
published in: Proceedings of the 11th IEEE International Conference on Data Engineering, pp. 70–79, Taipei, Taiwan, March 6–10, 1995

Semantic Query Optimization for Methods
in Object-Oriented Database Systems

Karl Aberer, Gisela Fischer

GMD–IPSI, Dolivostr. 15, 64293 Darmstadt, Germany
e–mail: {aberer, fischerg}@darmstadt.gmd.de

Abstract
Although the main difference between the relational and

the object-oriented data model is the possibility to define
object behavior, query optimization techniques in object-
oriented database systems are mainly based on the struc-
tural part of objects. We claim that the optimization poten-
tial emerging from methods has been strongly underesti-
mated so far. In this paper we concentrate on the question of
how semantic knowledge about methods can be considered
in query optimization. We rely on the algebraic and rule-
based approach for query optimization and present a
framework that allows to integrate schema-specific knowl-
edge by tailoring the query optimizer according to the par-
ticular application’s needs. We sketch an implementation of
our concepts within the OODBMS VODAK using the Volca-
no optimizer generator.

1 Introduction

Progress in the optimization of declarative object-ori-
ented queries has been concentrated on structural aspects,
like the manipulation of complex data values and the usage
of path indices [5][6][24]. In algebraic query optimization
the optimization process is based on equivalences for the
built-in query algebra operators. In semantic query opti-
mization it is recognized that also application-specific
knowledge in form of constraints on attributes can be used.
But in most approaches the behavioral part of object-ori-
ented data models is neglected: methods are regarded just
as a slight generalization of attributes. We claim that me-
thods lead to a new quality for semantic query optimization
in OODBMSs, due to the much richer semantics they pro-
vide as compared to attributes. For instance, regardless of
their actual procedural implementation the semantics of
methods may be equivalent to queries (in some object-ori-
ented database systems the operators of the query language
are even provided as methods, e.g. GemStone [19]). Fur-
thermore, in object-oriented database systems with exten-
sible data models, the operations of new data model primi-

tives may become visible through methods. Complex and
expensive external operations stemming from complex ap-
plication domains, like document processing, scientific or
multimedia applications [1] are also introduced through
methods. These operations may even be more dominant in
query evaluation than the database operations themselves.
The query optimizer should know the semantics of these
methods. Using this approach in query optimization is the
natural complement to exploiting method semantics in Se-
mantic Concurrency Control (SCC), a concept already ap-
plied successfully in object-oriented database systems
[22].

In this paper we concentrate on the question of how
knowledge of method semantics can lead to algebraic
equivalences which can be considered in query optimiza-
tion. We will not consider queries containing methods with
side effects, since we regard the problem of declarative up-
dates to be orthogonal to the problem of using semantic
knowledge in query optimization. We assume that the que-
ries we consider are safe with regard to updates (which not
necessarily implies that updates are not allowed!). For a
discussion of problems related to updates see [10][18].

More precisely, the contribution of this paper is three-
fold. First, we identify the opportunities that are given for
using semantic knowledge about methods through equiva-
lences in an algebraic framework. This leads to results of
theoretical interest, namely a classification of the way me-
thods appear in algebraic representations of queries, and
how equivalences can be derived from specifications of the
semantics of methods. Second, we propose a design that al-
lows to realize the possibilities we have identified, using
existing database systems, query languages and query opti-
mization technology as far as possible. Third, we introduce
a prototype that allows to test the applicability and benefit
of the concepts introduced in the paper in real world ap-
plications. The prototype is built for the object-oriented da-
tabase system VODAK with the query language VQL, and
uses the Volcano optimizer generator. To our knowledge

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this is the first realization of semantic query optimization
based on schema-specific equivalences in an OODBMS.

The remainder of the paper is organized as follows: in
Section 2 we give a general classification scheme for me-
thods and describe the example that we will use throughout
the paper. We introduce the query language VQL, discuss
how methods can be used in queries, and show how queries
containing methods can be transformed using semantic
knowledge about the methods. The representation of me-
thods in a query algebra is examined in Section 3. In Sec-
tion 4 we introduce the query algebra which is the basis for
the optimization, and illustrate the derivation of query al-
gebra rules from schema-specific knowledge on methods.
Section 5 discusses the perspectives for applying these
techniques. In Section 6 and 7 we describe the prototypical
implementation of our concepts within the OODBMS VO-
DAK using the Volcano optimizer generator. We discuss
related work in Section 8 and conclude the paper in Section
9.

2 The unexplored side of objects: methods

In the following we will take a closer look at methods as
they appear in an object-oriented data model. We refer to
the data model VML [16] and the query language VQL [2]
of the object-oriented database system VODAK, which is
developed and implemented as a prototype at GMD-IPSI.
However, the observations reported are valid for many oth-
er models and query languages.

2.1 Methods in object-oriented data models

We give an example of a database schema dealing with
documents to illustrate the different ways how methods can
be used.

The schema contains the classes Document, Section and
Paragraph. In VML classes are not only containers for their
instances, but also first class objects themselves. For the
class objects Document and Paragraph the methods se-
lect_by_index and retrieve_by_string resp. are defined. se-
lect_by_index returns all documents with title t using a user-
defined index for the selection, while retrieve_by_string re-
trieves all paragraphs which contain the string s using an
external IR function. The instances of Document possess
the attributes (in VML called properties) author, title and
sections, and the method paragraphs which returns the
identifiers of all paragraphs that belong to the same docu-
ment. For the instances of Section the properties number,
title, document and paragraphs are defined. An instance of
the class Paragraph possesses the properties number, sec-
tion and content. Furthermore the methods document which
computes the document the paragraph belongs to, con-
tains_string which searches for the existence of the string s
in the content of the paragraph, and sameDocument which
checks if two paragraphs belong to the same document, are

provided. Within the implementation of sameDocument
SELF denotes the receiver object of the method. The signa-
tures of the properties and methods are given using the
built-in complex data types of VML (the primitive built-in
data types are STRING, INT, REAL, ... and typed object
identifiers; the type constructors are TUPLE, SET, ARRAY
and DICTIONARY.). We can access the properties using de-
fault methods provided automatically by the system for
reading and writing public properties.
CLASS Document

