-

View metadata, citation and similar papers at core.ac.uk brought to you by ;i CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Administering Structured Documents in Digital
Libraries*

Klemens Bohm, Karl Aberer, and Erich Neuhold
GMD-IPSI
Dolivostrafle 15, 64293 Darmstadt, Germany
E-mail: {kboehm, aberer, neuhold}@darmstadt.gmd.de

Abstract

In this chapter we argue that hyperdocuments administered by digi-
tal libraries have to be structured according to standardized storage and
exchange formats in order to allow for the manipulation functionality
required in digital library construction, maintenance and use. We demon-
strate how SGML and its extension, HyTime, can play this structuring
role, and how multimedia documents structured accordingly can be stored,
changed and maintained in the object-oriented database system VODAK.
Using the dynamic semantic extension facilities of VODAK it is illustrated
how the document structuring dynamics offered by SGML and HyTime
can be accommodated in the database. In addition we discuss how this
facility can be combined with other system components to provide a rel-
evant portion of the functionality required for digital libraries.

1 Introduction

The exponential growth in the amount of published information has led to a
crisis in many of today’s libraries. On the one hand the choice of what to
keep, even in a limited field, is becoming harder and harder, on the other hand
the selection of relevant information for a specific library user also becomes
more difficult. The old idea that a library provides its readers with the right
information in the right amount for an acceptable price at the right time is about
to fail. In a nutshell, a solution to these problems can be seen in transforming the
contents of a library to digitalized electronic form and thus gaining advantages
in producing, selecting, storing and offering information. However, next to the
growth in the amount of information two other phenomena have occurred. The

*appeared in: Advances in Digital Libraries, Lecture Notes in Computer Science 916,
Springer Verlag, 1995.

https://core.ac.uk/display/147904214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

information to be handled by libraries is increasingly becoming multimedia. In
addition to texts, also images, videos, audios, even animation- and simulation
programs, e.g. computer games, have to be kept. Second, this multimedia
information is increasingly becoming interconnected, resulting in hypermedia
documents. Inter- and intra-document links have to be created between distant
storage locations and maintained sometimes over long periods of time. One of
the frequently cited examples of this information interlink is the World Wide
Web, the world-spanning “hyperdocument”. However, the idea of essentially
offering the worlds information as a single “document” containing innumerable
pieces of information interconnected by an innumerable amount of links does not
solve the crisis mentioned above. It rather aggravates the problem. To offer the
user the right information in the right amount at the time of need i1s becoming
more difficult as the World Wide Web is continuing to grow in an uncontrolled
way. Anybody is now free to produce and offer arbitrary “information” to the
whole world. The human being, however, who needs information for his work,
his decision making or entertainment planning is actually the loser as many
people have observed. Browsing, i.e. mnot searching (!), the Internet we have
found the following characteristic description of the situation.

From: rocky@cadence.com (Rochelle Grober)

“The Internet is already an information superhighway, except
that you have to be a full-fledged computer nerd to navigate it. 1
have been there. It’s like driving a car through a blizzard without
windshield wipers or lights, and all of the road signs are written
upside down and backwards. And if you stop and ask someone for
help, they stutter in Albanian.”

Columnist Mike Royko

In this chapter we cannot possibly discuss all these aspects of the electronic
information age, and the new roles all players in the information chain have to
assume. We will concentrate on the document infrastructure that we are de-
veloping as a basis for the creation, interchange, storage and offering of digital
multimedia interlinked documents. The multitude of other services in the “digi-
tal information world” will basically be ignored for now. But, as we believe, they
can be added easily to the framework we are discussing here. Two large experi-
ments at our research laboratory are currently used to evaluate this assumption.
An electronic house-magazine, the MultiMedia Forum [27]!, evaluates concepts
and 1deas of distributed electronic authoring, cooperative editing, and releas-
ing information in digital newspapers or digital magazines. A project centered
around the Dictionary of Art [24], a digitized encyclopaedical information store,
is focusing on the interoperation of authors, editors, publishers and eventually
of information brokers, a possible new role of libraries and librarians, together

1A public version of the MultiMedia Forum is available on WWW under
http://www.darmstadt.gmd.de.

with a variety of users. The individualization of the information offered to the
end users is the principle goal - and added value - of this information store.

To handle documents electronically a digitized format for all documents is
necessary. They may already be produced in digitized form - an approach
that does hold true for texts, images, audio, video or any other representation
medium of information. On the other hand, they may also be produced in a
“traditional” way and then have to be converted into a digital format. In both
cases individuals using different hardware, software and other machinery plat-
forms are involved in handling large or even huge amounts of information. In
order to create, exchange, control and use this information it has to be struc-
tured into manageable pieces using certain conventions or at least conversion
mechanisms that are agreed upon between the many different representation
and interchange formats available. When not considering a document to be
‘atomic’ but rather structured, more flexible access mechanisms to documents
are possible [6, 11, 8]. Next to documents’ classification by subject, a traditional
task of publishers and libraries, structured information can be used to locate
and retrieve documents more effectively. For example, it is possible to retrieve
only the abstract of “full text” documents, to retrieve all chapter headings, or
to use full text search mechanisms to retrieve those chapters or sections only
containing specific information. In an interlinked hyperdocument such “scope”
restrictions will be needed to limit the size of the document pieces selected,
transported, stored and displayed in response to an information retrieval query.
Limiting the size of the retrieved documents through navigation along intra-
and inter-hyperdocument links leads to the “driving” phenomena encountered
in the WWW or observed as “getting lost in space” [12] in hypertext systems.

Problems related to documents’ internal structure have become more acute
due to the increasing supply of information. Hence, the demand for concepts
and technologies has also risen. SGML (‘Standard Generalized Markup Lan-
guage’) [ISO86, Her90] is within the center of interest. With SGML the logical
structure of documents of arbitrary types® can be described. In a nutshell, this
i1s accomplished by identifying logical document components such as sections,
subsections, definitions, listings, figures, etc. within the document. SGML doc-
uments need not be text documents. Rather they may be composed of basic
components of arbitrary types, e.g. pixel graphics or audio. - However, in
SGML document-type definitions the semantics of document components are
not recorded. As a consequence, rules for handling the different datatypes are
not part of SGML.

In more detail, on the one hand, there is the processing semantics, e.g.
how to handle a video, an audio, or a simulation program. Besides that, there
is the ‘real world’” content semantics of document components, i.e. the role of
document components such as title, abstract or conclusions. Other examples are

2 At a rudimentary level of analysis, examples of document types are letter, technical man-
ual, newspaper, biography, novel.

the name of a letter’s sender or in a book the information about the publisher
or author, together with the knowledge how to handle this information. For
example, one may store the sender’s address in an address register, or one will
pay the publisher royalties when accessing the electronic version of the book.

Processing semantics have now been included into SGML via the HyTime
standard. It contains a number of templates to define canonical hypermedia
elements such as (time-)schedules and hyperlinks. These semantics, but also
the content semantics, must be reflected before full manipulation functionality
can be achieved. Capturing the content semantics is closely related to the field of
document content description by authors, editors, publishers, librarians, etc. or
document content analysis by computer linguists, indexers, document relevance
analyzers, etc. Standardization of content semantics in the form of knowledge
nets is currently out of reach by much. Content semantics will not be further
considered in this chapter.

Even though approaches for the identification of logical document compo-
nents are subject to these restrictions, we make a strong point for the use of
such formats when administering documents in digital libraries: The dividing
line between intra-document relationships and inter-document relationships is
not clean-cut. As an example, consider a document of type ‘conference proceed-
ings’ consisting of several articles. On the one hand, these articles are parts of
the document of type ‘conference proceedings’. On the other hand, they can
be seen as documents in their own right. The impact of these different views is
that the same portion of the digital library may be referenced in different ways.

