
ELECTRONIC PUBLISHING, VOL. 6(4), 469–480 (DECEMBER 1993)

The prospects of publishing using
advanced database concepts

KARL ABERER, KLEMENS BÖHM, CHRISTOPH HÜSER

GMD-IPSI
Dolivostr. 15
D-64293 Darmstadt, Germany
email: faberer,kboehm,hueserg@darmstadt.gmd.de

SUMMARY
Publishing is a distributed process which is characterized by the cooperation of different ex-
perts. The approach of the Integrated Publication and Information Systems Institute (IPSI)
to support electronic publishing is to build an integrated publication environment. The publi-
cation of electronic documents demands enhanced support from publishing tools and imposes
new challenges on database technology. Taking a hypermedia reference publication as an ex-
ample, requirements on database technology for the production of electronic publications are
discussed. Those can be met by using an object-oriented database management system like
VODAK. We present an efficient, flexible and application-independent database application
for structured document handling (D-STREAT). Our focus is on dynamic Document Type
Definition management.

KEY WORDS SGML Object-oriented database systems Structured document storage

Document type definition handling

1 INTRODUCTION

At GMD-IPSI we are developing an integrated publishing environment for the prototypical
production of different electronic publications. A sample publication being developed in
this framework is an encyclopedic hypermedia reference application for art historians from
the Dictionary of Art (DofA), which is a comprehensive reference work to be published
(on paper with more than 30.000 pages) in 1996 by Macmillan. 1

In the past, reference works have been seen as more or less comprehensive and sta-
ble views of a subject. Today, there is a shift towards possibly distributed database-aided
electronic publications of quality information. The publication content is represented by
a knowledge base consisting of an Object Network [1]. Next to the network of Dictio-
nary of Art articles based on the Standard Generalized Markup Language (SGML) [2] it
includes a set of interlinked subnets, e.g., index subnet, concept subnet, and a network
of domain-specific objects. These objects are, for instance, artists, art styles, institutions,
locations, expositions, magazines, works of art, or motifs. Their relationships are expressed

1 The Application Pilot Dictionary of Art is part of the European RACE (Research and Development in Advanced
Communications Technologies in Europe) project 2042 EUROPUBLISHING.

0894–3982/93/040469–12$11.00 Received 15 August 1993
c1993 by John Wiley & Sons, Ltd. Revised 1 December 1993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

470 K. ABERER, K. BÖHM, AND C. HÜSER

by typed links. To create the subnets, extraction of material from different sources will be
accomplished using various parsing technologies [3].

The base of material comprises over 11,000 files occupying some 66 megabyte of
storage. This represents approximately one quarter of the articles being prepared. The whole
reference work has some 16,000 monochrome illustrations. For the electronic version there
is considerable leeway for enhancing the interplay of text and factual representations with
multimedia content. Examples are color images, graphics, and video/audio annotations.

The resulting requirements for document storage are discussed in Section 2. After
the discussion of basic design decisions in Section 3 the next two sections introduce
D-STREAT, an application of the object-oriented database management system VODAK
being developed at our institute [4,5], to cope with these requirements. Section 4 presents an
overview of the modelling of SGML and Section 5 gives a short outlook how to integrate
the HyTime Standard [6] into D-STREAT. Finally, Section 6 gives an overview about
related work and discusses future work.

2 MEETING THE CHALLENGE OF DOCUMENT STORAGE

To edit and maintain the complex structures mentioned in Section 1, dedicated tools such
as the Editor’s Workbench [3] are under development. The volume, the fine granularity,
and the degree of interconnectivity, i.e., the complexity of the network, makes it impossible
to present and view the network as a whole. The editor, therefore, needs to work on
individually defined subsets according to the task he is about to fulfill. At the same time,
he needs means to browse and update the network freely without being restricted in the
degree of granularity.

Such information comprises explicit modelling of relationships between the different
kinds of content. Classification of content for the selection and presentation is also manda-
tory. At any time, the information contained in the database has to be consistent. The
information source has to maintain constraints and rules for all kinds of entities involved
in the production as well as constraints and rules on meaningful links between entities.

Editing at distributed sites impinges on document storage. The underlying system must
facilitate multi-user mode, i.e., ensure consistency maintenance (R1). Concepts to deal
with distribution (R2) are required. Functionality to manipulate and navigate hypermedia
documents both during the publishing process and in end-user systems is mandatory (R3).
Furthermore, immediate meaningful structure-oriented document access is imperative and
a descriptive access mechanism is desirable (R4).