OWNTYPE OBJECTTYPE
METHODS:

select_by_index(t: STRING): {Document}
{ /* external implementation */}

END;
INSTTYPE OBJECTTYPE
PROPERTIES:

title: STRING;
METHODS:

paragraphs(): {Paragraph};
{ /* compute all paragraphs of a document */}

END;
END;

CLASS Section
INSTTYPE OBJECTTYPE
PROPERTIES

document: Document;
paragraphs: {Paragraph};

END;
END;

CLASS Paragraph
OWNTYPE OBJECTTYPE
METHODS

retrieve_by_string(s: STRING): {Paragraph}
{ /* external implementation */}

END;
INSTTYPE OBJECTTYPE
PROPERTIES

number: INT;
section: Section;

METHODS
document(): Document;{ RETURN section.document;}
contains_string(s: STRING): BOOL;

{ /* external implementation */}
sameDocument(p: Paragraph): BOOL;

{ RETURN (SELF→document() == p→document());}
END;

END;

From this example we can identify two orthogonal di-
mensions in which methods can be categorized. According
to their generality we can distinguish application-specific
methods, which are defined in application schemas, from
system-defined methods, like default methods for property
access or object creation and deletion. According to their
implementation we distinguish methods with internal en-
coding, e.g. document, and methods with an external im-

plementation, e.g. contains_string and select_by_index.
Additionally one has to consider that methods can be para-
metrized, e.g. sameDocument.

2.2 Methods in a query language: the VODAK
query language VQL

VQL supports declarative access to object-oriented da-
tabases in the OODBMS VODAK. For pragmatic reasons
VQL is based on a SQL-like approach. Compared to stan-
dard SQL, VQL provides features which are either conve-
nient or necessary in order to efficiently access VODAK
databases, in particular the use of method calls and path ex-
pressions.

Since we allow arbitrary method invocation in queries,
we cannot determine in advance whether a query is a pure
retrieval query or whether updates are performed due to the
execution of the methods contained in the query [10]. In or-
der to reflect this semantics in the syntax we replaced the
SQL-keywords SELECT/UPDATE by the more general
keyword ACCESS. A VQL query has the form

ACCESS expr(x1,...,xn)
FROM x1 IN S1, ..., xn IN Sn
WHERE cond(x1,...,xn)

where xi are query or range variables, and Si are sets of ob-
ject identifiers (usually the extensions of classes),
expr(x1,...,xn) is an expression built up from query vari-
ables, constants, path expressions, method calls and opera-
tions on the primitive and complex data types (here and lat-
er on, we omit an exhaustive list due to space limitations).
cond(x1,...,xn) consists of expressions, primitive predicates
on built-in datatypes and boolean operators.

Methods can be used in any part of the query as shown by
the following examples:

Example 1: Methods in the WHERE clause appear in atom-
ic predicates. Note that, due to parametrization, method
calls may serve as join predicates, e.g. f→sameDocu-
ment(q) is the join predicate in the following query which
returns a set of tuples as result

ACCESS [p: p. number, q: q.number]
FROM p IN Paragraph, q IN Paragraph
WHERE p→sameDocument(q)

Example 2: Methods may appear in the FROM clause if
they return sets of object identifiers. Using methods can
lead to dependencies between the query variables. E.g. in
the following query the query variable p is dependent on
the variable d.

ACCESS d.title
FROM d IN Document, p IN d→paragraphs()
WHERE p→contains_string(’Implementation’)

Example 3: Methods in the ACCESS clause are used to
bring the selected elements into the desired form for out-
put or further processing, or to perform updates.

ACCESS [doc: d.title, paras: d→paragraphs()]
FROM d IN Document

2.3 Transformation of queries by using knowl-
edge about methods

Algebraic query optimization basically relies on two
types of knowledge, namely equivalences and cost func-
tions for the algebra operators. In this paper we will focus
on the examination of equivalences. However, we note that
attributes are assumed to be obtained at uniform access
cost. This is not true for methods, especially with respect to
method parameter, see e.g. [14].

In the following we give an example of how equiva-
lences derived from methods semantics can be used for
query transformation, and hence optimization. For illustra-
tion purposes, in this section we do this on the query lan-
guage level instead of the query algebra level relying on the
reader’s intuitive understanding of how query language ex-
pressions are evaluated. This gives a first flavor of how
schema-specific query algebra equivalences can be used
for algebraic query transformation.

Example 4: By inspecting the schema introduced in sec-
tion 2 we can identify the following equivalences be-
tween expressions. For boolean expressions we use � to
denote the equivalence, for other expressions we use ≡.

E1: p→document() ≡ p.section.document
E2: d.title == s

� d IS-IN Document→select_by_index(s)
E3: p.section.document IS-IN D

� p.section IS-IN D.sections
E4: p.section IS-IN S � p IS-IN S.paragraphs
E5: ACCESS p FROM p IN Paragraph

WHERE p→contains_string(s)
≡Paragraph→retrieve_by_string(s)

p and q are variables for instances of the class Paragraph, d
represents an instance of Document, D and S are sets of doc-
uments and sections resp., and s is a string. By D.sections
and S.paragraphs we denote the union of all sections of the
documents in D and the union of all paragraphs of the sec-
tions in S resp. (i.e. the system-defined methods which per-
form the access to the property are invoked for all objects in
the set). Note that the equivalences have no distinguished
direction, thus in principle they can be applied in both
directions. The direction in which an equivalence is actual-
ly applied for a certain query will be chosen by the optimi-
zer.