Another consequence of structuring documents in digital libraries is that
search and delivery size of information can be limited.

The equation of ‘libraries’ with ‘archives’, that can be encountered in the
literature occasionally, leaves aside certain subtleties. Archives are static, i.e.
documents that have been archived are normally not altered. In order to modify
them in general they need be dearchived. To support this rather static view,
less sophisticated architectures tend to be sufficient. With libraries, however,
reorganizing the document stock, modifying individual documents, and anno-
tating them by the original author, by readers, or by other authors must be
possible. Database management systems (DBMSs) should be applied to meet
the requirements imposed by this more sophisticated functionality. Databases
allow for concurrent use and update, for user protection, for recovery and per-
sistence of the information stored. If database technology was not used, these
properties would have to be provided by the individual application systems
accessing the digital library.

The approach taken in this paper is to describe first our way on how to
store SGML documents in an object-oriented database. An extension towards
HyTime is sketched afterwards as it has not yet been implemented completely.
Subsequently we illustrate, by a number of sample applications, how the hyper-
document base may be combined with other system components to cover the
integral handling of documents in various applications in a more complete way.

Our application framework stores documents using the object-oriented database
management system (OODBMS) VODAK [20, 18]. As described above, the doc-
uments that are particularly well-suited for storage in object-oriented databases
are highly structured and are repeatedly edited or annotated by several persons.
Typical examples are newspapers changing dynamically (“partial news-update-
strategy”) or encyclopediae with many authors and editors and individualized
or annotated versions for different user groups.

Conventional file-oriented systems without databases [25] lead to many diffi-
culties in handling this kind of documents. For example, by leaving document-
file objects intact multi-user mode is not supported. The granularity is on the
document level. Concurrently authoring different parts of the same document
is cumbersome at least. Besides that, if versioning is to be supported then each
task has to have a copy of the entire document even if only a small fragment of
the document will be modified. On the other hand, fragmentation of documents
in database applications, as practised so far [14, 29, 13], also has a number of
shortcomings. For example the question how documents are fragmented in an
optimal way cannot be generally answered. FEither a very generic document
structure has to be chosen, or only a few predefined specific document types
can be supported. From our point of view, this is the main distinction be-
tween the notions to be presented in this article and other approaches to store
documents within databases. While others limit themselves to design database
schemata for just one or a few document types our system can handle documents
of arbitrary types. Furthermore, by designing database schemata for individual
document types, it is implicitly assumed that document types do not change
over long periods of time. If the system is based on a very generic document
type, this view might actually be sufficient, but this is not sufficient for a more
refined approach to document handling [5].

In our approach logical document-component types of SGML correspond to
classes in the database. To be capable of handling arbitrary document types and
of incorporating document-type changes into the system these classes are created
dynamically and may in principle be modified at runtime. The underlying
OODBMS VODAK provides the relevant system support. SGML document-
type definitions (DTDs) introduce the logical components of a document of a
particular type. Hence, with this approach the decision how the documents are
fragmented in the document base is shifted to the designer of the DTD. In this
article we will describe the kernel structure of our application framework and
the functionality it offers to the applications illustrated. Another facet, dynamic
DTD handling, has already been discussed in [2].

The remainder of this article is organized as follows: In the following section
SGML concepts are briefly reviewed in brevity. Section 3 contains a short
overview of the VODAK Modeling Language. Both Section 2 and Section 3
form the basis to describe our database application framework. This description
is given in Section 4. Section b deals with the integration of HyTime semantics.
In Section 6 the additional functionality which may be obtained by coupling

Specific markup
To get a feeling for what markup is, consid-
er the traditional processing of texts...

..<section author="Eric van Herwijnen”s>
<title>Specific markup</title>
<body><paragraph>To get a feeling for what
<new_term>markup</new_terms> is, consider the
traditional processing of texts...</paragraph>
</body></section>...

Figure 1: SGML Example: Markup

the framework with other systems components is documented. Conclusions are
contained in Section 7.

2 Review of Basic SGML Concepts

SGML (Standard Generalized Markup Language) has received considerable at-
tention, because it provides the means to tackle some of the problems related
to document handling. In the SGML context, the distinction between a doc-
ument’s logical structure and its layout structure is fundamental: ITtalicizing or
boldsetting a word is on the layout side. Identifying the reason why a word
should be italicized, e.g. because it is introduced right there, is on the logical
level. This identification can be accomplished by marking up the document. In
the document fragment in the upper right of Figure 1 <title> and <body> are
examples of start tags, </title> and </body> are the corresponding end tags.
With SGML a document’s logical structure can be predefined. A document
consists of document elements, e.g. title, body, new_term. The relationship
between them is specified by a set of production rules called document type
definition (DTD). Figure 3 contains a fragment of the DTD of the document
instance from Figure 1: A section consists of a title followed by a body. A para-
graph’s content is a list whose components are either CDATA elements or new
terms. Lists are defined using “*’, alternatives by using ‘|’. In a nutshell, CDATA
is a “plain data type” comparable to STRING. Sections have an attribute au-
thor of type CDATA. - From another perspective, DTDs are machine-independent
document-interchange formats.
Using SGML inter alia has the following advantages.

e Authors can concentrate on the document content rather than its layout.

e We call the fact that the same layout is used for the same logical docu-
ment components document consistency. It is fostered by using markup
instead of “private” layout conventions. If big documents are composed

Misuseof SGML concepts: M arkup doesnot capturethelogical structure

<bold>Specific markup</bold>
To get a feeling for what <italicsmarkup</italic>

is, consider the traditional processing of texts...

Figure 2: SGML Example: Misuse of Markup

<!ELEMENT document section*>

< !ELEMENT section (title, body) >

<!ATTLIST section author CDATA>
< !ELEMENT title CDATA>

< !ELEMENT body paragraph*>

<!ELEMENT paragraph (CDATA|new_term) *>
<!ELEMENT new_term CDATA>

Figure 3: SGML Example: Fragment of an SGML Document Type Definition

without using markup it can easily occur that one author, say, underlines
new terms and another one italicizes them. Document consistency is an
issue both within documents as well as among several documents. It is a
contribution to corporate identity.

e A marked-up document bears more information than one without markup.
With markup authoring is eased especially if there are several authors or
other persons involved in the process, e.g. reviewers.

e Queries making use of the document structure can be formulated, e.g.
“Select all new terms.” or “Select all sections whose title contains the
word ‘markup’.”. SGML 1s most useful to identify logical document com-
ponents whose function is not evident even to a human reader. In a big
reference work there may be two dozens of reasons why, say, a word might

be 1talicized.

o Attributes for document elements can be introduced (see Figure 1 and
Figure 3 for attribute author). This further eases (multi-)authoring and
querying.

SGML Terminology. In SGML a document has a tree structure: the
nodes, 1.e. the logical document components, are called elements. The subele-
ments of an element are its content. The leaves contain the data content. In
Figure 1 there are elements section, title, body etc. There is a differentiation
between generic and specific document descriptions. For instance, the speci-
fication that a section contains a list of paragraphs is generic. On the other

hand, stating that a section consists of a particular paragraph pl, followed by
paragraph p2, is specific. An element-type definition is the generic description
of an element, i.e. the set of rules specifying its content and attributes. The
element-type name is also called generic identifier. The generic description of
the content of elements of a particular type is its content model, the one of the
attributes the attribute model. In SGML there exist six constructors to con-
struct a content model from other element types, three connectors and three
occurrence indicators. For instance, the sequence connector (,) introduces an
order of the content-element types, ‘*’ is the optional and repeatable occurrence
wndicator.