Another objective is to capture the semantics of the hypermedia objects within the
storage system (R5). The integration of SGML objects is canonical, resulting in, e.g.,
navigation operations on the document tree. But the constructs of the HyTime standard,
associating a standardized semantics to SGML document elements, must be dealt with
individually.

Experience with electronic publications [7,8] developed at our institute shows that it
is worthwhile not to be restricted to a fixed set of Document Type Definitions (DTDs)
(R6). Akpotsui and Quint argue in a similar way [9]: By evaluating users’ reactions to (a
preliminary version of) their SGML editor they have identified the requirement that DTD
alteration by the user must be feasible. Modifying DTDs must not be arduous for the user.
Ideally, DTD alteration should not deviate from modification of normal documents. For the
management of structured document bases it should be possible – similar to the creation

THE PROSPECTS OF PUBLISHING USING ADVANCED DATABASE CONCEPTS 471

of tables in a relational database management system (DBMS) – to insert or modify DTDs
in the database system without affecting running applications. Documents already stored
shall be processable by the system as far as possible after their DTD was modified (R7).

For cooperative editing, version support is advantageous (R8). Versioning enables
editors to keep track of their incremental changes and allows to prepare the same content at
different levels of detail and abstraction for different products and various groups of users.
In another dimension, to handle hypermedia documents the database management system
has to be able to deal with multimedia data (R9). Furthermore, it shall be possible to process
relations between documents – both of the same DTD as well as of different ones (R10).

3 DESIGN DECISIONS OF A HYPERMEDIA DOCUMENT BASE FOR
ELECTRONIC PUBLICATIONS

During the Race Project TELEPUBLISHING [7] and while working on further applications
such as the MultiMedia Forum [8] we gathered experience with database support for
structured documents by developing the Structured Document Base (SDB) [10]. SDB
is a C++ application offering manipulation, navigation, and querying of stored SGML
documents. It uses relational DBMSs for persistent document storage. SDB is a realization
of the basic SGML standard. It offers extensions conforming to the standard SGML syntax
to cope with hypertext links, i.e., machine-supported cross-references, that are inherent in
electronic documents. SDB administers SGML-conforming documents in separate pools.
Pools correspond to the concept of databases with DBMSs.

Our experiments have shown that the approach taken with SDB has the following
drawbacks: SDB serves as a database for SGML documents only, but cannot deal with
information not conforming to SGML. Although an extension to HyTime could cover
some of the required semantics with respect to, e.g., hypermedia modelling, others cannot be
covered within SDB, e.g., the Object Network with its complex relationships, multilingual
terminology [11], multimedia content, and text. SDB is realized as an application using
DBMS services, but not as a DBMS application. Hence, it has to provide typical DBMS
services itself (see R1, R4). Among these services are controlling access to shared data,
managing distribution, providing data independence, and versioning [12]. These services
aim at the reuse of information for electronic publications. In order to exploit those services
within a DBMS application the data model of the DBMS must be expressive enough to
capture the semantics envisaged.

The key idea to satisfy the requirements raised in the previous section is to rely on
the functionality offered by DBMSs providing expressive modelling primitives. DBMSs
allowing data-model extensions are particularly appealing. A general-purpose schema re-
flects the complex semantics of typed hypermedia objects. Hence, applications are freed
from reimplementing these semantics. Therefore, in order to qualify as a basis for a doc-
ument storage system a DBMS must have certain features to cope with the requirements
identified above. First, the requirement that the semantics of hypermedia objects must be
captured basically reduces the set of applicable DBMSs to object-oriented ones: Namely,
with object-orientation data and the procedures processing it are grouped into autonomous
entities, the objects.2 Objects may have properties and methods. Using methods not only

2 Principles of object-orientation are generally known, e.g., from object-oriented programming languages. Since
terminology, however, is not uniform we briefly establish a "common basis" by reviewing our notion.

472 K. ABERER, K. BÖHM, AND C. HÜSER

data, but also programs are administered by the DBMS. In the database application frame-
work envisaged, these programs realize the semantics of hypermedia objects (R5). On
another level, the functionality to, e.g., navigate through the document tree is provided
(R3).

