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Jedi (Java based Extraction and Dissemination of Informa-
tion) is a lightweight tool for the creation of wrappers and
mediators to extract, combine, and reconcile information
from several independent information sources. For wrap-
pers it uses attributed grammars, which are evaluated with
a fault-tolerant parsing strategy to cope with ambiguous
grammars and irregular sources. For mediation it uses a
simple generic object-model that can be extended with
Java-libraries for specific models such as HTML, XML or
the relational model. This paper describes the architecture
of Jedi, and then focuses on Jedi’s wrapper generator.

1. Introduction

The World Wide Web has evolved into a general pur-
pose information space that consists not only of hyper-
linked documents, but also of queryable information
sources delivering semi-structured data. Product cata-
logues, ticker services, weather reports, annotated bibliog-
raphies, software directories, conference-announcements
are only a few examples, where structured information is
forced into the browse&display oriented paradigm of the
Web.

Such sources often contain overlapping or complemen-
tary information. However, they express this information
with different syntax and semantics. To satisfy integrated
information needs, such as finding the cheapest hand-held
computer from several online-merchants, or compiling a ta-
ble of weather forecasts per city from a number of regional
providers, one needs to extract and synthesize information
from several sources.

d
Dissemination of Information), a light weight wrapping and
mediation tool to reuse, combine, and reconcile information
from several independent information sources. Jedi pro-
vides a fault-tolerant parser to extract data from external
sources, an extensible object model to describe structure
and semantics of heterogeneous sources uniformly, and a
flexible query and manipulation language to realize inte-
grated views on multiple sources.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the overall architecture. Section 3 introduces
Jedi’s extraction language. Section 4 describes its fault-
erant parsing strategy. Section 5 illustrates the use of J
for wrapping an online-product catalogue. Section 6 d
cusses related work, and Section 7 concludes the pape

2. Architecture

This section gives a brief overview over Jedi’s flexib
integrated wrapping and mediation architecture, depicted
Figure 1.

The wrapping layer transforms heterogeneously mo
eled sources into a uniform object model. We distingui
between generic wrappers and specific wrappers. Gen
wrappers can be defined independently of the schema
sources, such as relational DBMS, CORBA systems or a
document sources with a well defined exchange form
such as XML and HTML. Such wrappers can be realized
extending Jedi’s object model with external libraries.

Specific wrappers for sources with irregular and prop
etary format such as online product catalogues, or bibli
raphies need to take into account the schema of a sou
For the construction of such wrappers, Jedi supports an
traction specification language based on attributed gra
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mars, evaluated by a fault tolerant parser.
The mediation layer can be used to define and query in-

tegrated views on multiple sources. Such views can relate
data from multiple sources, and homogenize the structure
and semantics such that the user can interact with an inte-
grated view like with a single source. This layer offers also
functionality to graphically interact with integrated views
and to flexibly present results.

Figure 1: Jedi Architecture

In the remainder of this paper we will describe in detail
Jedi’s approach to generating specific wrappers for irregu-
lar sources.

3. Extraction Language

The two most widely used approaches to extract infor-
mation from documents are pattern matching, e.g. [9], and
parsing with grammars, e.g. [12]. Often these two approach-
es are combined, with patterns used to map the concrete
syntax of a source to an abstract syntax - tokenization - and
grammars used to generate a structured representation from
the sequence of tokens.

Patterns are usually expressed by means of regular ex-
pressions. When applied to a document, they typically serve
as filters, such that document portions that do not match any
pattern are discarded automatically. Thus one can focus on

the interesting portions of a document, and need not be c
cerned with irregularities of the irrelevant portions.

However, the expressive power of patterns is limited. E
sentially, a set of patterns can only describe the structure
a document as a flat set of objects. When the interpreta
of patterns depends on their actual sequence or on their n
ing structure, patterns alone do not suffice.

