
Admissible Record-Oriented Evaluation Plans
for Declarative Updates

Gisela Fischer
Dresdner Bank AG, 60301 Frankfurt a.M., Germany

E-Mail: Gisela.Fischer@dresdner-bank.com

Karl Aberer
GMD-IPSI, Dolivostrasse 15, 64293 Darmstadt, Germany

E-Mail: aberer@darmstadt.gmd.de

Abstract

Efficient evaluation strategies for declarative updates have rarely been investigated. Due to possible dependencies
between the resulting database state and the order in which records (objects) are processed, usually declarative updates
are evaluated in a set-oriented way in order to ensure a deterministic evaluation. In this paper, we show that such
dependencies can be detected by exploiting knowledge about conflicts between the operations that are used to access
the database during the update evaluation. Thus most declarative updates can also be evaluated deterministically, and
in some cases more efficiently, in a record-oriented way. We show that some of the detected conflicts can be relaxed
or even be ignored, while a deterministic evaluation can still be guaranteed.

1 Introduction

Different approaches for optimizing and evaluating declarative queries have been proposed so far (comprehensive
overviews can be found in [10] and [6]). Many query languages like SQL[9], QUEL[15] or POSTQUEL[13] also pro-
vide means for a declarative specification of database updates. However, particular strategies for the optimization and
especially for the efficient evaluation of declarative updates have hardly been investigated. Most of the optimization
strategies that have been developed for queries, e.g., algebraic optimization using equivalences based on heuristics,
can also be applied to declarative updates with minor modifications. Unfortunately, this is not possible for the corre-
sponding evaluation strategies, since in some cases the result of a declarative update depends on the order in which
records (objects) are processed, as we will show later.

We assume that the evaluation of queries and declarative updates is realized by executing several algorithms which
correspond to, e.g., join, selection and projection. Each algorithm produces a result and/or consumes the result(s)
of the previously executed algorithm(s). One can distinguish the following two basic processing strategies for these
algorithms:

� set-at-a-time (set-oriented): An algorithm processes sets of records. The result set(s) of the previous algo-
rithm(s) is (are) processed completely within an algorithm before its own result set is propagated to the next
algorithm.

� record-at-a-time (record-oriented): An algorithm processes a single record. A result record computed from the
input record(s) is immediately propagated to the next algorithm.

If additional algorithms for switching between set-oriented and record-oriented processing and vice versa exist,
both set-oriented and record-oriented algorithms can be combined in the evaluation. If only set-oriented (record-
oriented) algorithms are used, we say that the evaluation is set-oriented (record-oriented), or the query/update is
evaluated in a set-oriented(record-oriented) way. Otherwise we say the evaluation is mixed. In certain cases only the

Advances in Databases and Information Systems, 1997 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Admissible Record-Oriented Evaluation Plans for Declarative Updates

set-oriented strategy is applicable, e.g, when aggregations have to be computed, sorting is used, or for the enforcement
of certain semantic integrity constraints for declarative updates. If record-at-a-time is applicable, a record-oriented
evaluation offers several advantages. First of all, it avoids the computation of large intermediate results which probably
have to be stored on secondary storage because of main memory limitations. Second, the evaluation can be parallelized
using pipelining (e.g. see [6][14][19]). Third and last, if the database buffer is too small to hold all records which
have to be processed, a record-oriented evaluation can avoid multiple replacing and subsequent reloading of the same
records.

For queries, set-oriented, record-oriented and mixed evaluation yield the same result. By contrast, evaluating a
declarative update in a record-oriented can lead to a different database state than evaluating it in a set-oriented way.
In fact, the former may even lead to a non-deterministic evaluation. This problem has been identified for updates in
relational databases as the following examples show.

Example 1 (known as the Halloween problem [6])
The relation Employees is given as follows:

name salary manager
Smith 35.000 Smith
Brown 32.000 Smith
Jones 30.000 Brown
Miller 27.000 Jones

The following update is posed against Employees : “Raise the salary of all employees who earn more than $30.000
by 10%.”

Assume that an index whose entries are sorted in ascending order is defined on the attribute salary. If we evaluate
this declarative update in a set-oriented way, first all relevant employees are selected, then their salary is increased
(in this example the employees Smith and Brown), and the index is updated. - For a record-oriented evaluation, we
assume that each relevant record is selected separately using the index defined on salary, and that index entries are
read in ascending order. In order to keep the index consistent with the database state, changes of salary values are
immediately stored within the corresponding index entries. Then, instead of a single salary increase, Smith and Brown
get an infinite number of raises since their index entries are swapped with each update, and the records are selected
and updated again.

Example 2 (given in a similar form in [15])
The relation Employees is given as in Example 1. Now all employees whose managers earn at least $33.000 should

get a salary increase by 10%.
With a set-oriented evaluation, obviously only Smith's and Brown's salary is increased. But if we follow the

record-oriented strategy and examine records in the order given in Example 1, the following happens:

� Smith meets the selection condition; his salary is increased to $38.500.

� Brown also meets the selection condition; his salary is increased to $35.200.

� Jones now also meets the selection conditions since his manager's (= Brown's) salary is greater that $33.000.
His salary is changed to $33.000.

� Because of the same reason, Miller also gets a salary increase.

In this paper we consider only one special type of declarative updates, namely the application of an update op-
eration to a set of objects that is determined by a query. Furthermore, we assume that the declarative updates we
investigate can be evaluated deterministically, i.e., they give a unique result when evaluated using the set-oriented
strategy ([2] and [11] describe approaches for detecting and handling declarative updates which cannot be evaluated
deterministically).