CDATA and #PCDATA being examples of terminal element types contain textual
data. - Aside from SGML there is the standard ODA [16] and various propri-
etary formats to describe documents’ logical structure. The concepts that are
discussed in the sequel can quite easily be applied to other formats.

3 Key Concepts of the VODAK Modeling Lan-
guage (VML)

Applying OODBMSs has turned out to be advantageous with regard to various
application domains. Because there exist conceptual and terminological differ-
ences between different OODBMSs and OOPLs the terminology of the VODAK
Modeling Language (VML) is reviewed in brevity. With object-oriented mod-
els the data and the procedures that process them tend to be grouped in au-
tonomous entities, the objects. We call the constituents of an object properties
and methods. Properties are the variable-like containers for the data, methods
the procedures capturing objects’ semantics. In our terminology, the object’s
type is its property- and method definitions. As usual, objects’ unique identi-
fiers are given out and administered by the system. In the VML conception,
classes are sets of objects of the same type. In VML, it is possible that instances
of different classes are of the same type. The separation of the structural and
the extensional aspect is called dual model. With main-stream OODBMSs this
differentiation is not made. In VML classes are first-class objects. With the
OODBMS VODAK both data and operations on it are administered by the
system. The advantage is that the application semantics is within the database
system. A sample code fragment is given in Figure 4. The INTERFACE-part
is the public part, the IMPLEMENTATION-part the private one. The metaclass
of the class is preceded by the keyword METACLASS. METACLASS i1s a meta-
class provided by the system that does not furnish a particular semantics for its
instances and metainstances.

Metaclasses are a special feature of VODAK. A metaclass is a class whose
instances are themselves classes. Symmetrically, a metainstance is an instance
of a metaclass’s instance. As a rule, a class definition contains the definition

CLASS PARAGRAPH METACLASS METACLASS
INSTTYPE
PARA_INSTTYPE;
END;

OBJECTTYPE PARA_INSTTYPE
INTERFACE
METHODS
retrieveTextualContent(): STRING;

IMPLEMENTATION
PROPERTIES
content: STRING;
METHODS
retrieveTextualContent(): STRING;
/Imethod implementation omitted
END;

Figure 4: VML Code Fragment

CLASS CATSPEC METACLASS METACLASS
/[This metaclass is metaclass of both gener-
/lalization and specialization classes. Namely,
/lin multi-level inheritance a class can be both
/lgeneralization and specialization class.
INSTTYPE CATSPEC_INSTTYPE
INSTINSTTYPE CATSPEC_INSTINSTTYPE

END;

Figure 5: VML Code Fragment of a Metaclass

of its instances’ types. In VML terminology, this type is the insttype of that
class. In addition, 1t is possible that an object has properties or methods the
other instances of its class do not have. (This is a relaxation of the principle
that all instances of a class are of the same type.) Those individual properties
and methods are part of an object’s owntype. Furthermore, the properties and
methods in a metaclass’s instinsttype are the ones of its metainstances. Hence,
an object has the properties and methods defined in its owntype, in its class’s
insttype and in its metaclass’s instinsttype.

Inheritance. In VML there is a distinction between three kinds of inher-
itance. Two of them are mentioned here: type inheritance and inheritance via
metaclasses. 1t is possible to factor out a portion of an object-type definition and
to reuse 1t in other object-type definitions. This mechanism is called type inher-
itance or subtyping. On the other hand, the definition of a metaclass contains
properties and methods of their instances and metainstances. The phenomenon
that an object or an application class has properties and methods that are nei-
ther part of the object definition nor the class definition but instead part of a
metaclass definition is referred to as inheritance via metaclasses.

OBJECTTYPE CATSPEC_INSTTYPE
INTERFACE
METHODS
defHasSpecCls(specCls: OID): BOOL;
/[This method is applied to a generalization class to specify that the class
/I'specCls’ is one of its specialization classes.
defHasGenCls(genCls: OID): BOOL;
/ISymmetrically, the target is the specialization class, and the parameter
/I(genCls’) is the generalization class.

IMPLEMENTATION
PROPERTIES
hasCatSpecClasses: {OID};
/[This property contains the specialization classes.
/[The property values are the OID of the specialization classes.
GeneralizationClass: OID; /lsymmetrically...

END;

Figure 6: VML Code Fragment of a Metaclass’s Insttype

Semantic Relationships. A reason why metaclasses are in use is to model
semantic relationships between classes. Examples of semantic relationships are
aggregation (“partOf”) or specialization. For example, a section may be an ag-
gregation of subsections, a subsection an aggregation of chapters, and a chapter
an aggregation of paragraphs. Some OODBMSs offer hardcoded mechanisms to
describe relations between classes (cf. IS-A and IS-PART-OF relationships [7]).
However, semantic relations have a variety of facets. Furthermore, some facets,
which are called dimensions in [15], impinge on the interface. E.g. within an ag-
gregation the order of the components may be relevant (as with the chapters of
a book) or not (as with the ingredients of a fruit salad). With hardcoded mecha-
nisms the opalescence of these relations cannot fully be taken into account. We
are convinced that a flexible mechanism such as freely definable methods for
VML metaclasses’ instances and metainstances is mandatory to come up with
an appropriate modeling. - Once a kind of aggregation has been modeled and
implemented on the metaclass level it need not be repeated in the individual
cases, e.g. between classes SECTION and SUBSECTION, between classes SUB-
SECTION and CHAPTER, and so on. An integrity constraint to be verified by an
aggregation-metaclass method is that there are no cycles in the aggregation hi-
erarchy, such as SECTION - SUBSECTION - CHAPTER - PARAGRAPH - SECTION,
to give an example.

The approach to specialization is basically the same. To introduce our termi-
nology, consider bibliographical entries that can be categorized into independent
publications (books), dependent ones (articles), special publications (disserta-
tions, proceedings etc.) and journals. We call an individual bibliographical
entry a generalization instance, an individual journal and the like specialization
wnstances. One real-world object is represented by different database objects. In

10

OBJECTTYPE CATSPEC_INSTINSTTYPE
INTERFACE
METHODS
initHasSpec (speclnst: OID): BOOL,;
/[This method is applied to a generalization instance to specify that the object
II'specinst’ is one of the specialization instances.
initHasGen(genlinst: OID): BOOL;
/ISymmetrically, the target is the specialization instance, and the parameter
//(genlinst’) is the generalization instance.

IMPLEMENTATION

PROPERTIES
genOfObjs: {OID}; /Ispec. instances
specOfObj: OID; /lgen. instances
END;

Figure 7: VML Code Fragment of a Metaclass’s Instinsttype

VML there would be a class BIBENTRY on the one hand and classes INDEPPUB,
DEPPUB, SPECPUB and JOURNAL on the other hand. The class BIBENTRY is
called generalization class, classes such as JOURNAL specialization classes. The
real-world features all objects being categorized have in common are modeled
as the generalization instances’ properties and methods. We call this prin-
ciple generalization principle. The example is one of category specialization.
While category specialization reflects the objects’ structure, role specialization,
on the contrast, reflects the objects’ behavior, e.g. STUDENT or PATIENT are
role-specializations of PERSON. A relevant fragment of a metaclass for category
specialization is given in Figures 5, 6, and 7. OID (‘object identifier’) is the type
of objects of arbitrary types.

In this context it is important that in VML instances of metaclasses can
be created at runtime. Their type and the metainstances’ type i1s part of the
metaclass definition.

