
Transaction Models Supporting Cooperative Work

– The TransCoop Experiences –

K. Aberer, J. Klingemann, T. Tesch, J. Wäsch, and E. J. Neuhold
Integrated Publication and Information Systems Institute (GMD-IPSI)
GMD – German National Research Center for Information Technology
Dolivostr. 15, D-64293 Darmstadt, Germany

faberer, klingem, tesch, waesch, neuholdg@darmstadt.gmd.de
http://www.darmstadt.gmd.de/

~

faberer, klingem, tesch, waesch, neuholdg

Proceedings of the International Symposium on Cooperative Database Systems for
Advanced Applications (CODAS'96), Kyoto, Japan, December, 5-7, 1996.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Transaction Models Supporting Cooperative Work
– The TransCoop Experiences –

K. Aberer, J. Klingemann, T. Tesch, J. Wäsch, E. J. Neuhold

Integrated Publication and Information Systems Institute (GMD-IPSI)
GMD – German National Research Center for Information Technology

Dolivostraße 15, D-64293 Darmstadt, Germany
faberer, klingem, tesch, waesch, neuholdg@darmstadt.gmd.de

Abstract
Cooperative work on shared information requires different
kind of computing system support to coordinate the work
of multiple users, to establish mutual awareness and to en-
sure consistency. These issues are currently tackled sepa-
rately in various loosely related areas, like workflow sys-
tems, groupware, and advanced transactional models. We
present a transactional model that provides a core function-
ality for information sharing in cooperative systems, that
explicitely supports cooperation primitives and at the same
time ensures consistency of results. The model has been
derived from a thorough analysis of various cooperative ap-
pliciation scenarios. It is currently being implemented as
an extension of an object-oriented database management
system and evaluated for a cooperative document author-
ing application.

1 Introduction
The global information infrastructure, both open networks
as well as intranets, induces a rapid growth in opportuni-
ties to perform joint work efforts in locally distributed en-
vironments and within virtual organizations. This requires
to support human interaction in cooperative working en-
vironments increasingly at a computing system level, in
addition to conventional means, like personal interaction,
phone or mail. Examples of applications were globaliza-
tion of cooperative work is taking place are design applica-
tions, like cooperative document authoring, CAD/CASE or
design for manufacturing, real-time groupware, like con-
ferencing, shared whiteboards or joint editing, or business
workflow management in administration and production.

Most of these activities are based on some common in-
formation bases, providing documents, design data or busi-
ness data. Database systems managing this data thus have
to support the typical modes of interaction of cooperat-
ing users with each other and with the computing system.
These interactions involve aspects, like multi-user cooper-

ation on shared documents, support for long duration ac-
tivities, or interactive user control. At the same time ba-
sic consistency requirements need to be ensured. Ensuring
consistency of data in multi-user environments is the clas-
sical problem of transaction management. However, in or-
der to support cooperation, the classical paradigm of com-
petition for resources needs to be replaced by the paradigm
of semantically correct exchange and sharing of informa-
tion.

The goal of the ESPRIT III project TRANSCOOP1 is
the development of a cooperative transaction model and
a corresponding specification language that are applica-
ble for a wide spectrum of cooperative applications. The
TRANSCOOP specification language allows the specifica-
tion of workflow-like cooperative scenarios. It provides
a sound basis for verification, since it is based on a for-
mal description technique for process algebras (LOTOS)
[BB89]. In this paper we focus on the development of
the TRANSCOOP cooperative transaction model COACT

[RKT+95, WK96, KTW96b] which provides the basic
transactional support to ensure consistent management of
shared data in cooperative applications.

The research activities in TRANSCOOP are started from
a former analysis of different cooperative application sce-
narios, namely cooperative authoring [TW95], Design
for Manufacturing [VFSE95] and workflow applications
[JLP+95] and from an analysis of existing approaches to
support cooperative work, both of which are presented in
Section 2. We describe the cooperative transaction model
COACT which builds the core of the TRANSCOOP run-
time environment for cooperative applications in Section
3 and compare its properties with other transaction mod-
els devised for the support of cooperative work. The

1This work is done in the ESPRIT III BRA project TRANSCOOP

(EP8012) which is partially funded by the Commission of the European
Communities. The partners in the TRANSCOOP project are GMD (Ger-
many), University of Twente (The Netherlands), and VTT (Finland).



TRANSCOOP transaction model supports alternating peri-
ods of individual and joint work and allows to exchange
and share information consistently. To support this flexibly,
we take an operation-oriented view. We determine consis-
tency of shared work results on the basis of the seman-
tics of operations performed to obtain these results. The
model has been implemented as an extension of the object-
oriented database management system VODAK [GI95] de-
veloped at GMD-IPSI and is evaluated for the application
scenario of cooperative document authoring (Section 4).

2 Requirements Analysis and Related
Approaches

2.1 Cooperative Application Domains Investi-
gated in TransCoop

In the TRANSCOOP project, we investigated three kinds of
cooperative application scenarios with respect to require-
ments for a cooperative transaction model and its specifi-
cation language, namely Cooperative Hypermedia Docu-
ment Authoring (CDA), Design for Manufacturing (DfM),
and Workflow applications [TV95, VT95].

Cooperative Hypermedia Document Authoring
[TW95]. CDA is characterized by multiple authors
interactively working on shared hypermedia documents.
Hypermedia document authoring can be considered as a
design problem solving process [HF86], mainly charac-
terized by the decomposition into smaller subproblems
and their solution by interacting activities. An important
characteristic of these processes is that the documents to
be produced can be described only vaguely in advance.
Authoring activities require a high flexibility in choosing
the next actions to end up with the aimed document.