The requirements multi-user mode (R1) and distributed mode (R2) can be satisfied
in a straightforward way using DBMS standard "built-in features". Transaction manage-
ment facilitates concurrent access while preserving consistency. Dealing with distribution
likewise is standard with DBMSs. The remaining requirements are solved by D-STREAT,
which is being introduced in the next two sections. We will focus on R3, R4, R5, structured
document handling and DTD management R6, R7, while neglecting other requirements
R8, R9, and R10.

4 DYNAMIC SGML DOCUMENT AND DTD STORAGE

The realization of structured document management and the dynamic aspects of DTD
handling (R6, R7) strongly depend on the conception of the DBMS used. Within the
project HyperStorM (’Hypermedia Document Storage and Modelling’) at GMD-IPSI we
use the distributed object-oriented database management system VODAK as the basis for
D-STREAT. In VODAK, an object’s type is the set of its properties and methods. Classes
are a means of abstraction: Objects with the same type may be instances of the same class.
Hence, classes are sets of objects. An object is an instance of exactly one class. Since all
instances of a class are of the same type, the type definition of instances can be part of the
class specification. It is natural to introduce a class corresponding to each SGML element
type. Throughout this article, these classes are referred to as element-type classes. The
instances of such a class are the elements conforming to the element-type definition in a
DTD.

To fulfill the dynamic aspects mentioned above the DBMS must allow for the genera-
tion of classes at runtime. In this way element-type classes will be automatically created
whenever their DTD is inserted into the system. Specific classes for content declaration
such as PCDATA or CDATA are created only once for any DTD in the system.

Metaclasses are a VODAK-specific feature. They are classes whose instances are classes
themselves. In this context here, it is important that metaclasses have an instance-creation
method: The invocation of this method leads to the creation of a new class. Therefore,
system shutdown is not necessary to extend the set of element-type classes. The type of
the new class as well as the type of its instances is defined in the scope of the metaclass
definition. Consequently all element-type classes are of the same type.

Handling of Document Type Definitions. Since it demands a relatively thorough under-
standing of the principles of object-orientation and the system architecture the users cannot
be asked to invoke the methods generating element-type classes themselves. Instead, D-
STREAT realizes a more sophisticated conception.

DTDs themselves can be considered as document instances and thus can be rewritten
as instances of a particular DTD, the so-called super-DTD. In principal, the super-DTD
describes the definition of DTDs as defined in the SGML standard. A relevant fragment of
the super-DTD is as follows:

THE PROSPECTS OF PUBLISHING USING ADVANCED DATABASE CONCEPTS 473

<ELEMENT elemName=ELEMENT ... contentModel=’(ATTRIBUTE *)’>
<ATTRIBUTE attrName=ELEMNAME attrKeyDecl=NAME attrKeyDef=REQUIRED>
<ATTRIBUTE attrName=CONTENTMODEL attrKeyDecl=CDATA attrKeyDef=IMPLIED>
...

</ELEMENT>

<ELEMENT elemName=ATTRIBUTE ... contentModel=’ EMPTY ’>
<ATTRIBUTE attrName=ATTRNAME attrKeyDecl=NAME attrKeyDef=REQUIRED>
<ATTRIBUTE attrName=ATTRKEYDECL attrKeyDecl=ENUMERATE
attrRule=’(CDATA|ENTITY|ENUMERATE|ENTITIES|ID|IDREF|NAME|NAMES|
NMTOKEN|NMTOKENS|NO|NOTATION|NUMBER|NUMBERS|NUTOKEN|NUTOKENS)’
attrKeyDef=UNDEFINED attrDefault=’NO’>

<ATTRIBUTE attrName=ATTRKEYDEF attrKeyDecl=ENUMERATE
attrRule=’(CURRENT|CONREF|FIXED|IMPLIED|REQUIRED|UNDEFINED)’
attrKeyDef=UNDEFINED attrDefault=’UNDEFINED’>

<ATTRIBUTE attrName=ATTRRULE attrKeyDecl=CDATA
attrKeyDef=UNDEFINED attrDefault=’’>

<ATTRIBUTE attrName=ATTRDEFAULT attrKeyDecl=CDATA
attrKeyDef=UNDEFINED attrDefault=’’>