As a very simple example consider the following doc
ment from which a list of articles, their price and availab
quantity should be extracted:

The following articles are on stock (4/7/98):
Article Price/$ Quantity
Psion Computer 560 23
8MB memory 100 bargain! 15

To distinguish between numbers as a price or a quant
we need to explicitly specify that the first number pattern
each line matches the price and the second number pa
matches the quantity.

For this purpose we need grammars that allow to use
quence and nesting structure of documents to interpret 
terns according to their syntactic context. With a simplifie
syntax the above example thus could be matched with 
following expression:

<string><blanks><number><blanks><number>
Note however, that this expression only matches the f

line. The string "bargain!" between price and quantity in t
second line is not anticipated by the above specificatio
Thus with the conventional brittle interpretation of gram
mars, the second line would not match. One could explic
trap this irregularity by extending the expression to:

<string><blanks><number><blanks>
[<string><blanks>]<number>
But anticipating all such irregularities soon results 

very complex grammars. To avoid this we need to comb
the flexibility of pattern matching with the higher expres
sive power of grammars. Like patterns, grammars sho
not normatively describe the structure of a document, b
serve as filters that automatically discard irrelevant po
tions. This can be accomplished by the parsing strategy
troduced in Section 4.2.

In the following, we introduce briefly Jedi's language 
specify the syntactic structure of sources, to associate
mantic predicates for further disambiguation, and to m
source structure to a goal structure.

3.1. Syntactic Source Structure

Jedi uses context free grammars to describe the synta
cal structure of textual sources. The grammars consis
rules having a name and a body which contains the prod
tion expression for the rule.

Composition operators can be used to construct m
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complex productions from simpler ones. As usual, these
comprise sequences, optional production, optional repeti-
tion, repetition, alternatives and grouping:

E1 E2 E3 // sequence of ’E1’,’ E2’ and ’E3’
E? // optional ’E’
E* // optional repetition of ’E’
E+ // repetition of ’E’
E1 | E2 // ’E1’ or ’E2’
(E) // grouping of ’E’
Terminal productions match characters of the source.

These comprise single character productions that match any
character or character sets in a regular expression like syn-
tax and productions for character sequences:

. // any character
[A-Z]// uppercase letters A to Z
[^A-Z]// any character but A to Z
’text’// the character sequence ’text’

Non printable characters can be defined by using back-
slash notation, e.g. ’\t’,’\n’,’\r’.

Finally, rule productions may refer recursively to them-
selves or to other rule definitions. The following gives a
small grammar that detect dates in a source:

rule day is [0-9]+ end
rule month is [0-9]+ end
rule year is [0-9]+ end

rule date is
month() ’/’ day() ’/’ year()

end

rule dates is
(

.+ // skip anything which is not a date
| date()

)+
end

In contrast to conventional grammar specification tools,
e.g. lex and yacc, Jedi does not require separate specifica-
tions for a scanner to tokenize the source and a parser that
operates on the tokenized source. When using grammars for
extracting information from irregular electronic documents,
the interpretation of tokens, such as delimiters, tags, or key-
words, depends on their syntactic context.

Another noteworthy feature of Jedi’s use of grammars is
its robustness with respect to ambiguity. Whereas tools for
parsing formal languages, such as yacc, require to carefully
avoid or limit ambiguities, Jedi tolerates highly ambiguous
grammars with arbitrarily overlapping rules. For example,
the production “.+” in the sample grammar above accepts
automatically only non numeric characters that can not be
accepted by the rule for date.

3.2. Semantic Predicates

For performing semantic checks on the syntactica
matched data, Jedi supports predicates that can, for ex
ple, check for number ranges or lookup a thesaurus.

Predicates can be defined by embedding arbitrary r
productions between ’accept’ and ’if’ keywords. Whenev
the embedded production matches the source, the predi
expression1 following the ’if’ is checked against the
matched data passed as a special parameter ’$$’. If the p
icate expression evaluates to true, the production matc
accepted, otherwise it is rejected.