Design for Manufacturing [VFSE95]. DfM can be seen
as a variant of Concurrent Engineering. The scope of DfM
is the engineering process of discrete complex industrial
artifacts, usually separated into upstream processes (prod-
uct design) and downstream processes (production realiza-
tion, including engineering, planning, and manufacturing)
[SRN93]. The essential part of DfM is the early involve-
ment of specialists from downstream processes in the up-
stream design process. Thus, the strengthening of the de-
sign process by overlapping design phases requires exten-
sive cooperation and coordination facilities. In comparison
to cooperative authoring, there exists more knowledge of
the processes in different phases as well as of the sequence
of processing.

Workflow applications [JLP+95]. Workflows are used to
define complicated business processes, e.g., to accomplish
the production of goods or services. A workflow consists
of a collection of tasks that are partially ordered by control
and data flow dependencies. Tasks are the basic units of

work that are processed by one responsible actor. Thus,
workflows focus mainly on the coordination of activities.

The three scenarios can be classified as cooperative appli-
cations, emphasizing different aspects of the communica-
tion, collaboration and coordination properties of CSCW
systems [EGR91]. We have identified the following com-
mon properties (for details we refer the reader to [TV95,
VT95, TW95, VFSE95, JLP+95]):

� Multiple concurrent users are involved in multiple ac-
tivities to satisfy a common goal or to produce a com-
mon product or artifact.

� Activities are processed interactively by humans and
are usually of long duration.

� Cooperative work is characterized by alternating pe-
riods of individual and joint work.

� Exchange and sharing of persistent data between dif-
ferent users performing several activities is a basic
feature.

� There is a need to ensure consistency both for the
work of a single user as well as for the cooperative
effort.

� Between activities there exist control flow dependen-
cies that are derived from the application domain.

� It is likely that co-workers are geographically dis-
tributed and only partially connected, as mobility has
growing importance.

The relevance of these properties varies for the three ap-
plication domains. For example, in workflow scenarios,
control flow dependencies are of higher importance than
in the cooperative authoring domain. We can identify a
spectrum, where the solutions become more fixed and pre-
scribed and the problem solving process and termination
conditions can thus be more deterministically described,
starting from CDA over DfM to workflow applications.

2.2 Requirements for a Cooperative Transaction
Model

A central objective of a cooperative transaction process-
ing system is to provide a cooperative transaction model
that supports the key requirements of a broad spectrum
of cooperative applications. From the above analysis, we
have identified the following requirements for a coopera-
tive transaction model.

Relaxed atomicity. The rollback of the whole cooperative
work process in case of a failure is generally not accept-
able. It is required that a cooperative activity should be able
to proceed (and eventually succeed) even if other parts of



the cooperative process fail. A failure within one user's ac-
tivity should not imply the rollback of another user's work
in their joint effort.

Retraction of decisions. To support the interactive user
control of activities, a cooperative transaction model has to
provide services that allow to retract decisions taken by the
cooperating authors, for example by compensation. This
allows, for instance, to explore several alternatives to solve
a problem.

Relaxed isolation. The sharing of final, as well as of in-
termediate artifacts among co-workers is a prerequisite for
most cooperative applications. Instead of isolation, a coop-
erative transaction model has to guarantee that no anoma-
lies are introduced although tentative working results are
exchanged. The model should offer appropriate primitives
for the semantically correct exchange of information be-
tween co-workers.

Version support. To explore different solutions of the
same problem, different co-worker should be able to work
at the same time on the same data. To avoid interference
from co-workers, the cooperative transaction model should
be able to manage alternative versions of objects. On user's
demand, it should be possible to exchange versions and to
combine them into a commonly accepted version. More-
over, to support geographical distribution and mobility the
model should be able to deal with multiple copies of data.

Execution constraints. To describe the pre-planned parts
of cooperative scenarios and the decomposition of the over-
all work into smaller subactivities, a cooperative transac-
tion model should allow the definition of execution con-
straints. Execution constraints should be able to describe
the possible structure of a single user's activity as well as
the overall cooperative work process. This includes the as-
signment of subactivities to co-workers and constraints on
the occurrence of particular tasks and on their execution
order within the overall cooperative process.

Of course, further requirements are imposed on coopera-
tive systems. For example, to support the mutual aware-
ness of co-workers, notification mechanisms are needed.
Additional communication facilities like e-mail or audio
may be required for direct negotiation of co-workers. Such
services are not covered by a cooperative transaction model
since it aims at synchronizing the cooperative access to per-
sistent data. Nevertheless, a cooperative transaction pro-
cessing system satisfying the above requirements can pro-
vide an application-independent nucleus to build coopera-
tive systems on top of it.

2.3 Approaches to Support Cooperative Work
The issue of synchronization of multiple cooperating users
is treated in several fields, including groupware, workflow
systems, and advanced transaction models.

Groupware. Most groupware systems [EGR91] synchro-
nize cooperative access to shared data in a more or less
ad-hoc manner. Concurrency control in most cooperative
hypertext systems is based on mechanisms like explicit
user-controlled locking of objects, different lock modes,
extended lock semantics, and notifications [WL93, GS87].
Some systems are using floor passing protocols [GS87] to
synchronize concurrent operations on shared data, thereby
limiting the availability of data. Some systems do not pro-
vide any concurrency control at all and rely on social proto-
cols [EGR91]. Other approaches in the CSCW area (e.g.,
[EG89]) are only applicable to real-time groupware sys-
tems like shared whiteboards and synchronous group ed-
itors. Most of these systems are based on replication of
data and use multicast protocols like ISIS [BC91, BSS91]
for synchronization purposes. Real-time groupware sys-
tems do not address the issues of persistency of data and
recovery to ensure fault-tolerant processing.

