
Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

HyperStorM:
An Extensible Object-Oriented Hypermedia Engine

Ajit Bapat, Jürgen Wäsch, Karl Aberer, Jörg M. Haake

Integrated Publication and Information Systems Institute (GMD-IPSI)
GMD – German National Research Center for Information Technology

Dolivostr. 15, D–64293 Darmstadt, Germany
Tel.: ++49-6151-869-{960, 959, 935, 918}

e-mail: {bapat, waesch, aberer, haake}@darmstadt.gmd.de

ABSTRACT
It is a well-known problem that developers of hypermedia
applications need assistance for modeling and maintaining
application-specific hypermedia structures. In the past, vari-
ous hypermedia engines have been proposed to support these
tasks. Until now, hypermedia engines either provided a fixed
hypermedia data model and left extensions to the hyper-
media application or they left the modeling of the hyper-
media data completely to the application developer and only
provided storage functionality which had to be plugged into
the data model by the application developer. As an alterna-
tive, we propose an extensible object-oriented hypermedia
engine which supports the specification of application se-
mantics as application classes within the hypermedia en-
gine, thereby supporting complex operations maintaining
application-specific as well as application-independent
constraints.
In the HyperStorM hypermedia engine, the storage layer and
the application layer of a hypermedia system are implement-
ed within the object-oriented database management system
VODAK. Only the presentation layer is kept outside the
OODBMS. This approach facilitates both the reuse of data-
base functionality as well as the flexibility necessary to sup-
port the efficient development of different kinds of
hypermedia applications. First evaluations show that our ap-
proach presents a much more powerful hypermedia engine
than previous approaches, thus giving a new quality to hy-
permedia application development.

KEYWORDS
Hypermedia engine, open extensible hypermedia systems,
database management system support for hypermedia ap-
plications

INTRODUCTION
It is a well-known problem that developers of hypermedia
applications need support for modeling and maintaining ap-

plication-specific hypermedia structures. In order to provide
such support, the concept of a hypermedia engine has been
developed [4, 23]. A hypermedia engine is an abstract ma-
chine that provides an interface for accessing and manipulat-
ing hypermedia structures. To make the task of application
development easier, it should be as simple as possible to ex-
press the application-specific hypermedia data model in
terms of the hypermedia engine’s functionality. Further-
more, to ease the task of maintaining application-specific
constraints it is useful to express as much as possible of the
application-specific objects, operations, and constraints in
the hypermedia engine. In this case, the hypermedia engine
would need to provide not only simple load/store functional-
ity but also more complex operations that maintain the ap-
plication’s semantics.

In the past, a number of hypermedia engines have been pro-
posed that provide abstract hypermedia data models and
storage functionality: HAM [4], GMD-IPSI’s HyperBase
[23], Aalborg’s HyperBase [32], Hyperform [31], HB3 [15],
to name some of them. Most of these hypermedia engines
have mainly focused on providing a fixed hypermedia mod-
el. Other systems leave the modeling of the hypermedia data
completely to the application developer and only provide
storage functionality which has to be plugged into the data
model by the application developer.

Therefore, it has always been the task of the application de-
velopers to map their application-specific data model onto
the abstract data model provided by the hypermedia engine.
And in addition, they had to implement application-specific
objects, operations, and constraints as part of the application
program running on top of the hypermedia engine. A prob-
lem with this approach is that because of the semantic gap
between the application’s data model and the hypermedia
engine’s data model complex operations maintaining ap-
plication-specific constraints could not be supported by the
hypermedia engine.

In this paper, we propose an extensible object-oriented hy-
permedia engine which supports the specification of ap-
plication semantics as application classes within the hyper-
media engine, thereby supporting complex operations
maintaining application-specific as well as application-in-
dependent constraints. In addition, the reuse of already exist-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

ing/previously implemented hypermedia functionality can
be facilitated.

Meanwhile, there is a common agreement that among the
different kinds of database management systems (DBMS),
object-oriented DBMSs (OODBMS) are the best choice to
be used for the storage layer of hypermedia systems [14].
Previous approaches implemented the three layers of hyper-
media systems (i.e., according to [4], the storage layer, the
application layer, and the presentation layer) as separate
modules/processes. New developments of DBMS technolo-
gy make it possible to implement a hypermedia engine as an
extension of an OODBMS. Our approach is to implement
most of the hypermedia functionality within the OODBMS
VODAK [27]. VODAK’s data model is flexible enough to
allow the definition of new data modeling primitives. This
flexibility is achieved through a meta data layer.
In the HyperStorM1 hypermedia engine proposed in this pa-
per, the storage layer and the application layer are imple-
mented within VODAK. Only the presentation layer is kept
outside the OODBMS. This approach facilitates both, the re-
use of database functionality such as persistent storage,
concurrency control, crash recovery, and query functional-
ity, and the flexibility necessary to support different kinds of
hypermedia applications. The latter is achieved by the inher-
ent means for extending as well as customizing and tailoring
existing classes of the hypermedia engine. Thereby, this ap-
proach eases the tasks of the application developer and leads
to a faster application development.
The paper is organized as follows. In section 2, we present
an overview of related research work. Section 3 analyzes the
requirements for a hypermedia engine from an application
developer’s point of view. This leads us to the identification
of deficits of current approaches. In section 4, we describe
the basic hypermedia model provided by our extensible hy-
permedia engine, followed by a description of implementa-
tion details in section 5. Section 6 gives an example of how
to exploit our generic approach to develop a hypermedia-
based environment for systems engineering. We finish with
a brief summary, conclusions, and a look at future work.

RELATED WORK
Since the emergence of the concept of hypermedia engines
several approaches have been suggested. Some (HAM, Hy-
perBase (GMD-IPSI), and HyperBase (Aarlborg Universi-
ty)) have been labeled as “hyperbases of the HAM genera-
tion” [31] since these approaches have main concepts in
common with the HAM. Several other approaches have
emerged, too, introducing different concepts. In this section,
we will take a look at some of the most important ones with
respect to the task of application development.
HAM. The HAM (Hypermedia Abstract Machine, [4]) has
been used to support hypertext-based CAD and CASE ap-
plications. However, it was designed to provide sufficient
generality for use with other applications. This led to a very
low-level storage engine leaving the definition and imple-
mentation of all application-specific functionality and the

1. HyperStorM is an acronym for Hypermedia Document
Storage and Modeling

integration of application-level design decisions into the da-
tabase server to the application developer. The HAM’s data
model provides five different objects: A graph as the highest
level object can contain the other HAM objects (contexts,
nodes, links, and attributes). Contexts are used to divide the
data within graphs. Nodes may contain arbitrary contents.
Links define relationships between nodes. Contexts, nodes,
and links may have attributes with arbitrary attribute values
which can be used to describe application specific semantics
to HAM objects.

HyperBase (GMD-IPSI). GMD-IPSI’s HyperBase approach
[23] aimed at supporting hypertext-based authoring sys-
tems. It provides the hypertext application developer with an
application interface to the hypermedia engine. While the
storage of persistent objects is handled by the engine, the ap-
plication developer has to define the application-dependent
semantics of those objects in the application program. The
data model offers nodes, links, composite objects, and attrib-
utes. Nodes, links and composites may carry application-de-
fined attributes. Nodes may have content. Links connect two
HyperBase objects, where nodes as well as links and com-
posites are HyperBase objects. Composites are collections
of HyperBase objects. Hyperbase and its successor CHS [22]
provided multi-user access and transactions.

