
CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

Designing a User-Oriented Query Modification Facility
in Object-Oriented Database Systems

K. Aberer, W. Klas, A. L. Furtado1

GMD-IPSI, Dolivostr. 15, 64293 Darmstadt, Germany,
E-Mail: {aberer, klas, furtado}@darmstadt.gmd.de

Abstract. The introduction of user-assisting features into database systems is
discussed along two stages. The first stage involves a basic facility that can be used
with standard database systems, whereas in the second stage such features are
expanded in order to cope with object-oriented systems, adopting semantically
richer data models. Examples involving categorization and role-specialization
semantic hierarchies illustrate the discussion. A class/metaclass architecture, such as
that of the VODAK database system, an algebraic view of query processing and an
extension of the object-oriented data model by rule systems are shown to be
particularly suitable to design and implement user assistance on the database schema
level.

1 Introduction

As increasingly complex databases are designed, end users may find them too difficult
to use. One runs the risk to produce systems that are rich in terms of the information they
contain, but that no one is able to use appropriately. The problems of accessing data in a
database system are manifold: The user may not have the right conceptual understand-
ing of what is in the database, he may not know or may not be able to use the right ter-
minology to exactly name the constituents of a database schema (e.g., property names,
class and type names), or he even may not know exactly how to express his information
needs in terms of the query language offered by the database system. These problems
are also well known in the framework of information retrieval and several approaches
have been proposed to overcome these difficulties. An obvious solution is to interpose
between user and system a module that acts as an ‘‘assistant”. Such an assistant can help
the user in formulating requests by means of a query statement which is then submitted
to the database system, or it can modify the original query by means of abstractions or
refinements, thus submitting queries which result in more information than the original
query would have provided. In general, one can identify the following kinds of ap-
proaches for this problem: (1) Interactively support the user in formulating the query so
that the submitted query be the best possible approximation to the user’s information
need. Then, process the query using conventional query processing techniques and re-
turn the exact result for the formulated query. The presentation of the result may be en-
hanced in order to make the results more understandable to the user. The whole process
can be iterated in a session until the user is satisfied. (2) Take a query formulated by the
user in terms of a given query language and modify the query before processing it. The
modification of the query may be based on two phases: an abstraction which leads to a
1) Visiting from the Departamento de Informatica of the Pontificia Universidade Catolica do Rio de
Janeiro.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

relaxed query, i.e., it will result in a broader answer than the original query; a refinement
which leads to a set of more concrete queries, whose answer is better focused on the
user’s interests.

In [12] the problem of facilitating the access to a database system is approached by
supporting the formulation of queries using fuzzy and associative knowledge about the
terminology used to set up a database schema. The goal is to construct an assistant
which allows to explore a database schema and to get suggestions for formulating exact
queries as required by an underlying database system. This approach corresponds to the
solutions of class (1). [2] presents an interesting approach for incorporating neighbor-
hood information and associative relationships between objects to answer user requests.
The approach – which is of type (2) – is based on the idea that one can use abstractions
(type/class hierarchies) from the original data to broaden a request by transformations
of the original query such that the relaxed query is posed against the abstractions instead
of the original data. A specific operator called nearer subsequently allows to narrow the
relaxed answer. A major drawback of this approach is that a lot of additional informa-
tion is needed to build the abstractions as well as the knowledge base containing the
additional information about associations. The abstractions are hard-wired into the sys-
tem, and no user-oriented query processing is supported due to the lack of a user model.

In this work, where the type (2) approach is also taken, we first demonstrate how to
introduce a basic user-assisting facility, which is compatible with standard databases.
We then show how to gradually adapt and expand it, to achieve a more advanced
assistant module, able to work on – and take full advantage of – systems providing
higher level semantics and, in particular, following object orientation. Our description
of the basic facility uses the experience gained with a prototype, developed as part of a
larger project (NICE) [8] that investigates knowledge-based methods to create
cooperative information systems. The prototype was implemented on top of an SQL
relational database, using PROLOG for the rule-based algorithms. The progressive
upgrading of the basic facility towards the assistant module is part of the database proj-
ects at GMD-IPSI. Prominent among the features of the VML data model [10], which
underlies the VODAK database system developed at GMD-IPSI, are the notions of
classes and metaclasses, and the provision made for the specification of rules for equiv-
alence of VML-expressions. With the help of metaclasses, it is possible to represent to a
large degree the general knowledge built into semantic hierarchies, such as specializa-
tion/generalization [2,13]. With the help of equivalences, it is possible to perform rule-
based transformations of database queries. Moreover, classes and metaclasses have
been implemented in VODAK in a way that promotes extensibility and modularity, the
latter feature being indispensable for efficiently structuring large sets of rules. In spite
of the fact that our project refers to a specific system, the guidelines specified are largely
applicable to object-oriented database systems supporting similar features.