We now illustrate some query transformations using the
above equivalences. Assume the following query is posed
by a user. It retrieves all paragraphs which belong to a docu-

ment titled ’Query Optimization’ and contain the string
’Implementation’:
Q: ACCESS p FROM p IN Paragraph

WHERE p→contains_string(’Implementation’)
AND (p→document()).title == ’Query Optimization’

This query can be transformed using equivalence E2 to
Q’: ACCESS p FROM p IN Paragraph

WHERE p→contains_string(’Implementation’)
AND p→document() IS-IN

Document→select_by_index(’Query Optimization’)

Now we can apply equivalence E1, E3 and E4 consecutive-
ly:
Q’’: ACCESS p FROM p IN Paragraph

WHERE p→contains_string(’Implementation’)
AND p.section.document IS-IN
Document→select_by_index(’Query Optimization’)

Q’’’: ACCESS p FROM p IN Paragraph
WHERE p→contains_string(’Implementation’)

AND p.section IS-IN (Document→select_by_index(
’Query Optimization’)).sections

Q’’’’: ACCESS p FROM p IN Paragraph
WHERE p→contains_string(’Implementation’)

AND p IS-IN (Document→select_by_index(
’Query Optimization’)).sections.paragraphs

Applying equivalence E5 and some standard query trans-
formations, e.g.

ACCESS p FROM p IN Paragraph
WHERE p IS-IN (Document→select_by_index(

 ’Query Optimization’)).sections.paragraphs
� (Document→select_by_index(

’Query Optimization’)).sections.paragraphs)

yields the query plan PQ:
PQ: Paragraph→retrieve_by_string(’Implementation’)

INTERSECTION
(Document→select_by_index

(’Query Optimization’)).sections.paragraphs

Several observations have to be reported for this example:
• The example schema is reasonably designed. The que-

ry was posed in a completely natural way from the
user’s perspective and there are also no natural alterna-
tives for the query formulation which come closer to
the final query plan (e.g. starting the query from the
class Document always requires a join operation).

• The final query plan can, for a given typical database,
be evaluated much more efficient than a straightfor-
ward evaluation of the query without transformation.

• There is no way for the optimizer to derive the final
query plan from the user’s query without having sche-
ma-specific information on the semantics of the me-
thods.

• The schema-specific knowledge that has to be pro-
vided by the schema designer can be easily specified
and is unambiguous: no deep analysis of the code is

necessary, just a descriptive way to reflect the intended
semantics of the methods in the schema is needed.

In this example different kinds of knowledge about me-
thods semantics were used in order to optimize the query.
Among these are knowledge about the implementation of
path methods, properties of inverse links and method im-
plementations that are semantically equivalent to query ex-
pressions. In the following we will systematically discuss
the different types of knowledge and how they come into
optimization.

3 Methods in a query algebra

Query optimization in VODAK is based on an algebraic
representation of VQL queries. If we want to study the opti-
mization of queries containing method calls, we first have
to investigate how methods are represented in the query al-
gebra. In principle, methods can occur there in two differ-
ent ways: either as algebraic operators or as parameters of
algebraic operators. As we will see, both possibilities are
relevant, depending on the semantics of the methods.

3.1 Methods as parameters of query algebra op-
erators

The most original extension of relational, nested rela-
tional or complex object algebras to object-oriented query
algebras is the introduction of operators that allow iterative
application of functions to the elements in a value of a bulk
type (e.g. set, list, etc.; in this paper we will restrict our-
selves to sets). The standard example of such an operator is
�<�x. f(x)>(S) ::= {f(s) | s�S}

where S is a set of type {T1}, x is a variable of type T1, and
�x. f is a function of type T1�T2. The result of applying this
operator is a set of type {T2}. A more general form of this
operator is
�<�x1...xn. f(x1,...,xn)>(S1,...,Sn) := {f(s1,...,sn) | si�Si}

In this context lambda abstraction is used for convenience.
It is restricted to first-order abstractions, i.e. the type of the
bound variable x is a primitive domain. The function f is
specified as a composition of operations on built-in data
types and method calls. Thus methods come into the query
algebra as operator parameters.

Example 5: The method paragraphs() is applied to each
document in the class Document as follows
�< �x. x→paragraphs()> (Document).

� can also be used to express many other bulk operators. For
instance, by lifting tuple constructors and selectors in this
way, the standard relational operators of Cartesian product
and projection can be expressed. In fact it was shown that
together with set collapse which is defined as �(S) := �s �
S, where S is of type {{T}}, this operator can serve as the
basis for a complete complex object algebra [6].
Example 6: The usual projection operator �a on a rela-
tion R can be expressed as follows

�a(R) := �< �x. x.a>(R)

3.2 Methods as algebraic operators

Usually operators of object-oriented query algebras ma-
nipulate bulk types whose components may have arbitrary
domains. Such operators might also be realized through
methods, since the parameter types of methods can be bulk
types. We give (a very simple) example of how such opera-
tors might be introduced in VODAK.

Example 7:
CLASS Set_object
INSTTYPE OBJECTTYPE

PROPERTIES
elements: { OID }

METHODS
select(m1: VML_Method) : Set_object;

/* m1: OID→Boolean */
map(m2: VML_Method) : Set_object;

/* m2: OID→OID */
END;

END;

In this example we represent only two algebra operators on
bulk types, namely select and map, as methods defined for
the instances of a system-defined class Set_object. The
instances of this class store values of a bulk type, namely
sets of object identifiers of instances of arbitrary classes.
When the method select is invoked for an instance i of
Set_object, it first requests Set_object to create a new in-
stance i’. Then select applies the method m1 to all objects
whose identifiers are stored in the property elements of i,
stores the identifiers of those objects in the property ele-
ments of i’ for which m1 evaluates to TRUE, and returns the
identifier of i’. Accordingly the method map applies m2 to
all objects in elements and returns the results in a new in-
stance of Set_object.