</ELEMENT>

<ELEMENT elemName=ENTITY ... contentModel=’ PCDATA ’>
<ATTRIBUTE attrName=ENTNAME attrKeyDecl=NAME attrKeyDef=REQUIRED>
<ATTRIBUTE attrName=ENTTYPE attrKeyDecl=ENUMERATE
attrRule=’(GENERAL|PARAMETER)’ attrKeyDef=UNDEFINED
attrDefault=’GENERAL’>

<ATTRIBUTE attrName=ENTTEXT attrKeyDecl=CDATA attrKeyDef=UNDEFINED
attrDefault=’’>

...
</ELEMENT>

The fragment shown above illustrates that the super-DTD is conforming to itself, i.e.,
ELEMENT, ATTRIBUTE, and ENTITY can be described as elements having attributes. Note
that with this DTD the attribute definitions belonging to an element-type definition are
the content of the element-type definition. This, however, is an arbitrary design decision.
According to the SGML standard the corresponding element-type classes are ELEMENT,
ATTRIBUTE, and ENTITY. Corresponding to the super-DTD, the instances of ELEMENT have
properties containing the values of elemName and contentModel, the instances of ATTRIBUTE

have properties for the values of attrName, among others.
Insertion of documents into the system is accomplished with the Amsterdam Parser

(ASP) [13] for SGML documents. After verifying the conformance of the document to
the relevant DTD an instance of the corresponding element-type class is created for every
encountered element in the document.

For the insertion of DTDs the ASP has been extended. The first step when inserting a
DTD is checking its conformance to the super-DTD. A result of the parsing process is that
original DTDs are transformed to instances of the super-DTD. As an example, consider the
following (slightly modified) fragment of the biography-DTD of the DofA.

<!ELEMENT HEAD (NAME, ..., ALTNAME+)>
<!ELEMENT NAME]PCDATA >
<!ATTLIST NAME TYPE (last|pseudo) "last">
<!ELEMENT ALTNAME]PCDATA >
<!ATTLIST ALTNAME TYPE (origName|misNomer) "origName">

HEAD is the biography head. NAME is the headword or entry of the biography article. It
is either a last name or a pseudonym. ALTNAME ("alternative name") could be the original,

474 K. ABERER, K. BÖHM, AND C. HÜSER

civil name, or a misnomer (e.g., Siegfried Bing was often misnamed Samuel). The fragment
of a DTD presented above is rewritten as an instance of the super-DTD as follows.

<ELEMENT elemName=HEAD ... contentModel=’(NAME, ..., ALTNAME+)’>
</ELEMENT>

<ELEMENT elemName=NAME ... contentModel=’]PCDATA’>
<ATTRIBUTE attrName=TYPE attrKeyDecl=ENUMERATE ...
attrRule=’(last|pseudo)’ ... attrDefault=’last’>

</ELEMENT>

<ELEMENT elemName=ALTNAME ... contentModel=’]PCDATA’>
<ATTRIBUTE attrName=TYPE attrKeyDecl=ENUMERATE ...
attrRule=’(origName|misNomer)’ ... attrDefault=’origName’>

</ELEMENT>

For every element-type definition in the DTD an instance of class ELEMENT is created
and the properties are instantiated correspondingly. For every attribute definition an instance
of ATTRIBUTE is created and so on. So far, DTD handling does not differ from "normal"
document handling.

As a second step, however, a bootstrapping procedure is invoked: For every new
instance of ELEMENT an element-type class is created. Now, consider the instances of
ATTRIBUTE being part of the content of such an instance of ELEMENT. Every such instance
of ATTRIBUTE leads to a property of the instances of the relevant element-type class. From
that DTD fragment, element-type classes HEAD, NAME and ALTNAME are created. The
instances of NAME have a property named TYPE containing the value "last", the instances of
ALTNAME have a property named TYPE containing the value "origName". After these two
steps, the system is ready to administer document instances. This approach fulfills R6 in
an easy way.

One might wonder how the super-DTD being itself an instance of a DTD is inserted
into the system. Since we cannot make out any benefit from being able to modify the
super-DTD, the classes such as ELEMENT, ATTRIBUTE and ENTITY are available right from
the start. Consequently, modification of these classes is not allowed.

SGML attributes. So far, it has only been mentioned that the system handles the content
and attribute values of document elements. In order to illustrate the functionality of D-
STREAT it is valuable to disclose some of the internal representation of SGML attributes
and content.

SGML attributes are stored as a list of key/value pairs. The keys of type STRING

contain the attribute names. Since in the original SGML document attribute values are
just a sequence of characters values are also of type string. The list is a VODAK built-in
datatype.