The text is organized as follows. Section 2 summarizes our basic approach to user-as-
sisting query interfaces. Section 3 is a short account of properties of specialization /
generalization, as e.g. supported by the VODAK data model, and illustrates the basic
idea how knowledge about specialization / generalization relationships can be ex-
ploited for user assistance. Section 4 briefly introduces the basic concepts of the VO-
DAK model language as far as needed in our discussion. Section 5 gives the approach to
design and implementation of the advanced assistant module for query modification in
VML. Conclusions and directions for further work are the objective of section 6.

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

2 Review of Basic User-Assisting Query Interfaces
Since, in general, users do not pose questions to a database system out of idle curiosity,
the first objective of a user-assisting query interface should be to identify the goals and
plans of the current user. A complementary objective is to keep his understanding of the
system in harmony with the intentions of the designer, so that he may fully and
efficiently have access to the existing information. In the following we give a short ac-
count the basic approach for a user-oriented context-sensitive query processing.

2.1 Forms of Assistance

To assist the user with respect to a query, the system may offer, among others, the fol-
lowing services [16]:

– correct the query
– complement the query, usually expanding but sometimes restricting it to a more

useful scope
– provide alternatives
– offer to monitor the database and warn the user when a specified state is reached
– explain the reasons why some situation does not hold
– undo possibly wrong assumptions of the user (misconceptions)
– prevent wrong conclusions that the user may draw from an answer

(misconstruals)
– make the answers more understandable

A constant danger is the possibility to become “over-cooperative”. It is imperative to
keep the focus on what is indeed relevant to the user’s purposes. That means, that a spe-
cific user may want to get a specific kind of assistance in a situation, while another user
may not want to get the same assistance in the same situation. This obviously calls for
user-oriented assistance in contrast to general assistance which does not consider the
individual needs of a user.

2.2 Rule-driven Query Modification

A usual strategy [3], which we also adopt, is to perform query modification, a device
introduced with the INGRES project [15]. Query modification involves expression ma-
nipulation for which a rule-driven approach offers itself, as followed e.g. in [8]. Rules
may come from different sources; they can be:general, application dependent or user
dependent. Rules may be applicable at three different phases:
pre-rules: before the query is processed, in order to correct and complement the original

query.
succ-post-rules: after successful processing, in order to complement the answer

through additional queries.
fail-post-rules: after failed processing, in order to try alternatives; and if failure persists,

to explain.
Example 1. Let us illustrate this approach by an example as reported in [8]. The format
of the rules for query modification is there given in a PROLOG-like notation:

<rule_type> (<in_pattern>, <out_pattern>, <action>) � <condition>
where the components are as stated below:
<rule_type> one of ��������� ��		��
�������� �����
�������,
<in_pattern> to match the original query, if the rule is applicable,

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

<out_pattern> from which the new query is built,
<action> procedure to finish the building process,
<condition> finishes testing applicability.
To apply one rule to the original query, the algorithm first determines if the rule
currently being considered is applicable. In this case it then proceeds to create the new
query. To determine if the rule is applicable, it performs two steps:
(1) it checks whether the ����������� matches the original query; the pattern-

matching process is done through unification as defined in logic programming;
(2) it executes �	
�����
��, which is a logical expression whose terms may check

context-sensitive conditions. The characterization of context will be given later.
After these two steps, the �
���������� may already have been converted into the new
query, although in general it will be necessary to
(3) execute �	��
��, which is a procedure able to access the context. �

2.3 Exploiting the Context of the Query

What we call ‘‘context” consists of conventional and non-conventional database
components. Typical conventional components we consider the factual database and
data dictionary information, like the conceptual schema, the user’s external schema,
and authorization and integrity constraints. The non-conventional components can in-
clude models of the application and the user, logs of user sessions, or typical users’
plans.

Example 2. Let us illustrate the context-free pattern-matching process and the con-
text-sensitive execution of rules according to the query modification approach taken in
Example 1. We consider a failed query to find out if there are places on a flight from city
������� to city ������ by carrier ��� on ������. Assume the existence of a fail-post-
rule to ask about alternative flights. Let the original query and the two patterns in the
rule be, respectively:
original query: ������������������������������ �
�����������: �������� �!�

�
����������: ��������"�#�
Unifying the original query with ����������� binds the variables of the latter as:
X = amsterdam, Y = berlin, Z = klm, T = may.5th.