If a unary algebra operator is represented as a method its
argument corresponds to the receiver object of the method.
For operators with more than one argument, the additional
arguments appear in the parameter list of the method.

Methods like select and map may be used as physical
implementations of query algebra expressions. Thus they
can appear at the operator level in the query algebra.

4 Using semantic equivalences in rule-based
query optimization

In this section we will show how to break down the gen-
eral ideas presented so far to an approach that allows an im-
plementation based on rule-based query optimization tech-
niques.

4.1 Definition of the query algebra

For simplicity we restrict ourselves to the manipulation
of bulk values of relation type, namely set[tuple[do-

mains]], where domains are arbitrary complex data types.
This allows us to use mostly techniques well-known from
relational query optimization for the manipulation of bulk
values. Problems related to the manipulation of arbitrary
complex values have already been extensively studied [23]
and are orthogonal to the problem of exploiting the seman-
tics of object definitions we examine here. We consider the
extensions of our techniques to the general case as straight-
forward.

The query algebra operators are applied to complex val-
ues of type { [a1: D1,, an: Dn] } where D1,...,Dn are complex
data types. We assume that the tuple components are unor-
dered. Operator arguments of this type are denoted by S, S1
and S2. The operator parameters are enclosed in <>. We de-
fine

Ref(S) := { a1,...,an } for Type(S)={[a1: D1,, an: Dn]}.

and refer to a1, ..., an as the references of S. In the following
vi denotes a value of type Di. The algebra consists of the fol-
lowing operators:
get<a, class> := { [a: o] | o � extension(class) }

natural_join(S1, S2) :=
{[a1: v1, ... ,ai: vi, ..., ak: vk, ..., an: vn] |
� [a1: v1, ... ,ai: vi, ..., ak: vk] � S1
�� [ai: vi, ..., ak: vk, ..., an: vn]� S2}

where Ref(S1) = {a1, ... , ak}, Ref(S2) = {ai, .., an} and i�k

union(S1, S2) := {[a1: v1, ... , an: vn] |
� [a1: v1, ... , an: vn] � S1 � � [a1: v1, ... , an: vn]� S2}
where Ref(S1) = Ref(S2) = {a1, ... , an}

diff(S1, S2) := {[a1: v1, ..., an: vn] |
[a1: v1, ..., an: vn] �S1 �[a1: v1, ..., an: vn] �S2}
where Ref(S1) = Ref(S2) = {a1, ... , an}

select<condition(a1,...,an)>(S) := {[a1: v1, ..., an: vn] |
[a1: v1, ..., an: vn] �S�condition(v1,...,vn)==TRUE }
where Ref(S) = { a1,...,an }

join<condition(a1,...,ai, ai+1 , ...,an)>(S1,S2) :=
{[a1: v1, ... ,ai: vi, ai+1: vi+1.. an: vn] |

[a1: v1, ... ,ai: vi]�S1 �[ai+1: vi+1.. an: vn]� S2

�condition(v1,...,vn)==TRUE }
where Ref(S1) = {a1, ... , ai} and Ref(S2) = {ai+1, .., an}

map<a, expression(a1,...,an)>(S) :=
{ [a: v,a1: v1, ..., an: vn] |

[a1: v1, ... ,an: vn]�S�v=expression(v1,...,vn) }
where Ref(S) = { a1,...,an } and a � Ref(S)

flat<a, expression(a1,...,an)>(S) := { [a: v,a1: v1, ..., an: vn] |
[a1: v1, ... ,an: vn]�S�v�expression(v1,...,vn) }
where Ref(S) = { a1,...,an }, a � Ref(S)
and expression is set-valued.

project<a1,...,ai>(S) :=
{ [a1: v1, ..., ai: vi] | � vi+1, ... , vn [a1: v1, ..., an: vn] �S }
where Ref(S) = { a1,...,an }

In this algebra arbitrarily complex expressions may appear
in the operator parameters. get, natural_join, union and
diff provide access to classes and standard relational join

operations (subsuming the set-theoretic operations). In
analogy with relational algebra, select and (�-)join are de-
fined. Thus methods can appear in selection and join condi-
tions. map, flat and project allow to iteratively apply com-
plex expressions with arbitrary return values to their argu-
ments. It is important to notice that we derive these opera-
tors from the unary operator � introduced in section 3.1, and
thus do not produce an (implicit) Cartesian product (in oth-
er object-oriented algebras this is not always the case, see
e.g. [25]; on the other hand, our map operator is compara-
ble to the operator denoted by �a:e in [9]). The operators flat
and map are to be considered as duals of each other with
regard to set nesting, and project and map are to be consid-
ered as duals of each other with regard to tupling.
A VQL query of the form

ACCESS expression (x1,...,xn)
FROM x1 IN C1, ..., xn IN Cn WHERE condition(x1,...,xn)

where C1, ..., Cn are class names, is then mapped to the fol-
lowing algebra expression:

project<a>(
map<a, expression(a1,...,an)>(

select<condition(a1,...,an)>(
join<true>(get<an,Cn>, (join<true>

(get<an–1,Cn–1> ...
join<true>(get<a1,C1>,get<a2,C2>)...)))))))

4.2 Derivation of query algebra rules

If we want to utilize schema-specific knowledge in the
optimization, we have to map this knowledge about me-
thods to rules which can be applied to algebraic query ex-
pressions. According to [13] we distinguish two types of
rules, namely transformation rules which transform a que-
ry algebra expression into another one, and implementation
rules which map a query algebra expression to an execut-
able query evaluation plan. We can identify different types
of rules that can be derived from different specifications of
method semantics.