Advances in Databases and Information Systems, 1997 2

Admissible Record-Oriented Evaluation Plans for Declarative Updates

A non-deterministic evaluation of a declarative update is caused by conflicts between the database access oper-
ations that are executed during the evaluation. In this paper we investigate whether a record-oriented evaluation is
still correct, although conflicts exist. First, we introduce a query processing model for an object-oriented DBMS as a
basis for the investigation of declarative updates. We think that the development of concepts for dealing with declar-
ative updates is even more important in the context of object-oriented databases, since updates can be performed by
database methods, which may occur (at least syntactically) anywhere in queries formulated in a declarative object-
oriented query language. Then we develop a formal model which is based on tracing the database access operations
during query evaluation. Since our concept is based on an object-oriented data model, we represent all database ac-
cess operations as system-defined and user-defined methods, respectively. The former represent, e.g., scans on class
extensions or index scans (then the respective class object is the receiver)1, while the latter are application-specific
methods defined in a database schema. The trace model is particularly suited to analyze conflicts that may occur during
the evaluation of declarative updates. For conflict detection, we exploit conflict specifications that are given together
with the methods. We identify two frequently occurring non-trivial cases where declarative updates can be evaluated
deterministically in a record-oriented way, although conflicting methods occur within the evaluation. The concept
we describe in this paper allows to consider alternative, possibly more efficient, evaluation strategies for declarative
updates and thus can be regarded as a special optimization technique. To the best of our knowledge, this is the first
paper that investigates this optimization potential for declarative updates.

The remainder of the paper is organized as follows. Section 2 gives an overview on related work. In Section 3
we briefly describe the logical query algebra declarative updates are mapped to, introduce the physical query algebra
which is used to build up evaluation plans, and illustrate how its operators are mapped to concrete algorithms. We
examine the application of the record-oriented strategy to declarative updates in Section 4, and show that some of the
detected conflicts can be relaxed or even ignored, while a deterministic evaluation can still be guaranteed. In Section
5, perspectives for the applicability of our concept within a rule-based query optimization framework are sketched and
some performance considerations are given. Section 6 concludes the paper.

2 Related Work

About twenty years ago, non-determinism in evaluating declarative updates was first recognized. As a consequence,
declarative updates in, e.g., INGRES [16] and POSTGRES [13] are only evaluated in a set-oriented way. This restric-
tion is mostly used for a straightforward solution to this problem (e.g., [6]). In fact, it does not even solve the problem
in general, as it is shown in two recent publications that deal with non-deterministic evaluation of declarative updates
explicitly [11][2]. Both concentrate on the problem of applying a sequence of update operations, or an update method,
resp., to a set of receivers. Conflicts between update operations/update methods that are applied to different receivers
are examined. In [11] state-independent conflict specifications, which are also utilized for concurrency control, are
used to detect non-determinism. If a conflict occurs at run time (which is detected by the concurrency control), the ex-
ecution of the declarative update is either stopped and rolled back, or the execution is continued with non-deterministic
semantics. - In [2] a more theoretical approach is introduced. The authors concentrate on the analysis of declarative
updates on the basis of so-called schema colorings which are used to classify all update methods in a schema accord-
ing to their update behavior (update, creation and deletion of objects). They show that these colorings can be used
to decide whether the application of an update method to a set of receivers leads to a non-deterministic evaluation or
not. It is proven that for a so-called key-order independent method, a sequential application of the method to a set of
receivers is equal to a parallel application.

In the following we concentrate on the examination of conflicts between update and read-only methods. As
mentioned before, we assume that the declarative updates we look at can be evaluated deterministically in a set-
oriented way. This can be proved by using the techniques introduced in [11] and [2].

1Of course, a scan on the extension of a class does not have to be implemented in the form of a method; we just represent it as one in order to
have a uniform model for all database access operations.

Advances in Databases and Information Systems, 1997 3

Admissible Record-Oriented Evaluation Plans for Declarative Updates

3 The Query Processing Model

In general, declarative updates are formulated using a declarative language. We do not rely on a specific language,
but assume that a declarative language like ODMG-93 OQL [4] or VQL [1][5] is used. The main requirement is that
methods, including update methods, can be used in the formulation of queries and declarative updates, provided that
the semantic correctness of the query/update is given.

We follow an algebraic approach with the distinction of a logical and a physical query algebra as introduced in [7].
Queries and declarative updates are translated into logical algebra expressions. The query optimizer transforms these
logical expressions, e.g., pushs selections down as far as possible, maps logical to physical algebra expressions using
so-called implementation rules, and chooses the cheapest physical expression as the evaluation plan.

3.1 Logical Query Algebra

The logical algebra we use in this paper has been introduced in [1]. It is not complete with regard to query languages
like ODMG-93 OQL. For the sake of simplicity the expressiveness of the algebra is restricted to the class of declarative
updates to which the results of this paper apply.

The operators of the logical as well as the physical query algebra are applied to complex values of type f[a1 :
D1; : : : :; an : Dn]gwhereD1; : : : ; Dn are complex data types. We assume that the record components are unordered.
Operator arguments of this type are denoted by S. The operator parameters are enclosed in<>. We defineRef(S) :=
fa1; : : : ; ang for Type(S) = f[a1 : D1; : : : ; an : Dn]g and refer to a1; : : : ; an as the references of S. In the
following p andm denote property and method identifiers, respectively. The invocation of a methodmwith parameters
p1; : : : ; pk and receiver o is represented by o! m(p1; : : : ; pk).

The logical algebra consists of the operators select, project, join, natural join, union and diff as well as the
operators get, map const, map op, map and flat. The former are defined in analogy to the commonly known operators
from relational algebras. The latter are provided for representing class extensions, constants, operations on the built-in
data types and method invocations, respectively (flat flattens set-valued methods results).