Workflow systems. Workflow management is gain-
ing popularity, although the current generation of work-
flow management systems (WFMS) has several limitations
[GHS95, JLP+95]. Most of these deficiencies result from
the purely process-centric approach of WFMS neglecting
a data-centric view. This results in lack of support for cor-
rectness and data consistency in case of concurrent work-
flow tasks and insufficient recovery mechanisms. Most
of the commercial WFMS concentrate on relatively static
workflows. Though some of the applications we have
studied also have a rather statically defined structure at a
higher-level, the order of executions of the constituent ac-
tivities is determined dynamically at runtime by the partic-
ipating users. Current WFMS do not have adequate mod-
eling and execution support for this.

Advanced Transaction Models. Transaction models in
general are guaranteeing fault tolerance and synchronize
concurrent access to shared persistent data. To support co-
operative applications, several advanced transaction mod-
els have been proposed in the recent years. For an overview
of these models we refer the reader to [Elm92, Hsu93,
Kai95].

A general approach to support cooperation is to divide
the database in public and private areas [KW84, LP83].
Objects are copied from the public database by check-out
into private areas. When the transaction is finished the
modified objects are checked-in into the public database.
Check-out models appear often in tandem with versions
and configurations [Kat90]. CAD transactions [BKK85,
KSUW85] enhance the basic check-out model by intro-
ducing a hierarchy of public, semi-public, and private
databases. For CASE applications, several extensions of
the basic checkout model have been developed by taking
advantage of the opportunity of generic software consis-



tency checking [Hon88, KPS89], but they are not generally
applicable to other domains.

The split/join transaction model [PKH88, KP92] sup-
ports the dynamic restructuring of ongoing transactions.
A split-operation allows to split a running transaction into
two new (serial or independent) transactions while a join-
operations allows to incorporate two transactions into a
new transaction. These mechanisms enable a coopera-
tive behaviour by exchanging parts of transactions between
concurrent users.

The participant transaction model [Kai95] defines each
transaction as a participant in a specified domain. The do-
main represents the set of user transactions controlled by
users collaborating on a common task. Participant transac-
tions in the same domain need not to be serializable. Only
transactions of different domains have to be serializable.

Group-oriented transaction approaches describe the
overall working process as a transaction hierarchy con-
sisting of group transactions. Individual user transac-
tions form the leaves of the transaction hierarchy. Visi-
bility between transactions is supported by extended lock
schemes [KSUW85] or by following predefined access pat-
terns that define the application-specific correctness crite-
ria [FZ89, NRZ92].

ACTA [CR90, CR92] is a transaction meta-model that
can be used to specify the types of dependencies between
transactions. One of the ACTA building blocks is the del-
egation primitive [CR93]. A transaction can delegate the
responsibility for committing or aborting parts of transac-
tions to another transaction. This primitive is useful to con-
trol the (partial) visibility of results.

The area of transactional workflow approaches [RS95]
usually comprises specification languages to express var-
ious execution constraints for a set of tasks. This can be
done either by supporting a script language like in the Con-
Tract model [WR92], by a declarative specification of the
execution structure in terms of externally visible execution
states [ARSS93], or by ECA rules [DHL90]. Cooperation
is characterized in these models by passing results between
workflow tasks in a predefined manner.

3 The TransCoop Model
As described in Section 2, cooperative work has several
dimensions and the requirements for a cooperative system
largely vary depending on the application. In TRANSCOOP

it was our aim to satisfy these requirements by introducing
a set of complementing mechanisms which can be used by
the application designer to tailor the system for specific
needs. In the following we will describe these building
blocks of TRANSCOOP together with the aspects of coop-
erative work that are supported by them.

ÓÓÓ
ÓÓÓ

ÓÓÓ
ÓÓÓ

ÓÓÓ
ÓÓÓ

��������	
������

��������	
������

��������	
������

�
��
��	
������

����

����	


�����
�

����	


Figure 1: Workspaces and exchange facilities in COACT.

3.1 CoAct
The Cooperative Activity Model (COACT) [RKT+95,
WK96, KTW96b] comprises the core part of the
TRANSCOOP transaction model. It is based on the obser-
vation stated in Section 2 that cooperative work is char-
acterized by alternating periods of individual and joint
work [TV95, TW95, Kai95]. During individual work peri-
ods, users try out alternative problem solutions while co-
workers may work simultaneously on the same subject.
Access to and use of shared data should neither block other
users nor should it affect co-workers unintendedly. Dur-
ing joint work, co-workers should be able to exchange in-
formation and to share final as well as intermediate re-
sults. Moreover, dynamically formed subgroups among
co-workers should be possible.

Therefore, we assign in COACT a private workspace
to every user who takes part in a cooperative activity. By
default, the private workspaces of the co-workers are iso-
lated from each other. Additionally, there exists a common
workspace for each cooperative activity. This workspace
is isolated from the private workspaces and is not assigned
to a single actor in a cooperative activity. The common
workspace contains the data items available when a coop-
erative activity is started and the results of the cooperative
activity when committed. Figure 1 gives an overview of
these constituents of the COACT model.

To achieve isolation of workspaces, we (conceptually)
copy the data items initially contained in the common
workspace to all private workspaces. From these copies
the actors can create throughout the working process their
private versions of data items that can be manipulated in-
dependently. Hence, modifications to data items done by
different co-workers do not interfere. For each workspace,
we keep a log of the modifications in a workspace history.

To model the correct interaction, i.e., cooperation of
users involved in a cooperative activity, we introduce the
concept of cooperative activity types (CAT). Each coop-
erative activity is specified by a single CAT. First, a CAT
describes a set of constituent activity types that can be in-
voked by a user in his private workspace. We denote the



execution of one of these constituent activities by the term
activity instance. Second, a CAT describes a set of merg-
ing rules that exploit the semantics of activity instances to
guide the process of information exchange (history merg-
ing).

