
appeared in: Proc. of the 3rd International Conference on Information and Knowledge Management (CIKM) '94, Maryland, MD, 1994.1

Storing HyTime Documents in an Object-Oriented Database

Klemens B�ohm, Karl Aberer

GMD-IPSI

Dolivostra�e 15, 64293 Darmstadt

Germany

fkboehm, abererg@darmstadt.gmd.de

Abstract

An open hypermedia-document storage system has to meet
requirements that are not satis�ed by existing systems: it
has to support non-generic hypermedia document types1,
i.e. document types enriched with application-speci�c se-
mantics. It has to provide hypermedia-document access
methods. Finally, it has to allow the exchange of hyperme-
dia documents with other systems. On a technical level, an
object-oriented database-management system, on a logical
level, a well established ISO standard, namely HyTime, is
used to satisfy the requirements mentioned above. By means
of the example of documents incorporating hypertext struc-
tures we discuss the impact of taking such an approach on
representation and processing within the database system.

1 Introduction

In the recent past the proliferation of the hypertext para-
digm for representation of information has been facilitated
by technological advances. The main di�erence between
conventional documents and hypertext documents is that
in the �rst case the document structure as perceived by the
reader is linear. In the second case, there is a graph struc-
ture. To apply the hypertext paradigm hyperengines have
been developed. Hyperengines administer the hypertext-
speci�c structures such as nodes, links and anchors2 which
will be referred to as hyperobjects. They contain the realiza-
tion of generic operations. An example for a node operation
is the calculation of the transitive closure, i.e. the identi�ca-
tion of all nodes in a document that can be reached by link
traversal from that node. Hyperengines di�er in the internal
representation of the hyperobjects. Furthermore, operations
reecting the hyperobjects' semantics may be more or less

1In our terminology, with hypermedia documents the content
of the nodes may be multimedia data as opposed to hypertext
documents.

2The edges of such a kind of graph structure are called links. Links
do not necessarily link nodes in their entirety, but also structures
within nodes as, say, several words or sentences. The link ends are
called anchors [Con87].

This article is about
hypertext modelling.

so

Using examples
from the area of
hypertext
should ease un-
derstanding.

Figure 1: Sample Structure in an Argumentation Space

sophisticated. Usually systems for hypertext-document han-
dling consist of three layers, a storage layer, an application
layer and a presentation layer [DeS86]: hyperengines are the
middle layer. With some hyperengines, the storage layer is
made up with databases [ScS90, MaS92]. With other ones,
this is not the case [SSS93].

In hypertext-documents of di�erent types the hyperob-
jects have special semantics in addition to the canonical fea-
tures. In [SHT89] four spaces corresponding to the di�er-
ent design activities within an authoring process are identi-
�ed: the content space, the planning space, the argumen-
tation space and the rhetorical space. These spaces are
part of SEPIA, a cooperative hypermedia authoring envi-
ronment developed at our institute [Str+92]. An argumen-
tation space inter alia contains facts (`datum') and asser-
tions (`claim'). There are not only di�erent node types, but
also di�erent link types: a so-link is a directed binary link
from a datum to a claim. Figure 1 contains an example of a
so-link. Other link types in the argumentation space are the
contributes to-link and the contradicts-link. A contradicts-
link links two nodes with discrepant content. In the other
spaces the hyperobject's semantics likewise is special. In the
sequel we will refer to an argumentation-space structure, i.e.
a hypertext structure whose components are claims, so-links
etc. as an argumentation-space document.

In existing systems hyperobjects' document-type-speci�c
semantics tends to be hardcoded in the presentation layer.
Hence, exchanging hyperdocuments of non-generic types,
e.g. argumentation-space documents between hyperengines
or applying a hyperengine in di�erent contexts is not yet
conceivable. We for our part envisage a hyperengine sup-
porting hyperobjects with partly special semantics based on
a database system. We want to comply to a format for hy-
perdocuments satisfying the following basic requirements:
non-genericity, orientation towards hypermedia document
storage and processing, acknowledgement as an (interna-
tional) standard. Hence, we have chosen SGML/HyTime.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The problems we approach and solutions we give are fairly
orthogonal to the particular format chosen.

With SGML (`Standard Generalized Markup Language')
[ISO86, Her94] document types can be de�ned. In essence,
SGML document-type de�nitions (DTDs) are attributed gram-
mars specifying the document structure. However, nothing
is said about the semantics of document components, which
are called elements in the SGML context. The HyTime
Standard (`Hypermedia/Time-based Document Structuring
Language') [ISO92, NKN91] basically is a list of SGML
element-type de�nitions for, say, links or presentation sched-
ules. These element types are referred to as architectural
forms. Their semantics is �xed by the standard. - In this
article we focus on the basic link features the HyTime stan-
dard provides. This facilitates a comparison of our concepts
to conventional approaches to hyperdocument storage. We
are, however, not aware of any related work on this topic
dealing with di�erent hypertext-document types.

In this article we describe the database application frame-
work for HyTime-document storage we are currently work-
ing on. We concentrate on the following aspects.

1. In [ISO92, Koe+93] it has been mentioned that Hy-
Time processing can be accelerated by means of an
internal representation. Our objective is to develop
hypermedia-speci�c index structures to speed up ac-
cess operations. We will explain that having more than
one internal representation of HyTime-architectural forms'
instances to choose from may be advantageous.