HyperBase (Aalborg University). Aalborg University’s Hy-
perBase [32] is a layered system providing three layers: ba-
sic entities (a simple hypertext model with nodes and links),
basic services (basic operations to be performed on the basic
entities, like e.g. creating nodes and links and connecting
nodes with links), and multi-user services (e.g., simple user-
controlled locking mechanisms to support asynchronous
collaborative work). The basic entities form the data model:
Links are separate objects which can only refer (unidirec-
tionally) to nodes. Each link stores its destination node and
each node keeps a list of its outgoing links. While nodes are
versioned, links are not.

Hyperform. The successor to Aalborg University’s Hyper-
Base, Hyperform [31], provides a set of built-in classes
which can be used to enrich a self-defined hypermedia data
model with DBMS functionality. There are three basic
classes (Meta Class, System Object, and Object) and five
subclasses of Object. These five classes provide basic func-
tionality for hypermedia applications: concurrency control,
notification control, access control, version control, and
query and search. Using subclassing, the application devel-
oper creates the classes he needs in order to model the ap-
plication’s data model and can then — by means of multiple
inheritance — enrich the data model with the functionality
provided by the five subclasses of Object, thus adding con-
currency control, etc. to the model.

HB3. Within the System Prototype 3 (SP3) at Texas A&M
University, HB3 [15] is designed to meet the storage needs
of the SP3 which supports process-oriented hypermedia
models like e.g. the Dexter model [12]. HB3 has two main
components: The association set manager (ASM) and the
versioned object manager (VOM). The system’s
hypermedia data model itself is defined outside of HB3 with-
in the link services manager (LSM), which is located on top
of HB3 within SP3’s architecture. The VOM is responsible

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

for the versioning of the hypermedia objects. Using services
of the VOM, the ASM provides the persistent and sharable
storage of the hypermedia structure and is aimed to be gener-
ic enough to provide storage for basically any data model
that describes objects in terms of behavior, structure, and
data. Within SP3, the LSM provides one such model. HB3’s
DBMS functionality resides within the underlying DBMS
that is accessible to HB3 via a storage manager (SM).

DeVise. The DeVise hypermedia system prototype [9] fol-
lows the Dexter model [12] of a layered architecture. An ob-
ject-oriented database server provides persistent storage for
hypermedia objects while a so-called run-time process (RP)
in the run-time layer provides generic and specific storage
classes whose instances are stored by the underlying server.
The object-oriented database server provides notification
and locking mechanisms that can be used by the RP to moni-
tor the creation, deletion, and updating of hypertext ele-
ments (nodes, links, composites).

TecPad. In the context of the ESPRIT project TecPad the
OODBMS O2 [6] was used to provide a storage module for
hypertext documents [5]. This approach does not provide a
hypermedia engine with a well-defined interface to hyper-
media applications. It merely offers a mapping of SGML [8]
onto classes in O2 and an extended O2SQL query language
as a means to access or manipulate the hypertext documents
stored in the database.

These hypermedia engines either provide a rather fixed
hypermedia data model that can only be extended by adding
attributes whose semantics are not maintained by the engine
and therefore have to be handled by the hypermedia applica-
tion (“HAM generation”) or they only provide storage func-
tionality which can be plugged into a hypermedia data model
that has to be specified by the application developer (Hyper-
form, HB3, and DeVise).

In the first case, this leads to a large semantic gap between
the application’s data model and the hypermedia engine’s
data model that has to be overcome by the application devel-
oper and in the second case the application developer is both-
ered unnecessarily with decisions about the persistent stor-
age of the hypermedia application he is to develop.
Therefore, we now focus on the requirements of an extensi-
ble object-oriented hypermedia engine that eases the tasks
of hypermedia application developers.

REQUIREMENTS ANALYSIS
Hypermedia applications are diverse in nature. To identify
the requirements for a hypermedia engine, we took a closer
look at some state-of-the-art hypermedia applications such
as Aquanet [17], MacWeb [20], StorySpace [3], and SEPIA
[24]. The following general requirements are the result of
this analysis. Each requirement is denoted by a number (e.g.,
R1.1) for further referencing throughout this paper.

First, a hypermedia engine must provide an abstract hyper-
media data model that is a good foundation for modeling ap-
plication-specific hypermedia structures (R1).

� (R1.1) The abstract hypermedia data model should pro-
vide a set of basic types of hypermedia objects. Usually,
they include atomic and composite nodes, links, con-

tents, anchors, etc. In addition, some applications require
extensions, e.g., links that may connect not only nodes
but also point to other links (see, e.g., the modeling of
Toulmin schemata in SEPIA). For other applications it is
required that anchors can also be placed inside the con-
tent of nodes and links (e.g., videos in [7]).

� (R1.2) The abstract hypermedia data model should sup-
port the definition and maintenance of structural
constraints among hypermedia objects. For example,
constraints may relate to, e.g., composites that may not
contain themselves recursively or links that must always
have defined endpoints.

� (R1.3) The abstract hypermedia data model has to offer
complex operations for the manipulation of hypermedia
documents that maintain these constraints.

� (R1.4) The generic hypermedia data model should be
able to integrate external storage systems such as video
servers and document management systems.

� (R1.5) To support open hypermedia systems, the generic
hypermedia data model should be able to integrate exter-
nal tools and external data generated by such tools.

Second, a hypermedia engine must provide means for ex-
pressing application semantics (R2).
� (R2.1) The hypermedia engine must support the specifi-

cation of application-specific kinds of objects. This can
be used to implement typed hypermedia objects as, e.g.,
in Aquanet, MacWeb and SEPIA. The semantics of these
classes include their internal structure (static aspect), e.g.
typed attributes, their dynamic behavior such as opera-
tions, and constraints.

� (R2.2) The enforcement of constraints defined by the ap-
plication’s types of hypermedia objects has to be guaran-
teed by the hypermedia engine. Such constraints may re-
late to, e.g., cardinality, connectivity of links, and
structural properties (e.g., objects required in composites
or acyclic hypermedia networks).

� (R2.3) Different roles for hypermedia objects must be
supported, since many hypermedia applications support
multiple use of hypermedia objects in different contexts
with different behavior. Examples are Aquanet’s rela-
tions and SEPIA’s activity spaces.

� (R2.4) Role transformations must be supported by the
hypermedia engine in order to use hypermedia objects in
different contexts without manually adapting their roles.

Third, the re-use of (parts of) existing hypermedia applica-
tions should be supported so that the development of new hy-
permedia applications can benefit from existing ones (R3).
� (R3.1) The hypermedia engine should allow the re-use

and tailoring of application-specific types of objects
among different applications.

� (R3.2) The hypermedia engine should ease the integra-
tion of application-specific types of objects.

Fourth, a hypermedia engine should provide support for
common functionality that may be used by many different
hypermedia applications (R4). Thus, a hypermedia engine
has to support:
� (R4.1) persistent storage,

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

� (R4.2) multi-user access incl. concurrency control,

� (R4.3) crash recovery,

� (R4.4) integration of multimedia data types,

� (R4.5) declarative access to hypermedia structures
(query and search functionality),

� (R4.6) access control, and

� (R4.7) client/server distribution.

For the use in multi-user, collaborative applications working
on shared hypermedia documents, the hypermedia engine
should provide (R5):

� (R5.1) versioning of hypermedia documents and

� (R5.2) mechanisms to communicate group-awareness.