The following example illustrates the use of predicates
disambiguate between street numbers and zipcodes of
dresses. Because both are defined by equivalent struct
descriptions ([0-9]+), and both may be missing, they ca
neither be disambiguated by the local pattern nor by the s
tactic sequence. Thus we need predicates that const
street numbers to a length smaller then 5 and (German) 
codes to be of length 5:

rule address is
// ... - some rules omitted for simplicity
streetname()
(

accept
[0-9]+ // pattern for street numbers

if $$.length<5;
)?
.* // skip non relevant characters
(

accept
[0-9]+ // same pattern for zipcode

if $$.length == 5;
)?
.* // skip non relevant characters
cityname() 

end

3.3. Filling Goal Structure

Rules and predicates allow to determine the source str
ture of a document. In the following, we introduce the e
traction language concepts to map source structure to a 
representation. Such mappings can discard arbitrary p
tions of the source, transform sequence and nesting leve
the source, add content such as XML tags, or also gene
in-memory objects.

Some of these transformations can be simply achiev
by mapping the segmented source to a fixed format, suc
XML. This approach we have used in Dream [8], the pred
cessor of Jedi. But most of the transformations require m

1. Predicate expressions are given in Jedi’s scripting language 
described in the next section.
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flexible mechanism. Thus, Jedi adopts a simple grammar at-
tribution approach. Source data matched by productions can
be assigned to variables which can be further processed by
code blocks.

Jedi offers two different assignment operators. The sim-
ple assignment operator (’=’) assigns source data matched
by its right hand side production to a variable. The accumu-
lative assignment operator (’+=’) collects all matched data
into a sequence and assigns it to the variable. This operator
is mostly used in repetition productions.

Variables can be further processed in code blocks which
contain statements of Jedi’s scripting language. The fea-
tures of this scripting language needed in the context of this
paper are object creation, calls to external functions and
predicates. In addition to these features, the scripting lan-
guage supports standard control statements, multithreading,
exception handling and offers an embedded OQL like query
language. The underlying object model is self descriptive
and supports querying of structure and type of objects. The
built-in data modeling facilities can be extended by Java
classes to add new data types or to integrate data models ge-
nerically.

Rules can optionally declare a result variable to return
the object created in the code block. Without a return vari-
able, rules return the source string matched by their produc-
tion.

The following example extends the date grammar intro-
duced with assignments and code blocks to create a fully
functional wrapper. This wrapper extracts dates from sourc-
es, maps them onto XML element objects and finally gener-
ates well-formed XML output from the created objects. The
XML element type used is part of an extension library im-
plemented in Java which offers data types to represent XML
documents in the document object model proposed by the
World Wide Web Consortium (W3C) [16].

rule day is [0-9]+ end
rule month is [0-9]+ end
rule year is [0-9]+ end

rule date : res
// declares res as result variable

is
m=month() ’/’ d=day() ’/’ y=year()

// assign matched data portions
// to variables m,d,y

do
// definition of result in code block
res = xml_element(“date”);
res.addChild(xml_element(“month”,m));
res.addChild(xml_element(“year”,y));
res.addChild(xml_element(“day”,d));

end
end

rule dates is
(

.+ // skip anything which is not a date
|

list += date()
// rule variable list holds
// a sequence of XML ’date’ elements
// returned by rule date.

)+
do

res = xml_element(“dates”);
res.addChildren(list);
res.prettyPrint();

end
end

4. Parsing Strategy

Grammars describe source structure declaratively, but
they do not describe their interpretation. As we will demon-
strate in this section, often a grammar can have many differ-
ent interpretation, i.e. they are ambiguous. Existing
grammar based parsing approaches avoid or limit ambiguity
by imposing constraints on the grammar specifications, e.g.
LL grammars (PCCTS) or LALR grammars (yacc). 