4 A VODAK Application Framework for SGML
Documents

4.1 Modeling Issues

This section describes the core structure of a prototypical VODAK application
framework for the storage of structured documents. It seems to be a straightfor-
ward option to model element types as VML classes being part of the schema.
SGML attributes would be just properties. In that case, however, the require-
ment that DTDs must be modifiable dynamically would not be met. System
shutdown every time a DTD is altered or a new one is introduced would not be
acceptable.

11

CATSPEC&
PARTOF (CP) NONTERMINAL
Level 3:
meta-
classes
— T~ ~
Level 2: J\// N N7 \/l\
lica- (DOCUMENT_ ¢ CHAPTER (' FOOT- CDATA (FOOTNOTE
app ELEMENT © NOTE ~ . with
tion clink
classes i))) behavior
Level L o chapter XY e X
indivi- chapter XY as
dual DOCUMENT_ CHAPTER
objects ELEMENT
Document-Type- . ment-Type- Specific Layer i
I ndependent Layer = ype-Specific Lay HyTime Layer
< ingtance—of
semantic relationships specialization-of
-«—— — — from category specialization class to the corresponding generalization class
- — — —- from category specialization class to the corresponding generalization class
- from specialization instance to the corresponding generalization instance

Figure 8: Overview of the Modeling

Overall Structure. We differentiate between document-type-independent
features, document-type-specific ones and HyTime-specific ones. On the one
hand, elements have element-type-independent or document-type-independent
characteristics, e.g. the fact that they make up a hierarchical structure with
other elements. On the other hand, attributes, to give an example, are element-
type- or document-type-specific. Correspondingly, the schema consists of a
document-type-independent layer, the document-type-specific layer, and the Hy-
Time layer as in Figure 8.3 HyTime-related issues are part of the following
section. Classes are represented by ellipses. Objects that are not classes are
just dots. The fact that an object is an instance of a class is displayed by a
plain line arrow between them.

3The diagram includes the class system ‘metaclass - (application) class - instances’. The
rungs of this hierarchy will be referred to as levels. Levels and layers are orthogonal.

12

The distinction between ‘document-type-specific’ and ‘document-type-inde-
pendent’ is according to the generalization principle. For every SGML-element
type there is a corresponding application class in the document-type-specific
layer . In the sequel, we refer to these classes as element-type classes. Each
element-type class is a specialization class of the class DOCUMENT_ELEMENT in
the document-type-independent layer. For every real-world document element
there is an instance of the corresponding element-type class and another one of
the generalization class DOCUMENT_ELEMENT.

Document-Type Independent Layer. The objects in the document-
type-independent layer have the element-type-independent features, due to the
generalization principle: The structural information is part of this layer, as well
as, say, methods to navigate through the tree.

In the previous section metaclasses modeling aggregation and specialization
have been described. The class DOCUMENT_ELEMENT and its instances take
part in more than one semantic relationship: First, the category-specialization
relationship with element-type classes as specialization classes; second, the ag-
gregation relationship. In this particular partOf-relation parts and wholes are
instances of the same class, namely DOCUMENT_ELEMENT. Because document
elements may take part in the partOf-relation independent of their type, the
partOf-relation is between generalization instances, due to the generalization
principle. An aggregation metaclass capturing the semantics of the partOf-
relation between document components cannot be used together with a meta-
class for category specialization, because an object is instance of exactly one
class: Inheriting features from several metaclasses could lead to unforeseeable
overlappings of the metaclasses’ types. Instead the metaclasses’ types must
be related via the subtype mechanism. A new metaclass is defined: The in-
sttype is subtype of these metaclasses’ insttypes; the same holds true for the
instinsttypes. Hence, instances and metainstances have both specialization and
aggregation semantics. (In Figure 8 this metaclass is called CATSPEC&PARTOF.)
The special problems that occur when combining different semantic concepts are
described in a forthcoming article. A relevant portion of the VML-code for this
layer is given in Figure 9.

Document-Type Specific Layer. This layer bears the element-type-
specific information. There is a differentiation between terminal and nonter-
minal element types. Terminal element types such as CDATA are part of ISO
8879-1986 [17] and can be used in any DTD. Hence, they are not introduced at
runtime, as opposed to DTD-specific nonterminal element types. The designa-
tion ‘terminal’ reflects the fact that their instances are leaves of the document
tree. Their processing differs from the one of nonterminal elements, e.g. because
they do not have attributes according to the standard.

Nonterminal element-type classes have properties bearing the information
that constitutes the element type. These properties are inherited from the
metaclass NONTERMINAL and instantiated for the first time when the class is
created. Likewise, the properties and methods of the element-type classes’ in-

13

CLASS Document_Element METACLASS CP
INSTTYPE
INTERFACE
METHODS
getUp(): OID;

/IMethod to navigate through the document tree
getElementTypeName(): STRING;
/IMethod that can be invoked for SGML elements of arbitrary types
IMPLEMENTATION ...
END;

Figure 9: VML Code Fragment of the Document-Type Independent Layer

CLASS TERMINAL
METACLASS METACLASS
INSTTYPE
INTERFACE METHODS
createElem(): OID;
/Ireturns the OID of newly created terminal elements,
/le.g. instances of PCDATA
IMPLEMENTATION ...

Figure 10: VML Code Fragment: Metaclass for Terminal Element-Type Classes

stances are inherited from that metaclass. The dual-model conception facilitates
the creation of element-type classes without defining new types. Element-type
classes are containers for SGML elements of the same element type. - In Section
2 1t has been implied that SGML DTDs are essentially grammars defining the
documents’ structure. The semantics of document components does not follow
from the element-type definitions.? The effect is that no element-type-specific
processing is necessary. Element-type classes’ instances are of the same VML
type. In the database, the content of an SGML element is a list of instances
of the generalization class DOCUMENT_ELEMENT. The attribute values are, ac-
cording to the SGML standard, a sequence of characters. The interpretation
of user-defined attribute types is not part of SGML. The code fragments in
Figures 10 through 12 serve as an illustration. °|[...]|” are list delimiters. The
method setContent is element-type-specific because it is only meaningful for non-
terminal element-types. Furthermore, the method may check the new content’s
conformance to the element-type’s content model. Hence, the method performs
differently for different element types.

Type-to-Class Mapping. Figure 13 is a fragment of Figure 8: The boxes
next to the objects indicate from which types the objects inherit their proper-

4 An exception are SGML types ID, IDREF, IDREFS. These types, however, need not be used
in connection with documents having a tree structure only. Therefore, they have not been
introduced.

14

CLASS PCDATA METACLASS TERMINAL
INSTTYPE
INTERFACE METHODS
getContent(): STRING;
setContent (newContent: STRING): BOOL;
IMPLEMENTATION PROPERTIES
content: STRING;

Figure 11: VML Code Fragment: Class Comprising #PCDATA Elements

ties and methods. An instance of DOCUMENT_ELEMENT, for instance, has the
properties and methods defined in the instinsttype of CATSPEC&PARTOF and
the ones from the insttype of DOCUMENT_ELEMENT. The line between types
within a box display the subtyping relation: CP_NSTINSTTYPE is subtype of
CATSPECINSTINSTTYPE and of PARTOF_INSTINSTTYPE. The plain lines out-
side the boxes connect the types with the classes where they are defined.

4.2 Functionality and Experiences

Querying Documents. With our approach queries may refer to documents’
structure. This 1s accomplished by introducing appropriate methods both for
the document-type independent objects and the element type classes” instances.
The following queries based on the document-type definition in Figure 3 serve
as illustrations.