2. We do not restrict ourselves to a set of �xed hypertext
structures: dynamic modi�cations of SGML/HyTime
documents shall be doable. With our approach both
the collection of documents and the set of document
types can be modi�ed at runtime.

3. Operations are part of the database application: In
other words, the database has the semantic control
over document components.

The platform on which realization will be based is an
object-oriented database-management system (OODBMS) -
the OODBMS VODAK developed at our institute [Kla+93,
KAN93]. By using a DBMS database features such as con-
currency control or querying capabilities are available. Even
though we limit ourselves to the description of the HyTime
hyperlink features other facets of hypermedia documents re-
ected in HyTime, like spatial and temporal relationships,
can be approached in the same way.

The structure of this article is the following: the next
section is an overview of the HyTime conception together
with examples from the hypertext area. In Section 4, our
database-based approach to HyTime-document handling is
discussed, and it is described how to realize the link features.
We review and classify related work in Section 5. Section 6 is
a brief summary, and we identify further research objectives.

2 HyTime

SGML. Structured documents may be seen as trees whose
edges indicate how components are contained in each other.
The tree corresponding to this article is depicted in Figure
2. This hierarchical structure is commonly referred to as
the logical document structure. The nodes are the elements,

document

abstract intro hytimetitle

author1 author2

...
...

authorlist affiliation title paragraph on
hyperengines

paragraph on
argumentation

spaces
...

... ...

...
...

Figure 2: Tree Structure Corresponding to this Document

<!ELEMENT asdoc (node|so|contra|contrib)*>
-- `asdoc' short for `argumentation-space

document', contra' is GI of 'contradicts-link',
'contrib' is GI of 'contributes_to-link'
(def.s omitted) --

<!ELEMENT node CDATA>
<!ATTLIST node id ID #REQUIRED

type (position|claim|datum)
#REQUIRED>

<!ELEMENT so EMPTY>
<!ATTLIST so claim IDREF #REQUIRED

datum IDREF #REQUIRED>
...

Figure 3: Fragment of an SGML Document Type De�nition
for Argumentation-Space Documents

the list of a node's children the content of the element. In-
ternal nodes are nonterminal elements. All elements have
a type, e.g. section or paragraph. With SGML the logi-
cal structure of documents of a certain type can be de�ned.
In essence the content model of an element type is a reg-
ular expression specifying how the content of an element
of that type may look like. An element-type name is also
called generic identi�er (GI). The element-type de�nitions
in a DTD may be completed by the de�nition of attributes.

Figure 3 contains a possible DTD for argumentation-
space documents. Lines starting with `<!ELEMENT' introduce
an element type together with its content model: instances
of asdoc contain a list whose elements are either instances
of element type node, so etc. CDATA is a terminal element
type more or less comparable to the data type STRING.
`<!ATTLIST' indicates the beginning of attribute de�nitions.
For instance, elements of type node have an attribute of type
ID and an attribute type of type (positionjclaimjdatum).
Attributes of type ID are unique identi�ers of the element
they belong to. An attribute of type IDREF is an ID refer-
ence, one of type IDREFS a list of ID references. EMPTY and
]REQUIRED are SGML keywords being of minor importance
in this context. Comments are enclosed in double hyphens.

<asdoc> <node id="n1" type=claim> Using examples
from the area of hypertext should ease
understanding.</node> <node id="n2" type=datum>
This article is about hypertext modeling.</node>
<so datum="n2" claim="n1"> </asdoc>

Figure 4: SGML Example - Fragment of a Document Cor-
responding to the DTD in the Previous Figure.

2

It is important to notice that with SGML it is basically the
logical document structure that is described by means of an
attributed grammar. One of the few provisions on the se-
mantic level that is part of the standard is the semantics of
attributes of type ID and IDREF. Figure 4 contains a frag-
ment of a document in conformance with the DTD from
Figure 3. In the sequel, we refer to documents conformant
to a DTD as instances of the DTD. The document corre-
sponds to the structure depicted in Figure 1. The example
also illustrates that the use of SGML is not limited to con-
ventional text documents, but instead can also be used for
hypermedia documents.

Basic Concepts of HyTime. The processing seman-
tics of conventional document-element types such as section,
chapter or paragraph is independent of the element type.
For instance, for all of these element types there might be a
method to display the textual content on the screen. With
hypermedia documents the element types' semantics is more
di�erentiated and not necessarily obvious: suppose that in
an argumentation space one may navigate through a so-link
only from the datum to the claim, but not in the oppo-
site direction. Constraints of that kind make up the brows-
ing semantics. The anchors of a contradicts-link, to give
another example, are equivalent: the browsing semantics
would therefore be di�erent from the browsing semantics
of instances of so-link. To reect the browsing semantics
of link elements in an SGML document one might introduce
an attribute bearing that information. The interpretation of
attribute values of that kind, however, is not standardized.
If an application were to process instances of a DTD with
such an attribute it would have to be adapted to the DTD
by hand. Suming up, SGML DTDs are not well-suited as
exchange formats for hypermedia documents. The HyTime
standard has been designed to overcome these problems: it
essentially is a list of SGML element-type de�nitions called
element-type forms or architectural forms. The special fea-
ture of HyTime is that architectural forms' semantics is �xed
by the standard. The semantics, e.g. the attributes' mean-
ing, is partly described in natural language, in part it follows
from the comment3 within the forms' de�nitions. Element
types in SGML/HyTime DTDs may be specializations of
HyTime element-type forms. The meaning of `specializa-
tion' in this context is twofold:

� The specialization of an element-type form may con-
tain additional attributes. On the other hand, it need
not contain all attributes of the element-type form.
Consider the case of hypertext documents being so
small that there is no need to navigate through them
because they can be viewed in their entirety. In that
case, the attributes extra and intra can be omitted.