Such constrained grammars work well for programming
languages but lack the flexibility do deal with irregular doc-
uments.

Ambiguity can be a very powerful tool to specify gram-
mars that can deal with unanticipated structural deviations
in documents and to focus only on the relevant portions of a
document for extraction. As an example, the following
grammar can be used to extract numbers from a source.

(num=[0-9]+ | .+)*
A conventional parser would not allow for such a speci-

fication because “.+” subsumes “[0-9]+”, requiring e.g. to
exclude explicitly digits from the pattern “.+”.

To resolve such ambiguities we need to be able to 
plore all possible solutions, and a mechanism to choose
’best’ possible one. In our example, such a ’best’ soluti
should match all digits with the number pattern and all oth
characters with the “.+”.

In the following we describe first the solution space fo
ambiguous grammars, propose a specificity criterion us
to rank possible grammar interpretations, and show how 
introduced principles can be used to achieve fault toler
parsing. Then, we introduce our parser model and desc
the parsing algorithm which realizes a novel breadth fi
search based parsing strategy. Finally, we discuss some
plementation aspects and the complexity of the algorith
presented.
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4.1. Ambiguous Grammars

Solution Space

The solution space for ambiguous grammars comprises
all possible interpretations of a grammar for a given source.

Each of these solutions can be described by a unique path
through the grammar containing the terminal productions
that match a character at a certain source position. The fol-
lowing example gives a source, grammar and all possible
grammar interpretations:

Source: “abb”
Grammar: ’a’ (’b’ | . )+

Solution paths:
’a’ . .
’a’ . ’b’
’a’ ’b’ ’b’
’a’ ’b’ .

Selecting an Interpretation

Each possible grammar interpretation can lead to a dif-
ferent result, i.e. the data portions extracted and code blocks
executed by each solution can vary according to the path de-
scribed by each solution. To choose among these solutions
we need a ranking: Each solution path consists of a se-
quence of accepting transitions. Each transition accepts a
certain character set. Single transitions are ordered ascend-
ing according to the cardinality of the accepted character
set. Paths are ordered by comparing their transitions lexico-
graphically according to this ranking.

For the example above, the terminals ’a’ and ’b’ have
specificity 1 whereas the dot has specificity 256 (all Latin-
1 characters) and thus the resulting ranking of solutions is:

’a’ ’b’ ’b’ => this is the ’best’ solution
’a’ ’b’ .
’a’ . ’b’
’a’ . .

The ranking is strictly monotonous. Thus, it allows for
early disambiguation, i.e., a partial solution which is more
specific than another partial solution at any position in the
document will never get less specific by regarding the rest
of the document.

This ranking has been chosen as it selects a grammar in-
terpretation which is close to user expectations. Regard the
following small example grammar “([0-9]+ | .+)*”. Appar-
ently, there exists no objective criterion to prefer the num-
ber pattern over the “.+”. However it appears natural to
interpret this grammar in such a way that it describes sourc-
es which consist repeatedly of numbers or ’anything else’,
because a number is more specific than ’anything’.

We have also tested two other specificity rankings. The
first one also uses lexicographic comparison of solutions
but ranks those solutions higher whose transitions are more
specific towards the end of the solution path. The second

ranking orders paths according to the sum of their termi
specificities. Both rankings however often lead to ’surpri
ing’ grammar interpretations and thus have been rejecte

Fallbacks

One particularly important use of “.+” is to serve as
fallback rule which matches portions of a document f
which no more specific rule exists.

To free the user from explicitly considering such fal
backs, Jedi automatically includes them with every rule2.
To distinguish such fallbacks from explicitly given “.*”
productions, they get an artificial lowest specificity. Th
guarantees that a fallback can only show up in a final so
tion if no other user defined production can match t
source at a given point, and consumes only as much cha
ters as needed until a production in the direct grammar c
text of the fallback can match again.

