Proceedings of the Sixth IFIP Conference on Data Semantics (DS-6), Atlanta, Georgia,
May, 1995;

to appear in: R. Meersman, L. Mark [Ed.]: Database Application Semantics, Chapman
and Hall, 1996

Flexible Design and

Efficient Implementation of a

Hyper media Document Database System by
Tailoring Semantic Relationships

J. Wasch, K. Aberer

GMD-IPS Integrated Publication and Information Systems Institute
Dolivostrafie 15, D-64293 Darmstadt, Ger many

Tel.: ++49-6151-{959, 935}, Fax: ++49-6151-966

Email: {waesch, aberer} @dar mstadt.gmd.de

Abstract

Inthispaper we present the design conceptsand datamodeling approach that wasused to definea
general application framework for storing hypermedia documents in the object-oriented data-
base management system VODAK. We exploit the capabilities of the VODAK data model to
introduce new hypermediamodeling primitives at the metalevel. We show that representing the
hypermediasemanticswithinthe DBM Sinthisway isclearly advantageousfor efficiency of the
design and implementation of hypermedia document storage engines. Asan example, wegivea
concreterealization of aDBM S-based hypermediaengine for the SEPIA hypermediaauthoring
system devel oped at GM D-1PSI. With thisexamplewe show that the datamodel extensions pro-
vided are flexible enough to represent also complex semantic hypermedia concepts, that the de-
velopment cycle of ahypermediaengine can become extremely fast and that the resulting imple-
mentation has adequate performance for interactive applications.

Keywords
Hypermedia, Object-Oriented Database Management Systems, Semantic Data Modeling,
Document Databases

1 INTRODUCTION

Three layers can be identified for the architecture of hypermedia systems (Campell and Good-
man 1988): the storage layer, which provides basic functionality with regard to persistent storage
of data, the application layer, which provides the particular semantics of hypermedia applica

tions, and the presentation layer which supports human-machine interaction. In first generation
hypermediasystemsthesethreelayersaretypically combinedin onemonolithic stand-alonesys-
tem, where all of thefunctionality isrealized regardless whether it is general-purpose or hyper-
media-specific. Thisapproach wasadequatefor certain applicationsand for research, but did not
exploit existing solutions from other areas, and could not serve as the basis of future integrated
information systems. Thiswas soon recognized, and with regard to the storage layer, either data-
base management systems (DBM Ss) were used, like in HyperBase (Schitt and Streitz 1990) or
HyperPath/O2 (Amann et al. 1993), or special-purpose storage managers were developed, like
HAM (Campell and Goodman 1988) or Hyperform (Wiil and Leggett 1992). The disadvantage
of the second approach isthat many of the standard DBM S functionalities needed for persistent
storage and sharing of data, like transaction management or declarative access, have either to be
re-implemented, e.g., concurrency control, or are not availableat all, e.g., declarative query lan-
guages.

Meanwhilethereisacommon agreement, that among the different kinds of database manage-
ment systems, obj ect-oriented DBM Ss(OODBMS) are the best choiceto be used for the storage
layer of hypermedia systems (Lange 1993). The main reason is that their data model allows a
direct representation of complex networks, and that by the encapsul ation of structure and behav-
ior much of the necessary semantics of hypermedia structures can be captured by the database
management system. Also some advanced DBM S features, that can be useful for hypermedia
applications, like version control, check-in/check-out mechanisms or nonstandard transaction
concepts, are most often found in object-oriented database management systems.

Common to thedifferent approachesto hypermediasystem storagelayers, both DBM S-based
and special purpose, isthe assumption of arelatively simple hypermediacore model, that hasto
be used by all applications. Thus, applications have to deal with the more advanced aspects of
their hypermedia structures by themselves, and have to map their more complex structures and
operations from the application layer, to the generic core model. A typical example of the poten-
tial complexity of the semanticsof hypermediasystemsisgiven by SEPIA, ahypermediasystem
for supporting authors of hypermedia documents. We will introduce SEPIA in section 2.1 and
useit asatest case for our approach. A storage system based on a generic core model does not
support the maintenance of the consistency of the hypermediamodel with regard to the complex
application semantics. Extensibility of the core model in some general way, e.g., by means of
subtyping asin Hyperform, does not improve the situation. It isjust amore elegant way to com-
bine generic semantics with the additional application semantics, whereas the difficult task to
maintain integrity and to provide complex operationsis still delegated to the application pro-
grammer.

In order to provide the application programmers with the means to develop hypermedia sys-
temsin aflexibleway, and to obtain powerful storage capabilitieswith little effort, the DBMS's
datamodel hasto support additional data modeling primitives for hypermedia modeling. Then
the application programmer can flexibly combine those primitivesto hisintended, semantically
rich hypermedia model, and obtains appropriate support for the primitives semantic by the
DBMS. This support can be given in the form of consistency constraint checking and provision
for data structures and operations, which are fully controlled by the DBMS.

In this paper we describe how such an approach was realized with the object-oriented DBM S
VODAK (Klasetal. 1994, VODAK 1995). A necessary conditionin order to proceed in theway
envisaged isthat the DBM S’ s datamodel must be flexible enough to allow the definition of new
data-modeling primitives. In case of VODAK thisisachieved through a metadatalayer, that al-
lows to introduce new modeling primitivesinto the data model. With our approach we provide

hypermedia data-modeling primitives as extensions of the DBM S'sdatamodel that, in thisway,
is tailored to the specific needs of hypermedia applications. Thus, we fully support the storage
layer for hypermediaapplications and provide the application layer with amuch more powerful
datamodel than thisisthe case with a hypermedia core model. As a consequence, much of the
application layer semanticsisrealized withinthe DBMS. Thus, together with the datamodel ex-
tensions, VODAK actually turns out to be a hypermedia engine.

By proceeding in the way described, we obtain the following additional advantages with re-
gard to other approaches realizing a hypermedia system storage layer:

1. Applicationsarerelieved from defining complex hypermediasemanti csthemselvesasthey
can adapt the given modeling primitivesto their needs. This providesthe applicationswith
powerful predefined operations and avoids a mapping from the more complex application
model to the storage model, i.e. thereis no discrepancy between models. Hence, devel op-
ment of complex hypermedia applications is eased.

2. Complex operations can be performed compl etely within the DBM S moreefficiently. This
can, for example, massively reduce network communication costs, or relieve the applica-
tion programmer from implementing complex caching strategies. DBM S-based hyperme-
dia applications can become more efficient.

3. Consistency isenforced by the DBM S not only with regard to the hypermediacore model,
but also with regard to the more complex application model. Thisisensured for multi-user
access—alsointhe case wheredifferent applications access the same hypermediadatabase,
as there is a common data model for different applications — and in case of failure of the
system by concurrency control and transaction management. The mechanism to accom-
plishthisisto alow only meaningful and consistency-preserving operationswith regardto
the high-level application semantics on the database as possible transactions.

4. Thedeclarative querying facilitiesthe DBMS provides can fully exploit the semantic fea-
tures of the application-specific model, and thus become a flexible and powerful tool for
accessing the hypermediadatabase. The processing power that aDBM S query modul e pro-
vides, for example query optimization and efficient query evaluation, contributes to the
flexibility and efficiency of hypermedia systems.

Additional advantages to be mentioned are the simpler interaction of hypermedia applications
with other DBM Sapplicationsand the exploitation of other DBM Sservices, likefor examplethe
advanced multimedia features of VODAK.