� The ranges of the content and of the element-type
form's attributes may be subsets of the original ranges
in the HyTime standard.

A type de�nition for links, to continue the example,
should contain the information in which direction navigation
is possible. The relevant element-type form from the stan-
dard, whose name is ilink, has attributes to bear that kind
of information. The names of these attributes are extra and

3The name `comment' is misleading, because in HyTime comment
may have binding forces. Comments in HyTime element-type de�-
nitions can further restrict the range of attributes or of the content.
Hence, an SGML document whose DTD contains a HyTime element-
type form might be a correct SGML document, but not a valid Hy-
Time document.

<asdoc> <node id="n1" type=claim>Using examples
from the area of hypertext should ease
understanding.</node> <node id="n2"
type=datum>This article is about hypertext
modeling.</node> <so linkends="n2 n1" ...
extra="A E" ...> </asdoc>

Figure 6: HyTime Example - Fragment of a HyTime Docu-
ment Corresponding to the DTD in the Previous Figure.

intra. ilink (`independent link') is the element-type form
of which link element-type de�nitions should be specializa-
tions. In Figure 4, we have shown how such a structure can
be modelled using SGML only. We are now in the position
to illustrate how the same structure can be represented using
the HyTime element-type form ilink. Figure 5 contains the
relevant portion of the DTD. The fact that so is a specializa-
tion of ilink is indicated by setting the attribute HyTime to
ilink. Figure 6 is the document fragment corresponding to
Figure 1 as an instance of the HyTime-DTD. The attributes
displayed in the �gure (except for reftypewhich will be ex-
plained in the following paragraph) are inherited from the
element-type form ilink: anchrole introduces a label for
each anchor, in this case DATUM and CLAIM. reftype speci�es
the types of the elements referenced by another attribute:
"linkends anchors #SEQ" means that a value of linkends
must be conformant to the content model of anchors, i.e.
an admissible value of the linkends-attribute is the ID of a
datum-element, followed by the ID of a claim-element. The
attribute extra is to capture the browsing semantics. Here,
we will not explain the meaning of the attribute value. In
this context, it is su�cient to know that its meaning is spec-
i�ed by the standard.

Additional Terminology. As opposed to element-type
forms containing both content's and attributes' de�nitions
an attribute-list form is a list of attribute de�nitions only.
Again, the standardization of the attributes' semantics is of
importance. An architectural form is either an element-type
form or an attribute-list form. The attribute reftype men-
tioned previously is part of a HyTime attribute-list form.
An attribute of this type may be included in element-type
de�nitions in HyTime documents. Again, the attribute val-
ues' meaning, e.g. how to interpret the value "linkends
anchors #SEQ" is described in the standard. The HyTime
standard consists of several modules. Each of them contains
a list of architectural forms. The prologue of a HyTime doc-
ument contains so-called support declarations stating which
features, e.g. architectural forms, need be supported.

Note that attributes whose value is already �xed in the
DTD can be omitted from document instances, such as at-
tributes HyTime and anchrole in Figure 6.

3 Requirements on HyTime Document Storage

SGML. In [ABH94, BAH93] our approach to SGML doc-
ument storage has been described. There the following re-
quirements have identi�ed inter alia:

� It shall be possible to alter parts of the documents
without locking o� the whole document for other au-
thors. Namely, we envision our database application
to be a platform also for authoring systems. Multi-
authoring may be facilitated by concurrency control.

3

<!ELEMENT asdoc (position|claim|datum|so|contra|contrib)*>
<!ELEMENT claim CDATA>
<!ATTLIST claim id ID>
<!ELEMENT datum CDATA>
<!ATTLIST datum id ID>
<!ELEMENT so EMPTY>
<!ATTLIST so HyTime NAME #FIXED ilink

anchrole NAMES #FIXED "DATUM CLAIM"
linkends IDREFS #REQUIRED
reftype CDATA #FIXED "linkends anchors #SEQ"
extra ...>

<!ELEMENT anchors (datum, claim)>

Figure 5: Example - Fragment of a HyTime Document Type De�nition

� The DBMS must have semantic control over versions of
document elements and the generation of new version
objects.

� The usage of multimedia types shall be supported by
the underlying system [Rak+93].

� It is not worthwhile to be restricted to a �xed set of
document types. On the contrary, it shall be possi-
ble to administer arbitrary DTDs. Furthermore, it oc-
curs quite frequently that document types change over
time. DTD handling should be as simple as possible.

In [ABH94] we have claimed that these requirements can
best be met using an OODBMS. If document-�le objects
were left intact, full database functionality would not be
achieved. With a generic document fragmentation di�er-
ences between document types could not be reected.