4.2. Parsing Ambiguous Grammars

Grammar Representation

Context free grammars can be represented as non de
ministic finite stack automatons (NDSA). Jedi uses an op
mized NDSA which is generated on the fly from gramm
rule specifications whenever matching of a rule agains
source is requested. This allows any rule to serve as an e
point for a grammar as opposed to yacc for example wh
only one dedicated start rule is allowed.

In a first step, an initial automaton is created which co
sists of state nodes combined by transition edges. Tra
tions can either accept characters or are ε-transitions.
Various kinds of ε-transitions model assignments, cod
blocks and predicate evaluation.

In a second step, the automaton is transformed furth
Starting from the start state, all outgoing ε-transitions are
followed recursively until an accepting transition i
reached. Then, the whole transition path followed so far
collapsed into a new transition accepting the same cha
ters as the accepting transition reached. The attributes o
original path are also included. This proceeds recursiv
until every state has been visited. Finally, all initial trans
tions and unneeded intermediate states are removed.

The final automaton then consists only of accepting tra
sitions which optimizes the parsing algorithm as it need n
repeatedly traverse ε-transition edges to find accepting tran
sitions.

Figure 2 gives the initial automaton and transformed a
tomaton for the grammar “’a’* .* ’b’+”:

2. This behaviour may be overridden in Jedi by preceding rule 
definitions with the keyword “strict”.
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Figure 2: Automaton Transformation

Parsing Strategy

Parsing with ambiguous grammars needs to efficiently
explore and rank huge solution spaces. The solution space
can be explored either by using a depth first search or a
breadth first search based algorithm.

A depth first search based algorithm requires exponential
time in the worst case. Such an algorithm iterates over the
source from the first to the last character. At each position,
it follows the most specific matching transition through the
automaton and goes to the next source position. If no match-
ing transition exists, the algorithm uses backtracking and re-
turns to a previous document position where it follows the
next, less specific matching transition.

The backtracking requires exponential runtime in the
worst case. Consider the following example. The source
“aaaaaaaaaaaaaaaaaaaa$” and grammar
“(’a’ | [a-z] | [a-z0-9])+ | .*“ requires 321 back-
tracking tests by this algorithm before it enters the solution
path described by “.*”.

Furthermore, several matching transitions can have
equal specificity at any document position. The algorithm
however cannot decide in advance which will get more spe-
cific in the future. Thus, it has in any case to backtrack to
this position and has to evaluate all paths originating from
equally specific transitions to determine the most specific
solution. Again, this leads to exponential runtime in the
worst case.

Therefore, we use a breadth first search based algorithm
to explore the solution space and use the dynamic program-
ming principle [5] to prune partial solutions that can never
make the best solution.

The breadth first search initializes a first generation of
solutions comprising all outgoing transitions of the start
state which accept the first character of the source and ranks

them according to the specificity of the accepting tran
tions.

Then, the breadth first search determines at each cha
ter in the document the next accepting transitions. This
done for each existing solution, starting traversal from t
solution’s last target state. For each accepting transition
a solution, a new solution is created by appending the tr
sition to the already existing solution path. This is done
the order of increasing character positions and for each 
sition in the order of decreasing lexicographic rank of exi
ing solutions.

In order to preserve the lexicographic ranking, the ne
solutions have to be sorted. The breadth first search enf
es already that new solutions which derive from equa
ranked predecessor solutions are presorted and thus 
only be sorted within the groups according to the actu
specificity of the accepting terminal rule.

The dynamic programming principle is used to disca
those new solutions which are candidates, but do not ha
chance in giving a best solution. The criterion used here
that a solution which reaches the same automaton state
is in the same stack state (recursion!) already reached by
other, more specific solution can be safely discarded as
future of both solutions is the same3.

Given the source “abb” and the automaton from the p
vious section, Figure 3 illustrates our algorithm:

Figure 3: Solution Paths and Pruning

The vertical order of solution paths corresponds to t
lexicographic ranking, the grayed states denote the so
tions that can safely be discarded because of the more 
cific solution pointed to by the dotted arrows.