We want to point out that the approach described addresses many important, although not all
problems related to the access of hypermedia databases. One major research issue we want to
mention isthe collaborative editing of hypermedia documents, which leads, for example, to the
view update problem. By defining appropriate transactions and transaction boundaries there is
someflexibility in governing the behavior of the database system when multipleusersaccessand
change the same documents simultaneously. In VODAK, additionally, the concept of semantic
concurrency control (Muthetal. 1992, Muth et al. 1993) allowsto exploit the semanticsof opera-
tions, which for the previousargumentsisknowntothe DBMS, in order to increase concurrency.
However, therole of the DBM Sisrestricted to i sol ate usersfrom each other and to maintain con-
sistency under all circumstances. The problem of having consistent viewswhen editing in paral-
lel and cooperatively will need further research efforts. However, asthisissueisahot topicin
DBM S research, by providing apowerful DBM S-based storage layer also hypermedia systems
will profit from new results. Through the provision of asemantically richmodel inthe DBM Sthe
application of such techniques will naturally be eased.

A central question to beanswered when introducing anew concept that enhancesthefunction-
ality of aninformation system, isalwayswhether the priceto be paid in termsof additional over-
head and thus system performance is acceptable. That thisisacritical issue is best understood
when considering the difficulties relational database systems have when used to store complex
information like that occurring in hypermedia systems. For this reason, we have implemented,
according to the principles discussed above, a completely functional prototype on the basis of
VODAK for the SEPIA hypermediamodel, including the storage, application and presentation
layer. It wasout of question that thefunctional advantagesactually provedto pay off, e.g., model-
ing of aparticular hypermediamodel became extremely simply. But, first experiences show that
although the system was not particularly tuned at all, the overhead for maintaining the consisten-
cy of the semanticsthat occurs, e.g., for checkingintegrity constraints, performing semantic con-
currency control, maintaining additional structural information etc., isfully acceptable. The pro-
totypes' performance allows, for example, interactive usage of the DBMS for document
browsing and editing. For usthiswas avery encouraging result, that clearly showsthat the con-
cepts presented in this paper can really carry onin practice.

The paper isorganized asfollows. In section 2 we describe the requirementsfor the design of
the VODAK hypermediaengine, the VODAK modeling language and give an overview on our
design approach. Section 3 is concerned with the modeling of semantic relationships and their
combination to basic application-independent hypermedia modeling primitives. Furthermore,
we explain how thisdatamodel can betailored to application-specific need. In section 4, related
work isreviewed and classified. Section 5 givesabrief summary, and further research objectives
areidentified.

2 DESIGNING THE HYPERMEDIA ENGINE

The SEPIA hypermediaauthoring system (Streitz et al. 1989, Streitz et al. 1992) acted asa start-
ing point for the development of the hypermedia engine. One requirement for the design of the
hypermediaenginewasthat it should be possibleto model the semanticsof SEPIA’shypermedia
objects. Therefore, we briefly describe in the next section the basic concepts of SEPIA and the
logical components of its hypermedia model.

2.1 The SEPIA hypermedia authoring system and its data model

SEPIA supportsthe creation of hyperdocumentsby providing the concept of activity spaces. Us-
erscreate ahyperdocument by interacting with the four activity-space browsers dedicated to the
tasksof content generation, planning, arguing, and writing thefinal hyperdocumentsunder arhe-
torical perspective (content space, planning space, argumentation space, and rhetorical spacere-
Spectively).

SEPIA'’s authoring-specific hypermedia model consists of the following basic hypermedia
objects: atomic nodes, composite nodes, links, and atomic content objects. An atomic node can
consist of several atomic content obj ects, e.g., text, audio and picturesobjects. Ingenerad, links
connect different nodes. Some kind of links can also point to or from other links. Links are al-
lowed only between nodes and links that are members of the same composite or activity space.

Compositenodesareused asorganizationa meansfor clustering and nesting of related docu-
ments. Composite nodes may contain other nodes and links, forming asubgraph of the hyperme-
dia network. They are also used within SEPIA to model the four authoring-specific activity
spaces. Each space providestask-specific obj ectsand operationsto support the dedicated author-

ing activity. Tomodel this SEPIA usestyped hypermediaobjects’. Each activity spaceprovidesa
dedi cated subset of typed nodesand links. Itispossibleto post constraintsover typesof hyperme-
dia objects to model task-specific semantics and maintain consistency of the hypermedia net-
work. Let uslook at an example to make this clearer. SEPIA’s argumentation space can contain
nodes of the types datum and claim and links of type supports. Support links are allowed to
connect only a datum node with a claim node or a claim and with other claims.

To someextent, SEPI A supportstypetransformation of hypermediaobjects. For example, if a
node of type position iscopied from the planning spaceinto the argumentati on space this opera-
tion includes atype conversion of the node to the type claim. Moreover, anode or link can have
several instantiationswithin different composite objectsin SEPIA. Inthe aboveexample, SEPIA
maintains a rel ationship between the position node and the claim node.

2.2 Requirementsand design rationale for the hypermedia engine

Expressiveness of the hypermedia model
It isrequired that the data model of the VODAK hypermedia engine is at least as powerful as
SEPIA’'s data model. Therefore, our hypermedia engine must

e support at least the basic hypermedia primitives described above,

e provide typed hypermedia objects, and allow to post constraints between them,

e support type transformation of objects according to some transformation rules, and

e Dbeableto keep track of different roles of hypermedia objects within the hyperstructure.
In addition to SEPIA’s hypermedia primitivesit isvaluable to take some other conceptsinto ac-
count which areproposedintheliterature (Conklin 1987, Halasz 1988, Halasz 1991). The modu-
lar design of the hypermediaengine makesit easy to introduce new hypermedia primitives. Our
hypermedia engine already provides some additional hypermedia concepts, e.g., it is allowed
that links themselves contain information.

Flexibility of the hypermedia model

Another requirement for the design of hypermedia engine was that changes of the application-
specific hypermedia model should be possible without recompiling the underlying database
schema. Thisis useful because at the beginning of the development of the application-specific
hypermediamodel, the semanticsis not exactly known. Hence, the devel opment time can bere-
duced if new hypermediatypes can be created and their constraints can be changed at run-time.

Extensibility of the hypermedia engine’s database schema

The hypermediaengine should not only be abl e to capture authoring-specific semantics. For ex-
ample, the VODAK hypermediaengineisused within the MuSE project (Lux 1993), too. MuSE
aimsat hypermediasupport for the devel opment process of complex technical products. For this
kind of application, MuSE-specific types of hypermedia objectsand constraints on them will be
introduced, e.g., thefour authoring spaces of SEPIA arereplaced by amodeling and avalidation
Space.

Integration of external storage systems and editing tools

It is not always possible to model the application-specific semantics of atomic content objects,
e.g., video or text objects, withinan OODBMS, and to build dedicated editing toolsfor them. In
case of aproprietary text format it may be better to store text dataas large bytestrings (BLOBYS)

* Thereader should be aware that these types are different from the object types used within the VODAK sys-
tem to model the structure and behavior of objects and classes.

within an OODBMS. If we want to integrate videos, it may be better to store them outside the
hypermedia engine within a specialized storage system, e.g., EOS (Biliris and Panagos 1994),
and maintain only areference to the video data. It should be possible to integrate editors within
the hypermediaengine, because there already exist avariety of dedicated editing toolsfor view-
ing and mani pul ating different kinds of media. Therefore, inthedesign of our hypermediaengine
genericfacilitiesfor integrating external storage servicesand editing tools had to be considered.

2.3 TheVODAK data modeling language

Becausethere exist conceptual and terminological differencesbetween different object-oriented
database management systems, the rel evant concepts of the used OODBMSVODAK (VODAK
1995) and its data modeling language (VML) are introduced briefly in this section.