HyTime. The requirements for SGML document stor-
age also hold true for HyTime-document storage. Another
additional requirement for HyTime documents is that the
semantics of HyTime document components, which is �xed
by the standard, should be reected in the database. The
database must have semantic control over HyTime objects
as a prerequisite for our approach to query optimization
[AbF93] and for semantic concurrency control [Mut93]. Be-
cause with HyTime operationality is extensive as compared
to SGML it is advantageous to put some e�ort into an ef-
�cient realization of the HyTime application-independent
processing.

4 A VODAK Application Framework for HyTime Docu-
ment Storage

The objective of this chapter is to introduce the approach to
HyTime-document storage we are currently pursuing. Ba-
sic concepts of the VODAK Modeling Language (VML) are
reviewed in the next paragraph. More detailed information
can be found in [KAN93].

Principles of the VODAK Modeling Language.
Objects have properties and methods. This is mentioned to
explain the di�erence between the usage of `property' and
`attribute' in this article: attributes are SGML attributes;
properties are the variable-like containers for the database
objects' data content. The type of an object is its property-
and method de�nitions. A class is a set of objects of the
same type. Objects of the same type need not necessar-
ily belong to the same class. A metaclass is a class whose

instances are themselves classes. Symmetrically, we refer
to the instances of the instances of a metaclass as metain-
stances. The de�nition of a class encloses the de�nition of
its instances' type. This type is called the insttype of the
class. A metaclass de�nition may enclose both the de�-
nition of its instances' type and of its metainstances' type.
This second type is the instinsttype of the metaclass. An ob-
ject has properties and methods that are de�ned as part of
its class's insttype and its metaclass's instinsttype. Just as
classes contain objects with common characteristics, meta-
classes are in use to model common characteristics of classes,
e.g. semantic relations between classes such as aggregation
or specialization. In the context of role specialization, for
example, a real-world object has several aspects [SeE90].
For instance, an object might have the generalization as-
pect `person' and the specialization aspect `patient'. In
the modeling there are two classes PERSON and PATIENT.
Two database objects correspond to each real-world object
of that kind: an instance of PERSON and one of PATIENT.
The instances of PERSON have person-speci�c properties and
methods, the ones of PATIENT patient-speci�c ones. Class
PATIENT is a role-specialization class, its instances are (role-
)specialization instances. Analogously, PERSON is a gen-
eralization class, its instances are generalization instances.
There is a metaclass whose instances are role-specialization
classes and whose metainstances are role-specialization in-
stances. The insttype and instinsttype of this metaclass
contain the property- and method de�nitions that are nec-
essary to administer a role-specialization relationship on the
class- and on the instance-level, respectively. If the same se-
mantic relationship occurs between other classes, e.g. CAR

and SERVICE VEHICLE, one can fall back upon that meta-
class, and the relationship need not be modeled anew.

SGML Layer. Our VML schema for SGML/HyTime
documents consists of several layers. Layers stand for the
di�erent levels of specialization. A document element being
instance of a HyTime element-type form has two aspects:
the SGML aspect and the HyTime aspect.4 Within the
SGML layer there is a corresponding class for each nonter-
minal element type. We call these classes SGML element-
type classes. In Figure 7 there are element-type classes
FOOTNOTE, SECTION, CHAPTER, SO-LINK - based on the
assumption that the DTD contains element-type de�nitions
footnote, section, chapter, so-link. In Figure 7, classes
are represented as ellipses, "normal" objects are just dots.

4Actually, SGML elements already have two aspects in our mod-
eling, as explained in the previous paragraph, but in this article we
abstract from this facet of the modeling.

4

instance–of

so-link XY
as
SGML-object

HyTime Layer

CHAPTER SO-LINK FOOTNOTE

NONTERMINAL

semantic relationship

TERMINAL

role-specialization-of

SECTIONFOOTNOTE SO-LINK

CLINK ILINK

CDATA

SGML Layer

so-link XY
as
HyTime-object

Figure 7: Overview of the Modelling

The plain arrow connects an object with its class. The
dashed arrows are from a role-specialization class to the cor-
responding generalization class or from a specialization in-
stance to the generalization instance. One requirement is
that DTDs may be inserted dynamically into the document
base as they are not known ahead of time. Hence, element-
type classes may be generated dynamically. Classes that
are generated dynamically are represented by a dashed-line
ellipse. Dynamic generation of element-type classes is possi-
ble because the instances of element-type classes are of the
same type, independent from their particular element-type
class. This in turn is possible because the processing seman-
tics of nonterminal SGML-element types is generic, leaving
aside the HyTime context. Terminal element types such as
CDATA are DTD-independent. The corresponding classes to
comprise, say, CDATA elements are part of the schema, e.g.
class CDATA in Figure 7. The instances of di�erent terminal
element-type classes, on the other hand, are not of the same
type: CDATA elements, to give an example, have a method to
display textual content that does not necessarily make sense
for other terminal element types, especially if datatypes for
continuous media data are involved.

Interpreting SGML attributes of a freely-de�ned type is
not part of the system. This is di�erent for attribute types
being part of ISO 8879-1986 such as the ones of type ID
or IDREF. Experience shows that the non-hierarchical docu-
ment structure induced by these attributes is of minor im-
portance with conventional textual documents. This is the
reason why the ID/IDREF-semantics will be used to illustrate
how HyTime features shall be realized.