When looking at the current approaches (cf. “Related
Work”) in search for a hypermedia engine that would meet
our requirements, we had to realize that the current ap-
proaches all have some deficits with respect to our list of re-
quirements.

Systems of the HAM generation do not provide a
hypermedia data model that is flexible enough for our needs.
The definition of structural constraints that go beyond the
rather simple data model that is provided can only be
achieved by adding attributes whose semantics can not be
handled by the hypermedia engine and, thus, have to be
maintained by the application (R2.2). For Hyperform, the
whole data model has to be defined by the application devel-
oper. All of the current approaches limit the operations of-
fered to basic functions like reading, writing, creating, and
deleting basic objects, i.e. links and nodes and do not offer
any complex operations (R1.3) The DeVise system leaves
the modelling of the hypermedia data to the programmer of
the RP, and the TecPad approach only provides a rigid map-
ping of SGML DTDs onto O2 classes.

The specification of application semantics within the
hypermedia engine (R2) is not provided for by HAM genera-
tion of systems. These system explicitly expect application
semantics to be handled by the application. Within Hyper-
form, the application developer can transfer application se-
mantics into the hyperbase since he defines the hypermedia
data model on his own, but he is not provided with any ready-
to-use mechanisms for this task. Roles as well as role trans-
formation (R2.3 and R2.4) can not be handled within the hy-
perbases of the HAM generation, too. For SP3, the
application developer has to go outside HB3 because the
hypermedia data model resides above HB3 (within the
LSM). In DeVise, application semantics have to be imple-
mented within the RP using the notification and locking
mechanisms of the underlying OODB server.

The re-use of existing hypermedia applications (R3) is only
supported by Hyperform and, to a certain extent, by HB3. In
the latter system applications that use the same hypermedia
data model can re-use the LSM.

All current approaches offer persistent storage support
(R4.1) — in some cases (e.g., HAM) by simply implement-
ing file server functionality — but all other requirements of
the fourth group (R4) are if at all, only covered incompletely:
The HAM offers access control lists that can but need not be

attached to objects in order to support multi-user access
(R4.2). None of the systems can provide full DBMS func-
tionality (including crash recovery (R4.3) and query func-
tionality (R4.5)) since none really incorporates a DBMS.
HB3 can only make use of the services of the underlying
DBMS but can not integrate them with the hypermedia data
model because the latter is residing in a different layer of the
system’s architecture. Due to its object-oriented concepts,
Hyperform does offer means to integrate or even extend pre-
defined DBMS functionality but it does not force hyper-
media applications to do so, thus leaving potential for incon-
sistencies when hypermedia applications that do not use the
DBMS functionality operate on data that is also used by ap-
plications that rely on mechanisms like, e.g., concurrency
control. DeVise supports multi-user access and concurrency
control (R4.2). The TecPad approach can only be regarded
as a storage back-end for hypertext systems but not as a
hypermedia engine with any additional functionality. Ac-
cess control (R4.6) is offered by all systems only in the con-
text of concurrency control (locking) but not in the sense of
of access rights for individual users. All systems support cli-
ent/server distribution (R4.7).
The HAM, Aalborg’s HyperBase, Hyperform, and HB3 pro-
vide rudimentary versioning mechanisms: Versions of ob-
jects can be created and deleted but there is no further func-
tionality for the management of versions, e.g. merging
(R5.1). Although some systems (Aalborg’s HyperBase, Hy-
perform, DeVise) offer event notifications there are no
mechanisms available that can be used straightforward to
communicate group-awareness (R5.2).
As a consequence, there is currently no approach that would
cover all of the requirements listed above. Since these re-
quirements are derived from state-of-the-art hypermedia
systems, hypermedia application developers would benefit
most from a generic, extensible hypermedia engine that
matches the requirements listed above. In the next section,
the design of the abstract hypermedia data model of our hy-
permedia engine prototype is introduced and its relation-
ships to the above requirements is discussed.
DESIGN OF THE HYPERMEDIA ENGINE
In this section we describe the basic hypermedia data model
provided by the HyperStorM hypermedia engine.
The VODAK data modeling language
Because there exist conceptual and terminological differ-
ences between different OODBMSs, the relevant concepts
of the used OODBMS VODAK [27, 13] and its data model-
ing language (VML) are introduced briefly in the following.
As in other OODBMS, objects are used to represent material
or immaterial entities, or abstract concepts. Objects are iden-
tified through unique object identifiers (OID). The structure
(properties) and procedural behavior (methods) of objects is
described through abstract data types which are called object
types. VODAK distinguishes between object types and
classes (dual model). Object types determine the structure
and behavior of objects and, hence, are intensional, whereas
class definitions describe class objects which act as contain-
ers for their instances (extension of a class).
A class definition consists basically of two parts: the object
type of the class object itself (OWNTYPE) and the object type

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

Î
Î
ÏÏ
ÏÏ

ÊÊÊ
ÊÊÊ
ÊÊÊ

ËË
ËË
ËË

ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ

ËËËËËËË
ËËËËËËË

Figure 1: Classes and type composition in VODAK

ÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑ

Metaclass

Application
class

Individual
objects

ÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑ

OWNTYPE

INSTINSTTYPE

INSTTYPE

ÏÏÏÏÏÏÏ
ÊÊÊÊÊÊÊ

instance-of

AC
OWNTYPE

INSTTYPE

MC

instance-of

of the class’ instances (INSTTYPE). The initialization part
(INIT) allows initialization of the class’ properties by call-
ing methods of the class’ own type.

In VODAK, classes are first-class objects, i.e., they can be
treated like ordinary objects. Thus, it is possible to create
classes and modify classes’ properties at run-time. Because
classes are treated as first-class objects, class objects are
themselves instances of other classes, called metaclasses.

Metaclasses are used in VODAK to describe the common
structure and behavior of application classes and their
instances which may not be known at the time the metaclass
is defined. The INSTTYPE associated with a metaclass de-
termines the common semantics of the metaclass’ instances,
i.e., its application classes. The metaclass’ INSTINST-
TYPE defines the common semantics of the instances of its
application classes, i.e., individual objects. Thus, the seman-
tics of an individual object is determined through the INST-
TYPE associated with the object’s class and the
INSTINSTTYPE associated with the object’s metaclass
(see Figure 1).

Design approach
In the following we give a brief overview of the design pro-
cess of the hypermedia engine. Figure 2 indicates the design
steps described below.

Meta modeling. One reason to use metaclasses is to model se-
mantic relationships between application classes. Many
OODBMS offer hard-coded mechanisms to describe such
relationships. But semantic relationships can have several
dimensions. Thus, only a flexible mechanism like freely de-
finable behavior and integrity constraints for metaclasses al-
lows to model a great variety of dedicated semantic relation-
ships, as needed for our hypermedia engine semantics.
Metaclasses ensure the consistent usage of the object types
defining the semantic relationships and enforce specific in-
tegrity constraints by declaring an application class as an
instance of a specific metaclass.

For defining the abstract hypermedia data model we had to
provide basic semantic relationships. We have identified the
following four orthogonal semantic relationships (which are
discussed in the next section) to be sufficient:

� Flat hypermedia structures (e.g., different kinds of links
in a hypermedia network)

� Element- and set-association (e.g., for modeling com-
posite nodes)

Figure 2: Overview of the approach followed in the
design of the hypermedia engine.