Equivalent expressions. An expression equivalence is
given by

x IN C: expr1(x) == expr2(x);

In principle, we can translate this kind of equivalence into a
transformation rule of the query algebra by lifting the
equivalence to bulk type operators as follows

map<?a1 , expr1(?a2)>(?A<?a2 , C>)
	 map<?a1 ,expr2(?a2)>(?A<?a2 , C>)

In this transformation rule ?a1 and ?a2 represent pat-
terns for references in the operator arguments and ?A<?a2 ,
C> represents a pattern for an algebraic expression that re-
turns object identifiers of instances of class C with refer-
ence ?a2 . Examples of such expressions are get<?a2 , C>,

but also map<?a2 , expr1(?a3)>(get<?a3 , C’>) where expr1

evaluates to object identifiers of instances of class C.
A typical example of obtaining this type of knowledge is

through path methods:
E1: p→document() ≡ p.section.document

is mapped to
map<?a2 ,?a1→document()> (?A<?a1 , Paragraph>))
	 map<?a2 , ?a1 .section.document>(

?A<?a1 , Paragraph>)))

Equivalent conditions. This type is very similar to the pre-
vious one, except that here we consider only the equiva-
lence of boolean expressions:

x IN C: cond1(x) � cond2(x);

We can translate this kind of equivalence also into a trans-
formation rule of the query algebra by lifting it as follows

select<cond1(?a1)>(?A<?a1 , C>)
	 select<cond2(?a1)>(?A<?a1 , C>)

A typical source for this type of equivalences are inverse
links:
E3: p.section.document IS-IN

� p.section IS-IN D.sections

is mapped to
select<?a1 .section.document IS-IN

?A>(?A1<?a1 , Paragraph>)
	 select<?a1 .section IS-IN

?A.sections>(?A1<?a1 , Paragraph>)

?A represents an expression returning a set of document ob-
ject identifiers.

Implication of conditions. In this case we use a logical im-
plication instead of an equivalence:

x IN C: cond1(x)
 cond2(x);

The implication yields the following algebraic equivalence
select<cond1(?a1)>(?A<?a1 , C>)
	! natural_join(select<cond1(?a1)>(

?A<?a1 , C>),select<cond2(?a1)>(?A<?a1 , C>))

In this case the natural_join operator behaves like an inter-
section as the set of references are the same for both opera-
tor arguments. The symbol	! means that the rule may only
be applied once, in order to avoid an infinite recursive ap-
plication of the rule.

Although this type of equivalence appears to be of little
use at the first glance, it can be very interesting for finding
efficient execution plans in the presence of precomputed
information as the following example illustrates. Assume
the class Document provides an instance property largePa-
ragraphs: {Paragraph}, and the class Paragraph provides an
instance method wordCount(): INT, such that the access me-
thods of Document and Paragraph guarantee the following
property:

p IN Paragraph: p→wordCount() > 500

 p IS-IN p→document().largeParagraphs

This implication can be transformed into an equivalence as
indicated above, similarly as in case of equivalent condi-
tions.

Equivalences Between Queries and Method Calls. This
case is somewhat different from the previous ones as two
language levels are combined:

methcall == query,

where query = ACCESS ... FROM ... WHERE The meth-
od call methcall corresponds to an implementation of a que-
ry algebra expression which can be directly executed by the
database system. Such an equivalence can be translated to
an implementation rule. The query query in the equiva-
lence is first translated into its algebraic representation
Aquery, and thus the implementation rule which is applica-
ble only in one direction is:

Aquery � methcall

As a concrete example of how this rule is derived we show
how equivalence E5 is mapped to an implementation rule:

E5: ACCESS p FROM p IN Paragraph
WHERE p→contains_string(s)

≡ Paragraph→retrieve_by_string(s)

is mapped to

select<?a1→contains_string(s)>(?A<?a1, Paragraph>)
� Paragraph→retrieve_by_string(s)

Some natural extensions can be made for all of the four
types of knowledge considered. For example, one can bind
several variables in the equivalent expressions and condi-
tions, or one can impose additional conditions on parame-
ters appearing in these expressions.

5 Perspectives for applicability

So far we have shown how knowledge about methods
can be used to derive rules for query optimization purposes.
Before we sketch an implementation of our approach in the
next section, we discuss its applicability, i.e. in which cases
equivalences for methods can be defined and beneficially
used in the optimization.

5.1 The origin of semantic knowledge

It is worthwhile to consider why a lot of semantic knowl-
edge is available for optimization purposes. This gives an
immediate insight in which situations our approach can pay
off.
• In object-oriented schemas redundant structures (e.g.

inverse links) can be found more often than in relation-
al schemas, since the whole theory of normalization of
relational database schemas is actually devoted to the
issue of avoiding redundancy. In most cases redundant
structures are provided in order to gain simple and effi-
cient access to related data. Note that in contrast to
relational systems redundant data in object-oriented

databases can be easily kept consistent by encapsulat-
ing the consistency check into corresponding methods.

• The return values of methods constitute derived data,
i.e. data which has been computed using data stored in
the database, and therefore relationships between
these return values and the database state exist (e.g.
path methods or a method which computes the actual
age of a person using the person’s date of birth stored in
the database).

• Methods may incorporate queries, i.e. provide the
same semantics as a particular (possibly parametrized)
query. Providing a method instead of a query can have
two significant advantages: first, the user is relieved of
formulating potentially difficult queries. Second, a
method may provide a more efficient implementation
of a particular query than the DBMS can.

• Object-oriented database systems are especially de-
signed to support complex application domains, like
document processing, scientific applications or multi-
media applications. In such application domains com-
plex and expensive external operations, which may
even be more dominant in the query evaluation as the
database operations themselves, can often occur.