HyTime Layer. A HyTime document element has both
SGML semantics and HyTime semantics: the SGML seman-
tics, to give examples, is reected by operations to navigate
through the parse tree or to verify whether an element's
content conforms to its content model. Operations reect-
ing HyTime semantics are of course di�erent for individual
architectural forms. In the database there are two objects
corresponding to a HyTime document element, an SGML
object and a HyTime object. The HyTime object is role-
specialization instance of the SGML object. We call the
role-specialization classes HyTime element-type classes. An

overview of the modeling is in Figure 7. As classes in the
SGML layer are created dynamically, this must also be the
case for their role-specialization classes, i.e. classes in the
HyTime layer. In principle, there is a metaclass for each
HyTime element-type form in the HyTime layer. E.g. ILINK
in Figure 7 corresponds to ilink, CLINK to clink.5 The
de�nition of HyTime-speci�c operations is part of these Hy-
Time metaclasses' instinsttype. Just as SGML element-type
classes are essentially container for elements of the same
type, HyTime element-type classes are container for the Hy-
Time role-specialization instances: they contain the special-
izations of the SGML objects of one element type. Classes
and objects in the HyTime layer are generated only when
the relevant support declarations are part of the HyTime
document's prologue.

It has been mentioned previously that role-specialization
classes are instances of a metaclass for role specialization.
This metaclass provides the properties and methods to ad-
minister role-specialization relationships for their instances
and metainstances. On the other hand, however, meta-
classes in the HyTime layer contain the type de�nition of
the HyTime objects, i.e. HyTime-speci�c properties and
methods. Hence, the type de�nitions in HyTime metaclasses
must provide both properties and methods for both facets.

HyTime Index Structure. Document exchange for-
mats need not necessarily be identical with the internal
format. Namely, system peculiarities must be taken into
account to �nd the optimal format. Instead of transform-
ing the document into a format di�erent from the one for
SGML documents we suggest a more di�erentiated view:
transforming documents into an internal format makes in-
cremental changes more di�cult. In other words, a view
on this internal format would have to exist. With `inter-
nal format' we refer to a format di�erent from the one for
SGML documents. By introducing such an internal format,
SGML functionality would have to be adapted. With our
current approach to SGML-document storage SGML opera-

5 ilink and clink are the element-type forms being part of the Hy-
Time Hyperlink module. ilink has already been explained to some
degree. Here we just mention that clink ("contextual link") is also a
link structure, but one simpler than ilink.

5

tions are integrated into the modelling in a natural way. To
solve this problem we are developing HyTime-speci�c index
structures: on the one hand the SGML format is preserved,
on the other hand HyTime functionality is accelerated. Just
as conventional index structures are adapted to changes of
the data, modi�cation of the HyTime-index structures like-
wise is triggered by update operations on the document.

Of course it would be possible that the SGML format, i.e.
the properties of the objects in the SGML layer, could serve
as a basis for the processing of the HyTime objects. Without
the index structures the HyTime application-independent
processing would have to rely on the SGML format, i.e. the
properties of the SGML objects that at the same time are
generalization instances of HyTime objects. For instance,
consider a method for the element-type form ilink that,
given an anchor-role name, returns the corresponding an-
chor. Based on the SGML format, its execution would be
as follows: �rst, the SGML object's property corresponding
to the attribute linkends would be accessed. By parsing
the property value the character sequence corresponding to
the ID of the anchor object can be determined. Next, the
SGML objects are searched for the one with that ID. It is
returned when found. However, in order to keep read-access
operations cheap, HyTime attributes and content are not
only stored as properties of the SGML objects, but also a
second time as properties of the HyTime objects. For this
redundant storage, another format is used. With our system
incremental updates shall be possible. Whenever an SGML
object's property is modi�ed the corresponding properties
of the HyTime object are also updated. This conception
corresponds to general indexing mechanisms in databases:
read operations are accelerated by means of redundant stor-
age. When the data is altered the index structure is updated
correspondingly. In the sequel, we exemplify these notions
by means of the HyTime link features. For the moment, we
limit ourselves to a basic set of features. We concede that
with this restriction full HyTime expressiveness is not yet
achieved. However, to model a basic set of hypertext struc-
tures, this is su�cient. Besides that, it is adequate to deal
with the document structures of SEPIA.

Modeling HyTime Link Features. The instances
of the HyTime element-type form ilink have an attribute
linkends of type IDREFS. An SGML object representing
such an element has a property containing the attribute
value. The specialization instances, i.e. the HyTime ob-
jects, have a corresponding property whose type is a list
of OIDs6: each OID corresponds to an ID reference. It is
important to notice that while OIDs identify database ob-
jects, SGML attributes of type ID or IDREF identify SGML
document components, i.e. entities on another logical level.
When the linkends attribute value of the corresponding
SGML object is altered that list is updated. I.e. the OIDs
of the anchor objects are identi�ed and entered into the list.
Thus, searching for the link anchors is not necessary within
read operations, but instead direct access is possible. By ex-
plaining that SGML IDs can be replaced by VML OIDs we
rather want the di�erent conceptual levels to become evi-
dent: SGML attributes (e.g. the linkends attribute) are on
a level that we call the logical one, the VML representation
(such as the list of OIDs) is on a level that we refer to as the
physical one. With HyTime attributes from other HyTime
modules the di�erence between these conceptual levels is

6The type of the logical units' identi�er in the VODAK OODBMS
is referred to with OID ("Object Identi�er").

sometimes hardly perceivable. Sometimes the mapping be-
tween the levels is less de�nite and depends to a stronger
degree on the modeling language's constructs.