The declarative updates we consider in this paper are restricted to the form
select rec! m(p1; : : : ; pk)
from x1 in e1; : : : ; xn in en where pred

(given in the language of ODMG-93 OQL), where m is an update method, and the other expressions for the method
receiver rec, the method parameters p1; : : : ; pk, the domains e1; : : : ; en for query variables, and the query predicate
pred contain exclusively invocations of read-only methods.

Declarative updates are then mapped to a logical algebra expression of the form
map < a;m; arec; < ap1 ; : : : ; apk >> (E)

where E is the logical algebra expression which represents the from and the where clause, and m is the update
method which is invoked in the select clause.

Example 3 We assume that a class Emp with the method raiseSalary(p : INT) : BOOL is defined in analogy to
the relation Employees. The declarative update from Example 1 can be formulated as

select e! raiseSalary(10)
from e in Emp

where e:salary > 30:000

Note that e:salary is a short-hand notation for the invocation of a system-defined method salary() which is provided
for reading property values. The representation in the logical algebra is then given by

map < a5; raiseSalary; a1; < a4 >> (
map const < a4; 10 > (

select < a2; >; a3 > (
map const < a3; 30:000 > (

map < a2; salary; a1 > (
get < a1; Emp >)))))

Advances in Databases and Information Systems, 1997 4

Admissible Record-Oriented Evaluation Plans for Declarative Updates

3.2 Physical Query Algebra

The physical query algebra contains operators which are associated with certain cost functions and evaluation al-
gorithms. For each operator in the logical query algebra, there exists (at least) one corresponding operator of the
physical query algebra. For some logical operators, there exist alternative physical operators, e.g., for join we pro-
vide the physical operators nested loop join; hash join and merge join which represent different join algorithms.
Additionally, the physical algebra contains the operators sort for sorting the input sets of a merge join, the operator
select index < a;C; p; v > for selecting the instances of the class C using the index defined on property p with value
v, and the operator collect to accumulate (intermediate) result sets.

The optimizer generates several physical algebra expressions which we refer to as evaluation plans (EP). The
overall cheapest EP is then chosen to evaluate the query/declarative update. We refer to an EP P where each operator
op is covered by a collect operator, i.e., P = collect(op1(: : : collect(opk) : : :) as a set-oriented EP. The corresponding
record-oriented EP P 0 = op1(: : : (opk) : : :) is obtained from P by removing the collect operators. If some, but not all
operators in an EP are covered by a collect operator, we refer to the EP as a mixed EP.

In order to analyze the correct execution of declarative updates, we give the concrete algorithms for some of
the physical algebra operators. For each physical operator except sort, we provide algorithms for a record-oriented
evaluation. The corresponding set-oriented processing strategy for an operator op can then be obtained by covering
the operator with a collect operator, i.e., collect(op). For sort, a set-oriented algorithm is provided.

Since record-oriented algorithms can be thought of as iterators on streams of records [6], we provide for each
operator algorithms OPEN and NEXT , for opening the stream and obtaining the next element of the stream, re-
spectively. In the following algorithms P; P1 and P2 are the operator arguments. � denotes a boolean predicate on
built-in data types, C is a class name, c is a constant, and o is the OID of an instance of C. S and U denote sets,
while s; t and u denote records. The methods open scan(a) and scan(a) are defined for class objects and realize a
scan on the class extension. scan(a) returns a record of the form [a : o] where o is the OID of an instance of a class
C which is the receiver of this method. The methods open scan index(a; p; v) and scan index(a; p; v) are defined
in analogy to scan the index which is defined for the class C on property p with value v. The operation concat(s; t)
concatenates records s and t, and returns the concatenated record. The operations open(S) and next(S) are used to
iterate on the set S. As examples for the implementation of OPEN and NEXT , we give the corresponding algo-
rithms for the operators get, map, nested loop join and collect. For select index, the algorithms can be inferred from
the corresponding ones given for the operator get by replacing open scan(a) through open scan index(a; p; v) and
scan(a) through scan index(a; p; v), respectively.

OPEN(get < a;C >);
fC ! open scan(a); g

NEXT (get < a;C >) : s;
fs := C ! scan(a);
IF (s! = NULL)
THEN RETURN s ELSE RETURN NULL; g

OPEN(map < a;m; a1; < a2; : : : ; ak >> (P));
fOPEN(P); g

NEXT (map < a;m; a1; < a2; : : : ; ak >> (P)) : s;
ft := NEXT (P);
IF (t! = NULL) THEN RETURN

concat([a : t:a1 ! m(t:a2; : : : ; t:ak)]; t)
ELSE RETURN NULL; g

Advances in Databases and Information Systems, 1997 5

Admissible Record-Oriented Evaluation Plans for Declarative Updates

OPEN(nested loop join < a1;�; ai+1 > (P1; P2));
fU := fg; OPEN(P2); u := NEXT (P2);
WHILE (u! = NULL)

fU := U UNION fug; u := NEXT (P2); g
OPEN(P1); t := NEXT (P1); open(U);
u := next(U)g

NEXT (nested loop join < a1;�; ai+1 > (P1; P2)) : s;
fs := NULL;
WHILE (s = NULL)AND (t! = NULL)

fIF (u! = NULL) THEN

fWHILE (u! = NULL)AND (s = NULL)
IF (t:a1�u:ai+1) THEN s := concat(t; u);

u := next(U); g
ELSE fu := open(U); u := next(U);

t := NEXT (P1); gg
RETURN s; g

OPEN(collect(P));
fOPEN(P); S := fg; s := NEXT (P);
WHILE (s! = NULL)

fS := S UNION fsg; s := NEXT (P); g
open(S); g

NEXT (collect(P)) : s;
fRETURN next(S); g

4 Record-Oriented Evaluation of Declarative Updates

Non-determinism in the evaluation of declarative updates is caused by conflicts between the methods that are executed
during the evaluation of a record-oriented EP. In general, two methods a and b are said to commute if their execution
order can be switched without causing any changes. a can be executed before as well as after b, and the results of both
methods and of any subsequent method c, which is executed on a database state that has eventually been modified by
a and b, do not change. Otherwise a and b are said to be in conflict.