5.2 Specification of the semantic knowledge

We have shown that different kinds of specifications of
method semantics can be given for query optimization pur-
poses. In this paper we do not address the design of an ap-
propriate user interface for acquiring this knowledge.
However, it is clear that such a feature can be provided at
least for the knowledgeable user of the system, who designs
complex and time-critical applications, but has no access to
database internals. It is not necessary that this knowledge
has to be provided in all cases in the explicit form as dis-
cussed in Section 4.2, but it may be derived from other in-
formation, like such about inverse links. Furthermore in
some special cases it may be possible to derive this knowl-
edge automatically, e.g. for methods generated by a path
method generator [21]. Another scenario we envisage is the
introduction of new data modeling primitives employing
the extensibility of object-oriented data models. This ap-
proach is taken in VML where for example semantic rela-
tionships can be introduced through metaclass schemas
[15][16][17]. These schemas are developed on the same
core model as application schemas use, but can be hidden
from the casual user of the new data modeling primitives
who is not aware of the the metalevel of the schema. A de-
tailed discussion of this approach will be the issue of a
forthcoming paper.

6 Implementation

We can distinguish two techniques used for rule-based
query optimization: one is based on general purpose tools
for rule application, e.g. logical programming languages

[8], the other uses tools particularly suited for the needs of
algebraic query optimization, e.g. EXODUS [11] and Vol-
cano [13]. We follow the second approach and utilize the
Volcano optimizer generator since it has been shown to be
very efficient. This leads to the following questions when
using extensible query optimizer generators:

• What are the requirements the query algebra should
meet for rule-based optimization?

• How can we exploit schema-specific equivalences in-
volving methods for rule-based optimization?

After introducing the Volcano optimizer generator we dis-
cuss these questions in detail.

6.1 The Volcano optimizer generator

The Volcano optimizer generator was developed as part
of the Volcano project [13]. It generates efficiently working
rule- and cost-based algebraic query optimizer modules us-
ing a logical and a physical query algebra and correspond-
ing transformation and implementation rules. The logical
algebra is the basis for the internal representation of the
query, while the physical algebra is used to build up query
evaluation plans. Its operators are concrete algorithms
associated with cost functions. Transformation rules may
be applied in both directions; they reorder operators in a
logical algebra expression. Implementation rules map log-
ical algebra expressions to algorithms and thus are only ap-
plicable in one direction. Each rule may be associated with
a condition; then it is only applied if the condition holds.
The optimization itself now consists of mapping a logical
algebra expression step by step to the optimal (with respect
to the execution costs) equivalent physical expression ac-
cording to the given rules. In order to find the optimal
physical expression each generated optimizer contains a
fixed search algorithm based on exhaustive search for all
logical transformations and branch-and-bound pruning
when applying implementation rules.

The rule matching algorithm incorporated in Volcano
can utilize operator patterns consisting of operator, opera-
tor argument and input variables. The content of operator
arguments can only be checked in the condition code, thus
no pattern matching on the arguments is supported. This
restriction is a consequence of enforcing a strong typing on
the rules themselves which, together with rule compila-
tion, is necessary in order to achieve efficient rule match-
ing. As we will see in the following, this has an important
influence on the structure of the logical algebra which we
use as the basis of the optimization.

The Volcano optimizer generator provides complete
data model independence: the logical and physical algebra,
the corresponding transformation and implementation
rules as well as the (arbitrary complex) cost functions are
freely definable by the optimizer implementor.

In the form given in Section 4.2 the rules are not well-
suited for usage with the Volcano optimizer generator. Take
for the example the rule

map<?a2 ,?a1→document()> (?A1<?a1 , Paragraph>)) 	
map<?a2 , ?a1 .section.document>(

?A1<?a1 , Paragraph>)))

The pattern matching algorithm of Volcano can detect the
operator pattern, namely map<...>(?A1<...>)), but matching
the expression pattern of the parameter on the right side,
namely ?a1 .section.document, is left to the condition code,
and hence to its implementor. This would basically require
to implement another ”pattern matching algorithm” in the
condition code of the rules which is not the way Volcano is
intended to be used efficiently. As a consequence we have
to simplify the operator arguments of the algebraic opera-
tors (a similar observation was reported in [4] for a pure
structurally object-oriented algebra). More precisely, the
specialized operators have parameters restricted to atomic
expressions and conditions.

In the restricted algebra we substitute some of the opera-
tors of the general algebra. The substitution is given by the
following table (the operators not mentioned in the table re-
main unchanged). � is one of the boolean binary operations
on built-in data types (e.g. ==, !=, <, >, IS-IN, IS-SUBSET).
� is an operation on the built-in data types (e.g. +, –, *, /,
tuple access and construction, string operations). p and m
denote property and method identifiers resp.

Restricted Algebra
(anew � Ref(Sj), ai �

Ref(Sj), i=1, 2, 3,..., j=1,2)

General Algebra
(anew � Ref(Sj), ai �

Ref(Sj), i=1, 2, 3,..., j=1,2)

select<a1,�,a2>(S) select<a1�a2>(S)

join<a1,�,a2>(S1,S2) join<a1�a2>(S1,S2)

map_property<anew, p,
a1>(S)

map<anew, a1.p>(S)

map_method<anew, m, a1,
<a2, a3,...>>(S)

map<anew, a1→m(a2, a3,
...)>(S)

flat_property<anew, p,
a1>(S)

flat<anew, a1.p>(S)

flat_method<anew, m, a1,
<a2, a3,...>>(S)

flat<anew, a1→m(a2, a3,
...)>(S)

map_operator <anew, �,
a1,...,an>(S)

map<anew, ��a1,...,an)>(S)

Both algebras have the same expressive power. One can
show this by translating expression composition which can
take place on the parameter level in the general algebra to
operator composition in the restricted algebra.

For query transformation based on the restricted alge-
bra, a predefined set of transformation rules is provided.
These are on the one hand many well-known rules from
relational query optimization, e.g. associativity and com-
mutativity of join or interchangeability of selection and jo-
in. On the other hand, there are rules that involve the new

operators, in particular map_property, map_method,
flat_property and flat_method. Investigating these rules
for optimization purposes is an interesting problem of its
own right that we can not discuss in full detail in this paper.
We give one example of the rules that were used in our im-
plementation.