HyTime Attribute-List Forms. In this paragraph
we briey describe the way HyTime attribute-list forms are
dealt with. The attribute reftype is used as an exam-
ple. This particular HyTime attribute is described because
it is - just as ilink - indispensable to model hypertext
structures in HyTime. The attribute reftype is not an at-
tribute of individual elements. It rather is a supplement of
element-type de�nitions having an attribute of type IDREF.
Thus, the reftype-semantics is element-type-speci�c: there
is no need for a role-specialization object for each instance
of the SGML element-type class. Instead one single role-
specialization object of the SGML element-type class as a
whole is su�cient to capture the reftype-semantics. The
reftype-semantics is basically reected in a method check-
ing whether the instance of the IDREF attribute conforms to
the reftype-value. The method is triggered whenever the
corresponding IDREF attribute is updated.

"SGMLCorrectness" vs. "HyTime Correctness".
An SGML document that is correct need not necessarily be
conformant to the HyTime standard. For instance, leaving
aside the compulsory HyTime comment, the ilink attribute
anchrole is a list of names, and the attribute linkends is a
list of SGML IDs. The fact that the number of names must
equal the number of IDs is stated by the HyTime comment.
An element with di�erent numbers of anchor-role names and
SGML IDs may be correct according to the SGML DTD.
It is, however, not correct according to the HyTime stan-
dard. In that sense, we provide for agging HyTime ob-
jects as correct or not correct. We see no other way to
ensure that methods relying on the internal format of the
HyTime attributes work correctly. Checking conformance
of HyTime element-type forms' instances to the restrictions
in the HyTime comment is part of the HyTime application-
independent processing.

Further Re�nements of the HyTime Layer. Up
to this point it has been suggested that there is one meta-
class for every HyTime element-type form. However, it is
conceivable to have more than one metaclass corresponding
to an element-type form. One reason might be to improve
performance, another one to extend functionality. A special
kind of independent links, to give an example, are binary
links, i.e. links with two anchors. First, assume that the
number of anchors is bigger than two. In that case, admin-
istering the anchors in the HyTime object by using a list is
adequate. If, however, there are two anchors using a list as
the relevant property type of the HyTime object is gener-
ally slower than just having two properties for each anchor.
On the other hand, there may be methods that are special
for a particular link type. For instance, consider a method
getOtherAnchor whose parameter is one anchor and whose re-
turn value is the other one. It makes sense for binary links
only. Selecting the right metaclass, i.e. the appropriate in-
ternal format, can be accomplished by the system.

The HyTime semantics is not only reected in meth-
ods of HyTime architectural forms' instances. There are
no element-type forms for nodes, i.e. elements referenced by
ilink-instances, to give an example. Nodes may be elements
of arbitrary types. On the other hand, nodes have process-
ing semantics, too. An example of an operation capturing

6

the semantics would be methods to calculate the transitive
closure, another example would be a method identifying a
node's adjoining links, possibly only links of a certain type.7

In analogy to role-specialization objects in the HyTime layer
bearing the semantics of HyTime element-type forms there
are role-specialization objects with node semantics for all el-
ements in documents with the ilink support declaration. In
other words, in addition to metaclasses such as ILINK there
are metaclasses such as INVERSE ILINK. Again, the metain-
stances inherit the node semantics from the metaclass.

5 Related Work

Research in various areas has contributed useful �ndings. In
this section, they are brought in relation to our work.

Structured Documents. The relationship between
structured documents and hypertext structures has been in-
vestigated before, e.g. in [QuV92]. With structured docu-
ments the structure of the document components is hierar-
chical. This need not be the case with hypertext structures.
The editor Grif described in [QuV92] can handle both hier-
archical and non-hierarchical document structures accord-
ing to arbitrary DTDs. A proprietary format is used, but
on the conceptual level that DTD corresponds more or less
to SGML DTDs. While we are working on a storage system,
Grif is an editor: because with an editor documents are only
edited and not processed, the question whether HyTime-
like concepts, i.e. certain document components' semantics,
have been taken into account would not make sense.

Hyperengines. There exists a broad spectrum of data
models for hypertext. Based on these, various hyperengines
have been built. [CaG88, ScS90, MaS92, SSS93] is merely
a selection. The data models reect the generic, document-
type independent semantics of document components from
the hyperengine developers' point of view. With these hy-
perengines it is tacitly assumed that the document-type-
speci�c semantics is part of the presentation layer, i.e. the
application on top of the hyperengine. On the other hand,
with the HyTime approach not the entire document-type-
speci�c semantics needs to be realized anew for every docu-
ment type by reimplementing the presentation layer. Namely,
in parts it is already contained in the element-type de�ni-
tions - the ones being specializations of HyTime architec-
tural forms. One objective of a large part of these articles
was a re�nement of the generic semantics, which is reected
in the operations. In [MaS92], for example, several kinds of
delete-operations for nodes are described: in case of "reck-
less delete" a node is deleted together with all links referenc-
ing it; in case of "content-based delete" a node is deleted,
and links that previously referenced it now contain an in-
valid reference; and in case of "considerate delete" a node
is deleted after verifying that there are no links referencing
it. Operations such as these could be part of the HyTime
application-independent processing for nodes. I.e. metain-
stances of INVERSE LINK could be deleted in three di�erent
ways. The objective of our work, however, is not to polish
the operationality reecting the semantics of hypermedia

7With regard to the nodes' semantics a deeper view is advanta-
geous. Generic operations such as the general calculation of the tran-
sitive closure are part of the SGML semantics: this is because to this
end only the attributes of type ID/IDREF are needed. With HyTime
the functionality may be more di�erentiated, e.g. the transitive clo-
sure for certain link types or anchor types can be calculated: this
would be part of the HyTime semantics.

document components. Instead we want to investigate how
to integrate it into the SGML/HyTime context.