We utilize so-called state-independent commutativity specifications, where only information about the method
itself (i.e., its name) and its actual parameters which are known at compile time are used for a conflict test [18]. Note
that since we do not consider information about the actual database state, on the one hand we can perform a conflict
test at compile time. On the other hand, we can only detect possible conflicts which might, but do not necessarily
occur.

Commutativity specifications have mainly been exploited in semantic concurrency control [3][12][18] to achieve
a higher degree of parallelism. In this context conflict tests are performed at run time. It is assumed that methods
which are invoked for different receiver objects commute (local atomicity property), since a method can only directly
manipulate the state of its receiver. If conflicts occur due to nested method invocations, they are detected at run time
[12]. In the case of declarative updates, a conflict test should preferably be performed at compile time, or at least before
the evaluation starts, in order to avoid a non-deterministic evaluation or a rollback of all method invocations executed
so far during the evaluation. Since conflicts due to nested method invocations cannot be detected then, methods
invoked for different receivers cannot be considered as commuting by default, as it is done in semantic concurrency
control. For our purposes, we extend the notion of commutativity with respect to the receiver objects of methods as
follows:

Definition 1 (Total and partial commutativity)
Two methods m1 and m2 commute totally iff for any database state DB0 the execution sequences (o1 ! m1 :

Advances in Databases and Information Systems, 1997 6

Admissible Record-Oriented Evaluation Plans for Declarative Updates

r1; o2 ! m2 : r2) and (o2 ! m2 : r2; o1 ! m1 : r1) lead to same resulting database state DB1, and the results r1
and r2 of the two method invocations are the same. They commute partially if additionally for the receiver objects
o1 6= o2 holds.

4.1 Traces

To investigate conflicts between methods that are invoked during the evaluation, we need a precise description of the
order of method invocations. For this purpose, we introduce the notion of traces of method invocations. In order to
allow a recursive computation of traces for EPs, we also include the intermediately generated records that are passed
on to the other operators during evaluation, since these records lead to further method invocations. The trace for an
EP P displays all method invocations that are executed and all records that are generated, when for P the sequence of
calls OPEN(P);NEXT (P) : t1; : : : NEXT (P) : tn;NEXT (P) : NULL; is performed. We define the trace of
the execution of an EP P against a given database state as follows:

Definition 2 (TRACE)
The trace TRACE(P) of an EP P is the sequence consisting of method invocation sequences Mi; i = 0; : : : ; n+ 1,
records ti; i = 1; : : : ; n, and the entry opened, denoted as

TRACE(P) =< M0; opened; M1; t1; : : : ;Mn; tn; Mi+1 >

such that for the execution of OPEN(P); NEXT (P) : t1; : : : NEXT (P) : tn; NEXT (P) : NULL; all method
invocations before the entry opened correspond to those executed in OPEN(P), the sequence Mi; i = 1::n; cor-
responds to the method invocations executed in NEXT (P) : ti, and the sequence Mi+1 corresponds to the method
invocations executed in NEXT (P) : NULL.

According to this definition, we can derive the traces for the physical algebra operators given in Section 3.2 from
the corresponding algorithms.

TRACE(get < a;C >) :=
< C ! open scan(a); opened;C ! scan(a); s1; : : : ;C ! scan(a); sn;C ! scan(a);>

Let TRACE(P) :=< M0; opened; M1; t1; : : : ;Mn; tn; Mi+1 >

TRACE(map < a;m; a1; < a2; : : : ; ak >> (P)) :=< M0; opened; M1; t1:a1 ! m(t1:a2; : : : ; t1:ak);
s1(t1); : : : ;Mn; tn:a1 ! m(tn:a2; : : : ; tn:ak); sn(tn);Mi+1 >

The expression s(t) denotes a record s that is an extension of the record t, i.e., 8a 2 Ref(t)2, a 2 Ref(s) and
t:a = s:a. E.g., for map, t is extended by a component which holds the result of the method call.

TRACE(nested loop join < a1;�; ai+1) > (P; P 0)) :=
< M 0

0; M
0

1; : : : ;M
0

m; M 0

m+1; M0; opened;
M1; v1;1(t1; u1)?; : : : ; v1;m(t1; um)?; : : : ;Mn; vn;1(tn; u1)?; : : : ; vn;m(tn; um)?;Mi+1 >

where vi;j(ti; uj)? means that the record vi;j is generated from ti and uj and may not be contained in the trace, and
where TRACE(P 0) =< M 0

0; opened; M
0

1; u1; : : : ;M
0

m; um; M 0

m+1 >

TRACE(collect(P)) :=< M0; M1; : : : ;Mn; Mi+1; opened; t1; : : : ; tn >

The sequence of method invocations in the trace corresponds exactly to the sequence of method invocations in the
execution of the EP, and the sequence of records in the trace corresponds exactly to the result computed by the EP.

