retrieval: Data Structures & Algorithms, edited by W.B. Frakes
and R. Baeza-Yates, Prentice Hall, New Jersey, 1992, pp. 28-43.

[16] D.E. Knuth, The Art of Computer Programming: Sorting and Search-
ing, Addison-Wesley Pub. London, 1973.

[17] W. Lee and D.L. Lee, “Signature File Methods for Indexing Object-Ori-
ented Database Systems,” Proc. ICIC'92 - 2nd Int. Conf. on Data and
Knowledge Engineering: Theory and Application, Hongkong, Dec.
1992, pp. 616-622.

[18] I.A. Macleod, “Storage and Retrieval of Structured Documents,” J. of
Information Processing & Management, Vol. 26, No. 2, 1990, pp. 197-
208.

[19] P. Schäuble, “SPIDER: A MultiMedia Forum - An Interactive Online
Journal,” Proc. of Conf. on Electronic Publishing, John Wiley & Sons,
Ltd, 1994, pp. 413-422.

[20] G. Salton and M.J. McGill, “Introduction to Modern Information Re-
trieval,” McGray-Hill Int. Book Com., Hamburg, 1983.

[21] M. Volz, K. Aberer and K. Böhm, “Applying a Flexible OODBMS-
IRS_Coupling to Structured Document Handling,” Proc. of 12th Int.
Conf. on Data Engineering, New Orleans, 1996, pp. 10-19.

[22] VODAK V 4.0 User Manual. Technical Report 910, GMD-IPSI, St. Au-
gustin, April 1995.

[23] T.W. Yan and J. Annevelink, “Integrating a Structural-Text Retrieval
System with an Object-Oriented Database System,” Proc. of 20th VLDB
Conf., Santiago, Chile, 1994, pp. 740-749.

[24] H.S. Yong, S. Lee and H.J. Kim, “Applying Signatures for Forward Tra-
versal Query Processing in Object-Oriented Databases,” Proc. of 10th
Int. Conf. on Data Engineering, Houston, Texas, Feb. 1994, pp. 518-
525.