Extensible Hypertext Systems. Taking into account
the variety of existing hyperengines in [WiL92] it is observed
that no internal structure succeeded to be a standard or
quasi-standard. The authors follow that further experimen-
tation with hyperengines is necessary. Allegedly, this is con-
siderably eased with the system described: in principle a col-
lection of classes is made available from which hyperengines
can be constructed. In the article the construction of two
existing engines is summarized. In clear contrast to work
discussed in the previous paragraph maximal exibility is
announced. The reverse of the medal is that one still has
to do implementation work to arrive at a new hyperengine.
However, we claim that the quest for the optimal internal
structure is not the only core problem. Another important
problem is to determine appropriate exchange formats for
hypertext-documents. Furthermore, the optimal structure
certainly on the one hand depends on the storage layer and
on the other hand on the frequency of the di�erent kind of
operations. Hence, we claim that there simply is not just
one optimal structure. In a way, our approach is between
this one and the conventional hyperengines described in the
previous paragraph: exibility is achieved by processing ar-
bitrary HyTime DTDs. On the other hand, nothing needs
to be reimplemented.

HyTime. A running system in the HyTime area is
described in [Koe+93]: processing of a HyTime document
consists of three phases. First, there is an SGML parsing
process. Second, the HyTime engine called HyOctane does
additional checking and creates internal structures. Third,
the document is presented. Our long-term objective is to
realize a relevant part of the HyTime semantics as part of
a database application. With HyOctane databases are used
as mere storage systems. It seems that full database func-
tionality has not been envisaged.

An important question in this context is the one about
HyTime's limits. As opposed to MHEG [KrC92, ISO93,
Pri93] information concerning the presentation, e.g. whether
in the user interface buttons or sliders are to be used, is not
part of the document. In other words, a consensus on what
a document is has not yet fully emerged. On another level,
we see the problem that only a fragment of hypermedia-
document components' semantics can be mapped on the
database objects' attributes. There is ongoing research con-
cerning documents components' semantics that cannot be
expressed with HyTime. In [ZhP92], to give an example, it
is described how can be applied to describe the browsing
semantics of hyperdocuments. On the other hand, in Hy-
Time there are the attributes extra and intra to capture
the browsing semantics. With these attributes it is merely
the last traversal action that can be taken into account to
determine the traversal actions allowed. The exibility of
is naturally higher: a sequence of traversal actions can be
evaluated to identify those actions. The complexity of the
HyTime standard would considerably increase if such infor-
mation was also given within the document. A question
that cannot unmistakably be answered is what part of the
semantics, e.g. the browsing semantics, should be part of
the document. It is also conceivable to leave this to the
application or the "reader's" preferences.

7

6 Conclusions

We have outlined our approach towards HyTime document
storage. The HyTime standard is a `meta' standard: it can
be used to de�ne exchange formats for hypermedia docu-
ments. Some of the HyTime link features have been intro-
duced. In the database, there are classes corresponding to el-
ement types derived fromHyTime architectural forms. They
contain the document components with operations reect-
ing the particular HyTime semantics. The internal structure
of HyTime-database objects can be compared to indexing
mechanisms within databases, thus facilitating fast access.

We rely on two VODAK conceptions: the distinction be-
tween types and classes and the notion of metaclasses. In
principle each architectural form corresponds to a metaclass
which, in turn, contains the type de�nition of its instances
and metainstances. The instances, "normal" application
classes, are containers for document components of the same
type - and therefore with the same semantics. These classes
can be generated dynamically. Our objective has been not
to be restricted to a �xed set of document-type de�nitions.

The current stage of our work is the implementation
phase. However, integrating the HyTime Scheduling Module
into our database application imposes yet unsolved problems
on the database architecture.

Acknowledgement. We thank J�urgen W�asch for help-
ful comments.

References

[AbF93] K. Aberer, and G. Fischer, "Object-Oriented Query
Processing: the Impact of Methods on Language, Architecture
and Optimization", Arbeitspapiere der GMD No. 763, Sankt
Augustin, 1993.

[ABH94] K. Aberer, K. B�ohm, and C. H�user, "The Prospects of
Publishing Using Advanced Database Concepts", in Proceed-
ings of Conference on Electronic Publishing, April 1994, eds.,
C. H�user, W. M�ohr, and V. Quint, pp. 469-480, John Wiley &
Sons, Ltd., 1994.

[BAH93] K. B�ohm, and K. Aberer, "Extending the Scope of
Document Handling: the Design of an OODBMS Application
Framework for SGML Document Storage", Arbeitspapiere der
GMD No. 811, Sankt Augustin, 1993.