Example 4 The set-oriented and the corresponding record-oriented EP for the declarative update described in Exam-
ple 1 can be formulated as follows:

2For t 2 T = f[a1 : v1; : : : ; an : vn]g; Ref(t) = Ref(T)

Advances in Databases and Information Systems, 1997 7

Admissible Record-Oriented Evaluation Plans for Declarative Updates

P = collect(map < a3; raiseSalary; a1; < a2 >> (
collect(map const < a2; 10 > (

collect(select index < a1; Emp; salary; 30:000 >)))))

P 0 = map < a3; raiseSalary; a1; < a2 >> (
map const < a2; 10 > (

select index < a1; Emp; salary; 30:000>))

The traces T and T 0 of P and P 0, respectively, are then

T = TRACE(P) =
< Emp! open scan index(a1; salary; 30:000);
Emp! scan index(a1; salary; 30:000); : : : ;Emp! scan index(a1; salary; 30:000);
t1:a1 ! raiseSalary(t1:a2); : : : ; tn:a1 ! raiseSalary(tn:a2); opened; s1(t1); : : : ; sn(tn) >

T 0 = TRACE(P 0) =
< Emp! open scan index(a1; salary; 30:000); opened;
Emp! scan index(a1; salary; 30:000); t1:a1 ! raiseSalary(t1:a2); s1(t1); : : : ;
Emp! scan index(a1; salary; 30:000); tn:a1 ! raiseSalary(tn:a2); sn(tn);
Emp! scan index(a1; salary; 30:000) >

where ti = [a1 : oi; a2 : 10] and si = [a1 : oi; a2 : 10; a3 : bi], oi 2 extension(Emp), bi 2 ftrue; falseg for
i = 1; : : : ; n

By comparing T and T 0 we see that removing the collect operator changes the execution order of invocations
of raiseSalary and scan index. These methods are in conflict if the latter is invoked for the class Emp and the
property salary. Thus, P 0 is not an admissible or valid EP since it cannot be executed deterministically.

It follows that if all methods which occur in the trace commute, the evaluation of a record-oriented EP P 0 leads
to the same result and terminal database state as the evaluation of its corresponding set-oriented EP P , and P 0 is
then a valid EP. However, commutativity between all methods is not necessary in order to guarantee a deterministic
evaluation. This will be investigated more closely in the following.

4.2 Identifying Admissible Record-Oriented and Mixed EPs

We implicitly referred to commutativity as total commutativity when we observed that an EP is executed determin-
istically if all methods which occur in its trace commute. However, total commutativity between all methods is not
necessary, as we will show with the following example.

Example 5 The following two EPs can be formulated for the declarative update in Example 1:

P = map < a5; raiseSalary; a1; < a4 >> (
map const < a4; 10 > (

select < a2; >; a3 > (
map const < a3; 30:000 > (

collect(map < a2; salary; a1 > (
collect(get < a1; Emp >)))))))

P 0 = map < a5; raiseSalary; a1; < a4 >> (
map const < a4; 10 > (

select < a2; >; a3 > (
map const < a3; 30:000 > (

map < a2; salary; a1 > (
collect(get < a1; Emp >))))))

Advances in Databases and Information Systems, 1997 8

Admissible Record-Oriented Evaluation Plans for Declarative Updates

P 0 is a valid alternative EP if the traces T and T 0 of P and P 0, respectively, can be transformed into each other by
exchanging commuting method invocations:

T = TRACE(P)
=< Emp! open scan(a1); Emp! scan(a1); : : : ;Emp! scan(a1);
x1:a1 ! salary(); : : : ;xn:a1 ! salary(); opened;
t1:a1 ! raiseSalary(t1:a4)?; s1(t1)?; : : : ; tn:a1 ! raiseSalary(tn:a4)?; sn(tn)? >

T 0 = TRACE(P 0)
=< Emp! open scan(a1);Emp! scan(a1); : : : ;Emp! scan(a1); opened;
x1:a1 ! salary(); t1:a1 ! raiseSalary(t1:a4)?; s1(t1)?;
: : : ;xn:a1 ! salary(); tn:a1 ! raiseSalary(tn:a4)?; sn(tn)? >

where xi = [a1 : oi] and ti; si are defined analogously as in Example 4 for i = 1; : : : ; n.
The methods salary and raiseSalary in T are executed for the same receiver. They are in conflict, since the

former reads the property salary of an employee, while the latter changes this property. Thus T 0 cannot be derived
from T by commuting non-conflicting method invocations. However, salary and raiseSalary do not commute
totally, but partially, because changing the salary of an employee e does not have an influence on reading the salary
of another employee e0. Since each employee's salary is read and written only once in this example, conflicts will
actually not occur. P 0 can be evaluated deterministically, although not all invoked methods commute totally.

This example shows that partial commutativity can be sufficient. Nevertheless we have to make sure that the methods
in question are executed only once for the same receive. This is the case if the record column which holds the
identifiers of the receiver objects contains only unique values in the evaluation of P . We say that a component a
is unique in the evaluation of an EP P , if the execution of P yields the set of records S with a 2 Ref(S) and
8s1; s2 2 S; s1 6= s2 : s1:a 6= s2:a

Obviously a is unique in the evaluation of P , if it has been generated by the operators get and select index,
and if P does not contain a join operator or the operator flat. The former condition guarantees that a is created
with unique values, while the latter ensures that uniqueness is maintained since records are not duplicated during
subsequent processing. If these conditions are not fulfilled, we cannot decide whether a is unique or not, unless we
have further information about the result of the evaluation of operators.

We have seen that in some cases partial commutativity is sufficient to ensure a deterministic evalua tion. However,
there exist other types of conflicts that do not prevent a deterministic evaluation, as the following example illustrates.