Application-independent semantic relationships

� flat hyper-structures (with constraints)
� element- and set-association (with constraints)
� category specialization
� role specialization (with role transformation rules)

Application-independent
abstract hypermedia data model

Integration

Application-specific hypermedia data model

Constraints,
Additional structure and behavior

Instantiation

Individual hypermedia documentsA
ut

ho
rin

g
M

et
a

m
od

el
in

g
A

pp
lic

at
io

n
M

od
el

in
g

� Category specialization (e.g., for modeling links that can
behave like nodes)

� Role specialization (e.g., for modeling roles of objects
and role transformations)

These semantic relationships enforce the structural
constraints required by (R1.2), and include constraint-based
and rule-based facilities that can later be used to tailor the
abstract hypermedia model to the needs of a specific applica-
tion (R2). The four basic semantic relationships are used to
define a set of metaclasses describing the application-inde-
pendent abstract hypermedia data model and extending the
OODBMS VODAK to the HyperStorM hypermedia engine.
These metaclasses constitute extensions of VODAK’s data
model that provide the necessary modeling primitives for the
development of dedicated hypermedia applications and en-
sure the consistent usage of the semantic relationships.

Application modeling. Up to now, the data modeling takes
place at the meta level and does not consider application-
specific hypermedia semantics. The abstract hypermedia
data model can now be tailored by an application designer
to the needs of a specific application, i.e., defining the ap-
plication-specific hypermedia semantics. This is done by
classifying objects into application-specific types of hyper-
media objects (R2.1) and adding constraints with respect to
the semantic relationships (R2.2, R2.4).

In VODAK, the application-specific types of hypermedia
objects are defined by application classes (R2.1) which are
instances of appropriate metaclasses describing the basic se-
mantics for hypermedia objects. To specialize these seman-
tics it is possible to add constraints and transformation rules
to the application classes (R2.2, R2.4) and to use additional
VODAK object types in the definition of application classes
(R2.1). This extension of structural and behavioral seman-
tics of hypermedia types is not possible if types of hyperme-
dia objects are simply represented by means of attribute val-
ues (strings) as in [4, 23, 32]. Modeling the specific
semantics of a hypermedia application is further discussed
in the section “Tailoring the abstract hypermedia model”.

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

This modular assembly concept used in the design of the hy-
permedia engine enables a developer of an application-spe-
cific hypermedia model to re-use existing VODAK object
types and class definitions (R3.1). Moreover, he or she can
refine and change the model’s semantics at run-time which
results in reduced development time of the application-spe-
cific hypermedia model. At the same time, the hypermedia
engine ensures the generic and application-specific integrity
constraints without programming efforts. Moreover, the in-
tegration of existing application classes is eased because
they are based on a common abstract hypermedia data model
(R3.2).

Semantic Relationships
In the following we explain the basic semantic relationships
shortly. For a detailed formal description we refer the reader
to [28].

Flat hypermedia structures. In the simplest case, a flat hyper-
media structure can be viewed as a graph consisting of nodes
and binary (directed and bidirectional) links. Because we
also allow links to refer to other links we extend the defini-
tion of graphs by means of a recursive definition of structures
that allow links connected to links (R1.2), links connected
to links that themselves connect links and so forth (a precise
mathematical definition is given in [28]). Most hypermedia
systems prohibit loops and dangling links to achieve well-
formed hypermedia documents. Therefore, we consider the
following application-independent constraints for hyperme-
dia structures:

� Loops, i.e., links where the source and destination are
identical, are not allowed in the (generalized) graph.

� Dangling links, i.e., links with undefined source and/or
destination, are not allowed (R1.2).

We allow the usage of typed links and nodes (R2.1) in the
(generalized) graph with the additional constraint:

� Multiple links between the same two objects are allowed
only if the links have different types.

To model constraints on the connectivity of links and nodes,
as required by (R2.2), we introduce a constraint function
conslink that determines if a link of a specific type is allowed
to connect two typed objects.

� A link l can connect two objects o1, o2 only if
(type(o1), type(o2))�conslink(type(l)).

Element- and Set-Association. In accordance with the Dexter
hypermedia reference model [12], we decided to separate
the nodes and links from their contents (Dexter within-com-
ponent layer). The internal structure of the content objects
are described separately from the hypermedia structure (see
Figure 3). Thus, at the hypermedia abstraction level content
objects can be viewed as atomic.

To group these atomic content objects, e.g., into a node, we
use the concept of element-association [18]. Element-
association introduces a set object to describe properties of
a group of element objects. To model composite objects we
use the concept of set-association [18]. Set-association
introduces a superset object in order to describe properties
of a group of subset objects. It may be applied recursively,
building an n-level hierarchy. Therefore, we can view com-

Figure 3: Example of the usage of element- and
set-association.

Typed atomic content objects,
e.g. text, audio, picture

Atomic
node

Composite
node

subset-of

subset-of

element-of

H
yp

er
st

ru
ct

ur
e

la
ye

r
C

on
te

nt
 la

ye
r

linkAsNode

posite nodes as supersets which are composed out of other
(atomic or composite) nodes, links and atomic content ob-
jects. The only application-independent constraints for our
concept of set-association is as follows:

� The set objects related by set-association must corre-
spond to a tree structure (R1.2).

Because it is useful to share atomic content (e.g., text, pic-
tures, audio) objects we do not enforce this constraint in the
case of element-association. Links, atomic and composite
nodes (which are modeled as set objects) can be shared
among composites using the concept of role specialization
described below.

We combined a typing and constraint mechanism (R2.2)
with the association concept for tailoring the hypermedia
model to application-specific needs, similarly as with nodes
and links.

� An association a can contain only elements or sets as spe-
cified consass(type(a)) = {(t1,min1,max1), ..., (tn,min-
n,maxn)}, i.e., objects of type ti with minimum mini and
maximum maxi occurrence. Objects are created auto-
matically if necessary (minimum occurrence).

For instance, this constraint mechanism can be used to ex-
press that in SEPIA’s argumentation space only nodes and
links regarding the Toulmin schema are allowed to exist or
to express that a specific node has exactly one text object as-
signed (see also example 2).

Category specialization. Specialization captures the inten-
sional concept of subtyping and the extensional concept of
extension inclusion between classes. We assume the follow-
ing consistency constraints on the classes as well as on the
instances of these classes, that participate in the category
specialization relationship:

� The specialization-of relation must be a partial order.
Additionally we allow for a subclass only one direct su-
perclass. Thus, we obtain a tree of classes (single inheri-
tance).

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

� The extension of the specialization class is a subset of the
extension of its generalization class.

� The extensions of two specialization classes of one gen-
eralization class has to be disjoint.

Inheritance of properties and methods is an important char-
acteristic of the specialization relationship. If an object or
class receives a method that is not part of its interface, this
method together with the arguments is delegated to the more
general object (inheritance at the level of individual objects)
or to the superclass, respectively (inheritance at the class
level).

Category specialization is used in various ways within our
hypermedia engine. For example, in the Toulmin schema
certain links can behave almost like nodes, as they may be
referred to by other links or in the MUSE application [16]
links may have textual content objects assigned. Thus, a spe-
cific link class might be modeled as a specialization of a
node class.

Role specialization. As mentioned in the requirements sec-
tion, nodes and links can occur as different roles in different
contexts, e.g., composites (R2.3). The hypermedia engine
should be able to keep track of such a relation between ob-
jects. Some properties of the two object roles are shared, but
there exist also some property values that differ.