Information exchange in COACT is based on the ex-
change of activity instances. This is an explicit act that
is initiated by an actor through invoking one of COACT's
exchange operations. The exchange operations are generic
meta operations of the COACT model (like starting, abort-
ing, or committing of a cooperative activity) and are all
based on the paradigm of merging workspace histories.
The COACT model provides two different options for ex-
changing information:

1. Co-workers can directly exchange activity instances
between their private workspaces by means of import
and delegate operations. The import operation is used
by a co-worker to incorporate activity instances exe-
cuted in the scope of another workspace into his own
workspace. The importing user is responsible for re-
solving conflicts that may occur during the merge.
The delegate operation is used to pass on a set of ac-
tivity instances to a co-worker who is then responsible
for merging them into his own workspace.

2. Co-workers can exchange activity instances through
the common workspace by means of save and import
operations. An actor can use the save operation to in-
corporate activity instances of his workspace into the
common workspace, thus, making (parts of) his re-
sults public to all co-workers. The user who invokes
the save operation is responsible for the resolution of
conflicts. Other co-workers can retrieve this informa-
tion using the import operation described above.

The merge mechanism makes sure that only consistent
parts of workspaces are exchanged. We identify such con-
sistent units of work by examining the backward com-
mutativity relation [Wei88, LMWF94] between activity
instances contained in a workspace history. The incor-
poration of activity instances is then realized by the re-
execution of the activity instances in the respective desti-
nation workspace. In this way, the effects of these activity
instances are reflected in the private versions of the data
items in the destination workspace. The semantic correct-
ness of the exchange of activity instances is guaranteed
by ensuring that the re-execution of an activity instance
has an equivalent “view” on the history in the destination
workspace as in the source workspace. Hence, the behav-
ior of activity instances in terms of output parameter val-
ues is indistinguishable from the initial execution. We use
the forward commutativity relation [Wei88, LMWF94] to

check this. If the merge process cannot be performed with-
out violating the semantical correctness, the merger offers
different consistent sets of activity instances. The control-
ling user then selects one of the offered solutions. This
may result in reverting previous decisions which is done by
compensation in COACT. Compensation in combination
with backward commutativity can also be used to imple-
ment a flexible undo/redo mechanism on top of COACT.
To facilitate the merge process for the user, the selection
task can alternatively be performed within a software mod-
ule without requiring user interactions. In this case, certain
merge policies can be specified providing different conflict
resolution strategies.

If an activity instance has been successfully incor-
porated into another workspace, it is conceptually the
same activity instance which is present in more than one
workspace. The presence of identical activity instances in
several workspaces enables us to establish a close cooper-
ation between co-workers. The degree of cooperation is
scalable depending on the exchange frequency.

Those parts of a cooperative activity that are reflected
in the common workspace after its completion (commit)
are considered as its final result. It is assumed that all
users integrate their relevant contributions into the com-
mon workspace such that there is a single result of the co-
operative activity. The merge mechanism and its properties
are discussed in detail in [KTW96b, WK96].

3.2 Structuring the Work Process
The merge mechanism of COACT enables the participants
of a cooperative activity to work concurrently on the same
data items without blocking each other while at the same
time ensuring the consistency of the result. This is a ba-
sic requirement for all cooperative applications and may
even be sufficient for creative work which is performed in
a more or less ad-hoc fashion. Other cooperative applica-
tions like workflow require additional mechanisms which
govern the work process. These have to ensure for example
that certain activity instances are performed in a specific
order or that certain tasks are performed at all. Such mech-
anism are available within the TRANSCOOP approach at
two levels.

With regard to single workspaces the application de-
signer can specify a set of execution rules. These rules
pose workflow-like restrictions on the order and existence
of activity instances and define termination states. Exe-
cution rules are enforced for each private workspace and
the common workspace separately. This allows the en-
forcement of execution rules even for those applications
where the workspaces are not permanently connected, e.g.,
in mobile environments. We use a language-based spec-
ification mechanism for the execution rules. This means
that the application designer specifies certain grammars



and the allowed sequences of activity instances are equal
to the words in the generated language. To specify this lan-
guage multiple grammars can be used whose combination
results in the desired restrictions on sequences of activity
instances. In contrast to [Ska89, NRZ92] our mechanism
avoids dead ends caused by interdependencies of different
grammars. For details see [KTW+96c, FEdB96].

To structure the overall work process, i.e., establish re-
strictions which have to be obeyed across all workspaces,
TRANSCOOP provides a step mechanism which has been
developed by the TRANSCOOP team at the University of
Twente [FEdB96]. The step mechanism controls whether
a user is allowed to execute an operation or not. This is per-
formed by explicitly enabling the allowed operations. The
set of operations which are controlled by the step mecha-
nism include constituent activities, exchange operations as
well as meta operations to terminate the step. In contrast
to execution rules, there are no restrictions on the order or
existence of operations within a step. It is left to the users
whether they want to execute the enabled operations and in
which order. The enabling mechanism is complemented by
the possibility to specify user roles. Hence, the permission
to execute an operation can be restricted to a certain role.
Steps can be combined in various ways forming the orga-
nizational structure of the work process. The constructs to
group steps range from sequential and repetitive execution
of steps to nested and parallel steps. For further details see
[FEdB96].

3.3 Related Models
In this section, we compare the COACT model to the ex-
tended transaction models presented in Section 2.3 with re-
gard to applicability for cooperative application scenarios.