Note that consistent substitution requires that � and � in �
���������� be bound to the
same values. Furthermore no values were assigned to " and #, which therefore remain
free variables. Now assume that �	
�����
�� can decide from the context whether a
different flight would be admissible in view of the user’s goals; in case this is true, the
rule is indeed applicable (otherwise it would be dropped at this point). Finally, assume
that �	��
�� can find from the context whether the ticket for the original flight is
endorsable, in which case it will unify # with !, so that the new query will be:

fly(amsterdam,berlin,W,may.5th) ?
Otherwise it will preserve the carrier originally indicated (by unifying " with) and try
another date:

fly(amsterdam,berlin,klm,V) ? �
Algorithms realizing rule-driven query-modification are completely generic, since
they do not specify the transformations. This task is deferred to the rules. One may start
with just a few rules, accessing a context with few non-conventional components. For
example, we feel that at least some primitive form of session log should be maintained,

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

as a single query is not a convenient unit for cooperativeness/assistance [14]. As the
context is enriched, new rules may be added to take advantage of whatever additional
knowledge is available. Rules can rely on tools extracting or utilizing knowledge about
the context, e.g.:

– a query-the-user module, whereby the system can directly learn about users’
preferences [7];

– a plan-generation algorithm, able to construct plans as sequences of instances of
operations which, as noted, are specified in a STRIPS-like style [4];

– an algorithm to extend unification to frames and to perform most specific
generalization over terms and frames;

– a session manager to keep the log, and support an active environment through the
creation of demons to perform monitoring tasks.

A prototype of a cooperative/assisting system, designed as outlined in this section, is
fully operational [8]. An extension to the methodology is being studied for geographic
databases [9]. Experience with the prototype there has demonstrated the usefulness of
the basic facility.

However, more work was needed to cope with the additional problems – and
opportunities – for user assistance arising from object-oriented systems based on
semantically richer data models. With this purpose in mind, we chose to examine, as a
significant benchmark, queries on database structures involving categorization and
role-specialization semantic hierarchies.

3 Exploiting Specialization/Generalization Relationships for User
Assistance

In the area of Semantic Data Modeling semantic hierarchies have long ago been
borrowed from the area of Artificial Intelligence and adapted to the needs of databases
[6]. In this section we briefly recall a number of basic features that have been identified
with respect to specialization / generalization hierarchies and outline how these fea-
tures are exploited for user assistance by query modification.

3.1 Basic constraints

A conventional way to model the application domain in a database is to start with a
number of general classes of objects, to which base types are attached. If specialized
classes are desired, they are derived from other classes by means of e.g. the ISA-rela-
tionship. For two classes in a ISA-relationship, their extensions are in a subset-relation-
ship and their types are in a subtype-relationship. In [6] constraints are identified that
ensure consistency of ISA relationships on classes, in particular it follows that they are
hierarchical structures.

In addition to the basic constraints, other constraints may be imposed optionally, thus
characterizing different kinds of ISA-hierarchies, e.g.:
(1) be pairwise disjoint
(2) together cover the extension of the general class
(3) have a criterion for membership
(4) form trees.
The first two constraints – disjointness and covering - are orthogonal to each other.
Together they characterize a partition of the general class, in the sense that each general
instance must correspond to an instance in exactly one specialized class. Constraint (3)

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

means that there is a procedure to determine whether an object can be a member of a
given specialized class. This procedure may either depend exclusively on intrinsic
characteristics of the object, or it may depend on extrinsic criteria based on how the
object is related with other objects. Constraint (4) expresses that ISA edges can be
required to impose a strict hierarchy, so that the classes are structured as multi-level
trees. Dropping this constraint results in a partial order structure, where a class is
allowed to have more than one ‘‘parent”. Constraints of the kind introduced have to be
maintained by the database management system when updates are performed.

3.2 Inheritance

Another important consideration for ISA hierarchies is the inheritance of properties. In
fact methods are also inherited and, for our present purposes, it is useful to note that
certain methods really amount to ‘‘virtual” properties, whose values are computed by
methods rather than stored in the database.

Informally speaking, the prevailing principle is that every property that is common to
all specialized classes should be ‘‘factored out”, i.e. moved up to the general class. Then
the term ‘‘inheritance” means that, when a query asks about such properties when
referring to specialized instances, the appropriate values will be found at the level of the
general instance, and duly passed down. Ambiguities may arise with non strictly
hierarchical ISA, when a class may specialize more than one general class having the
same property. In this case a criterion must be fixed which property value should be
chosen.

A situation that is, in a sense, the inverse of inheritance may occur for some
properties. The value of a property of a general instance may be synthesized from
properties of one or more (if overlapping is permitted) of its specialized instances. The
property Revenue of Person, for example, would be calculated as the sum of salary as
Employee, plus gain as Stockholder, plus other incomes that a person may receive.