Asin other OODBMS, objects are used to represent material or immaterial entities, or ab-
stract concepts. Objects are identified through unique object identifiers (OID). The structure
(properties) and procedural behavior (methods) of objects is described through abstract data
types which are called object types. VODAK distinguishes between object types and classes
(dual model). Object types determine the structure and behavior of objects and hence are inten-
tional, whereas class definitions describe class objectswhich act as containersfor their instances
(extension of aclass). A class definition consists basically of two parts: the object type of the
classobject itself (OWNTYPE) and the object type of the class' instances (INSTTYPE). Theini-
tialization part allowsinitialization of the class’ properties by calling methods of the class' own
type.

CLASS <class name> [METACLASS <metaclass names]
OWNTYPE <object type of the class>
INSTTYPE <object type of the class’ instancess>
[INIT <initialization methodss>]

END

InVODAK, classesarefirst-class objects, i.e., they can betreated like ordinary objects. Thus, it
is possible to create classes and modify classes properties at run-time. Because classes are
treated asfirst-class objects, class objects are themsel vesinstances of other classes, called meta-
classes. Metaclasses are used in VODAK to describe the common structure and behavior of
classes and their instances which may not be known at the time the metaclass is defined.

Onereason to use metaclassesisto model semantic rel ationships between application classes.
Many OODBMS offer hard-coded mechanisms to describe such relationships. But semantic
rel ationships can have several dimensions. Thus, only aflexible mechanismlikefreely definable
behavior and integrity constraints for metaclasses allows to model a great variety of dedicated
semantic relationships, as needed for our hypermedia engine semantics. M etacl asses ensure the
consistent usage of the object types defining the semantic relationships and enforce specificin-
tegrity constraints by declaring a class as an instance of a specific metaclass.

2.4 Overview of the design approach

Inthissubsection wegiveabrief overview of the design process of the hypermediaengine. More
details are presented in section 3. The reader should get an intuitive understanding of our ap-
proach. Figure 1 indicates the design steps described bel ow.

Definition of application-independent semantic relationships
First, we have analyzed what kind of semantic relationships (Klas et al. 1994) are necessary to
model and implement a hypermedia engine that satisfies the requirements presented in section

Application-independent semantic relationships

. flat hyper-structures (with constraints)

o element- and set-association (with constraints)

. category specialization

. role specialization (with role transformation rules)

Integration

Meta modeling

Application-independent,
generic hypermedia modeling concepts
like atomic node, composite node, directed link etc.

Constraints,
Additional structure and behavior

Application-specific types of hypermedia objects
like Datum, Claim, supports etc.

@ Instantiation

Individual hypermedia documents

Application
modeling

Authoring

Figurel Overview of the approach followed in the design of the hypermedia engine.

2.2. We identified the following four orthogonal, application-independent semantic relation-
ships (which are described in section 3.1 in detail) to be sufficient:

flat hyperstructures (e.g., different kinds of links in a hypermedia network);
element- and set-association (e.g., for modeling of composite nodes);

category specialization (e.g., for modeling of links that can behave like nodes);
role specialization (e.g., for modeling type transformations).

These semantic relationships can be found in OODBMSs, but we extend them with additional
constraint mechanisms and rule-based facilities. The semantic relationships are modeled by de-
fining appropriate VODAK object types, that describe the structure and behavior for classes as
well as for instances taking part in the semantic relationship.

Definition of application—ndependent, generic hypermedia modeling concepts
In the next step, the different semantic relationships are combined to describe the structure and
behavior of single, application-independent hypermedia modeling concepts like atomic and
composite nodes and different kinds of links. Whilethefocusin thefirst step isto model thein-
tra-semantic-relationship constraints, now the inter -semantic-relationship constraints have to
be considered to ensure integrity of the hypermedia modeling concepts (see section 3.2).

To provide the application designer with a mechanism that allows to create dynamically ap-
plication-specific instances of the generic modeling concepts, we utilize VODAK’s metaclass
mechanism. For each generic hypermedia modeling concept we define a metacl ass describing
the application-independent semantics of the hypermedia modeling concepts. These meta-
classesconstitute extensionsof thedatamodel that providethe necessary modeling primitivesfor
the development of dedicated hypermedia applications.

Thefirst two stepstake place at the metalevel and do not consider application-specific hyper-
mediasemantics. Application-specific semanticsisfirst considered at theapplicationlevel by the

definition of concrete, application-specific classes independent of the meta(class) level. This
leads to a modular and reusable structure of our hypermedia data model.

Definition of application-specific hypermedia semantics

The generic hypermedia model can be tailored by an application designer to to the needs of a
specific application domain, i.e., defining the application-specific hypermediasemantics. Thisis
done by classifying objects into application-specific types of hypermedia objects and adding
constraints with respect to the semantic relationships to these hypermedia types.

In VODAK the application-specific hypermedia types are defined by application classes
which are instances of appropriate metaclasses describing the basic semantics for hypermedia
objects. To specialize these semanticsit is possible to add constraints to the application classes
and to use additional object typesin the definition of application classes. Thisextension of struc-
tural and behavioral semanticsof hypermediatypeswould not bepossibleif typesof hypermedia
objects were simply represented as labels of objects.

Themodular assembly concept in the design of the hypermediaengine enablesadevel oper of
an application-specific hypermediamodel to reuse existing object type definitions and to refine
and change the semantics of the model at run-time which resultsin reduced devel opment time of
the application-specific hypermediamodel. The hypermediaengine ensures at the sametimethe
generic and application-specific integrity constraints without programming efforts.

3 FROM APPLICATION-INDEPENDENT TO APPLICATION-SPECIFIC
SEMANTICS

3.1 Modeling semantic relationships

In this section we present a (semi)formal description of the semantic rel ationships used to model
the application-independent hypermedia primitives.

Flat hypermedia structures

A flat hypermediastructure can beviewed asagr aph G=(Np,Lo) wheretheset of nodesN corre-
spondsto vertices of the graph and the set of binary linksLg © Ng X Ng correspondsto the edges
that connect thenodesof G. If thegraph containsonly directed linkswe obtain adigraph. Because
it is alowed that a hyper network contain both binary directed and bidirectional links, we get
G=(Np, DL, BLg) where DLy denotes the set of directed links and BLgy denotes the set of of bi-
directional links.

Because we alow also links on links, we have to extend this basic definition asfollows: Let
N+1 = N uDL uBLj, DL € N XN, BL € NXxN. Using this, we can define
G=(N,DL,BL)whereN= Uicy N,DL= Uecy DL,BL= Uiy BL." For flat hyperme-
dia structures we consider the following application-independent constraints:

(i) Loopsarenot alowed inthe graph, i.e. (n,n) & DL u BL.
(i) Dangling links are not allowed by definition.

Additionally, our hypermedia engine allows the usage of typed links and nodes. Such a hyper-
structure can be described as atyped graph TG = (N, DL, BL). We introduce three total typing
functionstypen: N— NT, typep: DL — DLT, typeg,_: BL — BLT to obtain thetypesof nodesand
links. The sets NT, DLT, BLT contain the possible types of the elements of N, DL, BL and are
digoint. DLT and BLT" aresubsetsof DLT and BLT and denotethetypesof linksthat can behave
Typically, BLj and DL; will be empty for valuesi > ig, whereigisrelatively small, eg., in SEPIA ig = 1.

like nodes. For the sake of simplicity we introduce a function typeyT that combines the three
functional relationstypey typep. and typeg, . For typed graphswe havethefollowing additional
constraint:

(iii) Multiplelinksbetween verticesareallowed under the provisionthat thelinkshavedifferent

types.

To model constraints on the connectivity of links and nodes we introduce a constraint function
consyT: DLT U BLT — & ((NT U DLT U BLT') X (NT U DLT U BLT")) that determines if
alink of aspecific typeisallowed to connect two typed objects 04, 0, € N.” For abidirectional
link typeblt € BLT itisrequired that consyt(blt) issymmetric. With thisformalismweareable
totest if alink is allowed to connect some objects in the hypermedia structure:

(iv) Alink | = (01, 02) can connect two objects 04, 0, if
(typenT(01), typenT(02)) € consyr(typent(l)).