In the basic check-out model [KW84, LP83] objects
which are checked out are reserved for exclusive access
until a later check-in. This may result in blocking of ob-
jects over long periods of time which is obviously not suit-
able for cooperation. In COACT we avoid this behavior
by providing each user with his own version in his pri-
vate workspace. Approaches which combine the check-
out mechanism with versioning go into a similar direction.
In contrast to COACT, they suffer from the fact that their
support for the required merging of different versions is
only limited. Most merge mechanisms provided by ver-
sioning schemes force the user to choose among one of
the generated versions and drop the others. Otherwise, the
user has to perform the cumbersome task of integrating
the different versions by hand. In contrast to this, COACT

is able to merge the work of different users automatically
by using the provided operation semantics. Only in cases
where users have done irreconcilable work, manual inter-
ference is necessary. Even in this case, our merge algo-
rithm can propose the user different solutions which mini-

mize the amount of lost work. Another drawback of check-
out approaches is that all objects and subobjects have to be
checked-out explicitly whereas in COACT this is transpar-
ent for the users.

The split/join transaction model [PKH88, KP92] is in
contrast to COACT restricted to serializable executions.
This limits the possibility to exchange operations between
transactions by means of the the provided split and join
primitives. Since the model supports only single data
copies, the access to these data items has to be synchro-
nized, e.g., by a locking protocol which limits the avail-
ability of data. In addition to this, by splitting or joining a
transaction the former owner of the operations loses con-
trol over these operations. In contrast to this, in COACT

both users can continue their work based on the exchanged
results. Another limitation is the lack of higher level oper-
ation semantics. The split/join transaction model considers
only read and write operations. Hence, it can be extended
by using our merge criteria to be more powerful and flex-
ible in splitting and joining, e.g., merging ongoing trans-
actions by utilizing the semantics of operations and thus
enabling a closer cooperation between transactions.

The participant transaction model [Kai95] is based on
read/write actions and no concurrency control applies to a
domain. This can lead to inconsistencies of data accessed
in a domain (e,g., updates based on data no longer valid)
and unintuitive behavior of the system from the user's
viewpoint. In COACT we guarantee that the view of each
activity instance remains valid by exploiting its semantics.
The system detects if the exchange of activity instances
would introduce inconsistencies and proposes alternative
sets of activity instances that guarantee consistency of data.

Group-oriented transaction approaches [FZ89, NRZ92]
structure the overall working process by means of a trans-
action hierarchy and application-specific correctness cri-
teria. The usability of these models is restricted because
significant parts of the cooperative application have to be
pre-specified in order to describe whether a particular non-
serializable execution is correct or not.

Delegation in ACTA [CR93, CR90, CR92] means that
the responsibility for committing or aborting actions can
be delegated from one transaction to another transaction.
In our model both the delegating user as well as the del-
egatee keep separate responsibilities for the delegated ac-
tions. This is possible since our model assumes isolated
workspaces where copies of objects reside.

Cooperation in transactional workflow approaches
[RS95, ARSS93, WR92] is characterized by passing re-
sults between workflow tasks in a predefined manner.
There is no opportunity for flexibly passing results back
and forth between co-workers. This is needed in non-
workflow scenarios, e.g., cooperative authoring.



4 Implementation Aspects and TransCoop
Demonstrator

4.1 The TransCoop System
To prove the applicability of the results, one important goal
of the project was to build a demonstrator system realiz-
ing the TRANSCOOP concepts. The TRANSCOOP refer-
ence architecture [dBLP+95] separates between the speci-
fication environment providing means for the specification
and verification of cooperative scenarios and the runtime
environment offering support for the execution of coop-
erative scenarios. The TRANSCOOP runtime system pre-
sented here is an instantiation of the TRANSCOOP refer-
ence architecture and it is implemented as an extension of
the object-oriented DBMS VODAK developed at GMD-
IPSI [GI95], i.e., all cooperation facilities are supported as
DBMS services.

In the remainder of this section, we report on the ex-
periences we made during the system design and give an
impression how the new functionality is presented to the
users of the selected demonstrator application SEPIA (co-
operative authoring of hypermedia documents) [SHH+92].

The design of the TRANSCOOP runtime environ-
ment required an extension of the traditional centralized
OODBMS architecture, as used for VODAK, to meet the
architectural and conceptual requirements posed by the
TRANSCOOP cooperative transaction manager [KTW96a].
In detail the following problems were considered and
solved:

� Workspaces. The aimed workspace functionality re-
quires the maintenance of multiple private versions of
an object instead of a single shared version. Instead of
implementing a special purpose version management
extending the object manager of the DBMS, we de-
cided to revise the DBMS memory architecture. The
object management initially based on a single central-
ized shared object buffer was replaced by multiple pri-
vate object buffers which can be distributed across the
network.

� History maintenance. The merge algorithm on
which the TRANSCOOP exchange facilities are based
uses workspace histories of different workspaces. To
allow an efficient access to all workspace histories of
an ongoing scenario, the histories are centrally stored
in the TRANSCOOP system.

When an operation is invoked manipulating the lo-
cal workspace state, the corresponding history entry
is stored persistently in a dedicated Status Database
which maintains the current state of the scenario ex-
ecution. This design decision requires permanent
availability of the database server, but, in case of a

failure on the client, it allows the recovery of the
clients workspace state. An alternative design with
local storage of histories would increase the clients
independence of the database server, e.g., for the pur-
pose of mobility.

� Specification. For the execution of cooperative sce-
narios, VODAK database schemas are enriched by
a cooperative scenario specification. In particular,
this captures (1) information about which schema
methods are available at the application interface, (2)
which orders of operation invocations are allowed in a
particular workspace (execution rules), (3) the struc-
ture of the overall scenario execution (steps), (4) in-
formation how certain method executions can be com-
pensated, and (5) predicates describing how to evalu-
ate backward and forward commutativity at runtime.
All this additional information is stored in the en-
hanced VODAK data dictionary at runtime.