1. “Select all sections whose author is Neuhold”.

Using the VODAK Query Language VQL this query can be expressed as
follows:

Q1 :=ACCESS s
FROM s IN section
WHERE (s — > getAttributeValue ('AUTHOR’) == ‘Neuhold")

In this query the typing of SGML elements is exploited. section denotes
the object identifier of the class object corresponding to the element type
section. In query 4 it is shown how to obtain the object identifier of a
particular element-type class.

2. “Select all new terms being contained in sections selected in Q1.7

ACCESS d

FROM d IN DOCUMENT_ELEMENT, s IN Q1

WHERE (d— > isContainedIn (s — > categorySpecializationOf()))
AND (d — > getElementTypeName() == ‘NEW_TERM")

15

CLASS NONTERMINAL
OWNTYPE
INTERFACE
METHODS
createElementType (elemTypeName: STRING, ...): NONTERMINAL;

/Ireturns the newly created element-type class
INSTTYPE SUBTYPEOF CATSPEC_INSTTYPE;
INTERFACE
METHODS
setContentModel (newContentModel: STRING);
setAttributeModel (newAttributeModel: STRING);
createElem(): OID;

IMPLEMENTATION

PROPERTIES;
elementTypeName: STRING;
contentModel: STRING;
attributeModel: STRING;

INSTINSTTYPE SUBTYPEOF CATSPEC_INSTINSTTYPE;
INTERFACE
METHODS
setContent (newContent: |[OID]|): BOOL;

Figure 12: VML Code Fragment: Metaclass for Nonterminal Element-Type
Classes

In this case the tree structure of SGML documents is referred to. Note
that s is in the document-type specific layer, but d is in the generalization
layer. categorySpecializationOf is used to shift between these layers. The
method isContainedln makes use of documents’ tree semantics.

. “Select the first elements of the documents.”

ACCESS d — > getFirst()
FROM d IN DOCUMENT_ELEMENT

This query makes use of document contents’ ordering. From the DTD we
can infer that the elements selected represent elements of type section.
getFirst 18 a method to return the first content element.

. “Select all element-type classes representing element types with content

model ‘paragraph*’.”

ACCESS n

FROM n IN NONTERMINAL
WHERE n.contentModel == '‘PARAGRAPH*’

16

CATSPEC& Level 3:
PARTOF (CP) NONTERMINAL (NT)

meta-
classes
Level 2:
pllcatlon
CATSPEC PARTOF
INSTTYPEV INSTTYPEZ/
\\ / ATSPE V
CP_INSTTYPE A ISTTYPE ‘
DOCUMENT 7 CTION P

CHA
ELEMENT \ -

DE_OWNTYPE ‘ (DE) | N TTYPE
°

evel 1
individual
s es- objects
LAy .

K 'Chap‘e’ XY CATSPEC /

CATSPEC_ PARTOF_ INSTINSTTYPE
INSTINST- %/, INSTINST- % DOCUMENT_ “

TYPE TYPE ELEMENT ‘

NT_ ’
INSTINSTTYPE A

CP_INSTINSTTYPE /,

DE_INSTTYPE ”

4

Figure 13: Dual Model: Document-Type Independent and Document-Type Spe-
cific Layers

The query illustrates that in our framework DTDs can be accessed in a
natural way.

We claim that with this approach document querying is as expressive as with
other approaches currently discussed in literature [11, 26]. The sample queries
could now be optimized by using application-specific semantics [3].

Concurrency Control. Extended functionality, as compared to previous
approaches to document handling, is our objective. Multi-authoring (i.e. multi-
user mode) and versioning have been mentioned. - In VML there exists the pos-
sibility to brace a sequence of operations to a transaction. Then the DBMS inter
alia ensures that no interleaving with other operations occurs. Multi-authoring
need not be realized as part of the database application, but instead built-in
features can be applied. The code fragment in Figure 14 is part of a sequence

17

BEGIN_TRANSACTION
BODY := NONTERMINAL -> createElemType('Body’, ...);
BODY -> setContentModel(’(Paragraph)*’);
body := BODY -> createElem();
ok := body -> setContent ({(1, paral), (2, para2)});

IF (oK)
COMMIT_TRANSACTION
ELSE
ABORT_TRANSACTION

Figure 14: Example Using VML Transactions

of operations generating an instance of the DTD in Figure 3. The meaning
of BEGIN_TRANSACTION, COMMIT_TRANSACTION and ABORT_TRANSACTION
is canonical. BODY is the object identifier of an instance of NONTERMINAL, i.e.
an element-type class. The method createElem Type creates a new instance of the
class NONTERMINAL. Because in VODAK classes and metaclasses are first-class
objects they can receive method calls. The second operation sets the content
model of the element-type class BODY to ‘(Paragraph)*’. Now an instance of
BODY can be created: The method createElem actually creates two objects: An
instance of the target-element-type class and the corresponding generalization
instance. The first one 1s returned; the variable body is instantiated with it. In
the next step, the content of body is instantiated with a list of paragraphs: paral
and para2 are instances of DOCUMENT_ELEMENT that must have been created
before. ok is a variable of type BOOL. setContent returns TRUE iff it executed as
foreseen.

Versioning. For versioning it is necessary to break down the authoring
process into so-called tasks. As a rule, each task’s end corresponds to a version
of the document, the result of the task. With our approach granularity for
versioning is on the SGML element level: If within a task a small portion of
the document is altered, it is not necessary to generate a copy of the entire
document, but only copies of the elements that have been modified. They are
generated automatically by operations being part of the versioning metaclasses
if within the current task a copy of the element being modified has not yet been
generated. Hence, the interface of edit-operations (e.g. setContent) needs not be
altered. On the other hand old document versions can be read and new versions
can be derived from them. In the world of non-versioned objects, for example,
there 1s a method printDocument. In the world of versioned objects it has a
counterpart printDocument (task: taskType) displaying the state of the document
at the end of the relevant task.

Coupling with SGML Parser. To insert documents as a whole into the
system, the SGML parser ASP (“Amsterdam Parser”) [28] is coupled with the
database application. The ASP has been extended to invoke the methods creat-
ing the database objects that represent the logical document components. This

18

is already part of the parsing process. On the other hand, the parser also checks
the document’s conformance to its DTD. Because after the parsing process it is
known that the document is correct certain verifications can be omitted that are
part of the operations in the general case. For instance, one axiom states that
the aggregation relation is cycle-free. This is checked within the corresponding
operation of the metaclass PARTOF every time a new relation is introduced.
Because of the documents’ correctness after parsing, i.e. the document has a
tree structure, checks of this kind can be omitted when inserting documents the
way just described. This is advantageous for performance reasons. The meta-
class PARTOF provides another version of that operation without that check.
It is to be used within the coupling with the ASP. This is feasible because of
the extensibility of the data model, i.e. the freely definable methods in meta-
classes. Application-specific knowledge is not only necessary to model semantic
relationships. It is also advantageous with regard to efficiency.

Experiences. Setting up the hierarchical structures representing docu-
ments in the database naturally results in an overhead for storage with regard
to time and size. Documents stored in OODBMSs according to their tree struc-
ture naturally occupy more disk space than stored as a file: First experiments
indicate a growth in size by a factor of ten for “structure-only” documents as
compared to an ASCII file representation. Because “normal” documents exist,
to a large degree, of text, which does not lead to any enlargement of the tree,
the average factor to be expected is substantially lower.