With SGML it is basically the representation of the documents’ structure that can be
standardized. The interpretation of some standard types such as ID, IDREF is canonical,
the interpretation of user-defined attributes cannot be described. Hence, this generic mod-
elling of the SGML attributes is appropriate. As opposed to this, for modelling HyTime a
semantically enriched model is appropriate (cf. Section 5).

SGML content. Representing the content of SGML elements is rather straightforward.
Similar to the instances of the element-type classes the content parts are instances of the
specific classes for the content declarations PCDATA or CDATA.

THE PROSPECTS OF PUBLISHING USING ADVANCED DATABASE CONCEPTS 475

Incremental updates. If we would limit ourselves to leave the documents unmodified
after inserting them into the document base, the storage of content models and attribute
models of the element declaration would not be necessary. However, our objective is to
enable modifications of document components without repeating the process of parsing
the entire document and re-inserting it into the document base. In order to check an
element’s conformance to the DTD, the relevant content model and attribute model must
be available. In our approach, the content models and attribute models are kept as properties
of the element-type classes so that the DTDs are available in a quasi-compiled form.

<HEAD ...>
<NAME TYPE=last ...>
Bing
</NAME>
<ALTNAME TYPE=misNomer ...>
Samuel Bing
</ALTNAME>

</HEAD>

Before discussing the functionality of the system envisaged (R3,R4), we give an exam-
ple of how SGML documents and DTDs are stored. Consider the following fragment of a
document instance conforming to the DTD fragment presented above.

PCDATA

Attributes: {}
Content: {(1,), (2,)}

Content: Bing
Content:
Samuel Bing

HEAD

AttributeModel: {}
ContentModel:
 ’(NAME, ..., ALTNAME*)’

ALTNAME

Attribute Model:
{(’TYPE,’(origName | misNomer)’)}
ContentModel:’#PCDATA’

NAME

Attribute Model:
{(’TYPE,’(last | pseudo)’)}
ContentModel:’#PCDATA’

Attributes:
 {(’TYPE’,’last’)}
Content: {(1,)}

Attributes:
 {(’TYPE’,’misNomer’)}
Content: {(1,)}

Figure 1. SGML document storage

The instance is stored as depicted in Figure 1. Classes are represented by ellipses.
Instances (that are not classes) are shown by rectangles. An instance is connected to its
class with a plain-line arrow. There are classes HEAD, NAME and ALTNAME. The instances of
class HEAD are elements of type HEAD, the instances of class NAME elements of type NAME

etc. The properties of an object are shown within rectangles (in case of a plain object) or
right above the ellipse (in case of a class). The grey box at the bottom right corresponds to
the document fragment shown above.

476 K. ABERER, K. BÖHM, AND C. HÜSER

ELEMENT

AttributeModel:
 {(’ELEMNAME’, ’NAME’),
 (’CONTENTMODEL’, ’CDATA’)}
ContentModel: ’(ATTRIBUTE*)’

ATTRIBUTE

Attributes:
 {(’ELEMNAME’, ’HEAD’),
 (’CONTENTMODEL’, ’(NAME, ..., ALTNAME*)’)}
 Content: {}

 Attributes:
 {(’ELEMNAME’, ’
 (’CONTENTMODEL’, ’#PCDATA’)}
 Content: {(1,)}

AttributeModel:
 {(’ATTRNAME’, ’NAME’), ...}
ContentModel: ’EMPTY’

Attributes:
 {(’ATTRNAME’, ’TYPE’), (’ATTRRULE’, ’(last|pseudo)’),...}
Content: {}

ALTNAME’),

Figure 2. SGML DTD storage

The storage of that DTD fragment with element-types HEAD and ALTNAME follows the
same principle. It is displayed in Figure 2. The grey box is a fragment of the DTD fragment
from above.