3.3 Using ISA for User-Oriented Assistance – Examples

In many cases it may happen that users are not aware of all details in many possible
overlapping ISA-hierarchies. In these cases the constraints on ISA-hierarchies dis-
cussed above may readily be exploited in order to properly modify the users’ query. We
give a number of examples which illustrate this fact.

Example 3. The examples below are expressed in natural language for readability. In
each case we indicate the feature exploited (existence, etc.), the classes involved, the
original query and the answer.
(1) feature: existence in another specialized class;

classes: Enterprise ISA Institution, Government Agency ISA Institution.
query: What is the address of enterprise Alpha?
answer: the address of government agency Alpha is Karlstr, Darmstadt.

(2) feature: location of property in specialized role;
classes: Employee ISA Person.
query: What is the salary of person John?
answer: as an employee, John earns 100.

(3) feature: covering;
classes: Emp-Level-1, ... , Emp-Level-n ISA Employee..
query: How many employees do not belong to any level?
answer: none; every employee is in a level group.

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

(4) feature: disjointness;
classes: same as above.
query: How many employess are in levels 4 or 5?
answer: 15; 10 in level 4 and 5 in level 5.

(5) feature: overlapping;
classes: Employee ISA Person, Shareholder ISA Person.
query: How many employees and how many shareholders are there?
answer: 100 employees and 15 shareholders; 5 persons are both. �

From the above examples it is clear that there is an potential for user-assistance with
regard to semantic relationships like ISA-hierarchies. In the following we will give a
detailed approach for a concrete object-oriented database management system, that
supports mechanisms to define such semantic relationships in a generic manner, and
then show how to adapt the system for the support of user-assistance by rule-based
query modification.

4 The Extendible VODAK Database Model

In order to discuss the realization of user-oriented query modification we first summa-
rize in this section the essential features of the VODAK database system. VODAK is an
object-oriented database management system which has been implemented at GMD-
IPSI [10].

4.1 The VODAK Metaclass System

In VODAK specialization/generalization relationships are realized through meta-
classes. We shortly introduce the concepts of classes and metaclasses as used in VO-
DAK [11].

Classes determine the structure and behavior of their instances. More precisely, an
application class determines the application-specific structure and behavior of its in-
stances, which represent the ‘‘real world” objects dealt with within an application pro-
gram, by specifying its instance type; it also determines the application-specific struc-
ture and behavior of the application class itself, for example specific object creation and
initialization methods, by specifying its own type.

Metaclasses are used to describe the common structure and behavior of classes and
their instances which may not be known at the time a metaclass is defined. Metaclasses
and application classes are treated uniformly as classes. In addition, it is possible to
specify the common structure and behavior for the instances of the instances, the so-
called metainstances, of a metaclass by associating an object type as instance-instance
type to the metaclass.

The object types that determine the instance, instance-instance and own type of
classes and metaclasses can either be defined directly within the class definition, in
which case we have an in-line type definition, or in a separate object type declaration.
The provision of separate object type declarations in VML is also referred to as the dual
model, which allows a clean separation of syntactic and semantic concepts in object-
oriented data base schemas. For example, the same object type declaration may be re-
used in different (semantically unrelated) classes.

The interface defined for an object is the set of methods which are defined for the
object, i.e., which can be executed directly for the object. It consists of the methods spe-
cified with the own type of the object, if this object represents a class, and the methods

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

specified with the instance type of the object’s class, and the methods specified with the
instance-instance type of the metaclass of the object’s class.

In case the method is not contained in the interface defined for the object, the message
handling system of VML tries to delegate the message to another object by executing
the method implementation given in a �������� clause. This permits for example to
implement different inheritance strategies.

The class system in VML is organized in four levels: the individual object level, the
application class level, the metaclass level, and the root level. At the metaclass level the
system administrator may define new metaclasses and, thus, enhance the modeling ca-
pabilities of the predefined kernel model. Built-in classes at the root level provide for
the basic and system inherent capabilities like object creation, object deletion, and ob-
ject storage.

4.2 ISA in the VODAK Data Model

Based on the need to model real-world applications we discuss two examples of ISA
specialization relationships which were implemented in VODAK using the metaclass
system.
(a) Role Specialization, wherein real world objects may appear in different roles, e.g.

a person may appear in the role of a student or an employee.
(b) Category Specialization, where provision is made for real-world objects being

categorized into disjoint sets with respect to some specific aspect, e.g. parts may
be categorized into simple parts and composite parts with respect to their
complexity.

In the terminology of the previous sections, role specialization is based on extrinsic cri-
teria and permits overlapping. When declaring it, one must specify whether or not the
specialization should be restricted to a single general class. An example with multiple
general classes is: from the more general classes Student and Employee, define the
specialized class Employed Student. Category specialization requires disjointness but
not covering. The membership criterion is solely based on intrinsic characteristics.