To model this, we use the concept of role specialization.
Role specialization is similar to category specialization, ex-
cept that the last property of category specialization needs
not to hold. The general object contains the shared proper-
ties, whereas the different roles contain the non-shared prop-
erties. In addition to that, the role objects can have different
structure and behavior, defined by their own object types.
The role objects are related by role-of relationships with the
general objects.

To specify the possible role transformation of hypermedia
objects (R2.4) we introduce a role transformation function
which specifies the set of classes which can appear as a role
of a general object. We assume that the object’s state does
not change during the transformation. Details on role model-
ing and role transformations can be found in [13, 28].

Defining the abstract hypermedia model
Semantic relationships are combined to describe the meta-
classes defining our abstract hypermedia data model. When
combining semantic relationships, additionally the inter-se-
mantic-relationship constraints have to be considered. It is
not enough to inherit the definitions of semantic relation-
ships via subtyping. The semantic relationships must be inte-
grated in a meaningful way to provide complex, consisten-
cy-preserving operations (R1.3) while maintaining
application-independent (R1.2) and application-specific
consistency constraints (R2.2).

Example 1: Remember that with respect to source and des-
tination of links different hypermedia applications may de-
fine different constraints: some systems like SEPIA [24] re-
strict them to objects contained in the same composite
whereas other systems like StorySpace [3] also support links
between objects contained in different composites (tunnel
links). To define an operation to create a link between two

objects (see also the system architecture section), we first
have to check if the link of the given class is allowed in the
composite (association constraint) and if the source and des-
tination objects are contained in the same composite (if the
specific link class does not specify tunnel links). Then, (in
both cases) we have to check if the link of the given class is
allowed to connect the given objects (link constraints). If all
of these constraints are fulfilled we can create the link object
(including its connection to the source and destination ob-
jects) and finally add the link to the composite object.

The combined semantic relationships are used to define the
metaclasses constituting the HyperStorM hypermedia engi-
ne. In the current implementation, the following metaclasses
provide basic hypermedia objects of the kind required by
(R1.1), including complex operations that maintain consis-
tency of the hyperdocuments (R1.2, R1.3).

� Nodes: AtomicNode, CompositeNode, VirtualComposite-
Node, Node

� Links: DirectedBinaryLink, BidirectionalBinaryLink

� Composite contents: CompositeContent, Organizer

� Atomic contents: AtomicContent, BytestringAtomicCont-
ent, ExternalReferenceAtomicContent

The Node and CompositeContent metaclasses together allow
the modeling of objects that can behave like atomic or com-
posite hypertext objects. The VirtualCompositeNode meta-
class models composites that are defined using VQL queries
[1] and can be used to provide different views on hypermedia
networks (R4.5). Organizer classes are used to organize
complete hyperdocuments in a directory-like way. The Ato-
micContent metaclass is used to implement application-spe-
cific classes that model different kinds and formats of media
within VODAK (R4.4). The BytestringAtomicContent and
ExternalReferenceAtomicContent metaclasses support stor-
age of multimedia data (e.g., text, pictures, audio, video) as
BLOBS in VODAK or in external storage systems like EOS
[2], respectively (R1.4).

The last two of the above metaclasses also include generic
mechanisms for the integration of external applications
(R1.5). This way external tools can be used to view and edit
objects that are managed by the hypermedia engine (internal
data as well as external data). Any integration going beyond
this is not covered by the current implementation. Also local
anchoring as mentioned in (R1.1) is not yet supported.

Tailoring the abstract hypermedia model
The metaclasses shown in a previous section are used by a
application designer to tailor the abstract hypermedia model
to the needs of a specific application domain, thus, defining
the application-specific hypermedia data model. Applica-
tion classes simply are declared as instances of an appropri-
ate metaclass to provide them with the intended behavior.

The application designer can assert constraints regarding the
semantic relationships to the application classes (R2.2,
R2.4). Initialization of constraints is done at class creation
time by executing the initialization clause (INIT). The
constraints can be changed at run-time because constraint in-
sertion and deletion is done by ordinary method calls. More-
over, it is possible to create new classes as instances of an ex-

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

CLASS isBasedOn METACLASS DirectedBinaryLink
// declaration as an instance of a metaclass
INIT SELF–>specializationOf(linkAsNode);

SELF–>isTunnelLink(FALSE);
SELF–>addLinkConstraints(

[Component, Requirement],
[Specification, Requirement]);

SELF–>addElementConstraints(
[TextContent,0,1],
[AudioContent, 0, 1],);

SELF–>addTransformationRule(
ModelingSpace,ValidationSpace,
isDerivedFrom);

SELF–>addTransformationRule(
ModelingSpace, Variant, isBasedOn);

. . .
END

Figure 4: Example of tailoring an application-specific
class by adding constraints.

Figure 5: Example of adding application-specific
structure and behavior to a class.

CLASS AudioContent METACLASS AtomicContent
OWNTYPE VODAK_Audio_ClassType

// adding additional VODAK object types
// that model audio class’ and

INSTTYPE VODAK_Audio_Type
// audio instance’s structure and behavior

END

isting metaclass at run-time because classes are treated as
first class objects in VODAK.

Example 2: An example based on the MUSE-specific hyper-
media data model [16] (see also section “Applicability”) is
shown in Figure 4. The class isBasedOn is declared as an
instance of the metaclass BinaryDirectedLink which de-
scribes the general behavior of this kind of links (including
the role mechanism described above). By means of category
specialization it is declared as a specialization of the class
linkAsNode which is an instance of the metaclass Atomic-
Node and therefore inherits the node-like behavior to link
instances of class isBasedOn. Moreover, application-specif-
ic constraints on the connectivity (conslink(isBasedOn) =
{(Component, Requirement), (Specification, Require-
ment)}) and the possible content of the link (consASS(isBa-
sedOn) = { (TextContent, 0, 1), (AudioContent, 0, 1) }) are
asserted to the class. Role transformation rules are added
which express, e.g., that if a link of class isBasedOn is co-
pied from an ModelingSpace composite to a ValidationSpace
composite, it is automatically converted to a link of class is-
DerivedFrom.

Moreover, it is possible to provide additional structure and
functionality for an application class, that is instantiated
from one of the abstract hypermedia model’s metaclasses,
by adding (pre-existing) application-specific object types in
the class definition (R2.1, R2.3, R3.1, R3.2).

Example 3: The class AudioContent (see Figure 5) is defined
as an instance of the metaclass AtomicContent which de-
scribes the general semantics of content objects in our hyper-
media engine. Additionally, an OWNTYPE and an INST-

TYPE are defined for this class and its instances, which
provide the properties and methods for storing and manipu-
lating audio objects within VODAK. Therefore, the struc-
ture and behavior is composed of the abstract semantics in-
herited by the metaclass and the application-specific object
types. There are no constraints assigned to the class Audio-
Content because constraints regarding the element-of rela-
tionships are assigned to the set objects.