The functionality of the document base is illustrated by means of an example: Suppose
that in the sample document above we want to insert another misnomer (’Sam Bing’) for
Siegfried Bing. The sequence of operations is basically as follows:

BEGIN TRANSACTION;
new altname := ALTNAME -> createElem();
flag := new altname -> setAttribute (’TYPE’, ’misNomer’);
flag := head -> subElemInsert (new altname);
new pcdata := PCDATA -> createElem();
flag := new pcdata -> setTextualContent (’Sam Bing’);
flag := new altname -> subElemInsert (new pcdata);

END TRANSACTION;

In the notation used above the target object of a method is left to the arrow, the method
with its parameter on the right. ALTNAME, new altname, new pcdata, and head are variables of
type OID, the unique object identifier in VODAK, flag is of type BOOL. ALTNAME is the OID

of the element-type class with the same name (cf. Figure 1), head the OID of the instance
of HEAD that already exists (i.e., the instance of HEAD in Figure 1). The method createElem

creates an instance of the target object, which is a class. The first parameter of setAttribute

is the attribute name, the second parameter the value. subElemInsert inserts the parameter,
an object, into the content of the target object. setTextualContent, a method that only exists
for instances, sets PCDATA content. By bracing the operations with BEGIN TRANSACTION

and END TRANSACTION this sequence of operations becomes an atomic unit: The DBMS
guarantees that either all operations or none of them are executed and that their execution
is not interrupted by other operations. This functionality facilitates multi-user mode that
cannot easily be achieved with a file-based system.

Queries. Data manipulation (R3) and retrieval (R4) can be specified in a declarative way
using query languages. The path orientation of the VODAK Query Language (VQL) fits

THE PROSPECTS OF PUBLISHING USING ADVANCED DATABASE CONCEPTS 477

the conception of SGML and the location model concept of DSSSL [14]. The following
sample query returns all instances of element-type ALTNAME being misnomers:

ACCESS a
FROM a IN ALTNAME
WHERE ((a -> getAttributeValue(’TYPE’)) == ’misNomer’)

This query illustrates that method calls can be part of query expressions with the
underlying object-oriented DBMS: The parameter of method getAttributeValue is an attribute
name, the return value the corresponding value. The syntax is analogous to SQL and thus
not explained. The following, more complex query expression is an example of how path
expressions can be used in the SGML context:

ACCESS h
FROM h IN HEAD
WHERE ((((h -> getContentElement(1)) -> getContentElement(1)) ->

getTextualContent()) == ’Bing’)

The method getContentElement with parameter 1 returns the first content element of the
target object, which is an SGML element. getTextualContent is the counterpart of setTextual-

Content. Note that the instance of HEAD shown in Figure 1 belongs to the values the query
returns. This example also illustrates how knowledge of the document type can be used to
formulate queries: We know that the NAME element is first in the content of HEAD elements.

Modification of DTDs. Since DTDs are considered as documents, they can be modified
as any other document (R7). Suppose we want to alter the content model of HEAD from
(NAME, ..., ALTNAME+) to (NAME, ..., ALTNAME*) can be done by invoking the following
operation:

flag := elem -> setAttribute (’CONTENTMODEL’, ’(NAME, ..., ALTNAME*)’);

elem is the OID of the object shown in Figure 2 being the instance of ELEMENT on the
right hand side.

The alteration must be propagated to the relevant element-type class. The sample
modification is not problematic because it is an extension operation. In general, however,
modifying an element-type definition or attribute definition may have the effect that the
instances are not conforming to the DTD any more. For example, changing the content
model from (ALTNAME*) to (ALTNAME+) causes a problem if there are sections whose content
is empty. For the moment it is the system administrator’s responsibility to ensure that only
extension operations occur to DTDs that already have instances. Shifting this responsibility
to the system, however, is subject to further work (cf. [9]).

5 HYTIME

The next step to integrate more semantics of hypermedia objects within the storage system
(R5), is to extend D-STREAT towards HyTime support. In a nutshell, the HyTime standard
is a list of element-type definitions. Using HyTime terminology, these templates are element-
type forms or, more generally, architectural forms. 3 Element-type definitions in application

3 There are two kinds of architectural forms: Element-type forms and attribute list forms. In this paper we limit
ourselves to element-type forms.