Predicates are modeled as follows. Special transit
flags mark the entry and exit of predicate embedded auto
aton sections. Whenever such an enter transition accep
character, the character’s position is put on the current so
tion’s stack. Whenever an exit transition accepts a char
ter, the position is popped from the current solution’s sta
and the string embedded between current position a
popped position is given to the predicate expression 

3. This dynamic lexicographic approach has been applied first 
to mating of sows [7].
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evaluation. Only if the predicate returns true, a new solution
is created.

There exist still some possibilities to optimize the pre-
sented algorithm as it follows a rather pessimistic strategy.
It often keeps and creates candidate solutions that originate
again and again from unspecific ambiguous rules in the
grammar even if a good specific solution has already
reached a more meaningful point in the grammar. There-
fore, we added a prune operator. It allows users to specify a
grammar location at which the system simply prunes all
candidate solutions which are less specific than the one that
passed this point. However, optimizations like these should
be used cautiously as they require a deep understanding of
the parsing algorithm in order to obtain the same results as
not using them.

4.3. Implementation Aspects

The Solution Stack

As described above, we represent context free grammars
by NDSAs. Normally, modeling the stack for such an
NDSA is trivial but our breadth first search approach re-
quires a separate stack for each partial solution.

Copying stacks for each solution on demand would re-
quire too much overhead. New solutions derived from the
same predecessor solution can however share the predeces-
sor stack. This can be modeled efficiently by a multi stack
data structure based on a reversed tree representation. This
tree does not refer from the root to its children but the chil-
dren refer to the root. So, each solution sees the stack it re-
quires and is free to manipulate it without affecting other
solutions.

Assignment and Code Block Execution

The second aspect of our implementation concerns exe-
cution of assignments and code blocks associated to gram-
mar rules. Executing these directly for each partial solution
is neither desirable nor advisable due to possible side effects
between solutions and runtime overhead to execute code for
intermediate solutions that never give the final solution.
Therefore, we postpone execution until the final solution
has been found by the algorithm. This comes at the cost that
we have to keep in the worst case the entire transition paths
for each partial solution in order to be able to reconstruct as-
signments and code execution.

As a consequence, our tool cannot be used for continu-
ous parsing problems, e.g. needed to analyse log files that
are written in parallel by another program.

Compilation

Conventional parser tools, e.g. yacc or PCCTS, generate
parser code which has to be compiled before the parser can
be used. Our strategy does not gain much from compilation

as it is dominated by the always required breadth first search
iteration loop and subsequent sorting and pruning tests.

Furthermore, interpreting grammars directly offers the
advantage of better maintenance and incremental develop-
ment of grammars. This is important for Web sources which
frequently change structural aspects of their information
and thus require changes to the extraction specifications.

Debugging

The complete knowledge about the parsing process is en-
capsulated in the final solution’s transition path and can
used for debugging purposes. Jedi offers a debugging m
which uses this knowledge to generate an HTML docum
from a parsed source which contains different markup 
those source portions which have been matched by ru
fallbacks or have been assigned to variables.

4.4. Complexity

The worst case runtime complexity of our algorithm d
pends on the length l of the document and number n of tran-
sitions in the transformed automaton. Using breadth fi
search ensures that each character is only regarded o
and thus the algorithm is linear with respect to the length
the document. In each breadth first iteration step, a ma
mum number of n solutions (for each transition one) ca
survive and each of these requires in the worst case n prun-
ing tests (all transitions can be reached from each solut
and match). This leads to an overall worst case complex
of O(n2l).