Example 1: Let us consider an example obtained from SEPIA: The binary directed link type
supports isonly allowed to connect anode of type datum with anode of type claim or aclaim
with aclaim node. Therefore, the result of the function consyt(supports) isequal to { (datum,
claim), (claim , claim)}.]

Element- and Set-Association

Tointroducethe composition mechanisminto thegeneric hypermediamodel, we usethe associa-
tion concepts described below. Additionally, we introduce a constraint mechanism to describe
application-specific constraints of the hypermedia model.

There aretwo types of associations, namely element- and set-association (Mattos 1988). Ele-
ment-association introduces a set object to describe properties of agroup of element objects. It
suppresses the details of the element objects while emphasizing the properties of a group as a
whole. Element-association establishes an element-of (e€ S) relationship between the element
objectsand the set obj ects, forming a 1-level hierarchy. Set-association introduces set object (su-
perset) in order to describe properties of a group of set objects (subsets). Set-association esta-
blishesasubset-of (S CS") relationship between subsetsand supersets. It may be applied recur-
sively, building an n-level hierarchy. Of course, set-association requires element-associationin
order to instantiate basic non-empty set objects.

According to the Dexter hypermedia reference model (Halasz and Schwartz 1994), we de-
cided to separate the nodes and links from their contents (Dexter within-component layer). The
internal structure of the content objects are described separately from the hypermedia structure
(seeFigure 2). Thus, content objectscan beviewed at the hypermediaabstraction level asatomic.
These elementary content objects can be grouped together in a node, which establishes an ele-
ment-of relationship between an atomic content object and nodes, which act as containers (sets)
for their content objects. To model composite nodeswe use the concept of set-association. Com-
posite nodes can contain atomic nodes, linksand recursively other composite objects. Therefore,
we can view composite nodes as supersetswhich are composed out of other nodesand links (sub-
sets) and establish a subset-of relationship. Of course, superset objects can also contain atomic
content obj ects (el ement-of relationship). The only application-independent constraints for our
concept of set-association is as follows:

(i) Thesetobjectsrelated by the subset-of relationship must correspond to atree structure, i.e.,
set-association isacyclic and it isnot allowed that the same set object isin asubset-of rela-
tionship with two different composite (set) objects.

) isused to denote the powerset.

Composite
node

5 subset-of

B Atomic

%2 node

g

o subset-of

S h

T |\
|\ element-of
| \

element-of/ \ kAi AN A\ \ | \\

S LN

©

- /

: & g @

[

8 Typed atomic content objects, e.g. text, audio, pictur

Figure2: Example of the usage of element- and set-association in the hypermedia engine.

Because it isuseful to share atomic content objects we do not obey this constraint in the case of
element-association. Therefore, an atomic content object can be an element-of different atomic
or composite nodes and links (see Figure 2).

In addition to this restriction, we combined a constraint mechanism with the concept of
association for tailoring the hypermediamodel to application-specific needs. Aswith nodesand
links, elements and sets are typed. Therefore we introduce atyping function typeass: EO u SO
—ET U ST,ET N ST= @ whereEO and SO denote the set of atomic (el ement) and composite
(set) objects, respectively. ET and ST represent the possible types.

(i) Using thistyping function we can introduce a constraint function to post constraints over
the structure of association: consass: ST — & ((ET U ST) X Ng X (Ng U { })).

These constraints are assigned to set objects. The first component describes which type of ele-
ment and (sub)set objects can beincluded within the set object. Thelast two componentsare used
to constrain the cardinality of occurrences of objects of a specific type within a set object.

Example2: In SEPIA acomposite node of type path hasto contain exactly onestart nodeandis
allowed to contain an arbitrary number of content nodes and followedBY links and at most one
atomic TextContent object which acts as an annotation of the path node. These constraints are
expressed by consass(path) = {(start, 1, 1), (content, 0, «), (followedBy, O, «), (TextCont-
ent, 0, 1)} where start, followedByY, content € ST and TextContent € ET. Thisimpliesthat
if apath nodeinstanceiscreated, astart node hasto be created automatically by the hypermedia
engine.]

Category specialization

On of the most frequently used semantic rel ationshipsis specialization of classes. Classescan be
declared as specializations (subclasses) of other classes, such that properties and methods of the
superclass are inherited to their subclasses. In this sense specialization is similar to subtyping.
The conceptual difference between subtyping and class specialization is that subtyping isano-
tionrelated to typedefinition and henceintentional . Class specializationisan extensional notion,
where classes are used as containers for sets of objects and the specialization relationship leads
additionally to extension inclusion between subclasses and superclasses.

10

Wedenotethat classSisaspecialization-of class T by S< T. Weassumethefollowing consis-
tency constraints on the classes aswell as on theinstances of these classes, that participatein the
specialization relationship:

(i) Therelation < must be apartial order.

(i) Additionally we allow for a subclass only one direct superclass. Thus, we obtain atree of
classes (single inheritance).

(iii) Letext(S)denotetheextension of classS. Thefollowing propertiesregarding the extension
must hold: If S< T then ext(S) C ext(T). Thisimpliesthat U s~ ext(S) C ext(T) holds.

(iv) Furthermore, itisassumed that theextensionsof twoclassesS, S’ whicharenotinaspecial-
ization relationship aredigoint, i.e., = (S<S Vv S <S)impliesext(S) N ext(S) = @.

Klas et a. call this kind of semantic relationship category specialization (Klas et al. 1994).
Property (iv) can berephrased: Let MSC(0) denoteamost specia classof anobject o, i.e., aclass
Twitho€ext(T) andfor al classesS< T: o & ext(S). Animportant property of category special-
ization is that MSC(0) is unique: for all S with MSC(0)<S: o€ext(S) and for al T with
— (MSC(0) < T): o ext(T). Weal so useanother kind of specialization called rolespecialization
in the hypermediaengine. Role specialization does not require that MSC(0) isunique. Thisrole-
of relationship is discussed in the next section.

Example 3: Category specialization isused in variouswayswithin our hypermediaengine. E.g.,
in some applications, certain links can behave almost like nodes, asthey have acontent and they
may bereferred to by other links. In SEPIA, asupport link can bereferred to by an explain link
and hastextual content. To avoid theintroduction of additional conceptsfor thiskind of links, we
use category specialization to model thisbehavior. An application designer smply hasto declare
the link class supports as a speciaization of aclasslike linkAsNode that is an instance of the
metaclass AtomicNode and hence captures the node semantics of alink that can behave like a
node. As a side effect, we get acommon domain for all links of thiskind. If alink class has no
node semantics, no category specialization isused.]

Role specialization

Asmentioned in the requirements section, nodes and links can occur in SEPIA asdifferent types
in different (types of) composites. Furthermore, it should be possible to transform typed nodes
and links into other types. Such a situation occurs if a position node created in SEPIA’s Plan-
ningSpace is copied into the ArgumentationSpace. This resultsin the creation of a node of
type claim withinthe ArgumentationSpace. Moreover, thereisarel ationship between thetwo
nodesin the different spaces (see Figure 3). Some properties of these two nodes are shared, e.g.,
their name, but there exist al so some propertiesthat differ, e.g., the coordinates of thenodesinthe
authoring spaces or the links that point to or from the nodes.

To model thiswe userole specialization (Klaset al. 1994). The role-specialization relation-
ship need not fulfill property (iv) of category specialization. The general object contains the
shared properties, whereas the different roles contain the non-shared properties. In addition to
that, therol e objects can have different structure and behavior, defined by their own object types.
Between the different role objects and their common general object arole-of relationshipises-
tablished.