SYSTEM ARCHITECTURE OF THE HYPERSTORM
HYPERMEDIA ENGINE
In this section we describe the system architecture of the im-
plemented HyperStorM hypermedia engine. The overall
system architecture is shown in Figure 6.
The core of the HyperStorM hypermedia engine consists of
the object-oriented database management system VODAK.
VODAK contains the metaclasses that implement the basic
hypermedia engine functionality, e.g., the checking of ge-
neric and application-specific integrity constraints and con-
sistency-preserving operations for the manipulation of hy-
permedia structures. Moreover, VODAK stores and
manages in its data dictionary the application-specific hy-
permedia models described by application classes, their ap-
plication-specific constraints, and additional object types.
External storage systems, e.g., EOS for storing large videos,
can be connected to VODAK by instantiating the External-
ReferenceAtomicContent metaclass. Accesses and manipu-
lations to these external storage systems are managed by the
HyperStorM hypermedia engine, and, hence, are transparent
for applications running on top of it. The invocation of exter-
nal application programs is handled by the hypermedia en-
gine, too.
Applications of the HyperStorM hypermedia engine are im-
plemented using the C++ based VODAK client interface
(R4.7). The VODAK clients may run on arbitrary nodes in
the network and communicate via the VODAK server inter-
face with the hypermedia engine. Basically, the client inter-
face can be considered as a remote API to the VODAK
OODBMS; it offers VML data types and the VODAK query
language (VQL) that can be used to build applications pro-
grams like graphical user interfaces. Moreover, it offers sup-
port for visualization and manipulation of multimedia data
stored within VODAK (R4.4). Client applications commu-
nicate with VODAK via a generic interface which consists
of the following functions:
� getting the OID of a class by sending the class’ name;
� begin, commit and abort of a VODAK top-level transac-

tion;
� submitting arbitrary VML method calls to VODAK and

transferring back the results;
� submitting declarative VQL queries to VODAK and

transferring back the results.

The complex, consistency-preserving operations to manipu-
late hypermedia documents offered by the VODAK hyper-
media engine are invoked by the client applications using the
method call interface. Each of those operations is executed
as a single VODAK top-level transaction by default. Using
the transactional commands offered by the interface, an ap-
plication programmer can build new complex transactions,

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

Figure 6: System architecture of the HyperStorM hypermedia engine.

VODAK OODBMS
with generic hypermedia schema and

application-specific hypermedia schemas

VODAK client interface
– VODAK data types
– VODAK query language

VODAK server interface

Network

HyperStorM hypermedia engine

VODAK DB

VODAK DB

. . .

External
storage system

. . .

Application:
– visualization
– user interaction

VODAK client interface

Hypermedia schema
editor

External
storage system

External application
(e.g., editor)

e.g., macros, consisting of several consistency-preserving
operations. Utilizing VODAK’s open nested transaction
model [19] and the commutativity predicates defined for the
hypermedia engine’s operations, each operation of an ap-
plication-defined transaction can be executed as a subtrans-
action, increasing the degree of concurrency without loss of
ACID properties. Moreover, an application programmer can
use declarative VQL queries (including the hypermedia en-
gine’s operations), thus, enabling set-oriented access to hy-
permedia documents (R4.5).

From the above discussion it should be clear that the hyper-
media applications (located in the clients) only keep in-
formation that is necessary to visualize the hypermedia net-
work and to interact with the user (e.g., coordinates of nodes
and links, menu information). This information is delivered
by the complex operations provided by the hypermedia en-
gine. All other information (for example, contents,
constraints, details about associated external applications) is
needed only within the hypermedia engine. Below, we pres-
ent an excerpt of operations provided by the engine to give
an impression of how extensive the engine’s functionality is.

� createNode(nodeClass:OID,composite:
OID,name:STRING,position:POINT):OID
To create a node of a specific application class (node-
Class) the client calls this interface function. The engine
checks whether the node class is allowed within the com-
posite’s class. Thus, the client does not have to do any
constraint checking (as mentioned earlier, all constraint
checking is done by the engine): the engine either returns
the object identifier of the newly created node or informs
the client that due to the constraints the node could not
be created.

� deleteNode(node:OID)
This function not only deletes the node itself but also any
dangling links, even recursively if there are links refer-
ring to deleted links!

� createLink(linkClass:OID,composite:
OID,source:OID,destination:OID):OID
This operation either returns the object identifier of the
newly created link or a notification that creation was not
successful due to constraint violation (see example 1 in
the previous section).

� copyObjectsToClipboard(objects:
{OID})
For each user, the hypermedia engine maintains one clip-
board which is stored persistently in the database. The
copy operation copies the specified objects into this clip-
board.

� pasteObjectsIntoComposite(composite:
OID):PASTE_INFORMATION
This operation pastes the contents of the user’s clipboard
into the specified composite. Before doing so, type trans-
formations are performed (recursively). All transformed
objects that do not violate the type constraints are then
actually created. The operation returns information
needed to update the client application.

� createAtomicContent(object:OID,ato-
micContentClass:OID,name:STRING):OID
This function returns the object identifier of the newly
created atomic content. In the case of an external content
object, the reference to a new object in the external stor-
age system is established within the hypermedia engine.

� openAtomicContent(object:OID,atomic-
Content:OID)
This operation opens (on the client’s machine) the exter-
nal application associated with the atomic content.

APPLICABILITY
In this section we present some experiences and results ob-
tained by an evaluation of the implemented HyperStorM hy-
permedia engine.

The results of the evaluation are based on a hypermedia en-
gine that is tailored to the application-specific needs of the

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

MUSE system. The MUSE project2 [16] is aimed at develop-
ing various tools to support the modeling and validation of
complex technical systems like for e.g. cars, aircraft, or pow-
er stations and to integrate these tools in one common envi-
ronment — the MUSE system. For the user interface of the
MUSE system a hypermedia application has been developed
[11]. For the validator who might want to check whether the
designed technical system fulfills legal regulations, the sys-
tem visualizes the diverse components of the modeled tech-
nical system and their various relationships with each other.
The modeler, on the other hand, can interactively create and
redesign the model and its components. Both, i.e., the vali-
dator as well as the modeler, can make use of the different
MUSE tools like simulation tools, tools for supporting soft-
ware/hardware codesign, etc.
For the MUSE system, the hypermedia data model that was
defined consists of 11 metaclasses and 64 application-spe-
cific classes. Modeling the MUSE-specific semantics by
these 64 application-specific classes derived from our ab-
stract hypermedia data model took only one day for one per-
son who is familiar with the MuSE hypermedia model and
the use of the HyperStorM hypermedia engine. And by pre-
vious arguments this model ensures the maintenance of the
generic and application-specific integrity constraints of the
hypermedia model within the DBMS-based hypermedia en-
gine. The various tools of the MUSE project as well as their
data were easily integrated (R1.5), e.g. the software/hard-
ware codesign tool uses the same database to store its data
which can then be visualized by the hypermedia system.
Of course, we have to raise the question whether this effi-
ciency and flexibility in design and safety in execution can
be compliant with reasonable run-time performance. For
this reason we performed some preliminary experiments
with our DBMS-based hypermedia engine. Performance
measurement was done on a SGI Indy workstation running
the HyperStorM hypermedia engine. A single client ran on
a SUN Sparc-10. The engine operated on hyperdocuments
containing more than 10,000 hypermedia objects.
The results of this evaluation are shown in Figure 7. All of
the operations shown are covered by transaction manage-
ment. Operations on attributes are of magnitude 10 ms (de-
pendent on the data type and size of the attribute), operations
on single objects (e.g., creation of a link including all
constraint checking) of magnitude 100 ms, and operations
on whole hypermedia structures and documents take about
1000 ms (depending on the size of the structure). The only
other performance measurements in the area of hypermedia
engines we are aware of are those of Aalborg’s HyperBase
and the Hyperform system published in [30]. Compared to
these numbers the operations offered by the HyperStorM hy-
permedia engine are much faster (even though our opera-
tions seems to be more powerful).