The strategy to implement these kinds of ISA specialization takes full advantage of
the Metaclass concept. At the meta level there exist metaclasses $
���%��	���&��
��
'���, (������'��)
���'���, and '��)
���%��	���&��
��'���. For role
specialization, each general class is instance of the general VML *������+����	��
��
'��� metaclass. Each specialized class is connected, via rolespec relationship edges, to
the general class and is instance of the $
���%��	���&��
��'��� metaclass. A number of
public methods are passed by inheritance from these metaclasses to their instances,
namely the role specialization classes, as well as to their metainstances, namely the
instances of the role specialization classes. These methods allow, among other tasks, to
create, delete and modify role specialization classes and their instances consistently and
to interrogate the structure of classes and instances, finding for example, in the case of
multiple specialization, which general classes a given class specializes and which
general instances correspond to a given specialized instance. Furthermore a
�������� clause allows to specify a particular inheritance behavior for instances of
the role specialization class. The body of this clause is executed whenever no
appropriate method is found for the receiver object of the method.

Example 4. More specifically the (interface) definition of the metaclass $
���%��	���
�&��
��'��� ($
��%��	, in abbreviated form) is as follows.

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

CLASS RoleSpec METACLASS Metaclass
INSTTYPE OBJECTTYPE // �������� ��	�
� ��� �	�������� ������ ������ ��������
��

PROPERTIES roleSpecofClass: OID;
METHODS roleSpecof(c: OID); // ���� roleSpecofClass

roleofClass(): OID; // ������� OID
� ������ ����

INSTINSTYPE OBJECTTYPE // ��	�
� ��� ���������
� ��� �	�������� ������
PROPERTIES roleSpecofInstance: OID;
METHODS roleSpecof(i; OID); // ���� roleSpecofInstance

roleofInstance(): OID; //������� OID
� ������ ��������
NOMETHOD // ������� ������� ����
� �� �
 ���
����� roleSpecofInstance

END;

An application class, e.g. ,���
��� being a role specialization of a class -���
�, is then
defined as follows.

CLASS Employee METACLASS Metaclass
INSTTYPE OBJECTTYPE Employee_type

// �		�����
� �	������ ��	�
� ��� ���������
� ��� �		�����
� ����
INIT SELF→roleSpecof(Person)

END; // ���������� ���� ���� �� �	���������
�
� ��� ���� Person �

For category specialization, the general classes are instances of the (������'��)
���
'��� metaclass. Each specialized class is connected by a catspec relationship edge to
the general class and is instance of the '��)
���%��	���&��
��'��� metaclass. The
same powerful mechanism of inheritance of public methods is provided.

5 Design and Implementation of Advanced Querying Assistance

The VODAK DBMS provides a SQL-like query language named VQL [10]. For query
processing SQL style queries are translated to an internal algebraic representation, to
which rule-based transformations, e.g. for the sake of query optimization are applied
[1,5]. For our purposes we will adopt this algebraic approach for user-oriented query
modification. After a short review of algebraic query representations in object-oriented
query algebras and the available rule specifications, we will give examples, how a non-
conventional context is represented and exploited within this algebraic approach.

5.1 Query Algebras and Rule Systems

For the presentation in this paper we need to introduce only two basic query algebra
operators of the object-oriented query algebra that is used for the internal representation
of VQL-queries in VODAK. The algebraic operators are applied to complex values
built up from tuple and set type constructors over atomic domains.

The first operator is needed to select from a set ' of complex values, which is for ex-
ample computed as the extension of a class, a subset according to a condition

SELECT(x: C, cond(x)) = { x � C | cond(x) }

The second operator we consider is needed to apply a function iteratively to a set of
complex values.

MAP(x: C, expr(x)) = { expr(x) | x � C }

In order to use semantic knowledge of methods for query transformation we extend the
data model language by a rule specification mechanism. Rules are then given in the
interface of an object type by a clause of the form

RULES name
V1: dom1; ... ; Vn: domn; {cond(V1,...,Vn): expr1(V1,...,Vn) <––> expr2(V1,...,Vn)};

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

where #.�����#� are the pattern variables, which stand for VML expressions of type ���.�

��� ����, ����� and ����	 stand for (equivalent) VML expressions containing the pattern
variables and
��� stands for a Boolean VML expression containing the pattern
variables.