ÂÂ
ÂÂ ÂÂÂ

ÂÂÂ

�����

���� �����
����

�������
� �������� ��

�
������ �����

�

�������

 ��������
� ����!��

�
������ �����

�

�������

 ��������
� ����!��

�
������ �����

�

�������

 ��������
� ����!��

�
��
� 	
������ ������� 	
������������� 	
������

���������� �"#��� ��
��!� ������

$�"#�����
�� ������%

&���
����

� � � �

� � � �

� � � �

�

���������������

'(�)�*+(�)�,+(�)�-.

�

�����
� ����!�� �

�����
� ����!�� �

�����
� ����!��

Figure 2: Runtime architecture of the TRANSCOOP sys-
tem.

Figure 2 illustrates the runtime architecture of the
TRANSCOOP system. The workspaces are realized by a
modified VODAK system which provides private object
buffers, the cooperative transaction manager containing the
merge functionality, and the cooperation manager govern-
ing the execution of steps.

An important part of the runtime system design is the
Status-DB which maintains histories of the participating
users and the runtime structure of the step specification and
which provides general administrative information among
different workspaces, e.g., the current participants of the
scenario or the operations enabled by the current steps.

The cooperative transaction manager ensures the cor-
rectness of histories by enforcing the execution rules, of-



fers functions to preview the progress of co-workers by
means of querying their histories in the Status-DB, and
provides operations for both the calculation of possible
merge alternatives and the enforcement of a specific merge.

Users can join an ongoing scenario execution as well
as leave the scenario before it is finished. When the cur-
rent step allows the scenario to terminate, the results in the
common workspace represent the commonly agreed upon
result. The final history is then applied to the Application-
DB.

4.2 The TransCoop Demonstrator Application
The selected application for the TRANSCOOP demonstra-
tor system [dBLP+96] is the cooperative hypermedia au-
thoring system SEPIA [SHH+92], developed at GMD-
IPSI.

Because we treat the authoring process from a database
point of view, we assume a scenario in which multiple au-
thors are manipulating a collection of shared hypermedia
documents that are stored in a database management sys-
tem. The SEPIA hierarchical hypertext document structure
and the corresponding operations for the creation and ma-
nipulation of SEPIA document structures are modeled ex-
plicitely by means of the VODAK Manipulation Language
(VML) in the database schema [WA95, BWAH96].

The TRANSCOOP demonstrator system provides in-
formation about the current participants and their work
progress to establish group awareness. For example, when
a delegation is performed, the delegatee is notified in order
to control the integration of the respective piece of work
in its workspace. Further notifications are caused if co-
authors join or leave the cooperative activity.

The exchange facilities of the COACT model support an
ad-hoc working style of groups with no pre-coordination.
Conflicts that may occur between the individually car-
ried out problem solutions are semi-automatically resolved
within the merge procedure. The cooperative transaction
manager offers different consistent alternatives in case of
a conflict. The controlling user then selects one of the of-
fered solutions using the graphical user interface.

One challenge building the demonstrator is the design
of an appropriate graphical user interface to import, del-
egate, and save working results. The merge functionality
frees the users from concerns of explicitely ensuring con-
sistency when exchanging results. However, the required
selection of operations from a history to perform an infor-
mation exchange is a rather system-oriented view. For a
user it is more common to refer to some part of a document
in terms of data instead of logged operations. To strive for
a human-oriented end-user interface, the system allows the
selection of data in terms of document structures visual-
ized, from which the corresponding history entries are then
determined by the cooperative transaction manager.

5 Conclusions

Todays workflow systems do not support scenarios with
spontaneous cooperation that cannot be prescribed in
a specification. In contrast, current groupware ap-
proaches support ad-hoc working style but give, from a
database point of view, no satisfying execution guarantees.
TRANSCOOP approaches both criteria: the growing need
for models supporting highly dynamic forms of coopera-
tive work without giving up transactional correctness crite-
ria.

The nucleus of the exchange facilities in the CoAct
model is the history merging approach. The flexibility of
the approach is mainly achieved by its ability to determine
dynamically consistent units of work in terms of performed
operations and its consideration of operation semantics for
resolving conflicts.

A question that requires further attention is the specifi-
cation of commutativity relations. Specification tools that
compute commutativity information automatically from
a formal specification of operations will improve practi-
cal applicability of the approach. Commutativity analysis
tools that are investigated in the framework TRANSCOOP

are a first step in this direction.
The approach fits various application areas and provides

directions for solving open research problems in related
fields like mobile wireless computing or versioning.

Strategies for replication control and transaction pro-
cessing are not mature in the area of mobile wireless com-
puting. The possibility of disconnection of mobile units
from the stationary host and the limited bandwidth of net-
works make it necessary to develop new models. As al-
ready noted in Section 4, the merge component can be in-
tegrated in a system architecture where no durable connec-
tion to the database server is required. Possible conflicts
occuring in disconnected mode can be resolved by merg-
ing results. The fact that transfer of operation logs instead
of data is used, which requires far less network bandwidth,
makes the model additionally attractive for mobile wireless
computing.

Todays version models provide very limited support for
merging concurrently derived versions. In contrast to tools
forcing users to manually combine attributes from differ-
ent versions, our approach allows the automatic computa-
tion of all correct alternatives. Thus the user only needs to
select the desired alternative.

Acknowledgments

The authors would like to thank all members of the
TRANSCOOP teams in Enschede and Espoo for many in-
spiring discussions on the topic.



References
[ARSS93] P. C. Attie, M. Rusinkiewicz, A. Sheth, and M. P.

Singh. Specifying and enforcing intertask depen-
dencies. In Proc. of the 19th Int. Conference on
Very Large Databases, pages 134–145, Dublin, Ire-
land, August 1993.