Previously, our applications have been based on an SGML document base
which, in turn, is based on a relational database system. It seems that updates
for small document sets (i.e. both number and size of documents are small)
are comparable in duration to our current system. For large document sets
relational systems reportedly tend to cause problems. The reason is that systems
based on this technology have to stick to a fixed schema. Hence, relational tables
inevitably grow. This effect is not to be expected with a dynamic approach such
as the one presented in this article. Besides that, with the relational paradigm
access requires a large number of join operations. Thus one would expect that
an object-oriented system behaves superior already for small document sets.
With our implementation this experience has actually been made. In addition,
frequent access operation schemes can easily be accelerated both in a general
or SGML-specific manner. An example of an access scheme with optimization
potential would be the search for the content of elements of a particular element
type. Another example are pointers from document elements to the root element
speeding up that kind of navigation.

19

5 Extending the Framework with HyTime Fea-
tures

The objective of a significant portion of the concepts and technologies that
are commonly subsumed under the term ‘digital libraries’ is the processing of
multimedia documents. For multimedia documents the internal structure of
the documents must be taken into account, as explained in Section 1. At a
naive level of analysis, the HyTime standard is seen as an extension of SGML
to deal with documents’ hypermedia content. However, a more differentiated
view 18 necessary because SGML documents may already be multimedia doc-
uments with hyperlinks. The objective of the HyTime standard is to capture
the document elements’ semantics. With SGML, it is only the structure of doc-
uments that can be defined. The element’s interpretation is left to the reader
and, hence, 1s not uniform in general. With hypermedia documents where doc-
ument components need actually be processed this is not sufficient. Thus, the
HyTime standard essentially is a list of element-type definitions together with
an informal, but binding specification of these elements’ processing semantics.
Element-type definitions with a fixed semantics are referred to as architectural
forms. The architectural forms provided by the HyTime standard are classified
into modules according to their function: in addition to a basic module there are
the measurement module and the location module, whose architectural forms
can be used to identify arbitrary locations in the documents or the presentation
space, e.g. the seventh to eleventh word, the hyperlinks module, whose archi-
tectural forms are templates for link structures, a scheduling module, whose
elements are indeed useful for (time-dependent) multimedia content, and a ren-
dition module (that is of minor importance in this context). In most cases,
in application-DTDs HyTime architectural forms are not directly included, but
instead refinements of them are introduced. Refinements of architectural forms
are possible in two ways,

1. by introducing additional attributes,
2. by confining the range of content or attribute types.

For illustration purposes consider the example taken over from [2] with slight
modifications. The name of the architectural form clink (see Figure 15) is short
for ‘contextual link’. An instance of clink is a reference together with content,
such as footnotes (see the element-type definition being part of an application
DTD in Figure 16). With regard to ‘(%HyBrid;)*’ in this content it suffices to
know that ‘#PCDATA’ is a specialization of it (cf. item 2 from above). It may be
helpful to have a reference from a footnote to the following one. To this end,
the attribute following that is not part of the architectural form clink has
been introduced (cf. item 1). The attribute HyTime in Figure 16 specifies that
footnote is a specialization of a HyTime architectural form, namely c¢link.

20

<l!element clink —-— Contextual link --
($HyBrid;) *>

<lattlist clink HyTime NAMEclink
id ID
linkend -- Link end --
IDREF cee>

Figure 15: Example of HyTime Architectural Forms

<!ELEMENT footnote#PCDATA>

<!ATTLIST footnoteHyTime NAMEclink
id ID
linkend IDREF
following ID>

Figure 16: Example of Element-Type Definition in HyTime Application DTD

T]
NONTERMINAL Level 3:
metaclasses
Level 2:
CATSPEC — v S o
nsTrvre 7 / ‘ - a application
= -~ classes
(| FOOTNOTE (FOOTNO
NT. _ ~_ v
INSTTYPE A A A ‘ a
L B Level 1:
CATSPEC ® —=TE
Eita Joesree, o7, | indvicua
‘ objects
e 7 CLINK_ 7
INSTINSTTYPE / INSTINSTTYPE ,

Figure 17: Dual Model: HyTime Layer

21

CLASS CLINK
OWNTYPE

INSTTYPE SUBTYPEOF ROLESPEC_INSTTYPE;
INTERFACE METHODS
createSpecinstance(): OID;
IMPLEMENTATION .
INSTINSTTYPE SUBTYPEOF ROLESPEC_INSTINSTTYPE;
INTERFACE METHODS
getReferencedElement(): OID;

Figure 18: VML Code Fragment: Metaclass for Architectural Form clink

With regard to the realization of architectural forms the following observa-
tion is fundamental. The (HyTime-)aspect is a role specialization of the corre-
sponding SGML element. However, a metaclass ROLESPEC for role-specialization
classes and instances cannot be applied in a straightforward way: Analogously
to SGML element-type classes the corresponding role-specialization classes need
be created dynamically. Hence, they themselves as well as their instances need
to inherit property- and method definitions from their metaclass. A metaclass
provides both the role-specialization semantics and the semantics of a particular
HyTime architectural form. Again, the type definitions are related via subtyping
(see Figure 17). A relevant fragment of the metaclass corresponding to c¢link
is contained in Figure 18. getReferencedElement is a fairly simple example of a
method reflecting the semantics of the architectural form ¢link. To summarize,
an SGML element with HyTime semantics is represented by three database ob-
jects: A generalization object bearing the element-type-independent semantics,
a specific one with element-type-specific features and one with properties and
methods modeling the HyTime semantics.

6 Embedding the Application Framework in Var-
ious Scenarios

In this section an integral scenario is described that may rely on the database
application framework presented in the previous section. Extensions such as
the ones that will be described are meaningful in order to offer typical services
of digital libraries. Some of these extensions have been, others are currently
realized as part of the project HyperStorM (‘Hypermedia Document Storage
and Modeling”) at our institute.

6.1 Coupling with Information-Retrieval Systems

Combining content orientation with structure orientation in queries on docu-
ments is an issue of current research. Examples for queries of that kind are
‘Select all documents whose introduction deals with the information highway.’

22

or ‘Select all section headers about the World Wide Web.”. On the one hand,
we are aware of systems being able to handle documents of arbitrary structure
[9]. However, instead of content-based search there merely exists the possibil-
ity to search the text for patterns. On the other hand, with state-of-the-art
information-retrieval systems a fixed set of document types i1s allowed at best.
In [13], to give an example, there is a limited set of document-component types
such as paragraph or section which may be referred to in queries on documents’
content.

When coupling information-retrieval systems with database applications there
is a principal distinction between loose coupling and tight coupling. With tight
coupling the information-retrieval functionality is part of the database applica-
tion. With loose coupling data i1s not shared. There is merely communication on
the documents between the database application and the information-retrieval
system. Tight couplings in general are more efficient and less space-consuming.
However, with tight coupling one is confined to a certain approach towards
information retrieval.

Recently, at our institute a loose coupling between our database applica-
tion and the information-retrieval system INQUERY [10] has been realized.
INQUERY index structures are set up for elements of certain types. These el-
ement types can be chosen arbitrarily. If an element’s content is modified or
an element is created or deleted the index structure is altered accordingly. It
is not advantageous to set up INQUERY index structures for elements with
little textual content (less than 30 words as a rule) because meaningful content-
based queries are not possible. On the other hand consider queries referring
to document elements with INQUERY index structures existing only for their
components. Experience shows that relatively good results are obtained by
sending the query to the components and combining the results, e.g. by using
the maximum-function or sum-function, whatever is appropriate.