To specify the possible type transformation of hypermedia objects we introduce a function
transg: R— £ (R) where Risthe set of classes which can appear asarole of ageneral object.
This function describes al possible transformations of an object from one class to another. We
assume that the object’s state does not change during the transformation. However, it would be

11

General

object -— shared properties, e.g., name

non shared properties,
claim eg, coordinates

1 |
| |
Position : | \
I |
I |
h I

transformation rules

Figure3 Example of the usage of role specialization.

possibleto adopt concepts from object migration (Li and Dong 1994) to introduce moreflexibil-
ity into role changes.

Example 4. For example, in SEPIA we have trans(position) = {claim, neutralNode} which
denotes that a position node can be converted to aclaim or aneutralNode. [_]

3.2 Combining semantic relationshipsto generic, application-independent
hyper media modeling primitives

Inthelast section, we discussed the modeling of semantic relationshipsand intra-semantic-rela-
tionship constraints. As mentioned in section 2.4, these semantic rel ationships are combined to
several generic hypermedia modeling concepts, e.g., atomic nodes or composite nodes.

When combining semantic relationships, additionaly the inter-semantic-relationship
constraints have to be considered. It is not enough to combine the definitions of semantic rela
tionship given by object types via subtyping. The semantic relationship must be integrated in a
meaningful way to ensure the integrity of the hypermedia network.

Considering the different typing functions used in the hypermedia structure, association and
role specialization relationships it is obvious that they have to share the same types for their
constraint functions, such that each object in our hypermedia model has exactly one type.

Example 5: Figure 4 shows an example of how the semantic relationships are combined within
the implementation in VODAK. A directed binary link class object type inherits the basic link
semantics from DirectedBinaryLink_ClassType, the set semantics of element-association
from SetAssoc_ClassType and other object types, e.g., for modeling presentation information.
Nodes and linksin SEPIA are always enclosed in a composite and links connect only objects
within the same composite. Therefore, wefirst have to check if thelink class (which represents
the hypermediatype) is alowed in the composite, if the source and destination objects are con-
tained in the same composite and then check if thelink isallowed to connect the given objects. If
all of these constraints are fulfilled we can create the link object (including its connection to the
source and destination objects) and finally add the link to the composite object. [_]

In addition to the above mentioned combination of semantic relationshipswe had to provide
additional functionality that isonly meaningful with the combination of particular semanticrela-
tionships. For exampl e, type transformations of nodes and links depend on the target composite
object where the object should appear. Therefore, the type transformation function used in the
role specialization relationship described above has to be extended to a function trans:
(NT U DLT UBLT) x ST x ST — NT u DLT U BLT, when combining role specialization

12

OBJECTTYPE Combined_DirectedBinaryLink_ClassType
SUBTYPEOF DirectedBinaryLink_ClassType, SetAssoc_ClassType, CatSpec_ClassType,
RoleSpec_ClassType, Presentation_ClassType, . . . // semanticrelationshipsand other object type
IMPLEMENTATION . . .
createlLink (from: OID, to: OID, inComposite: OID, ...): OID
. ..

IF ((inComposite->canContain (SELF) AND //test for set-association constraints
(to->isContainedIn (inComposite)) AND //testif dest. nodeiscontained in same composit
(from->isContainedIn (inComposite)) AND // dto. for source node
(SELF->canConnect (from->class (), to->class())) //testforlinking constraints

THEN {newLink := SELF->createLink (from, to); //createthelink between’'from and’to’

inComposite->addSubsetObject (newLink) } // AND add it into the composite object

ELSE {RETURN NULL}; //constraint violation—nolink is created

3o

END

Figure4 Example of acombination of semantic relationships.

and set-association. The arguments of trans are the class of the hypermedia object to be trans-
formed and the classes of the source composite object and the target composite object. Theresult
of thisfunctionistheidentifier of asingleclass. A restrictionisthat anode cannot betransformed
to alink and vice versa.

Thistypetransformation mechanismtogether with rol e specialization enablesusto transform
objectswithin the hypermedianetwork in aflexible way. Of course, before doing the actual type
transformation, the hypermedia and association constraints have to be checked.

For each hypermedia modeling concept we provided two combined object types. one object
type defines the semantics of the individual objects, the other describesthe class’ structure and
behavior. These two object types are used in the metaclass definition.

Thesemetacl assesdescribetheapplication-independent semanticsof the hypermediamod-
eling concepts and extend the OODBMS VODAK to a hypermedia engine. They provide the
necessary modeling primitives for the development of dedicated hypermedia applications and
ensure the consi stent usage of the semantic relationship. Moreover, they allow the dynamic cre-
ation of classes at run time. The current implementation of the hypermedia engine supports the
following metacl asses:

Nodes: AtomicNode, CompositeNode, and Node;

Links: DirectedBinaryLink, BidirectionalBinaryLink;

Composite contents: CompositeContent and Organizer;

Atomic contents: AtomicContent, BytestringAtomicContent, and
ExternalReferenceAtomicContent.

TheNode and CompositeContent metacl assestogether allow the model ling of objectsthat can
behavelike atomic or composite hypertext objects. Organizer classes are used to organize com-
plete hyperdocumentsin adirectory-like way. The AtomicContent metaclassis used to imple-
ment classes that model different kinds and format of mediawithin VODAK. The Bytestring-
AtomicContent metaclassand ExternalReference AtomicContent metaclass support storage
of multimediadata(e.qg., text, pictures, audio, video) asBLOBsinVODAK or inexternal storage
systems. These metaclasses include al so generic mechanismsfor the integration of external ap-
plication programs.

13

3.3 Tailoring the hypermedia model to application-specific needs

The metaclasses shown above can be used by a schemadesigner to tail or the hypermedia model
to the needs of aspecific application domain, thus, defining the application-specific hyper me-
dia semantics. Application classes simply are declared asinstances of an appropriate metaclass
to provide them with theintended behavior. As mentioned before, different types of hypermedia
objects are modeled as different classes within the hypermedia engine.

Tailoring the generic hypermediamodel to the application-specific semantics can be done by
asserting constraints regarding the semantic relationships to the application classes. The
constraints can be changed at run-time because constraint insertion and del etion isdone by ordi-
nary method calls. Moreover, it ispossibleto create new classes asinstances of an existing meta-
class at run-time because classes are treated as first class objectsin VODAK.

CLASS supports METACLASS DirectedBinaryLink // declaration of class as an instance of the metaclass
INIT SELF->subclassOf (linkAsNode);
SELF->addLinkConstraints ([datum, claim], [claim, claim]) ;
SELF->addElementConstraints ([TextContent, 0, 1], [AudioContent, 0, 1], ...) ;
SELF->addTransformationRule (ArgumentationSpace, PlanningSpace, neutralLink)

END
Figure5 Example of tailoring an application-specific class by adding constraints.

Example 6: Anexampleisshownin Figure5.First, the classsupports isdeclared asan instance
of themetaclass BinaryDirectedLink which describesthe general behavior of thiskind of links.
Then it isdeclared as a subclass-of the class linkAsNode which is an instance of the metaclass
AtomicNode and therefore inherits the node-like behavior to link instances of class supports.
Moreover, application-specific constraints on the connectivity and the possible content of the
link are asserted to the class by means of an INIT clause and atransformation rule is added
which express that if alink of class supports is copied from an ArgumentationSpace to a
PlanningSpace object, it is automatically converted to an object of class neutralLink.[_]

In this example, it was not necessary to enrich the definition of the application-specific link
classsupports with additional functionality. Itispossibleto provideadditional functionality for
an application class by adding object typesin the class definition. This semantic enrichment for
dedicated hypermedia types would not have been possible if types of hypermedia objects were
simply represented as labels (strings) of objects. This was the reason why we decided to model
different types of hypermedia objects as different classes.