[BB89] T. Bolognesi and E. Brinksma. Introduction to
the ISO specification language LOTOS. Computer
Networks and ISDN Systems, 14:25–59, 1989.

[BC91] K.P. Birman and R. Cooper. The ISIS project: Real
experience with a fault-tolerant programming sys-
tem. ACM Operating System Review, 21(2):103–
107, 1991.

[BKK85] F. Bancilhon, W. Kim, and H. Korth. A model of
CAD transactions. In Proc. of the 11th Int. Con-
ference on Very Large Databases, pages 25–33,
Stockholm, Sweden, August 1985.

[BSS91] K.P. Birman, A. Schiper, and P. Stephenson.
Leightweight causal and atomic group multi-
cast. ACM Transactions on Computer Systems,
9(3):272–314, 1991.

[BWAH96] A. Bapat, J. Wäsch, K. Aberer, and J.M. Haake.
HyperStorM: An extensible object-oriented hyper-
media engine. In Proceedings of the Seventh ACM
Conference on Hypertext (HYPERTEXT'96), pages
203–214, March 16-20 1996. Washington, D.C.

[CR90] P. K. Chrysanthis and K. Ramamritham. ACTA:
A framework for specifying and reasoning about
transaction structure and behavior. In Proc. of
the ACM SIGMOD Conference on Management of
Data, pages 194–203, Atlantic City, NJ, USA, May
1990.

[CR92] P. K. Chrysanthis and K. Ramamritham. ACTA:
The saga continues. In Elmagarmid [Elm92], chap-
ter 10, pages 349–397.

[CR93] P. K. Chrysanthis and K. Ramamritham. Del-
egation in ACTA to control sharing in extended
transactions. IEEE Data Engineering Bulletin,
16(2):16–19, June 1993.

[dBLP+95] R. de By, A. Lehtola, O. Pihlajamaa, J. Veijalainen,
and J. Wäsch. A reference architecture for coop-
erative transaction processing systems. VTT Re-
search Notes 1694, VTT Technical Research Cen-
tre of Finland, 1995.

[dBLP+96] R. de By, A. Lehtola, O. Pihlajamaa, J. Vei-
jalainen, and J. Wäsch. Deliverable III.2: Spec-
ification of the TransCoop demonstrator system.
Report TC/REP/VTT/D3-2/960425, Esprit Project
No. 8012, 1996.

[DHL90] U. Dayal, M. Hsu, and R. Ladin. Organizing long–
running activities with triggers and transactions. In
Proc. of the ACM SIGMOD Conference on Man-
agement of Data, pages 204–214, Atlantic City, NJ,
USA, May 1990.

[EG89] C. A. Ellis and S. J. Gibbs. Concurrency control
in groupware systems. In Proc. of the ACM SIG-
MOD Conference on Management of Data, pages

399–407. MCC, Austin, Texas, May 1989. Port-
land, Oregon.

[EGR91] C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware:
Some issues and experiences. Communications of
the ACM, 34(1):38–58, January 1991.

[Elm92] A. K. Elmagarmid, editor. Database Transaction
Models for Advanced Applications. ACM Press.
Morgan Kaufmann Publishers, Inc., 1992.

[FEdB96] F. J. Faase, S. J. Even, and R. A. de By. Deliv-
erable IV.3: An introduction to CoCoA. Report
TC/REP/UT/D4-3/033, Esprit Project No. 8012,
1996.

[FZ89] M. F. Fernandez and S. B. Zdonik. Transaction
groups: A model for controlling cooperative trans-
actions. In Proc. of the Int. Workshop on Persis-
tent Object Systems, pages 341–350, January 1989.
Newcastle, New South Wales.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth.
An overview of workflow management: From pro-
cess modeling to workflow automation infrastruc-
ture. Distributed and Parallel Databases, 3:119–
153, 1995.

[GI95] GMD-IPSI. VODAK V4.0 User Manual. Ar-
beitspapiere der GMD 910, Technical Report,
GMD, April 1995.

[GS87] I. Greif and S. Sarin. Data sharing in group work.
ACM Transactions on Office Information Systems,
5(2):187–211, April 1987.

[HF86] J.R. Hayes and L. Flowers. Writing research and
the writer. American Psychologist, 41(10):1106–
1113, 1986.

[Hon88] M. Honda. Support for parallel development in the
Sun network software environment. In Proc. of the
second Int. Workshop on Computer-Aided Software
Engineering, pages 5–5 – 5–7, Cambridge, Mas-
sachusetts, USA, July 1988.

[Hsu93] M. Hsu, editor. Special Issue on Workflow and
Extended Transaction Systems, Data Engineering
Bulletin, volume 16, 1993.

[JLP+95] J. Juopperi, A. Lehtola, O. Pihlajamaa, A. Sladek,
and J. Veijalainen. Usability of some workflow
products in an inter-organizational setting. In Proc.
of IFIP WG8.1 Working Conference on Information
Systems for Decentralized Organizations, Trond-
heim, Norway, August 1995.

[Kai95] G. E. Kaiser. Cooperative transactions for mul-
tiuser environments. In Kim [Kim95], chapter 20,
pages 409–433.

[Kat90] R. H. Katz. Towards a unified framework for ver-
sion modelling in engineering databases. ACM
Computing Surveys, 22(4), 1990.

[Kim95] W. Kim, editor. Modern Database Systems:
The Object Model, Interoperability, and beyond.
Addison-Wesley Publishing Company, 1995.



[KP92] G. E. Kaiser and C. Pu. Dynamic restructuring of
transactions. In Elmagarmid [Elm92], chapter 8,
pages 265–295.