Example 8: Transformation of path expressions (which
are implicit joins) to explicit joins. C is the name of the
class to which the objects referred by the reference
matched to ?a2 belong.

 project<?a1 ,?a2 ,Ref(?A)>(
map_property <?a3 , ?p2, ?a2>(

map_property <?a2 , ?p1 , ?a1>(?A))) 	
project< ?a1 ,?a2, ,Ref(?A)>(

join<?a4 , ”==”, ?a2> (
map_property <?a3 , ?p2 , ?a4> (get <?a4 , C>),
map <?a2 , ?p1, ?a1> (?A)))

6.2 Representation of rules in the restricted al-
gebra

We show the representation of the rules in the restricted
algebra for the rule derived from equivalence

E3: p.section.document IS-IN D �

p.section IS-IN D.sections

In the general algebra the corresponding rule was

select<?a1 .section.document IS-IN ?A>(
?A1<?a1 , Paragraph>) 	

select<?a1 .section IS-IN ?A.sections>(
?A1<?a1 , Paragraph>)

This rule can be translated to the restricted algebra as fol-
lows:

natural_join (
map<?a3 , document, ?a2>(

map<?a2 , section, ?a1>(?A1<?a1 , Paragraph>))),
?A1<?a3 , Document>)) 	

natural_join(
map<?a2 , section, ?a1>(?A1<?a1 , Paragraph>),
flat<?a2 , sections, ?a3>(?A1<?a3 , Document>))

A detailed description of transformation and imple-
mentation rules in Volcano and the translation of the rule
shown above to a transformation rule is given in [3].

7 Prototypical implementation in VODAK

In the current VODAK version VQL queries can be
posed interactively, within applications or within method
implementations. Currently we have integrated query opti-
mization facilities in the interactive mode. We have imple-
mented the algebra as described in this paper, the set of
fixed transformation and implementation rules in order to
apply common algebraic transformations and enable the
mapping from the logical to the physical algebra resp., and
a simple cost model.

Since we want to take knowledge on schema-specific
semantics into account for the optimization, we have to
find a way to dynamically extend the predefined optimizer
components, i.e. define new operators and rules. ”Dynami-
cally” means here that the extension is automatically per-
formed by the system according to the knowledge given by
the schema designer, and not by the database system imple-
mentor. We integrate schema-specific semantics in the op-
timization process by mapping them to transformation and
implementation rules, adding these rules and the methods
which are defined as physical operators to the predefined
rules and operators, and generating an individual optimizer
module for each schema.

We have implemented a demonstrator that graphically
illustrates how the VQL query optimizer works. This is
achieved by tracing the single steps of the optimization pro-
cess, i.e. by visualizing a query expression throughout the
optimization process. This visualization of database inter-
nals can be used as a debugging tool for examining the im-
pact of schema-specific equivalences on the optimization
process.

8 Related work

The basis for object-oriented query algebras and opti-
mization by exploiting structural properties of complex da-
tatypes is by now well-known in the literature [4][5][6]
[24]. Also the use of the Volcano optimizer generator for
query optimization in a structural oriented query algebra
was investigated. In [7] an object-oriented query algebra
including a logical materialization operator for property
paths was used. This operator can be considered as a prede-
cessor of the operator map. The usage of Volcano for incor-
porating new data types and external methods in the con-
text of scientific applications was proposed in [26]. How-
ever, there the authors leave the task of rule specification to
the database implementor. It is curious to note, that most
work known to us where account is taken of user-defined
functions in query optimization, can be found in the context
of relational and extensible relational database systems. In
[23] the optimizer can use knowledge about user-defined
abstract data types. In [8] knowledge about external func-
tions is used in query optimization. There the authors use a
logical programming approach to rule matching.

In this paper we have excluded the issue of nested que-
ries, which is of considerable interest for semantic query
optimization based on equivalences, as many equivalences
give rise to rules involving nested queries. Some interest-
ing transformation rules for nested queries can be found in
[9]. A completely different approach to query optimization
in the presence of methods can be found in the REVELA-
TION project [12]: objects are asked to reveal the imple-
mentation of methods during query optimization. This dif-
fers from our approach as we are not interested in the imple-

mentation itself (except indirectly through cost models) but
on the semantics that is realized through the implementa-
tion.

9 Conclusion

In this paper we investigated the role of methods in que-
ry optimization. We showed how query optimization can
benefit from semantic knowledge about methods without
revealing the real method implementation and thus violat-
ing the encapsulation. This knowledge can be expressed
through schema-specific equivalences. We demonstrated
how such equivalences can be translated into transforma-
tion and implementation rules which can be used by the
query optimizer. By making some of the usually hard-
wired query optimizer components extensible schema-spe-
cific equivalences can be easily integrated in the optimiza-
tion process. We sketched an implementation of our con-
cepts within the object-oriented database management sys-
tems VODAK using the Volcano optimizer generator.

As already pointed out we consider the support of the ex-
tensibility of the VODAK database system as the major ap-
plication of the techniques introduced. VODAK is now ex-
tensible not only at the data model level, as already realized
through a metaclass concept, and on the level of transaction
processing [18], but also on the query processing level. Fu-
ture work will include testing these concepts in complex
application domains involving new datatypes, like docu-
ment storage or scientific applications. Furthermore the ap-
proach presented still leaves many research issues open.
Prominent among these is to develop a methodology for ob-
taining and maintaining rules such that they are readily ap-
plied in the optimization process. First considerations in
this direction were presented in the paper. Another issue of
interest is the extension of the approach to rules that in-
volve conditions.