CLASS AudioContent METACLASS AtomicContent // declaration of class as an instance of the metaclass AtomicConten
OWNTYPE VODAK_Audio_ClassType // adding additional object types that model audio class’ and
INSTTYPE VODAK_Audio_Type /I audio instance's structure and behavior

END

Figure6 Example of adding application-specific structure and behavior to a class.

Example 7: The class AudioContent (see Figure 6) is defined as an instance of the metaclass
AtomicContent which describesthe general semanticsof content objectsinour hypermediaen-
gine. Additionally, an OWNTYPE and an INSTTYPE aredefined for theclassAudioContent and
itsinstances, which provide the properties and methods for storing and manipulating audio ob-
jectswithin VODAK. Therefore, the structure and behavior of the class AudioContent and its
instancesis composed out of the generic object typesinherited by the metaclassand the applica-

14

tion-specific object types. There are no constraints assigned to the class AudioContent because
constraints regarding the element-of relationships are assigned to the set objects.[]

4 SYSTEM ARCHITECTURE AND EVALUATION

In this section we describe the system architecture of theimplemented VODAK hypermediaen-
gine. Moreover, we present some results of the evaluation we have done on a SEPIA tailored
hypermedia engine.

4.1 System architecture of the hyper media engine

Theoverall system architectureisshownin Figure 7. The core of the hypermediaengine consists
of the obj ect-oriented database management system VODAK. VODAK containsthe metaclasses
that implement the basic hypermedia engine functionality, e.g., the checking of generic and ap-
plication-specific integrity constraints and consi stency-preserving operations for the manipula-
tion of hypermedia structures. Moreover, VODAK stores and manages the application-specific
hypermedia model s described by application classes, their application-specific constraints, and
additional object types.

External storage systems, e.g., EOSfor storing large videos, can be connected to VODAK by
instantiating the ExternalReferenceAtomicContent metaclass. Accesses and manipulations to
these external storage systems are managed by the VODAK hypermediaengine, and, hence, are
transparent for applicationsrunning ontop of it. Theinvocation of external application programs
is handled by the VODAK hypermedia engine, too.

Applications of the VODAK hypermedia engine are implemented using the C++ based VO-
DAK client interface. The VODAK clients may run on arbitrary nodesin the network and com-
municate viathe VODAK server interface with the VODAK hypermediaengine. Basically, the
VODAK client interface can be considered asaremote API to the VODAK OODBMS; it offers
VODAK datatypes (VML) and the VODAK query language (VQL) that can be used to build
applicationsprogramslikegraphical user interfaces. Moreover, it offerssupport for visualization
and manipulation of multi-mediadata stored within VODAK. Client applications communicate
with VODAK via a generic interface which consists of the following functions:

getting the OID of aclass by sending the class' name;

begin, commit and abort of a VODAK top-level transaction;

submitting arbitrary method callsto VODAK and transferring back the results;
submitting declarative queries to VODAK and transferring back the results.

The complex, consistency-preserving operationsoffered by theVODAK hypermediaengineare
invoked by the application using the method call interface. Each of those operationsis executed
asasingle VODAK top-level transaction by default. Using the transactional commands offered
by the interface, an application programmer can build new complex transactions, e.g., macros,
consisting of several consistency-preserving operations. Utilizing V ODAK’sopen nested trans-
action model (Muth et al. 1992, Muth et al. 1993) and the commutativity predicates defined for
the hypermediaengine’s operations, each operation of an application-defined transaction can be
executed asasubtransaction, increasing the degree of concurrency without lossof ACID proper-
ties. Moreover, an application programmer can use declarative VQL queries (including the hy-
permedia engine's operations), thus, enabling set-oriented access to hypermedia documents.

15

[
Application:
H di h — visualization r—-——————— q
ypermecia schema — user interaction — r———————n |
editor | External application| |
VODAK client interface | (e.g., editor) L
VODAK client interface — VODAK data types e
— VODAK query language

Network

- VODAK server interface r—————— 1
VODAK DB l External :
VODAK OODBMS /}_sfgg_e system |

with generic hypermedia schema and

: application-specific hypermedia schemas __;____.l
- | External |
VODAK DB | storage system :

VODAK hypermedia engine = ————————

Figure7 System architecture of the VODAK hypermedia engine.

4.2 Performance and experiences

Asshown intheprevioussections, our approach of modular design enablesthe efficient devel op-
ment of dedicated hypermedia database schemas. In this section we present some experiences
and results obtained by an evaluation of the implemented hypermedia engine.

Theresults of the evaluation are based on a hypermediaengine that istailored to the applica-
tion-specific needs of the SEPIA hypermediaauthoring system. The database schema consist of
10 metaclasses and 56 application-specific classes. Modeling the SEPI A-specific semantics by
the 56 application-specific classes on top of our generic hypermedia schematook only one day.
And by previous arguments this model ensures the maintenance of the generic and application-
specific integrity constraints of the hypermedia model within the database hypermedia engine.

Inthe case of SEPIA, only classes corresponding to the available hypermediatypesin SEPIA
had to be defined and initialized with SEPI A-specific constraints. The structure and behavior of
atomic content objects that represent audio and pictures was modeled by reusing existing VO-
DAK object types for storage and manipulation of these kinds of media.

Of course, we have to raise the question whether this efficiency and flexibility in design and
safety in execution can be compliant with reasonabl e run-time performance. For this reason we
performed some preliminary experiments with our DBM S-based hypermedia engine. The re-
sults of this evaluation are shown in Figure 8. Performance measurement was done on a SUN
Sparc 10 workstation running the VODAK hypermedia engine and a single client application.
All of the operations shown in Figure 8 are covered by transaction management.

Theseresults show that an adequate performancefor interactive hypermediaapplicationsthat
arebuilt upon our hypermediaengineisachieved although all the mani pulationson the hyperme-
diastructure are donewithin the hypermediaengine. Theresponsetimesare such that interactive
editing operations, likecreateLink or changeName, arepossible. Additionally, one hasto con-
sider that the numberswhere obtained from thefirst fully functional prototype of the hypermedia

16

Submitting Executing Transferring A .
Method method to method within results to Average time
VODAK VODAK clients inms
—_ 0% 81.8% 182%
getAllClassDefinitions (8 ms) (18430 ms) (4098 ms) 22 536 ms
10.5% 83.3% 6.2%
createNode (41 ms) (325 ms) (24 ms) 390 ms
createLink 7.8% 88.4 % 3.8% 603 ms
(link with node behavior) (47 ms) (533 ms) (23 ms)
createLink (constraint 442 % 34.6 % 21.2% 104 ms
violation — no link created) (46 ms) (36 ms) (22 ms)
25% 54.2 % 20.8%
changeName (12 ms) (26 ms) (10 ms) 48 ms
copyObjectsToClipboard 13.8% 79.4 % 6.9 % 218 ms
(5 objects) (30 ms) (273 ms) (15 ms)
pasteObjectsFromClipboard 0.4 % 92.4% 72% 2244 ms
(type transformation of 5 objects) (9ms) (2073 ms) (162 ms)
openComposite (15 objects 0.8% 78.9 % 20.3% 1340 ms
contained in composite) (11 ms) (1057 ms) (272 ms)
. 52% 88.4 % 6.4 %
createAtomicContent (19 ms) (320 ms) (23 my) 362 ms

Figure8 Performance of selected methods offered by the hypermedia engine.

engine without any particular optimizations. Checking constraint within the client applications
canincrease performance, too. Thisispossible sincethe hypermediaengine offersamethod get-
AlIClassDefinitions to retrieve the classes constraints and other information. Nevertheless,
consistency of the hypermedianetwork isawaysensured, because all semanticsand constraints
of the hypermedia objects are captured by the VODAK hypermedia engine.