[KPS89] G. E. Kaiser, D. E. Perry, and W. M. Schell. Infuse:
Fusing integration test management with change
management. In Proc. of the 13th IEEE Computer
Software and Applications Conference, pages 552–
558, Orlando, Florida, USA, September 1989.

[KSUW85] P. Klahold, G. Schlageter, R. Unland, and
W. Wilkes. A transaction model supporting com-
plex applications in integrated information sys-
tems. In Proc. of the ACM SIGMOD Conference
on Management of Data, pages 388–401, Austin,
Texas, USA, May 1985.

[KTW96a] J. Klingemann, T. Tesch, and J. Wäsch. Deliverable
V.3: Design of the TransCoop cooperative trans-
action manager. Report TC/REP/GMD/D5-3/512,
Esprit Project No. 8012, 1996.

[KTW96b] J. Klingemann, T. Tesch, and J. Wäsch. Semantics-
based transaction management for cooperative ap-
plications. In Proc. of the Int. Workshop on
Advanced Transaction Models and Architectures,
pages 234–252, Goa, India, August 31 – Septem-
ber 2 1996.

[KTW+96c] J. Klingemann, T. Tesch, J. Wäsch, J. Puustjärvi,
and J. Veijalainen. Deliverable V.2: Definition of
the TransCoop cooperative transaction model. Re-
port TC/REP/GMD/D5-2/511, Esprit Project No.
8012, 1996.

[KW84] R. Katz and S. Weiss. Design transaction manage-
ment. In Proceedings of the 19th Design Automa-
tion Conference, June 1984.

[LMWF94] N. Lynch, M. Merrit, W. Weihl, and A. Fekete.
Atomic Transactions. Morgan Kaufmann Publish-
ers, Inc., 1994.

[LP83] R. Lorie and W. Plouffe. Complex objects and
their use in design transactions. In Proceedings
on Database for Engineering Applications, pages
115–121. ACM, May 1983.

[NRZ92] M. H. Nodine, S. Ramaswamy, and S. B. Zdonik. A
cooperative transaction model for design databases.
In Elmagarmid [Elm92], chapter 3, pages 53–85.

[PKH88] C. Pu, G. E. Kaiser, and N. Hutchinson. Split–
transactions for open–ended activities. In Proc. of
the 14th Int. Conference on Very Large Databases,
pages 26–37, Los Angeles, California, USA, Au-
gust 1988.

[RKT+95] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wäsch, and
P. Muth. Towards a cooperative transaction model:
The cooperative activity model. In Proc. of the 21st
Int. Conference on Very Large Databases, pages
194–205, September 1995. Zurich, Switzerland.

[RS95] M. Rusinkiewicz and A. Sheth. Specification and
execution of transactional workflows. In Kim
[Kim95], chapter 29, pages 592–620.

[SHH+92] N. Streitz, J. Haake, J. Hannemann, A. Lemke,
W. Schuler, H. Schütt, and M. Thüring. SEPIA:
A cooperative hypermedia authoring environment.
In Proc. of the fourth ACM Conference on Hyper-
text, pages 11–22, 1992. Milano, Italy, Nov. 30 –
Dec. 4.

[Ska89] A.H. Skarra. Concurrency control for cooperating
transactions in an object-oriented database. ACM
SIGPLAN Notices, 24(4):145–147, April 1989.

[SRN93] A. Storr, U. Rembold, and B.O. Nnaji. Com-
puter Integrated Manufacturing and Engineering.
Addison-Wesley Publishing Company, 1993.

[TV95] T. Tesch and P. Verkoulen. Deliverable II.2: Re-
quirements for the TransCoop transaction model.
Report TC/REP/GMD/D2-2/207, Esprit Project
No. 8012, 1995.

[TW95] T. Tesch and J. Wäsch. Transaction support for
cooperative hypermedia document authoring: A
study on requirements. In Proc. of 8th ERCIM
Database Research Group Workshop on Database
Issues and Infrastructure in Cooperative Informa-
tion Systems, pages 31–42, Trondheim, Norway,
August 1995.

[VFSE95] P. A. C. Verkoulen, F. J. Faase, A. W. Selders, and
P. J. J. Oude Egberink. Requirements for an ad-
vanced database transaction model to support de-
sign for manufacturing. In Proceedings of the
Flexible Automation and Intelligent Manufacturing
Conference, pages 102–113, Stuttgart, Germany,
June 1995.

[VT95] P. Verkoulen and T. Tesch. Deliverable II.1: Re-
quirements for the TransCoop specification lan-
guage. Report TC/REP/UT/D2-1/014, Esprit
Project No. 8012, 1995.

[WA95] J. Wäsch and K. Aberer. Flexible design and
efficient implementation of a hypermedia docu-
ment database system by tailoring semantic re-
lationships. In Proc. of the sixth IFIP Confer-
ence on Database Semantics, May 30 – June 2
1995. To appear in R. Meersman and L. Mark, ed-
itors. Database Applications Semantics. Chapman
& Hall, 1996.

[Wei88] W. E. Weihl. Commutativity-based concurrency
control for abstract data types. IEEE Transactions
on Computers, 37(12):1488–1505, 1988.

[WK96] J. Wäsch and W. Klas. History merging as a mech-
anism for concurrency control in cooperative envi-
ronments. In Proceedings of RIDE-Interoperability
of Nontraditional Database Systems, pages 76–85,
New Orleans, USA, February 1996.

[WL93] U. K. Wiil and J. J. Leggett. Concurrency control
in collaborative hypertext systems. In Proc. of the
fifth ACM Conference on Hypertext, pages 14–18,
November 1993. Seattle, Washington.

[WR92] H. Wächter and A. Reuter. The ConTract model. In
Elmagarmid [Elm92], chapter 7, pages 219–264.