These results show that an adequate performance for interac-
tive hypermedia systems that are built based on the Hyper-
StorM hypermedia engine is achieved although all the ma-

2. MUSE is short for MUltimedia technology for Systems En-
gineering. The project is sponsored by the Deutsche For-
schungsgemeinschaft (DFG), grant number HE 1170/5–1.

nipulations on the hypermedia structure are done within the
hypermedia engine. The response times are such that inter-
active editing operations suffer no performance problems.
Additionally, one has to consider that the numbers were ob-
tained from the first fully functional prototype of the hyper-
media engine without particular optimizations.

Operation Execution time in ms

changeName (of a node) 10

createNode 162

createLink (link with node behavior) 270

createLink (constraint violation – no link created) 111

createAtomicContent 198

copyObjectsToClipboard (5 HM objects (3 nodes, 2 links)) 370

pasteObjectsIntoComposite (role transform. of 5 HM obj.) 1070

openComposite (15 HM objects contained in composite) 316

Figure 7: Performance of selected operations offered
by the HyperStorM hypermedia engine.

One may ask how our hypermedia engine will scale up in
case of a large number of clients. Scalability is a problem in
every centralized or client/server (relational or object-ori-
ented) DBMS with light-weighted clients. Since we imple-
mented the HyperStorM hypermedia engine as an extension
of an OODBMS, we can profit from research and develop-
ment in the OODBMS area. However, at the moment it is
possible to run several VODAK-based HyperStorM engines
in parallel on different machines in the network. Each of
them can serve a dedicated set of clients. The only restriction
is that they have to share a single storage manager to be able
to operate on the same physical database.

CONCLUSIONS AND FUTURE WORK
The objective of this paper was to provide support for the de-
velopment of hypermedia applications. As a solution for this
problem, we proposed an extensible hypermedia engine
based on the OODBMS VODAK which supports the specifi-
cation of application semantics as application classes in the
hypermedia engine.

Based on a requirements analysis of hypermedia engines we
developed an abstract hypermedia data model that provides
the basis for modeling application-specific hypermedia
structures. Application developers can use the abstract hy-
permedia data model to construct application classes that
capture the application’s semantics in the hypermedia engi-
ne. By implementing the hypermedia engine as an extension
of an OODBMS, the application developers can use the com-
mon functionality provided by DBMSs such as concurrency
control, crash recovery, multimedia data types, declarative
access to hypermedia objects (query and search), and access
control (R4). The separation of the hypermedia engine (i.e.,
the storage and application layer) and the hypermedia ap-
plication’s user-interface (i.e., the presentation layer) en-
ables the development of different user interfaces for a hy-
permedia application. Since the hypermedia application’s
functionality is implemented in the OODBMS (in the ap-

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

plication layer of the hypermedia engine) all complex opera-
tions are performed in the DBMS.

Apart from the support for collaboration (R5), local anchor-
ing (part of R1.1), and a tight integration of other
hypermedia applications (part of R1.5), our approach meets
the requirements introduced in the section “Requirements
Analysis” and provides the following benefits:

Providing higher-level modeling constructs in the abstract
hypermedia data model eases the task of application devel-
opment. Application developers are relieved from defining
complex hypermedia semantics from scratch as they can
adapt the modeling constructs of the abstract hypermedia
data model to their needs. For application-defined more
complex operations, the mapping of complex operations to
the storage model of the hypermedia engine is avoided.

Since the application developers can use application classes
from existing applications, application development is fur-
ther eased by supporting re-use of classes.

Building the hypermedia engine and the applications in a
DBMS facilitates the maintenance of consistent hyperdocu-
ment structures within and between hypermedia applica-
tions. This extends to both, consistency of the abstract
hypermedia data model and the application’s hypermedia
data model. This is ensured for multi-user access — also in
the case where different applications access the same hyper-
media database, as there is a common data model for differ-
ent applications — by concurrency control and in case of
failure of the system by transaction management. The mech-
anism to accomplish this is to allow only those possible
transactions on the database that implement meaningful and
consistency-preserving operations with regard to the ap-
plication semantics.

While still maintaining a layered approach to hypermedia
application development (i.e., abstract hypermedia data
model vs. application classes vs. application instances), the
integration of these layers in an object-oriented DBMS re-
duces the number of between-components interfaces and
thus reducing the translation overhead involved in mapping
concepts of a higher layer to more primitive concepts of a
lower layer provided by a different system component. As
has been shown in the MUSE system this approach can yield
reasonable performance for interactive applications.

Since the application and the hypermedia engine are both
modeled in the object-oriented DBMS, all complex opera-
tions of the application are performed entirely in the DBMS.
Thus, there is less need for implementing complex caching
strategies in the application’s clients since not so many ob-
jects need to be exchanged between application client and
hypermedia engine. The latter is especially cost-intensive
when clients and server are distributed in a networked envi-
ronment.

Another benefit of integrating hypermedia applications in a
hypermedia engine implemented in a DBMS is the simpler
interaction of applications with other DBMS applications
and the exploitation of other DBMS services, like advanced
multimedia features or declarative querying facilities (R4).
The latter can now fully exploit the application’s semantics

and thus become a more flexible and powerful tool for ac-
cessing the hypermedia database [1].

As a result, we can state that the development of hypermedia
applications by using an extensible hypermedia engine im-
plemented in an OODBMS is considerably eased. Since oth-
er current approaches (as described in section “Related
Work”) do not cover our list of requirements in such a com-
plete and extensive manner (cf. section “Requirements
Analysis”), our approach presents a much more powerful hy-
permedia engine, thus giving a new quality to hypermedia
application development.
At the moment, the HyperStorM hypermedia engine has
been used to implement several hypermedia systems within
IPSI (e.g., a version of SEPIA and an editor for multimedia
presentations) and outside (e.g., MUSE). In the future, we
will extend the abstract hypermedia data model depending
on the demands of new applications, such as the hyperme-
dia-based meeting support system DOLPHIN [25].
So far, our hypermedia engine can support multiple users
working on the same hypermedia database. In the future, we
want to extend our approach to include support for coopera-
tive applications (R5) as well [26]. This requires, e.g., the de-
velopment of new modeling constructs in the abstract hyper-
media data model, the extension of current DBMS concepts
and technology to support cooperative transaction models
[21, 29], and the integration of versioning [10].
ACKNOWLEDGEMENTS
The authors would like to express their thanks to the un-
known reviewers of the submitted version of this paper. We
especially appreciate Kaj Grønb�k’s valuable comments.
REFERENCES
1. Aberer, K. and Fischer, G. Semantic Query Optimiza-

tion for Methods in Object-Oriented Database Systems.
Proceedings of the 11th IEEE Conference on Data En-
gineering (ICDE ’95), Taipei, Taiwan, 1995, pp. 70–79

2. Biliris, A. and Panagos, E. EOS User’s Guide, Release
2.2, Technical report AT&T Bell Laboratories, 1994

3. Bolter, J.D. and Joyce, M. Hypertext and Creative Writ-
ing. Proceedings of the first ACM Workshop on Hyper-
text (Hypertext ’87), Chapel Hill, N.C., pp. 41–50

4. Campbell, B. and Goodman, J.M. HAM: A General
Purpose Hypertext Abstract Machine. Communica-
tions of the ACM, Vol. 31, No. 7, July 1988,
pp. 856–861

5. Christophides, V. and Rizk, A. Querying Structured
Documents With Hypertext Links using OODBMS.
Proceedings of the 5th ACM European Conference on
Hypermedia Technology (ECHT’94), Edinburgh, UK,
September 18–23, 1994, pp. 186–197

6. Deux, O. The Story of O2. IEEE Transactions on
Knowledge and Data Engineering, 2(1):91–108, 1989

7. Geißler, J. Surfing the Movie Space: Advanced
Navigation in Movie-Only Hypermedia. Proceedings
of the 3rd ACM International Multimedia Conference
(Multimedia ’95), San Francisco, California,
November 5–9, 1995, pp. 391–400.