Example 5. An example of such a rule in a person database is
RULES family

x : Person; {true: x→grandfather() <––> (x→father())→father()};

Such a rule can then be used to transform the algebraic representation of a query in the
following way

MAP(x: Person, (x→father())→father()) � MAP(x: Person, x→grandfather()) �

Including rules into object-type definitions in this way is a non-trivial enhancement of
object-oriented data models towards the ADT (abstract data type) paradigm. It is not
necessary that the rules provide a complete behavioral specification of the types of
database objects. A fundamental point is that their declarative style makes them easier
to understand and to serve for documentation purposes, for guiding the procedural
development of the implemented code, and for testing its execution. The backbone for
method execution is still their procedural specification. One difficult question that
remains is how to maintain consistency between the declarative specification and the
operational specification of a method or property. As a consequence of making rules
part of the object type specification, rules can be inherited which is crucial for efficient
design of rule systems.

The technique for transformation of the algebraic representation of a query by using
rules specified in application schemas was implemented for VODAK in the context of
query optimization. The main tool used was the Volcano optimizer generator [5]. We
now show how this technique can be used for the purpose of user-assisting query
modification.

5.2 Representation of Non-conventional Context in Database Schemas

The factual database and the schema (represented in the data dictionary) are already
part of the context. As the assistance to the user must be tuned according to the user,
characteristics of the user are represented in user models, which again take the form of
classes.

Additional knowledge about the user may now be provided by specifying rules in the
user model. The main idea for the implementation of query modification presented here
is that the parameters given for the algebraic query operators are not taken for granted
but need interpretation according to the context described. This interpretation is then
provided by the rules of the user model.

Thus in a first step we produce a context-sensitive algebraic representation of the
query. Assume the context is given by a particular user � and the query has the form

SELECT(x: C, cond(x))

Taking the parameters not for granted means, e.g., that we are not sure whether the user
� really meant class ' when he specified it. Thus we replace the plain class specification
' by a user-sensitive method call

u→class_dom(C)

where the method 	�����
��� represents the system model of how the user interprets
a class specification '. The same is done for all other parameters appearing in the pa-
rameters of query operators, i.e. select and map operations are transformed to

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

SELECT(x: u→class_dom(C), u→bool_expr(cond(x))),
MAP(x: u→class_dom(C), u→int_expr(expr(x))),

provided that �/���/� evaluates to an integer value. The methods �

�����/�� and �����
)����/�� are used in the same way as 	�����
��� to describe how the user interprets
the particular expressions in the arguments.

Methods needed for transforming a query into the context-sensitive representation
are given in the following object type declaration:

OBJECTTYPE QueryContext
INTERFACE
METHODS class_dom(c: OID): OID;

int_expr(o: OID, p: VML_PROP): INT;
int_equal(i: INT, j: INT): BOOL; ...

RULES class_dom_rule c: OID {true: class_dom(c) <––> c};
int_expr_rule o: OID, p: VML_PROP {true: int_expr(o,p) <––> o.p;}
int_equal_rule i: INT, j: INT {true: int_equal(i,j) <––> i==j;} ...

IMPLEMENTATION
METHODS class_dom(c: OID): OID {RETURN c };

int_expr(o: OID, p: VML_PROP) {RETURN o.p};
int_equal(i: INT, j: INT): BOOL { RETURN i==j }; ...

This object type is system-defined and is needed by a system module that will produce
the context-sensitive algebraic representation of the query. Note that the
implementation of the methods is simply identical to what would have been expected
from the original expressions. On the basis of this type now a user class can be defined as
follows:

CLASS User
INSTTYPE OBJECTTYPE SUBTYPEOF QueryContext
INTERFACE
RULES // ������
�� ����
� class_dom, int_expr, int_equal ����

This class makes the methods inherited from the object type 0����'
���/�
nondeterministic, by allowing different interpretations of the same expression.
Otherwise the rules do not differ at all from those used, e.g. in query optimization. Con-
crete rules will be given in the examples of the next section.

We remark that using the object type 0����'
���/� as indicated above is a typical
example for the application of the dual model approach of VML. It can be attached to
other classes like those referring to characteristics of category specialization, or ap-
plication classes, in case of application-dependent rules.

5.3 Application of Nonconventional Context for Query Modification

In this section we give three typical examples of how to use the rule mechanism for
query transformation.

Example 6. Assume a user u of class User in the flight database of Section 2.3 issues
the following query

SELECT f.number FROM f IN Flight WHERE f.price=1000

The corresponding context sensitive algebraic representation produced by the system
according to the definitions given section 5.2 is as follows.