478 K. ABERER, K. BÖHM, AND C. HÜSER

DTDs may have as their core an element-type form together with further attributes. These
element-type definitions are specializations of the element-type form. The decisive point
is that the semantics of the content and attributes of an element-type form is standardized
independently of any DTD. For instance, consider the element-type form clink which we
took from [6]:

<!element ilink -- Contextual link --
- O (%HyBrid;)*>

<!attlist ilink HyTime NAME clink
id ID]IMPLIED
linkend -- Link end --

...
IDREF]REQUIRED>

clink is the HyTime element name for ’contextual link’. A contextual link is a reference
together with content. Footnotes are a typical example. The attribute linkend contains the
ID of the document component that is referenced. ’(%HyBrid;)*’ basically implies that the
content of clink-instances is in essence arbitrary. To continue the example, it may make
sense to mark the components of a document (esp. of a document that is written by several
authors) with annotations. A sample element-type definition using clink might be as follows:

<!ELEMENT annotation #PCDATA >
<!ATTLIST annotation HyTime NAME clink

id ID]IMPLIED
linkend IDREF
author NAME>

While the attributes HyTime and linkends are inherited from the HyTime element-type
form, the attribute author is part of that particular clink-specialization only. Likewise, the
content of type CDATA is a specialization of (%HyBrid;)*. An instance of annotation would look
exactly like an instance of an SGML-element-type definition. The fundamental difference
compared to SGML is that the semantics of architectural forms is standardized. A trivial
example of an operation performing application-independent clink-processing would return
the document component that is referenced by a given contextual link.

The internal representation of HyTime is as follows: For every HyTime element-
type form there is a metaclass in the document base. We refer to these metaclasses as
HyTime metaclasses. To each SGML element-type being a specialization of a HyTime
architectural form corresponds an element-type class and an instance of the relevant HyTime
metaclass. These instances are called HyTime element-type classes. Like element-type
classes (cf. Section 4) HyTime element-type classes are created at runtime. Every SGML
document element being an instance of a HyTime element-type form has two objects in
the document base representing it: An instance of the element-type class and an instance
of the HyTime element-type class. The instances of the HyTime-element-type classes have
methods capturing the HyTime processing semantics. Moreover, to support more semantics
(R5) the integration of multimedia data into VODAK [15,16] can be exploited.

THE PROSPECTS OF PUBLISHING USING ADVANCED DATABASE CONCEPTS 479

6 CONCLUSIONS

The paper introduced D-STREAT, a prototypical VODAK application framework for the
storage of SGML/HyTime documents. D-STREAT handles instances of arbitrary document
type definitions. Instances of element-type definitions are created dynamically. Their struc-
tural power is well appreciated, for example, by retrieval operations. On the SGML-side
the system provides SGML-specific functionality, e.g., navigating on document trees. Due
to lack of space the HyTime aspect has only been summarized in this paper. For the same
reason we just mention that inter-document processing is also possible with our approach
(cf. R10).

In [17], the object-oriented approach has been identified as the most suitable approach to
hypertext storage. ODA (Office Document Architecture) is another standard for document
description similar to SGML. Brown et al. [18] have realized an ODA-document-storage
system. It consists of a so-called Object Manager and a so-called ODA Manager. With
the Object Manager C++-objects being ODA-document components are made persistent.
The ODA Manager provides the ODA-specific semantics to those objects. The objective is
to provide an "intelligent" interface to ODA documents such as D-STREAT provides for
SGML/HyTime documents.

In [19] the conception of a ’client-server-architecture’ in the document-handling context
is as follows: The client is an application process, e.g., a particular user interface. The server
performs application-independent document processing (e.g., navigation on the document
structure). With that terminology, our approach can also be classified as a client-server
architecture. To extend the described functionality in [19], the need for databases (or at
least research results from this area) is acknowledged. In this sense our work shows the
prospects of publishing using advanced database concepts.

We claim that a new facet of our approach is that arbitrary DTD instances can be
handled. This has been achieved by exploiting the ’metaclass’-features of the underlying
object-oriented DBMS VODAK. As mentioned in the requirements section and looking
at further experiences made in the DofA project [3] more complex document semantics
not yet covered in HyTime have to be administered by D-STREAT. Those semantics can
easily be integrated by object-oriented database systems such as VODAK. Future work
is to support not only interdocument relations between SGML/HyTime documents but to
allow interconnections between D-STREAT and different document data models.

7 ACKNOWLEDGEMENTS

We like to thank Wiebke Möhr and Anja Haake for their comments on earlier versions of
the paper.

480 K. ABERER, K. BÖHM, AND C. HÜSER

REFERENCES

1. C. Hüser et al., ‘AP1: Requirements, Publishing Process and Environment’, Technical Report
R2042/GMD/IPS/DS/R/008/b1, EUROPUBLISHING Project, RACE-Programme, (1993).