6.2 Combining Documents’ Content with Knowledge Bases

With the extremely large amount of data to be administered in digital libraries
the assumption that access can be accomplished without additional knowledge
is not realistic. Consider the query ‘Select the descriptions of all German uni-
versities.”. In order to evaluate this query the names of these institutions are
first retrieved from a database. These names are inserted into the query to
the document base. Furthermore, independent from a particular application
scenario the knowledge base may also contain fuzzy terminological knowledge
that, analogously, may be called upon to evaluate document queries [21]. - To
model knowledge semantically rich data models are advantageous. The pos-
sibility to make a broad variety of modeling primitives available has been an
objective when developing VODAK.

23

6.3 Handling HTML Documents

While the primary structure of conventional documents is a tree, as described
in Section 2, hypertext documents have a graph structure. The World-Wide
Web (WWW) [23] is such a hypertext structure whose nodes may be physically
distributed without restrictions.® The nodes are conformant with an SGML-
DTD, the HTML-DTD (‘Hypertext Markup Language’). In addition to this
DTD there is a universal naming scheme for documents so that the WWW
can be browsed as one large document. With HTML, SGML concepts are,
to a degree, misused. The strict distinction between logical and layout struc-
ture has been dissolved because in this special context i1t is supposedly more
convenient. E.g. there is an element type ‘Line Break’, and element type ‘Para-
graph’ has attributes ‘align’, ‘indent’ etc. Another interesting feature is that
actions, 1.e. how to process the document together with some user entries; can
be specified. In this context it is important to notice that HTML documents
are SGML documents, and, thus, can be stored using our database-application
framework. When accessing WWW documents through a database typical
database-integration problems can be encountered. Namely, WWW servers can
be seen as external multimedia databases. According to [19] one can distinguish
two different stages in database integration, the syntactic transformation phase
and the semantic integration phase. In the syntactic transformation phase the
external databases’ representation is transformed so that it can be accessed and
manipulated by the database serving as the integration platform. In our case,
this is VODAK. To this extent two approaches may be considered.

e With regard to the first approach it is assumed that a relatively small
number of external documents is accessed frequently. Under this as-
sumption physically importing the document is a reasonable approach.
A WWW document can in principle be considered as a pair (location
identifier, SGML document as file). Hence, importing the document into
the database only needs internet access via the location identifier and con-
secutive parsing of the SGML file. Parsing is possible due to the coupling
with the ASP. However, a restriction in this context is the fact, that the
majority of HITML documents is not conformant to the DTD. Presenta-
tion of these documents in principle is possible, storage according to the
logical structure, on the other hand, is subject to restrictions.

e With regard to the second approach there is the assumption that large
numbers of documents will be queried rather seldomly. In that case phys-
ical import does not make sense. It is necessary to provide an appropriate
view on the documents according to their virtual logical representation.

5The WWW is another example for the phenomenon that the boundary between intra-
and inter-document processing is not clean-cut. On the one hand the WWW can be seen as
one large document, from another perspective the individual nodes are documents in their
own right.

24

This can be facilitated by allowing parsing operations on the documents
in query evaluation [4].

Once access to WWW documents is provided in one way or the other, the
semantic integration phase begins. Several ways of semantic enrichment and
integration are feasible with regard to WWW documents: The most obvious
option 1s to support the particular HTML-semantics. In particular, supporting
the semantics of HT'ML’s world-wide links, e.g. by resolving them explicitly
to physically imported documents, is conceivable. Furthermore, in many cases
WWW documents are in accordance with some implicit editorial conventions.
To make this implicit structure and semantics explicit, e.g. by transforming
the documents to more application-specific document-type definitions, 1s sub-
ject to current research [5]. Consider conference proceedings in HTML format
available only via WWW (cf. [1]). Tt might be necessary to transform these pro-
ceedings from HTML to proceedings conformant to a DTD in another format.
A third item that may be subject to further work is overlapping information
in the WWW. Different approaches for providing an integrated view (on this
potentially contradicting information) would have to be developed. Schema
integration is a related issue in the database area [19].

Different issues with regard to the integration of WWW document bases
in an SGML database have been discussed. They reflect a particular kind of
architecture: The database is on the consumer side. This might be particularly
relevant to improve access for special interest groups in the WWW. It may be
known that they regularly access a certain fragment of the WWW. Improving
access has two facets: First, by caching frequently accessed documents access
is substantially accelerated. Second, by enriching the documents syntactically
and semantically, retrieval capabilities are enhanced in a nontrivial way. Such a
“consumer server” will be used by several users. To this end, DBMS function-
ality is mandatory.

Another topic remaining to be explored 1s the use of SGML database tech-
nology on the document producer side. This will be particularly significant
with a large number of users contributing to a WWW documents’ “archive”.
Without database technology this can only be accomplished by an archiver’s
manual intervention. Otherwise consistency of the archive is at stake. Conven-
tional database updates would correspond to the insertion of documents that
are completely new.

6.4 Coupling with DFR-Archive

With the current version of the database application framework documents are
apportioned to pools. Pools are merely sets of documents. For some appli-
cations this classification is appropriate. To meet the requirements arising in
connection with digital libraries a more sophisticated approach is imperative.
The DFR-standard is a platform to define the documents’ classification. There

25

is a primary structure, which is hierarchical: The root is referred to as DFR root
group, the internal nodes are DFR groups. A document or a DFR, group may
directly be contained in one DFR, group. Besides that, there are DFR, reference
objects that model a containedIn-relationship between DFR groups that are
not directly related in the tree. Names and attributes for the individual DFR
objects are freely definable thus reflecting the concrete application semantics.
Documents’ internal structure likewise is not part of a DFR specification. A
DFR archive that has been realized on top of VODAK is described in [22]. -
The combination of a DFR archive with our database application for SGML
documents is advantageous if a large number of SGML documents is to be ad-
ministered. Consider a DFR structure for travel guides classifying documents
by the location they describe. Furthermore, assume that these travel guides are
SGML documents having an introduction. Then queries such as, say, ‘Select
the introductions of all documents about Heidelberg’ can be formulated and
evaluated.

6.5 Architecture

The disposition of the individual components of the digital library for structured
documents we envision is displayed in Figure 19. Arrows reflect the flow of data
between the components. In more detail, arrows labeled with A stand for docu-
ments’ insertion into the document base. Arrow B reflects the fact that SGML
documents can be generated from the database content in a straightforward
way. - The MultiMedia Forum is an interactive online journal published by our
institute. An issue of the journal consists of a number of articles, but the reader
is free to look only at the documents he is interested in. Articles are SGML doc-
uments conformant to an SGML-DTD with inter-document references. From a
different perspective, it is the entire issue of a journal that might be seen as a
document in its own right. Then these links become intra-document references.

7 Conclusions

Starting point of this article has been the observation that both a documents
internal structure as well as the relations between documents should be properly
reflected when documents are stored in digital libraries. The phenomenon that
the dividing line between inter-document relationships and intra-document rela-
tionships is not clean-cut has been hinted at by means of examples, such as the
WWW. Describing documents according to their internal structure is advan-
tageous with regard to the various services offered by digital libraries. Within
our database application framework documents of arbitrary types can be han-
dled. Querying documents according to their structure is an issue currently
attracting researchers’ attention [6, 11, 8]. The queries given there can also
be formulated using the VODAK Query Language VQL. Some sample queries

26

sample applications such as
MultiMedia Forum

SGML
Amsterdam i ‘ Knowledge DER- Database specific
Parser A2 Bases i Application
(ASP) ‘ Archive Pp! Query INQUERY

- Processing]|

VODAK DBMS
general

external
documents

INQUERY
INDEX DB

Figure 19: Proposed Architecture for SGML-based Digital Library

have been formulated to sketch the expressive power of VQL. We have briefly
explained how to amalgamate the system with the extension toward HyTime
semantics. Besides that, the coupling with other modules for enriched function-
ality has been explained. The systems that have been mentioned in this context
are an information-retrieval system, knowledge bases and a DFR archive. An
interface to the WWW has also been discussed.