Example 6 Assume that the class Emp has an additional property department which holds the OID of an instance
of a class Department. This class provides a property floor which indicates where a department is located. We want
to increase the salary of all employees which work in a department on the third floor and earn more than $30.000. For
this declarative update, the following EP P can be given:

P = map < a9; raiseSalary; a1; < a8 >> (
map const < a8; 10 > (

nested loop join < a5; >; a4 > (
select < a6;==; a7 > (

map const < a7; 3 > (
map < a6; f loor; a5 > (

get < a5; Department >)));
map < a4; department; a1 > (

select < a2; >; a3 > (
map const < a3; 30:000 > (

map < a2; salary; a1 > (
get < a1; Emp >))))))

TRACE(P) contains invocations of the methods raiseSalary and salary which partially commute, but the compo-
nent a1 which holds the receiver objects for these operations may not be unique in the evaluation of P due to the join

Advances in Databases and Information Systems, 1997 9

Admissible Record-Oriented Evaluation Plans for Declarative Updates

in the query. However, if we take a look at the algorithm given for nested loop join in Section 3.2, we see that the
inner input - in analogy to outer and inner relation of a join - , i.e., P2, is completely evaluated before the first pair of
matching records is actually computed. Thus all method invocations in the evaluation of P2 are executed before the
update method is first invoked. An invocation of the update method cannot have an influence on the execution of any
of the methods that occur in P2, and conflicts between the update method and a method in the evaluation of P2 can be
ignored.

Since invocations of salary occur in the evaluation of the inner input of the nested loop join, the conflict between
raiseSalary and salary can be ignored, and thus P can be evaluated deterministically.

This observation also holds for the operators diff , and, if the operator sort is used for sorting the inputs, for
merge join. For diff , the inner input has to be computed completely before the first result record can be computed.
For merge join, both inputs have to be sorted, and none of the inputs is computed completely before the first pair
of matching records is computed. If sorting is performed explicitly using the operator sort, we have to distinguish
whether the conflicting method is executed before or after the sorting. In the former case, a conflict can be ignored,
since due to the set-oriented evaluation of sort all invocations of the conflicting method are executed before the
update method is first executed. In the latter case, the methods have to commute totally, because, due to the join, the
uniqueness of columns in the resulting records cannot be guaranteed.

We generalize the observations of Example 5 and 6 in the following two theorems. The first theorem describes the
conditions under which a stepwise transformation of a set-oriented to a record-oriented EP is possible:

Theorem 1 Let P and P 0 be EPs of the form
P = map < a;m; arec; < ap1 ; : : : ; apl >> (op1(: : : (opk(collect(E) : : :)
P 0 = map < a;m; arec; < ap1 ; : : : ; apl >> (op1(: : : (opk(E)::) : : :)

where op1 : : : opk are physical operators, but none of these operators is a collect operator. If P is executed determin-
istically, then also P 0 is executed deterministically and yields the same result, i.e., the same sequence of records is
generated and the same database state is reached, if one of the follow ing conditions is satisfied:

(i) E is one of the subplans select(collect(Q));map const(collect(Q)); nested loop join(collect(Q); R);
hash join(collect(Q); R);merge join(collect(Q); collect(R)); union(collect(Q); R); diff(collect(Q); R)
where Q and R are arbitrary subplans, or

(ii) E is map < a0;m0; arec; < a0p1 ; : : : ; a
0

p
l0
>> (collect(Q)) where Q is an arbitrary subplan, arec is a unique

component in the evaluation of Q, m and m0 commute partially, and each opi; i = 1; : : : ; k � 1, is one of the
operators map, map const, or select, or

(iii) E is map < a0;m0; a0rec;< a0p1 ; : : : ; a
0

p
l0
>> (collect(Q)), where Q is an arbitrary subplan, and m and m0

commute totally, or

(iv) E is get < a0; C > or select index < a0; C; p; v > andm andC ! scan(a0), andm andC ! scan index(a0; p; v),
respectively, commute totally.

Proof:
The removal of a collect operator permutes the sequence of method invocations in the trace. We have to show that this
permutation does not change the invocation order of conflicting methods.

Case (i):
For these operators, removing the collect operator has no impact on the trace.

Case (ii):
Removing the collect operator leads to two kinds of exchanges. Those between invocations of m 0 and method invo-
cations induced by op1; : : : ; opk are uncritical as only read-only methods are involved. The critical permutations take
place between invocations ofm0 andm. Since we assume that the values of arec are unique in the evaluation ofQ, i.e.,

Advances in Databases and Information Systems, 1997 10

Admissible Record-Oriented Evaluation Plans for Declarative Updates

for the same receiver object m0 is always executed before m, partial commutativity between m and m0 - as required
in the theorem - is sufficient in this case.
Case (iii) and (iv):
In case of total commutativity, removing the collect operator is always possible, since conflicts do not occur between
methods whose invocations are interchanged.

Remark: flat and join operators were excluded from the possible intermediate operators op1; : : : ; opk as these
operators may lead to duplication of the values of arec in several records. In this case total commutativity is required.
However, we can include flat and join operators in case we have additional in formation, e.g., from database integrity
constraints. These constraints may indicate that the execution of the methods which are invoked during the evaluation
of these operators do not lead to a duplication. That is, in the case of flat the resulting sets of the method call have
at most size 1, while in the case of joins a record from the inner input does only match with a single record from the
outer input, and vice versa.

The second theorem shows that also within the inner inputs of binary operators a stepwise transformation from the
set-oriented to the record-oriented strategy is possible.