S5 RELATED WORK

According to the HAM model (Campell and Goodman 1988), most hypermedia systems can be
divided into three functional layers: a storage layer providing persistence to the system, an ap-
plication layer providing the functionality of the system and a presentation layer enabling the
usersto interact with the system. The storagelayer in most systemsisgeared towardsthe specific
needs of the application and presentation layer of the particular hypermedia system and usually
provides a fixed hypermedia data model.

Inrecent years, severa general purpose hypermedia“database” systems (often called hyper -
base systems) were developed, e.g., HAM (Campell and Goodman 1988), GMD-1PSI’s Hyper-
Base (Schitt and Streitz 1990), the Danish HyperBase (Wiil and @sterbye 1990), DeVise/ DHM
(Gregnbaek and Trigg 1994). These systems are either based on afile system or built on top of a
(relational or object-oriented) database management system. The HAM (Hypermedia Abstract
Machine) used in Neptune provides generic hypermediasystem functionality like create, delete,
get and update of hypermediaobjects. It usesafile system for persistent storage of the hyperme-
diaobjects. GMD-IPSI’sHyperBasewasbuilt asageneral interface between the application|ay-
er and the storagelayer ontop of theRDBM S Sybase. It isbased on afixed, application-indepen-
dent hypermediadatamodel. AstheHAM, HyperBase providesafixed set of generic operations,
e.g., create, delete, copy, retrieve and modify of hypermedia components.

Our approach differs from the above mentioned systemsin the sense that we built our hyper-
media engine not upon a storage system but extended an OODBM S with functionality for the
management of hypermedia structures, combining the traditional advantages of DBMS like

17

transaction management and query facilitieswith the advantages of object-oriented datamodel -
ling. Thiswas done by designing an appropriate set of metaclasses. The extended OODBMSis
not only concerned with the persistent storage of hypermedia objects, it also capturesthe struc-
tureand behavior of the hypermediaobjectsrelated to the application layer. Thus, it can be cate-
gorized as a hypermedia engine, not only as a (passive) hyperbase system. Capturing all of the
semanticswithin our hypermediaengine enables usto maintai n application-independent and ap-
plication-specific integrity constraints within the OODBM Swhereas the other systemsare only
ableto manage theseintegrity constraints on top of the storage system. Furthermore, weare able
to provide a set of semantically rich and consistency-preserving operations that can be used by
the application systems running on top of the hypermedia engine.

All of the systems mentioned above, provide afixed hypermediadatamodel. An exceptionis
Hyperform (Wiil and Leggett 1992) which implements basic hyperbase services (asmall class
library) that can betailored via subtyping to provide specialized hyperbase support. The Hyper-
form server isbased on aninternal computational engine and an object-oriented languagewritten
in C and an extension of Scheme. Unfortunately, it isnot clear from the literature if Hyperform
providestrue database functionality. Our hypermediaengine supportsextensibility of the hyper-
media model, too. We are able to assert application-specific constraints to classes and create
classes asinstances of given metaclasses at run-time. Moreover, an application designer can en-
rich the semantics of application classes by adding additional object typesto their class defini-
tion. If some new hypermedia primitives are needed, additional metaclasses can be designed.
This does not require great effort because the existing semantic relationships can be reused.

In addition to the HAM model, the DEXTER hypermedia reference model (Halasz and
Schwartz 1994) proposes the separation of the hypermedia structure from the node contents
(within-component layer). Sincetherangeof possibletypesislarge(text, image, sound) and hard
to model in ageneric way, the within-component layer is not part of the model per se. DeVise/
DHM is an example of an object-oriented hypermedia framework for the Dexter concepts. We
have adapted this separation but the data modeling facilities of VODAK (together with VO-
DAK’smultimediaextensions) are powerful enough to model theinternal structure and behavior
of thiskind of media. The modular design of the hypermediaengine makesit easy to enrich the
semantics of the content objects with additional functionality by plugging in object types that
model the semanti cs of within-component layer objects. We have used thisextensibility to model
audio and picture content within our hypermediaengine. Nevertheless, it is possible to store the
content of nodes and links as binary large objects within the hypermediaengine or asreferences
to an external storage systems leaving the interpretation of the data to the applications.

Another research direction focuses on the integration of existing hypermedia systems with
current databasetechnol ogy instead of building general purpose hyperbase systems. E.g., Hyper-
Path/O2 (Amann et a. 1993) and MultiCard/O2 are built on top the OODBM S O2. HyperPath/
02 and MultiCard/O2 utilize O2 only asthe persistent depository of their so called hypermedia
basic classes. O2 providesaminimal interface (create, |oad, save, del ete) to the persistence mod-
ule of the application layer. Asopposed to our hypermediaengine, the hypermedia management
isnot implemented within O2 but ispart of the applications. No additional semanticstotheabove
read/write operations is captured by the database management system.

MultiCard/O2, HyperPath/O2 and DeVise/DHM offer weakly-typed nodesand links, i.e., the
nodes and links can have an arbitrary list of properties. Strong typing, i.e., the assertion of addi-
tional functionality to typed hypermedia objectsis not possible. Furthermore, up to our knowl-
edgeall of these systems provide no mechanism to post constraintsto tail or the hypermediamod-
el to the application-domain-specific needs. In our approach, different types of hypermedia

18

objectsarerepresented as classeswhich arethemsel vesinstances of metacl assesthat describethe
general semantics of classes and their instances. Therefore, it is possible to assert additional
structure and behavior to types (classes) of nodes and links.

6 CONCLUSION AND FUTURE WORK

In this paper we presented the design of ahypermediaenginethat isimplemented within the ob-
ject-oriented database management system VODAK . Our intention wasnot to provideanew hy-
permedia data model, but to develop an open, tailorable hypermedia engine combining the ad-
vantagesof an OODBM S, like multi-user access, transaction management and declarative query
access with advanced object-oriented data modeling facilities. The hypermedia engine as de-
scribed in this paper is fully implemented.

In the design of the hypermediaengine wefollow amodular assembly concept. Several dedi-
cated semantic relationships are implemented which are combined in a meaningful way to de-
scribe the structure and behavior of hypermedia modeling primitives. Afterwards, several well-
defined, application-independent metaclasses were built to ensure the consistent use of the
combination of the semantic relationships. A designer of an application-specific hypermedia
schema only hasto declare his application classes as instances of appropriate metaclasses. Fur-
thermore, he can tailor the data model to application-specific needs by adding constraintsto the
classes and additional functionality if needed.

The VODAK hypermedia engine fulfills the requirements mentioned in section 2.2 and the
requirements for hypermedia storage mechanisms stated in (Lange et al. 1992) (openness, shar-
ing, integrity, multimedia, querying, extensibility, versioning), except that we have not inte-
grated VODAK'’s versioning mechanism yet. Preliminary results show that an adequate perfor-
mance for interactive useis achieved although we use aflexible design approach and the whole
semantics of the model is captured by the hypermedia engine, i.e., al the manipulations and
constraint checking on the hypermedia structure are done within VODAK.

Thedesign of additional hypermediamodeling primitivesisdemand driven. If some applica-
tions need additional modeling primitives, new metaclasseswill be implemented. For example,
if the hypermediaengine will be used within the meeting-room system DOLPHIN (Streitz et al.
1994) a metaclass for handling persistent scribbles has to be devel oped.