The average complexity is roughly O(nl) as a solution
normally does not have more than 2 or 3 possible succes
solutions which reduces the n2 pruning tests down to 3n.
Some experiments based on realistic grammars/docum
confirm this assumption. The number of surviving solutio
normally ranges between 10 and 25 and in each step
amount of existing solutions is doubled and needs to be
agrded for pruning. These numbers correspond to 1000
25000 characters/sec that can be parsed on a SPARC U

As described in the previous section, the worst ca
space requirements depend linearly on the length l of a
source and surviving solutions n, if for each solution the
whole transition path must be kept. Concrete memory 
quirements varied between 25 - 200 byte/character, depe
ing on grammar and source.

However, these complexity considerations do only ho
if we assume grammars without predicates and recurs
The following two grammars show that the algorithm run
ime can explode by using predicates and recursion. The 
example grammar calls the predicate for each partition
substrings in a given source:

.*
accept .* if predicate($$);
.*



The second example uses recursion. For each prefix sub-
string matched by the “.+” in the example, the rule must be
evaluated recursively and initiates the same segmentation
process for the rest of the document again. If the source
length is l, (l-1)! recursive evaluations of the rule are per-
formed:

rule call_me_often is
.+ call_me_often()

end

However, such pathological examples have never oc-
curred in the experiments and applications that we have per-
formed with Jedi so far.

5. Example

In the following we illustrate Jedi’s parsing strategy
along a realistic example taken from a demo located at
“http://www.darmstadt.gmd.de/oasys/projects/jedi/index.html”.

The online demo shows Jedi’s facilities to extract, model
and integrate PSION palmtop computer related product data
from multiple Web sources, and to query and visualize the
extracted data.

Figure 4 presents a screenshot of one source4 which is
highly irregular, mixing images, natural language text,
forms and the relevant product data arbitrarily.

The code fragment depicted below the figure is the com-
plete Jedi specification needed to define a grammar to ex-
tract article codes, article descriptions and their price from
this source. Other than in the online demo, the extracted
data is not mapped onto an object model, but directly rewrit-
ten as tagged XML source.

The first rule ’Article’ specifies the source structure of
one article ’record’ and assigns appropriate data portions to
the variables ’code’, ’description’ and ’price’. These are re-
used in the code block to write tagged XML code to stdout.

The first two assignment productions can safely contain
a trailing “.*” which is automatically left whenever the
more specific productions ’</B>’ or ’<B>’ match.

The third assignment production either requires a specif-
ic pattern which identifies exactly the price or it requires a
more specific end tag to indicate where the price ends, e.g.:

’<B>’price = (’$’ .*) ’</B>’
The second rule ’ArticleList’ describes that the source

structure comprises a sequence of ’Article’ records as de-
scribed by the first rule.

As can be seen from the screenshot, this rule does not de-
scribe exactly the source as it contains a lot of additional, ir-
relevant information that must be filtered out.

4. located at http://www.mplanet.com/cgi/Web_store/
web_store.cgi?page=psion.html&cart_id=2726135.4533

Figure 4: Snapshot of Source

rule Article is
’<B>’ code = (’MP’ .*)
’</B>’ description = .*
’<B>’ price = (’$’ [0-9.]+)
do

println(
“<Article>”,
“<Code>”, code, “</Code>”,
“<Price>”, price, “</Price>”,
“<Description>”, description,
“</Description></Article>”

);
end

end

rule ArticleList is
do

println(“<ArticleList>”);
end
(list += Article())+
do

println(“</ArticleList>”);
end

end
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Strict parsing approaches will fail when given such a
grammar. Jedi however is able to proceed meaningfully. Its
fault tolerant interpretation of the ’Article’ rule allows to
skip irrelevant portions of the source by the fallback pro-
duction associated to the rule.

Finally, the embedded code blocks are evaluated accord-
ing to the grammar interpretation described by the most spe-
cific solution path. Code execution will start with the first
’println’ statement of rule ’ArticleList’, it proceeds with the
assignments and code defined in rule ’Article’ as often as
this rule has matched and ends with executing the second
’println’ statement in rule ’ArticleList’. The portions ac-
cepted by fallbacks do not have any side-effects and thus do
not cause any output to be written.