Theorem 2 Let P and P 0 be EPs with
P = map < a;m; arec; < ap1 ; : : : ; apl >> (op1(: : : opi(bop(Q; opi+1(: : : opk�1(

collect(opk(collect(S)) : : :)

P 0 = map < a;m; arec; < ap1; : : : ; apl >> (op1(: : : opi(bop(Q; opi+1(: : : opk�1(
opk(collect(S))) : : :)

where op1; : : : ; opk are physical operators (including binary operators with a constant second argument), bop is the
operator nested loop join or diff , and Q and S are subplans of P . If P is executed deterministically, then also P 0

is executed deterministically and yields the same result, i.e., the same sequence of records is generated and the same
database state is reached.

Proof:
The removal of the collect operator only permutes the sequence of method invocations which are executed during
OPEN(P), i.e., the order of the method invocations which occur before the entry opened in the trace is changed.
Each of these method invocations is executed before the first pair of matching records in the binary operator is com-
puted, and thus before the update method m is first invoked in the evaluation of P . Thus an invocation of m cannot
have an influence on the results of the execution of these method invocations. If a conflict between m and a method
induced by an operator opi+1 : : : opk is detected, the conflict can be ignored.

These theorems show that total commutativity between all methods is not required in order to ensure a deterministic
evaluation. Regarding Theorem 2, it directly follows that choosing the outer and inner input of the binary operators
nested loop join and diff does not only have an influence on the evaluation cost and thus on the selection of the
cheapest EP, but is also important for generating ad missible record-oriented and mixed EPs. E.g., if a conflict between
a method which is invoked in the outer input of a nested loop join and the update method is detected - this would prevent
a deterministic record-oriented evaluation - the conflict can be ignored if outer and inner input are exchanged.

5 Application of the Results

In our approach, the task of specifying conflicts explicitly, e.g., together with the database schema, might be rather
expensive, since conflicts have to be specified between user-defined methods, and between user-defined methods on
the one hand and system-defined methods on the other hand. However, conflicts can be derived automatically by
exploiting traditional write/write and read/write conflicts, e.g., during the semantic analysis of the database schema at
compile time. This is possible since we only utilize state-independent information for the specification of conflicts.
The schema designer may then correct those cases where the methods semantically commute, although a conflict has
been detected. A similar approach has already been suggested in [11].

Advances in Databases and Information Systems, 1997 11

Admissible Record-Oriented Evaluation Plans for Declarative Updates

5.1 Integration of the Conflict Test

The conflict test has to take place before the evaluation actually starts, such that its results can have an influence on
the choice of the appropriate physical operators for the final EP. We shortly describe how the results of this paper will
be integrated in the query optimizer of the object-oriented DBMS VODAK [17].

In VODAK we follow a rule-based approach for query optimization based on the Volcano optimizer generator
[1][7]. The optimizer may enforce constraints in the generation of (sub)plans by using so-called physical properties
(for example sortedness). According to Theorem 1 such constraints may occur when ommitting the collect operator
in a subexpression of an expression with a map operator on top. Theorem 2 identifies cases where the collect operator
can be savely omitted. In order to satisfy the constraints introduced by Theorem 1, we include information about
methods that lead to potential conflicts, into the physical properties. By default, the implementation rules map the
operator to an expression covered by collect. If we omit the collect operator and potentially case (ii) - (iv) of Theorem
1 can occur, we include this information into the physical properties of the plan generated. Later, when a map operator
tries to use such a physical expression as subplan, the conflict test can be executed by comparing required physical
properties with the provided physical properties. Theorem 2 allows us to identify cases where we can abandon some
of the constraints in the physical properties, namely whenever they occur in the second argument of a physical join
or diff operator. In this way the optimizer can choose record-oriented and mixed plans whenever they are safe
alternatives. Thus we can take advantage of record-oriented processing strategies which can be more efficient than
the corresponding set-oriented ones, although conflicts between the methods which are invoked during the evaluation
exist.

5.2 Performance

Since parallelism cannot be exploited in traditional database systems, the execution of a record-oriented EP P 0 takes
as long as the execution of the corresponding set-oriented EP P , provided the database buffer is large enough to hold
all records which have to be processed. However, if the database buffer is too small, in contrast to the execution of P 0,
the execution of P requires repeated replacement and reloading of records in the database buffer. We can estimate this
effort for replacing and loading of records for a particular class of queries as follows. Assume that P and P 0 consist
of n algorithms (no selections or joins) which have to be executed consecutively. Each algorithm has to process k
records. The database buffer can store i records, where i� k. Loading a record into the buffer needs l units of time,
and replacing a record needs r units of time. Then the total time for loading and replacing records during the execution
of P and P 0, respectively, is given as follows.

� for P : t = i � l + (k � i) � n � (r + l)3

� for P 0: t0 = i � l + (k � i) � (r + l)

Thus, we can achieve, if i� k, approximately a factor of n speed-up in the time spent for buffer management.
To substantiate these considerations we have compared the execution time of record-oriented and corresponding

set-oriented EPs for queries in VODAK (for this particular experiment it did not matter whether we considered queries
or updates). The queries were posed to a 180 MB protein database which was developed within the DOCKING-D
project [8] at GMD-IPSI. The execution of queries and updates in VODAK is realized analogously as described in
Section 3. In case the database buffer was large enough, the execution time of record-oriented and corresponding set-
oriented EPs was, as predicted, nearly equal (difference ca. 1%). If the database buffer was too small, the execution
time differed considerably: in the worst case, the execution of a record-oriented EP was 3.65 times faster than the
execution of the corresponding set-oriented EP. In this case, 1069 of 1197 instances of a class were selected first, and
15 method calls were then applied to the selected objects consecutively. The database buffer could store 120 objects
on average.