Other future extension will address the integration of the VODAK hypermedia engine with
the SGML (1SO-8879 1992) database schemadevel oped at our institute (Aberer et al. 1994), the
mapping to and integration of the linking architectural forms of the Hy Time 1SO standard (1 SO/
I[EC-10744 1992), and the tight integration of declarative VQL queries (Aberer and Fischer
1995) with the hypermedia engine.

ACKNOWLEDGEMENTS

Wewould liketo thank Ajit Bapat for his contribution inimplementing the presentation layer of
the prototype and many valuable discussions for analyzing the SEPIA model. We also like to
thank Gisela Fischer for her valuable comments on an earlier version of this paper.

REFERENCES

K. Aberer, K. Béhm, C. Hiser (1994) The Prospect of Publishing Using Advanced Database
Concepts, Proceedings of the Conference on Electronic Publishing, Document Manipula-
tion and Typography (EP) ' 94, Darmstadt, Germany, John Wiley & Sons.

19

K. Aberer and G. Fischer (1995) Semantic Query Optimization for Methodsin Object-Oriented
Database Systems. Proceedings of the 11th | EEE Conference on Data Engineering (ICDE
'95), Taipei, Taiwan.

B. Amann, V. Christophidesand M. Scholl (1993) HyperPath/O2: Integrating Hypermedia Sys-
temswith Object-Oriented Database Systems. Proceedingsof the4th I nter national Confer-
ence on Data and Expert Systems Applications (DEXA '93), Prague, Czech Rebublic,
709-720.

A. Biliris and E. Pangos (1994) EOS User’s Guide, Release 2.2, Technical report AT& T Bell
Laboratories.

B. Campell and J.M. Goodman (1988) HAM: A general purpose Hypertext Abstract Machine,
Communications of the ACM, Vol. 31, No. 7, 856-861.

J. Conklin (1987) Hypertext: AnIntroduction and Survey. D. Marcaand G. Rock [Eds.] : Group-
ware: Softwarefor Computer Supported Cooper ative Work, | EEE Computer Society Press,
Los Alamos, CA, 236—260.

K. Grgnbaek and R.H. Trigg (1994) Design Issues for a Dexter-Based Hypermedia System,
Communications of the ACM, Vol.37, No. 2, 40-49.

F.G. Halasz (1988) Reflections on Notecards: Seven Issues for the Next Generation Of Hyper-
media Systems, Communications of the ACM, Vol. 31, No. 7, 836-852.

F.G. Halasz (1991) SevenIssues. Revisited, Hypertext’ 91, Third ACM Conferenceon Hypertext,
San Antonio, Texas.

F.G. Halasz and M. Schwartz (1994) The Dexter Hypertext Reference Model, Communications
of the ACM, Vol. 37, No. 2, 29-39.

SO 8879-1986 (E) (1992) Information Processing — Text and Office Systems — Standardized
Generalized Markup Language (SGML), International Organization for Standardization.

|SO/IEC 10744-1992 (E) (1992) Information Technology —Hypermedia/ Time-based Structur-
ing Language (HyTime), International Organization for Standardization.

W. Klas, K. Aberer and E.J. Neuhold (1994) Object-Oriented Modelling for Hypermedia Sys-
tems Using the VODAK Model Language. A. Dogac, T. Ozsu and A.Biliris [Eds]: Ad-
vancesin Object-Oriented Database Systems, NATO AS SeriesF, Springer Verlag Berlin,
389-433.

D.B. Lange, K. @sterbye and H. Schiitt (1992) Hypermedia Storage, Report R 92-2002, Dept. of
Math. and Comp. Sci., Aalborg University, Denmark.

D.B. Lange (1993) Object-Oriented Hypermodeling of Hypertext Supported Information Sys-
tems. Proceedings of the 26th Hawaii Inter national Conference on System Sciences, Vol. 3,
380-389.

Q. Li and G. Dong (1994) A framework for object migration in object-oriented databases, Data
& Knowledge Engineering 13, 221-242.

G. Lux (1993) MuSE — A Technical Systems Engineering Environment, Technical Report, De-
partment of Computer Science, Technical University of Darmstadit.

N.M. Mattos (1988) Abstraction Concepts: The Basisfor Dataand Knowledge Modelling. Pro-
ceedings of the 7th International Conference on Entity-Relationship Approach, Rome, Ita-
ly, 331-350.

P.Muth, T.C. Rakow, W. Klasand E. J. Neuhold (1992) A Transaction Model for an Open Publi-
cation Environment. A. K. Elmagarmid [Ed.] : Database Transaction Modelsfor Advanced
Applications, Morgan Kaufman, San Mateo, California, 169-218.

20

P. Muth, T.C. Rakow, G. Weikum, P. Bréssler and C. Hasse (1993) Semantic Concurrency Con-
trol in Object-Oriented Database Systems. Proceedingsof the 9th | EEE Conference of Data
Engineering, Vienna (ICDE ' 93), Austria 232—242.

H. Schiitt and N.A. Streitz (1990) HyperBase: A Hypermedia Engine Based on aRelational Da-
tabase Management System. Proceedings of the European Conference on Hypertext
(ECHT '90), Versaille, France, 95-108.

N.A. Streitz, J. Hannemann and M. Thiring (1989) From Ideas and Arguments to Hyperdocu-
ments: Travelling through Activity Spaces, 2nd ACM Conference on Hypertext (Hypertext
'89), Pittsburgh, PA., 343-364.

N.A. Streitz, JM. Haake, J. Hannemann, A. Lemke, W. Schuler, H. Schiitt and M. Thiring
(1992) SEPIA — A Cooperative Hypermedia Authoring System. Proceedings of the ACM
Conference on Hypertext (ECHT *92), Milano, Italy, 11-22.

N.A. Streitz, J. Geilder, JM. Haake and J. Hol (1994) DOLPHIN: Integrated Meeting Support
across LiveBoards, Local and Remote Desktop Environments. Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW ' 94), Chapel Hill, N.C.,
345-358.

U.K. Wiil and J.J. Leggett (1992) Hyperform: Using Extensibility to Develop Dynamic, Open
and Distributed Hypertext Systems. Proceedings of the ACM Conference on Hypertext
(ECHT' 92), Milano, Italy 251-261.

U.K. Wiil and K. @sterbye (1990) Experienceswith HyperBase— A multi-user back-end for hy-
pertext applicationswith emphasi son collaboration support. Technical Report R90-38, CS
Dept., University of Aalborg, Denmark.

VODAK Manua (1995) Release 4.0, Technical Report, Arbeitspapiere der GMD No. 910,
GMD, Germany.

BIOGRAPHY

Jurgen Wasch isamember of the database research group VODAK at the Integrated Publication
and Information Systems Institute of the German National Research Center for Information
Technology (GMD-IPS]), Darmstadt. He is also involved in European ESPRIT research proj-
ects. His research activities and interests include cooperative transaction management, global
transaction management for ODM G-compliant multi-database systems, object-oriented data-
base system support for cooperative hypermedia systems, and mobile information systems.

Hereceived hisdiplomadegreein computer science and economicsin 1993 from the Univer-
sity of Kaiserslautern. After working at the University Hospital in Heidelberg he joined GMD-
IPSI in November, 1993.

Dr. Karl Aberer isdepartment manager of the database research group VODAK at the Integrated
Publication and Information Systems Institute of the German National Research Center for In-
formation Technology (GMD-IPSI), Darmstadt. Heis conducting projectsin hypermediadocu-
ment modelling and bioinformatics. His research interests include object—oriented and
multimedia database systems, data modelling, query processing, and foundations for database
management systems.

Hereceived hisPh.D. in mathematicsin 1991 from the ETH Zirich where he was from 1987
to 1991 research assistant. From 1991 to 1992 he was postdoctoral fellow at the International
Computer Science Ingtitute (ICSl), Berkeley. In 1992 he joined GMD-IPSI.

21