2. International Standard ISO/IEC 8879: Information Processing – Text and Office Systems –
Standard Generalized Markup Language (SGML), ed., International Organization for Standard-
ization, Geneva/New York, first edition, 1986.

3. L. Rostek, W. Möhr, and D.H. Fischer, ‘Weaving a web: The structure and creation of an
object network representing an electronic reference work’, Electronic Publishing – Origination,
Dissemination, and Design, 6(4), (December 1993).

4. W. Klas et al., ‘VML - The VODAK Model Language Version 3.1’, Technical report, GMD-IPSI,
Darmstadt, (July 1993).

5. W. Klas, K. Aberer, and E.J. Neuhold, ‘Object-Oriented Modelling for Hypermedia Systems
Using the VODAK Modelling Language (VML)’, in Object-Oriented Database Management
Systems, NATO ASI Series, Springer, Heidelberg/Berlin/New York, (August 1993).

6. International Standard ISO/IEC 10744: Information Technology – Hypermedia/Time-
based Structuring Language (HyTime), ed., International Organization for Standardization,
Geneva/New York, first edition, 1992.

7. C. Hüser and A. Weber, ‘The Individualized Electronic Newspaper: An Application Challenging
Hypertext Technology’, in Hypertext und Hypermedien 1992: Konzepte und Anwendungen auf
dem Weg in die Praxis, eds., R. Cordes and N. Streitz, 62–74, Springer, Heidelberg, (1992).

8. K. Süllow et al., ‘MultiMedia Forum – an interactive online journal’, Electronic Publishing –
Origination, Dissemination, and Design, 6(4), (December 1993).

9. E. Akpotsui and V. Quint, ‘Type Transformation in Structured Editing Systems’, in Proceedings
of Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek and G. Coray, 27–41, Cambridge
University Press, Cambridge, UK, (1992).

10. C. Hüser, ‘Report on a prototypical interface for structured documents and its application to
the IEN scenario’, Technical Report 75/GMD/IPS/DS/L/047/b0, TELEPUBLISHING Project,
RACE-Programme, (August 1991).

11. D.H. Fischer, ‘Consistency Rules and Triggers for Multilingual Terminology’, in Proceedings of
the Third International Congress on Terminology and Knowledge Engineering, 333–342, Indeks
Verlag, Frankfurt am Main, (1993).

12. A. Haake, ‘CoVer: A Contextual Version Server for Hypertext Applications’, in Proceedings
of the Fourth ACM Conference on Hypertext (Hypertext’93), 43–52, ACM Press, New York,
(December 1993).

13. J.Warmer and S.van Egmond, ‘The implementation of the Amsterdam SGML Parser’, Technical
report, Faculteit Wiskunde en Informatica, Department of Mathematics and Computer Science,
Vrije Universiteit Amsterdam, (1987).

14. International Standard ISO/IEC DIS 10179: Information Technology – Text and Office Systems –
Document Style Semantics and Specification Language (DSSSL), ed., International Organization
for Standardization, Geneva/New York, 1991.

15. T.C. Rakow et al., ‘Using Object-Oriented Database Systems for Multimedia Applications’, in it
+ ti – Informationstechnik und Technische Informatik, Themenheft "Multimedia/Hypermedia",
Teil 2, 4–17, Oldenbourg, Munich, (June 1993).

16. K. Aberer and W. Klas, ‘The Impact of Multimedia Data on Database Management Systems’,
Technical report, Gesellschaft für Mathematik und Datenverarbeitung (GMD), Sankt Augustin,
(1993). Arbeitspapiere der GMD, No. 752.

17. D.B. Lange, ‘Object-Oriented Hypermodeling of Hypertext Supported Information Systems’,
in Proceedings of the 26th Hawaii International Conference on System Sciences, (1993).

18. A.L. Brown, T. Wakayama, and H.A. Blair, ‘A Reconstruction of Context-Dependent Document
Processing in SGML’, in Proceedings of Electronic Publishing, 1992 (EP92), eds., C. Vanoirbeek
and G. Coray, 1–25, Cambridge University Press, Cambridge, UK, (1992).

19. R. Furuta, P.D. Stotts, and G.D. Drew, ‘Experiences with a Client-Server-Based Architecture
for a Distributed Structured Hypertext System’, in Proceedings of Electronic Publishing, 1992
(EP92), eds., C. Vanoirbeek and G. Coray, 113–141, Cambridge University Press, Cambridge,
UK, (1992).