3This is actually the best case when all records in the buffer are processed before replacing and reloading of unprocessed records starts. In the
worst case records are always processed in the same order, and thus for the last (n � 1) algorithms (k � i) unprocessed records in the buffer are
replaced and reloaded afterwards. In this case the time for replacing and loading records is tworst = i � l+ (k � i) � r + (k � i) � l+ 2 � (k �
i) � (n� 1) � r + 2 � (k � i) � (n� 1) � l

Advances in Databases and Information Systems, 1997 12

Admissible Record-Oriented Evaluation Plans for Declarative Updates

6 Conclusion

In this paper we have investigated non-determinism in the evaluation of record-oriented EPs for declarative updates. In
the examined cases non-determinism is induced by conflicts between update and read-only methods that are invoked
within the algorithms which are executed for the evaluation. We have developed a framework which allows to identify
admissible record-oriented and mixed EPs. It is shown that some of the detected conflicts can be relaxed and even
completely ignored, while a deterministic evaluation can still be guaranteed. We have sketched a possible realization
of our concept within a rule-based query optimization framework.

Generally speaking, we have introduced a new optimization potential with regard to the efficient evaluation of
declarative updates. The contribution of our paper is twofold. First, and most important, we have shown that not
all existing conflicts actually cause a non-deterministic evaluation. Second, we have illustrated that the generation of
record-oriented and mixed EPs which are executed deterministically can be ensured if a conflict relation is available
for the methods, or, in general, for the database access operations which are executed during the evaluation, and if
appropriate conflict tests are performed before the actual execution starts, e.g., during the query optimization process.

The formal framework we have developed in this paper can also be applied to more complex declarative updates
than investigated here, e.g., containing several update methods, or containing update methods in the selection condi-
tions. Investigating these cases will be part of our future work.

References

[1] Aberer K, Fischer G. Semantic Query Optimization for Methods in Object-Oriented Database Systems. In: Pro-
ceedings of the 11th International Conference on Data Engineering. IEEE Computer Society Press, 1995, pp.
70-79.

[2] Andries M, Cabibbo L, Paredaens J, Van den Bussche J. Applying an update method to a set of receivers, In:
Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
ACM Press, New York, 1995, pp. 208-218..

[3] Bernstein P, Hadzilacos V, Goodman N. Concurrency Control and Recovery in Database Systems, Chapter 5.
Addison-Wesley Publishing Company, 1987.

[4] Cattell R.G.G (Ed.). Object Databases: The ODMG-93 Standard, Release 1.1. Morgan Kaufmann Publishers,
San Francisco, 1994.

[5] Fischer G. Updates in Object-Oriented Database Systems Caused by Method Calls in Queries. In: Proceedings
of the 3rd EDRG Workshop on Updates and Constraints Handling in Advanced Database Systems, 1992, pp.
64-72.

[6] Graefe G. Query Evaluation Techniques for Large Databases. ACM Computing Survey 1993; 2: 73-170.

[7] Graefe G, McKenna W.J. The Volcano Optimizer Generator: Extensibility and Efficient Search. In: Proceedings
of the 9th International Conference on Data Engineering. IEEE Computer Society Press, 1993, pp. 209-218.

[8] Hemm K, Aberer K, Hendlich M. Constituing a Receptor-Ligand Database from Quality-Enriched Data. In:
Proceedings of the International Conference on Intelligent Systems in Molecular Biology 95 (ISMB 95), 1995.

[9] International Standards Organization, Database Language SQL2 and SQL3, international committee document.
ISO/IEC JTC1/SC21 WG3 DBL SEL-3b, April 1990.

[10] Jarke M, Koch J. Query Optimization in Database Systems. ACM Computing Survey 1984; 2: pp. 111-152..

[11] Laasch C, Scholl M. Deterministic Semantics of Set-Oriented Update Sequences. In: Proceedings of the 9th
International Conference on Data Engineering. IEEE Computer Society Press, 1993, pp. 4-13.

Advances in Databases and Information Systems, 1997 13

Admissible Record-Oriented Evaluation Plans for Declarative Updates

[12] Muth P, Rakow T. C, Weikum G, Broessler P, Hasse C. Semantic Concurrency Control in Object-Oriented
Database Systems. In: Proceedings of the 9th International Conference on Data Engineering. IEEE Computer
Soceity Press, 1993, pp. 233-242.

[13] Rowe L, Stonebraker M. The POSTGRES Data Model. In: Proceedings of the 13th International Conference of
Very Large Data Bases. Morgan Kaufmann Publishers, 1987, pp. 83-96.

[14] Selinger P, Astrahan M, Chamberlain D, Lorie R, Price T. Access Path Selection in a Relational Database Man-
agement System. In: Proceedings of the ACM SIGMOD Conference. ACM Press, New York, 1979, pp. 23-34.

[15] Stonebraker M. Operating System Support for Database Management. Communications of the ACM 1981; 7:
412-418.

[16] Stonebraker M, Wong E, Kreps P, Held G. The Design and Implementation of INGRES. ACM Transactions on
Database Systems 1976; 3: 189-222.

[17] VODAK V4.0 User Manual, GMD Technical Report No. 910, Sankt Augustin, April 1995.

[18] Weihl W. Commutativity-Based Concurrency Control for Abstract Data Types. IEEE Transactions on Computers
1988; 12: 1488-150.

[19] Wilschut A, Apers P, Flokstra J. Parallel Query Execution in PRISMA/DB. In: Proceedings of the PRISMA
Workshop on Parallel Database Systems. Springer Verlag, 1990, pp. 424-433 (Lecture Notes in Computer Sci-
ence No.503).

Advances in Databases and Information Systems, 1997 14