The main issued of this chapter has been that storage of SGML documents
of arbitrary types is possible with VODAK. The VODAK data model differen-
tiates between types and classes. If the necessary types are defined, classes may
be generated at runtime. This feature is exploited both for the dynamic cre-
ation of element-type classes and for role-specialization classes bearing HyTime
semantics. In the application framework there exist metaclasses reflecting the
semantics of the different HyTime aspects. The corresponding types are com-
bined using the subtyping mechanism of VODAK to provide the necessary types
for the HyTime-oriented classes created for the different applications. Using an
OODBMS has the general advantage that the application semantics - in this
case the SGML and HyTime semantics - are part of the database.

Leaving aside the completion of the integration of the components mentioned
in Section 6, an issue that may be part of future work is to improve the efficiency
of retrieval operations. With documents stored in accordance with their hier-
archical structure optimization of tree structure retrieval is an important topic.
There will also be even more potential to optimize access by including the other
system components that will contribute to an integrated digital library.

Acknowledgements. We thank Peter Muth, Thomas Rakow and Marc
Volz for their comments on an earlier version of this article and Ute Sotnik for

27

correcting mistakes.

References
[1] K. Aberer. Demand-driven database integration for biomolecu-
lar applications. In FElectronic Proceedings of the Meeting on

the Interconnection of Molecular Biology Databases, WWW page
http://este.darmstadt.gmd.de:5000/ aberer/MIMBD.html. Stanford Uni-
versity, August 1994.

Karl Aberer, Klemens Bohm, and Christoph Huser. The prospects of pub-
lishing using advanced database concepts. In Christoph Huser, Wiebke
Mohr, and Vincent Quint, editors, Proceedings of Conference on Electronic

Publishing, pages 469-480. John Wiley & Sons, Ltd., April 1994.

Karl Aberer and Gisela Fischer. Semantic query optimization for methods
in object-oriented database systems. accepted for publication in Proceed-
ings of International Conference on Data Engineering 1995, 1994.

S. Abiteboul, S. Cluet, and T. Milo. Querying and updating the file. In
R. Agrawal, S. Baker, and D. Bell, editors, Proceedings of the International
Conference on Very Large Data Bases, pages 73-84. VLDB Endowment,
1993. Dublin, Ireland.

E. Akpotsui and V. Quint. Type transformation in structured editing sys-
tems. In C. Vanoirbeek and G. Coray, editors, Proceedings of Conference
on FElectronic Publishing, pages 27-42. Cambridge University Press, 1992.
Lausanne, Switzerland.

Paula Angerstein. Sgml queries, December 1992. Handout for the Session
on SGML Query Languages at the SGML’92 Conference.

J. Banerjee et al. Semantics and implementation of schema evolution
in object-oriented databases. Proceedings ACM SIGMOD, 16(3):311-322,
1987.

G.E. Blake et al. Text / relational database management systems: Harmo-
nizing sql and sgml. In Proceedings of the First International Conference
on Applications of Databases. Lecture Notes in Computer Science, Springer

Verlag, June 1994.

F.J. Burkowski. Retrieval activities in a database consisting of heteroge-
neous collections of structured text. In N. Belkin, P. Ingwersen, and A.M.
Pejtersen, editors, Proceedings of the Fifteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 112-125. ACM Press, 1992.

28

[10]

[16]

[17]

[18]

[19]

[20]

[21]

J.P. Callan, W.B. Croft, and S.M. Hardig. The inquery retrieval system. In
Proceedings of the Third International Conference on Database and Fzxpert
Systems Application, pages 78-83. Springer Verlag, 1992.

V. Christophides et al. From structured documents to novel query facilities.

In Proceedings ACM SIGMOD. ACM Press, May 1994.

J. Conklin. Hypertext: An introduction and survey. IEEFE Computer Mag-
azine, pages 17-41, September 1987.

W.B. Croft, L.A. Smith, and H.R. Turtle. A loosely-coupled integration of a
text retrieval system and an object-oriented database system. In N. Belkin,
P. Ingwersen, and A.M. Pejtersen, editors, Proceedings of the Fifteenth An-
nual International ACM SIGIR Conference on Research and Development
wn Information Retrieval, pages 223-232. ACM Press, 1992.

W.B. Croft and D.W. Stemple. Supporting office document architectures
with constrained types. In Proceedings ACM SIGMOD. ACM Press, May
1987. San Francisco.

M. Halper et al. Integrating a part relationship into an open oodb system
using metaclasses. In Proceedings of Third International Conference on In-
formation and Knowledge Management (CIKM’94). ACM Press, November
1994.

Information technology - text and office systems - standardized generalized

markup language (sgml), 1986. ISO 8879-1986 (E).

Information technology - text and office systems - office document archi-
tecture (oda) and interchange format, 1989. Part 2, Document Structures.

W. Klas, K. Aberer, and Erich J. Neuhold. Object-oriented modeling for
hypermedia systems using the vodak modeling language (vinl). In A. Dogac,
T. Ozsu, A. Biliris, and T. Sellis, editors, Advances in Object-Oriented
Database Management Systems, NATO ASI Series. Springer Verlag Berlin
Heidelberg, August 1994.

W. Klas et al. Object-Oriented Multidatabase Systems, chapter Database
Integration Using the Open Object-Oriented Database System VODAK.
Prentice Hall, 1994.

W. Klas et al. Vml - the vodak model language version 4.0. Technical
report, GMD-IPSI, October 1994.

M. Kracker. A fuzzy concept network model and its application. Technical

Report 585, GMD-IPSI, October 1991. St. Augustin.

29

[22]

[28]

F. Moser and T.C. Rakow. Database support for the access towards an open
and multimedia archive. In GI-FG Databases, Fall Workshop, September
1993. in German, Jena.

K. Obraczka, P.B. Danzig., and S.-H. Li. Internet resource discovery ser-

vices. IEEE Computer, 26(9), 1993.

L. Rostek, W. Mohr, and D. Fischer. Weaving a web: the structure and
creation of an object network representing an electronic reference work.

Flectronic Publishing, 6(4):495-505, 1994.

K. Shoens et al. The rufus system: Information organization for semi-
structured data. In R. Agrawal, S. Baker, and D. Bell, editors, Proceedings
of the International Conference on Very Large Data Bases, pages 97-107.
VLDB Endowment, 1993. Dublin, Ireland.

B. Subramanian et al. Querying lists and trees: A language and some
optimizations. accepted for publication in Proceedings of International
Conference on Data Engineering 1995, 1994.

Klaus Sullow et al. Multimedia forum - an interactive online journal. In
Christoph Huser, Wiebke Mchr, and Vincent Quint, editors, Proceedings of
Conference on Electronic Publishing, pages 413-422. John Wiley & Sons,
Ltd., April 1994.

J. Warmer and S. van Egmond. The implementation of the amsterdam
sgml parser. Technical report, Faculteit Wiskunde en Informatica, Depart-
ment of Mathematics and Computer Science, Vrije Universiteit Amsterdam,

1987.

J. Zobel, J.A. Thom, and R. Sacks-Davis. Efficiency of nested rela-
tional document database systems. In G.M. Lohmann, A. Sernadas, and
R. Camps, editors, Proceedings of the International Conference on Very
Large Data Bases, pages 91-102. VLDB Endowment, 1991. Barcelona,
Spain.

30