8. Goldfarb, C.F. The SGML Handbook. Claredon Press,
Oxford, 1990

Proceedings of the Seventh ACM Conference on Hypertext (HYPERTEXT ’96), Washington DC, March 16–20,1996

9. Grønb�k, K., Hem, J.A., Madsen, O.L., and Sloth, L.
Cooperative Hypermedia Systems: A Dexter-based Ar-
chitecture. Communications of the ACM, Vol. 37, No.
2, February 1994, pp. 65–74

10. Haake, A. and Haake, J.M. Take CoVer: Exploiting ver-
sion support in cooperative systems. Proceedings of the
InterCHI’93, Amsterdam, Netherlands, April 26–29,
1993, pp. 406–413

11. Haake, J.M., Bapat, A., and Knopik, T. Using a Hyper-
media System for Systems Engineering. Proceedings of
the East–West International Conference on Multime-
dia, Hypermedia, and Virtual Reality (MHVR’94),
Moscow, Russia, September 14–16, 1994, pp. 63–68

12. Halasz, F.G. and Schwartz, M. The Dexter Hypertext
Reference Model. Communications of the ACM, Vol.
37, No. 2, February 1994, pp. 30–39

13. Klas, W., Aberer, K., and Neuhold, E.J. Object-Ori-
ented Modelling for Hypermedia Systems Using the
VODAK Modelling Language. In: Dogac, A., Özsu, T.,
and Biliris, A. (Eds.): Advances in Object-Oriented Da-
tabase Systems, NATO ASI Series F, Springer Verlag
Berlin, 1994, pp. 389–433.

14. Lange, D.B. Object-Oriented Hypermodeling of Hy-
pertext Supported Information Systems. Proceedings
of the 26th Hawaii International Conference on System
Sciences, Vol. 3, 1993, pp. 380–389.

15. Leggett, J.J. and Schnase, J.L. Viewing Dexter With
Open Eyes. Communications of the ACM, Vol. 37, No.
2, February 1994, pp. 76–86

16. Lux, G. MUSE — A Technical Systems Engineering
Environment. Proceedings ESS ’93 European Simula-
tions Symposium, Delft, Netherlands, October 25–28,
1993, pp. 293–298

17. Marshall, C.C., Halasz, F.G., Rogers, R.A., and Janssen
Jr., W.C. Aquanet: A Hypertext Tool to Hold Your
Knowledge in Place. Proceedings of the 3rd ACM Con-
ference on Hypertext (Hypertext ’91), San Antonio,
TX, December 15–18, 1991, pp. 261–275

18. Mattos, N.M. Abstraction Concepts: The Basis for Data
and Knowledge Modelling. Proceedings of the 7th In-
ternational Conference on Entity-Relationship Ap-
proach, Rome, Italy, 1988, pp. 331–350.

19. Muth, P., Rakow, T.C., Weikum, G., Brössler, P. and
Hasse, C. Semantic Concurrency Control in Object-
Oriented Database Systems. Proceedings of the 9th
IEEE Conference of Data Engineering (ICDE ’93),
Vienna , Austria, 1993, pp. 232–242.

20. Nanard, J. and Nanard, M. Using Structured Types to
Incorporate Knowledge in Hypertext. Proceedings of
the 3rd ACM Conference on Hypertext (Hypertext
‘91), San Antonio, TX, December 15–18, 1991, pp.
329–343

21. Rusinkiewicz, M., Klas, W., Tesch, T., Wäsch, J., and
Muth, P. Towards a Cooperative Transaction Model –
The Cooperative Activity Model. Proceedings of the
21th International Conference on Very Large Data
Bases (VLDB ’95), Zurich, Switzerland, September
11–15, 1995, pp. 194–205

22. Schütt, H.A. and Haake, J.M. Server Support for Coop-
erative Hypermedia Systems. Hypermedia – Proceed-
ings der Internationalen Hypermedia ’93 Konferenz,
Zurich, Switzerland, March 2–3, 1993, pp. 45–56

23. Schütt, H.A. and Streitz, N.A. HyperBase: A Hyperme-
dia Engine Based on a Relational Database Manage-
ment System. Proceedings of the European Conference
on Hypertext (ECHT ’90), Versaille, France, Novem-
ber 1990, pp. 95–108

24. Streitz, N.A., Haake, J.M., Hannemann, J., Lemke, A.,
Schuler, W., Schütt, H.A., and Thüring, M. SEPIA: A
cooperative hypermedia authoring environment. Pro-
ceedings of the 4th ACM European Conference on Hy-
pertext (ECHT’92), Milan, Italy, November 30–De-
cember 4, 1992, pp. 11–22.

25. Streitz, N.A., Geißler, J., Haake, J.M., and Hol, J. DOL-
PHIN: Integrated meeting support across LiveBoards,
local and remote desktop environments. Proceedings of
the ACM Conference on Computer-Supported Coop-
erative Work (CSCW’94), Chapel Hill, N.C., October
22–26, 1994, pp. 345–358

26. Tesch, T. and Wäsch, J. Transaction Support for Coop-
erative Hypermedia Document Authoring – A Study on
Requirements. Proceedings of the 8th EDRG Work-
shop on Database Issues and Infrastructure in Coopera-
tive Information Systems (EDRG-8), Trondheim, Nor-
way, August 23–25, 1995, pp. 27–38

27. VODAK Manual Release 4.0. Technical Report, Ar-
beitspapiere der GMD No. 910, GMD, Germany, April
1995

28. Wäsch, J. and Aberer, K. Flexible Design and Efficient
Implementation of a Hypermedia Document Database
System by Tailoring Semantic Relationships. Proceed-
ings of the Sixth IFIP Conference on Data Semantics
(DS-6), Stone Mountain, Georgia, May 30–June 2,
1995.

29. Wäsch, J. and Klas, W. History Merging as a Mecha-
nism for Concurrency Control in Cooperative Environ-
ments. To appear in Proceedings of the 6th Internation-
al Workshop on Research Issues in Data Engineering:
Interoperability of Nontraditional Database Systems
(RIDE-NDS ’96), New Orleans, Louisiana, February
26–27, 1996.

30. Wiil, U.K. and Leggett, J.J. Hyperform: An Extensible
Hyperbase Management System. Technical Report,
TAMU-HRL-92-003, Texas A&M University, July,
1992

31. Wiil, U.K. and Leggett, J.J. Hyperform: Using Extensi-
bility to Develop Dynamic, Open and Distributed Hy-
pertext Systems. Proceedings of the ACM Conference
on Hypertext (ECHT ’92), Milano, Italy, 1992, pp.
251–261

32. Wiil, U.K. and Østerbye, K. Experiences with Hyper-
Base – A multi-user back-end for hypertext applica-
tions with emphasis on collaboration support. Techni-
cal Report R-90-38, CS Dept., University of Aalborg,
Denmark, October 1990