MAP(x: SELECT(x: u→class_dom(Flight), u→int_equal(x.price,1000)),
 u→int_expr(x.number))

Assume, that the following simple user model is given

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

CLASS User
INSTTYPE OBJECTTYPE SUBTYPEOF QueryContext
INTERFACE
RULES adapt_price

u: User; f: Flight; p: INT;
{true: u→int_equal(f.price,1000) <––> f.price>0.9*p and f.price<1.1*p};

That means that for 	�����
� and �����/�� no rules are applicable, except the identity
rules 	�����
������ and �����/�������, which are inherited from the system defined
object type 0����'
���/�. Applying these rules gives

MAP(x: SELECT(x: Flight, u→int_equal(x.price,1000), x.number)

However, for �����1�� we have an applicable rule �������	� specified in the class
2���. Applying this rule results in the following modified query

MAP(x: SELECT(x: Flight, x.price>900 and x.price<1100, x.number)

which eventually will be evaluated. �
After discussing the approach of rule application in principle we come to the central

examples involving ISA hierarchies. The rules relevant for these will be introduced at
the same level at which the semantic relationships themselves are introduced, namely at
the metaclass level.

Example 7. In Example 3, query (1), of Section 3.3, an applicable rule should
express, roughly speaking: if the query refers to a class that is a category specialization,
find the corresponding general class and, through it, each of the other specialized
classes to be tried in the new query. In the notation described, this means that the
conditional part of the rule determines if the originally indicated class
��) and some
other class �� are instances of the metaclass '��)
���%��	���&��
��'��� ('�%��),
determined by applying the method 	�
�'���3. If the condition holds, then �� will
replace
��) in the modified query; � refers to the current user.

RULES catgen
u: User; orig: CatSpec, alt: CatSpec
{orig <> alt and alt→catofClass() == orig→catofClass():

 u→class_dom(orig)<––>alt}

This is a rule that involves a complex condition. Hence we illustrate the whole process
how the rule is applied. Let the user pose the following query:

SELECT e.address FROM e IN Enterprise WHERE e.name==”Alpha”

The context-sensitive representation is then given as
MAP(x: SELECT(x: u→class_dom(Enterprise), u→str_equal(x.name,”Alpha”),

 u→str_expr(x.address)

For the method 	�����
��� now the rule 	�)�� is applicable. ,��������� and
Gov_agency are different category specializations of Institution. Therefore the query is
transformed to

MAP(x: SELECT(x: Gov_agency, u→str_equal(x.name,”Alpha”),
u→str_expr(x.address)

which now produces the intended answer. Other rules can still be applied now, e.g. for
relaxing the string comparison condition or enhancing the output of the query. �

Example 8. In Example 3, query (2), of Section 3.3, which is a case of role specializa-
tion, an applicable rule expresses the following: if a query refers to � as a property
2) The method 	�
�'��� is analogous to the method �
��
�'��� given in Example 4 in Section 4.2.

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

(respectively method) of a class 	�)��, whereas � is a property (respectively method) of
class 	����	 and 	����	 ISA 	�)��, then make the new query refer to � of 	����	.

The conditional part of the rule finds whether there is a class 	����	 that is a role of
class 	�)��, and whether the desired property � belongs to 	����	 (rather than to 	�)��,
as in the original query). If the condition holds, then the new query will look for � at the
level of the specialized class;
 is an object identifier for an instance of class 	�)��, and,
again, � refers to the current user;

RULES rolegen
u: User; c_gen: KernelApplicationClass; c_spec: RoleSpecializationClass;
o: OID; p: VML_PROP;
{o IN c_gen→allInstances() and p IN c_spec→properties() and

c_spec→roleofClass() == c_gen: u→int_expr(o,p) <––> (o→roleof()).p}

Note how in the condition part of the rule methods from the system level (��4����	��),
from the metaclass level (�
��
�'���) and from the data dicitionary level (��
�������)
are used. Also observe that in the domain declarations the class to which
 belongs is not
yet determined, thus the generic type for object identifiers ��� is used at that place. �

5.4 Notes on the Implementation

The features to implement user-oriented querying assistance in VODAK are rule
specification in the object interface and rule-application in query processing. In the pre-
ceding sections we have described the integration of a rule-specification mechanism
within the VML data model. These rule specifications will be inserted by the VML
compiler into the data dictionary. VODAK uses a universal interface to the message
handler which allows both the access to the database and to the data dictionary by meth-
od execution. Thus a component for performing rule application is able to access this
information through this universal interface. This approach was already taken, e.g., in
the query optimizer, where the Volcano optimizer generator [5] is used for rule-based
optimization. Using the same tool for query modification suggests an interesting ap-
proach: define a cost model that relates an actual query with the relevance to the users’
information needs. Alternatively a Prolog component could by used, similarly as in the
NICE project.

Different developments of the VODAK prototype had been undertaken independent-
ly, particularly in the context of query processing, which were found to facilitate the
implementation of the techniques described in this paper. An internal algebraic repre-
sentation of VML expressions has been modelled to support the representation and ma-
nipulation of query expressions. An interface for exchanging VML expressions and
messages between VODAK and the Volcano optimizer generator was designed. The ex-
tension of the VML data model with the rule constructs introduced in this paper com-
pletes the required set of tools.