References

[1] K. Aberer, K. Böhm, C. Hüser: ”The prospects of publishing
using advanced database concepts”, Proc. of the Intl. Conf. on
Electronic Publishing, 1994.

[2] K. Aberer, G. Fischer: ”Object–Oriented Query Processing:
The Impact of Methods on Language, Architecture and Opti-
mization”, Technical Report GMD No. 763, GMD-IPSI, July
1993.

[3] K. Aberer, G. Fischer: ”Semantic Query Optimization for
Methods in Object-Oriented Database Systems”, GMD Tech-
nical Report No. 849, June 1994.

[4] C. Beeri: ”Formalization of query languages for models with
object-oriented features”, Object-Oriented Database Man-
agement Systems, NATO ASI Series, Springer Verlag Berlin
Heidelberg, August 1993 .

[5] E. Bertino, W. Kim: ”Indexing Techniques for Queries on
Nested Objects”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 1, No. 2, 1989.

[6] E. Bertino, M. Negri, G. Pelagatti, L. Sbattella: “Object-Ori-
ented Query Languages: The Notion and the Issues”, IEEE
Transactions on Knowledge and Data Engineering, vol. 4,
no. 3, pp. 223–237, June 1992.

[7] J.A. Blakeley, W.J. McKenna, G. Gräfe: “ Experiences Build-
ing the Open OODB Query Optimizer”, Proc. ACM SIG-
MOD International Conference on Management of Data, pp.
287–296, Washington, DC, May 26–28, 1993.

[8] S. Chaudhuri, K. Shim: ”Query Optimization in the Presence
of Foreign Functions”, Proc. 19th VLDB, pp. 529–542, Dub-
lin, Ireland, August 24–27, 1993.

[9] S. Cluet, G. Moerkotte: ”Nested Queries in Object Bases”,
Proc. DBPL4, Manhattan, New York City, August 30th –
September 1st, 1993.

[10] G. Fischer: “Updates in Object-Oriented Database Systems
Caused by Method Calls in Queries”, Proc. 3rd ERCIM Da-
tabase Research Group Workshop on Updates and
Constraints Handling in Advanced Database Systems, Pisa,
Italy, September 28–30, 1992.

[11] G. Gräfe, D. DeWitt: “The EXODUS Query Optimizer”,
Proc. ACM SIGMOD Conference, pp. 160–172, San Francis-
co, USA, May 27–29, 1987.

[12] G. Gräfe, D. Maier: “Query Optimization in Object-Oriented
Database Systems: A Prospectus”, Advances in Object-Ori-
ented Database Systems / Proc. 2nd International Workshop
on Object-Oriented Database Systems, pp. 358–363, Bad
Münster am Stein-Ebernburg, Germany, September 27–30,
1988 (LNCS 334).

[13] G. Gräfe, W. J. McKenna: “The Volcano Optimizer Genera-
tor: Extensibility and Efficient Search”, Proc. 9th ICDE, pp.
209–218, Vienna, Austria, April 19–23, 1993.

[14] J. Hellerstein, M. Stonebraker: ”Predicate Migration: Opti-
mizing Queries with Expensive Predicates”, Proc. ACM SIG-
MOD International Conference on Management of Data, pp.
267–276, Washington, DC, May 26–28, 1993.

[15] W. Klas: “A Metaclass System for Open Object-Oriented
Data Models”, Dissertation, Technical University of Vienna,
January 1990.

[16] W. Klas, K. Aberer, E.J. Neuhold: “Object-Oriented Model-
ing for Hypermedia Systems using the VODAK Modelling
Language (VML)”, in: Object-Oriented Database Manage-
ment Systems, pp. 389–434, NATO ASI Series, Springer Ver-
lag Berlin Heidelberg, August 1993 .

[17] W. Klas, E. J. Neuhold, M . Schrefl: ”Metaclasses in VODAK
and their Application in Database Integration”, GMD Techni-
cal Report No. 462, July 1990.

[18] C. Laasch, M. Scholl: ”Deterministic Semantics of Set-Orien-
ted Update Sequences”, Proc. 9th ICDE, pp. 4–13, Vienna,
Austria, April 19–23, 1993.

[19] D. Maier, J. Stein: ”Development and implementation of an
object-oriented dmbs”, Readings in Object-Oriented Data-
base Systems, pp. 167–185, Morgan Kaufman, 1990.

[20] B. McKenna, Volcano Query Optimizer Generator Manual,
University of Colorado, Boulder, November 1992.

[21] A. Mehta, J. Geller, Y. Perl, E.J. Neuhold: ”The OODB Path-
Method Generator (PMG) Using Precomputed Access Rele-
vance”, Proc. of the 2nd Int. Conference ob Information and
Knowledge Management (CIKM–93), Arlington, USA, No-
vember 1–5 , 1993.

[22] P. Muth, T. C. Rakow, G. Weikum, P. Brössler, C. Hasse: ”Se-
mantic Concurrency Control in Object-Oriented Database
Systems”, Proc. 9th ICDE, pp. 233–242, Vienna, Austria,
April 19–23, 1993

[23] L. Rowe, M. Stonebraker: ”The POSTGRES Data Model”,
Proc. 13th VLDB, pp. 83–96, Brighton, England, September
1–4, 1987.

[24] G. Shaw, S. Zdonik: “Object-Oriented Queries: Equivalence
and Optimization”, Proceedings of the 1st International
Conference on Deductive and Object-Oriented Database
Systems (DOOD ’89), pp. 264–278, 1989.

[25] D.D. Straube, M.T. Özsu: “Queries and Query Processing in
Object-Oriented Database Systems”, ACM Transactions on
Information Systems, vol. 8, no. 4, pp. 387–430, October
1990.

[26] R. Wolniewicz, G. Gräfe: ”Algebraic Optimization of Com-
putations over Scientific Databases”, Proc. 19th VLDB, pp.
13–24, Dublin, Ireland, 1993.