[CaG88] B. Campbell, and J.M. Goodman, "HAM: a General
Purpose Hypertext Abstract Machine", in Communications of
the ACM, July 1988, Vol. 31, No. 7, pp. 856-861.

[Con87] J. Conklin, "Hypertext: an Introduction and Survey",
in IEEE Computer, 20 (9), Sept. 1987, pp. 17-41.

[DeS86] N. Delisle, and M. Schwartz, "Neptune: a Hypertext
System for CAD Applications", in Proceedings of the ACM
SIGMOD'86 Conference, Washington DC, U.S.A., May 1986,
ACM Press, pp. 132-143.

[Her94] E. van Herwijnen, Practical SGML (second edition),
Kluwer Academic Publishers, 1994.

[Hyp92] Proceedings of the ACM Conference on Hypertext, Mi-
lano, Italy, 1992, ACM Press.

[ISO86] Information Processing - Text and O�ce Systems -
Standardized Generalized Markup Language (SGML), ISO
8879-1986 (E), International Organization for Standardization,
1986.

[ISO92] Information Technology - Hypermedia/Time-based
Structuring Language (HyTime), ISO/IEC 10744, 1992 (E),
International Organization for Standardization, 1992.

[ISO93] Information Technology - Coded Representation of
Multimedia and Hypermedia Information Objects (MHEG),
ISO/IEC JTC 1/SC 29, International Organization for Stan-
dardization, 1993.

[KAN93] W. Klas, K. Aberer, and E. Neuhold, "Object-Oriented
Modeling for Hypermedia Systems Using the VODAK Model-
ing Language (VML)", in Object-Oriented Database Manage-
ment Systems, NATO ASI Series, Springer Verlag Berlin Hei-
delberg, August 1993.

[Kla+93] W. Klas et al., "VML - The VODAK Model Language
Version 3.1", Technical Report, GMD-IPSI, July 1993.

[Koe+93] J.F. Koegel et al., "HyOctane: a HyTime Engine for an
MMIS", in Proceedings of the ACM Conference on Multimedia
1993, ACM Press, pp. 129-136.

[KrC92] F. Kretz, and F. Colaitis, "Standardizing Hypermedia
Information Objects", in IEEE Communications Magazine,
May 1992, pp. 60-70.

[MaS92] M. Marmann, and G. Schlageter, "Towards a Better
Support for HypermediaStructuring: the HYDESIGN Model",
in [Hyp92], pp. 232-241.

[NKN91] S.R. Newcomb, N.A. Kipp, and V.T. Newcomb, "The
"HyTime" Hypermedia/Time-based Document Structuring
Language", in Communications of the ACM, Nov. 1991, Vol.
34, No. 11.

[Mut93] P. Muth et al., "Semantic Concurrency Control in
Object-Oriented Database Systems", in IEEE Data Engineer-
ing 1993, Vienna, Austria.

[Pri93] R. Price, "MHEG: an Introduction to the Future Interna-
tional Standard for Hypermedia Object Interchange", in Pro-
ceedings of the ACM Conference on Multimedia 1993, ACM
Press, pp. 121-128.

[QuV92] V. Quint, and I. Vatton, "Combining Hypertext and
Structured Documents in Grif", in [Hyp92], pp. 23-32.

[Rak+93] T.C. Rakow et al., "Using Object-Oriented Database
Systems for Multimedia Applications", in it + ti - Informa-
tionstechnik und Technische Informatik, Themenheft "Multi-
media/Hypermedia", Teil 2, Oldenbourg, Munich, June 1993,
pp. 4-17.

[ScS90] H. Sch�utt, and N.A. Streitz, "Hyper Base: a Hyperme-
dia Engine Based on a Relational Database Management Sys-
tem", in A. Rizk, N.A. Streitz, and J. Andr�e (eds.), Hypertext:
Concepts, Systems, and Applications (ECHT'90), Cambridge
University Press, pp. 95-108.

[SeE90] A. Sernadas, and H.-D. Ehrich, "What is an Object,
After All", in R. Meersman, W. Kent, and S. Khosla (eds.),
Object-oriented Databases: Analysis, Design and Construc-
tion, North-Holland, 1991, pp. 39-69.

[SHT89] N.A. Streitz, J. Hannemann, and M. Th�uring, "From
Ideas and Arguments to Hyperdocuments: Travelling through
Activity Spaces", in Proceedings of the Second ACM Confer-
ence on Hypertext (Hypertext'89), ACM Press, pp. 343-364.

[SSS93] D.E. Shackelford, J.B. Smith, and F.D. Smith, "The Ar-
chitecture and Implementation of a Distributed Hypermedia
Storage System", in Proceedings of the Fifth ACM Conference
on Hypertext (Hypertext'93), Seattle, U.S.A., Nov. 1993, ACM
Press, pp. 1-13.

[Str+92] N.A. Streitz et al., "SEPIA: a Cooperative Hypermedia
Authoring Environment", in [Hyp92], pp. 11-22.

[WiL92] U.K. Wiil, and J.J. Leggett, "Hyperform: Using Exten-
sibility to Develop Dynamic, Open and Distributed Hypertext
Systems", in [Hyp92], pp. 251-261.

[ZhP92] Y. Zheng, and M.-C. Pong, "Using Statecharts to Model
Hypertext" in [Hyp92], pp. 242-250.

8