6 Concluding Remarks

The VODAK data model has a particularly appropriate structure to accomodate user-
assisting features in a natural way. Its definition in terms of metaclasses and classes has
led to a modularized organization of properties and methods. This very same discipline
is adopted as rules are introduced, so that they are grouped according to their degree of
generality, and are inherited down or filtered away in order to take into account the
needs of individual users. The architecture of the implemented VODAK database
system iself was conceived to favor extensibility. We further recall that the extensions

CAiSE*94, 6–10 June 1994, Utrecht, The Netherlands.

to provide (1) general-purpose rules and (2) the user-assisting algorithms, builds on our
previous experience, respectively, with the rule-based tool to optimize VQL query-pro-
cessing [1] and with the prototypes developed as part of project NICE [8].

Future research will be concentrated in refining the user-modelling strategies and in
extending user assistance to the more advanced components of VODAK, such as: the
multimedia environment, where template rules may be applied to guide the choice of the
best medium to communicate an answer; cooperative activities involving several
agents, where multiple user (i.e. agent) models can be simultaneously activated and
used to achieve a better coordination of the users’ processes; heterogeneous database
integration, where the usual transparency paradigm for combining different schemas
would be modified, by letting the original user of one of the schemas benefit from
opportunities arising from richer features of the other schemas.

Acknowledgement. We would like to thank Klemens Böhm for carefully reading the
paper and giving many valuable suggestions for improving the paper.

References
1. Aberer, K., Fischer, G.: Object-Oriented Query Processing: The Impact of Methods on

Language, Architecture and Optimization. Technical report 763, GMD-IPSI, (1993).
2. Chu, W. W., Chen, Q.: Neighborhood and Associative Query Answering. Journal of Intelligent

Information Systems, 1, 1992, 355–382 (1992).
3. Cuppens, F., Demolombe, R.: Cooperative Answering: A Methodology to Provide Intelligent

Access to Databases. In: 2nd International Conference on Expert Database Systems, L.
Kerschberg (ed.), Benjamin/Cummings, 621–643 (1989).

4. Fikes, R. E., Nilsson, N. J.: STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence 2, 1971, 189–208 (1971).

5. G. Gräfe, W. J. McKenna: “The Volcano Optimizer Generator: Extensibility and Efficient
Search”, Proceedings of the 9th IEEE International Conference on Data Engineering, pp.
209–218, Vienna, Austria, April 19–23, 1993.

6. Hull, R., King, R.: Semantic Database Modeling: Survey, Applications and Research Issues.
ACM Computing Surveys, 19, 3, 201–260 (1987).

7. Hammond, P., Sergot, M.: Augmented PROLOG for Expert Systems, Logic Based Systems
Ltd. (1984).

8. Hemerly, A. S., Casanova, M. A., Furtado, A. L.: Cooperative behavior through Request Mod-
ification. In: Proc. 10th Conference on the Entity-Relationship Approach, 607–621 (1991).

9. Hemerly, A. S., Casanova, M. A., Furtado, A. L.: Towards Cooperativeness in Geographic Da-
tabases. In: Proc. DEXA (1993).

10. Klas, W. et al: VML – The VODAK Model Language Version 3.0. Specification Document,
GMD-IPSI (1992).

11. Klas, W., Aberer, K., Neuhold, E.J.: Object-Oriented Modelling for Hypermedia Systems
using the VODAK Modelling Language (VML). To appear in: A.Biliris, T.Oszu (Edt.): Ob-
ject–Oriented Database Management Systems. NATO ASI Series, Springer Verlag Berlin
Heidelberg, December 1993.

12. Kracker, M.: Unschafes assoziatives Begriffswissen zur Unterstützung der Formulierung von
Datenbankanfragen. Dissertation, Technische Universität Wien, April 1991.

13. Neuhold, E. J., Schrefl, M.: Dynamic Derivation of Personalized Views. In: Proc. 14th VLDB
Conference, 183–194 (1988).

14. Stein, A., Thiel, U.: A Conversational Model of Multimodal Interaction. Technical Report
GMD-IPSI (1993).

15. Stonebraker, M. R.: Implementation of Integrity by Query Modification. In: Proc. ACM
SIGMOD International Conference on Management of Data (1975).

16. Webber, B. L.: Questions, Answers and Responses: Interacting with Knowledge Base Sys-
tems. In: On Knowledge Base Management Systems, M. L. Brodie, J. Mylopoulos (eds.),
Springer, (1986).