6. Related Work

Jedi’s approach to extraction is based on the work de-
scribed in [8]. Jedi extends this approach with the support
for context free grammars, disambiguation predicates, flex-
ible grammar attribution, and the generic fault tolerance
mechanism presented.

The Editor system described in [4] offers an extraction
language that provides search, copy and replace operators
for rewrite and restructuring purposes. InfoExtractor [15]
utilizes concept definition frames, based on a mixture of
simple regular expressions and weighted keywords to iden-
tify and interpret relevant source parts. Other approaches
[2,9] define wrapper model specific extraction languages.
The first approach is based on simple pattern matching and
utilizes heuristic rules to determine the hierarchical struc-
ture of documents whereas the second one uses yacc to gen-
erate source specific extractors. NoDoSe[1] offers an
interactive environment for semi-automatic extraction of
data based on outlining of interesting regions in documents,
semantic descriptions and mining tools which rely on the
existence of simple prefix/postfix patterns to identify rele-
vant data.

[11,12] both use non-deterministic automatons (NDA)
where state transitions are determined by a pattern match.
Though NDAs and Jedi’s internal modeling of grammars by
non deterministic stack automata (NDSA) is similar, ND-
SAs are more powerful as they can model context free
grammars whereas NDAs can only model regular gram-
mars.

Most approaches do not support fault tolerant interpreta-
tion of extraction specifications at all. [9, 11, 12] support a
very limited kind of fault tolerance for unanticipated cases
by providing explicitly defined alternative rules or transi-
tions in case a rule does not match. Jedi’s fallback mecha-
nism is much more flexible and allows for generic, fault
tolerant interpretation of grammar rules.

None of the above grammar based approaches can deal
with ambiguous grammar specifications. As far as we

know, no other parsing strategy uses a breadth first sea
based algorithm combined with lexicographic ranking a
pruning to interpret ambiguous grammars.

7. Conclusion and Further Research

In order to overcome the brittleness of grammar bas
parsing approaches for extracting and filtering data from
regularly structured sources, new parsing technology
needed. This technology must allow for fault tolerant inte
pretation of ambiguous grammars.

As ambiguous grammars allow for multiple possible in
terpretations of a source, a criterion is needed to select 
’good’ interpretation. We propose a lexicographic rankin
on possible interpretations which uses the specificity of t
minal rules as lexicographic comparison criterion. We sho
that the highest ranked solution is near to user expectati
and thus can be selected as final solution.

Fault tolerance is achieved by adding implicitly fallbac
productions to rules which consume a minimal number
characters until an explicitly given production in the dire
context of the failing rule matches again.

We present a breadth first search based parsing stra
to explore the solution space and use the specificity rank
to prune partial solutions which can never make the best
lution in the end. We show further that this algorithm r
quires almost linear runtime whereas the runtime of a de
first search based strategy can easily explode.

The strategy has been implemented as part of the J
tool. It offers the extraction language needed to specify c
text free grammars for irregularly structured sources whi
can be extended by semantic predicates to disambigu
rules further. Grammar attribution is used to extract relev
source portions. A fully fledged scripting language an
built-in data modeling means can be used to create flexi
wrappers which rewrite sources directly or instantiate ri
conceptual models for further querying and processing.

Further research has to address the most difficult a
time consuming task related to wrapper generation for t
tual sources: the creation and maintenance of extract
specifications. This task has to be assisted and simplified
appropriate tools and metaphors based on supervised le
ing by example approaches, e.g. like MarkItUp![6], or unsu-
pervised statistical analysis methods which can det
source structures automatically.

The fault tolerant extraction of irregularly structure
sources leads to irregularly structured and heterogeneo
typed goal representations. Thus, research has also to in
tigate in fault tolerant processing and querying of these r
resentations which allows for meaningful treatment of ty
mismatches or structural irregularities.
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