
Proceedings of the MoDELS’05 Workshop on
Tool Support for OCL and Related Formalisms

- Needs and Trends

Thomas Baar (Ed.)

Technical Report No. LGL-REPORT-2005-001
September 2005

Software Engineering Laboratory
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thomas Baar (Ed.)

Tool Support for OCL and Related
Formalisms - Needs and Trends

Workshop co-located with MoDELS’05: ACM/IEEE 8th
International Conference on Model Driven Engineering
Languages and Systems (formerly the UML Series of Con-
ferences)

Montego Bay, Jamaica, October 4, 2005
Proceedings

Preface

This Technical Report comprises the final versions of all technical papers pre-
sented at the workshop Tool Support for OCL and Related Formalisms - Needs
and Trends held in Montego Bay (Jamaica), October 4, 2005. The workshop was
co-located with the ACM/IEEE 8th International Conference on Model Driven
Engineering Languages and Systems (formerly the UML series of conferences)
and continued a series of workshops focussing on OCL held at UML conferences
in past years: 2000 in York, 2001 in Toronto, 2003 in San Francisco, and 2004 in
Lisbon.

The frequency of workshops on OCL in the last years shows the genuine
interest of both the research community as well as practitioners to discuss in
detail the role OCL can play in precise modeling. While previous OCL work-
shops mainly aimed at analyzing the OCL itself and at clarifying the official
language specification, the workshop this year concentrated on tool support and
new application scenarios. The focus of the workshop is reflected by the titles of
the three paper presentation sessions.

In session Application of OCL, the paper On Squeezing M0, M1, M2, and M3
into a Single Object Diagram by Gogolla, Favre, and Büttner applies OCL to
formalize and clarify several metamodeling notions, which are currently used in a
loose way by modelers. The paper Formal Description of OCL Specification Pat-
terns for Behavioral Specification of Software Components by Ackermann pro-
poses a pattern-based technique to support the user in writing domain-specific
OCL constraints.

In the second session Tool Support for OCL, three papers describing tech-
niques for parsing and transforming OCL constraints were presented. The paper
Supporting OCL as part of a Family of Languages by Akehurst, Howells, and
McDonald-Maier analyzes a framework for defining the concrete syntax of a fam-
ily of OCL-like languages. An OCL-like language shares large parts of its syntax
with OCL but can also add new syntactic constructs or can redefine existing
ones. The paper Generation of an OCL 2.0 Parser by Demuth, Hussmann, and
Konermann identifies weaknesses of the current concrete syntax description for
OCL 2.0 and makes suggestions how they can be mastered from the tool de-
veloper’s point of view. The third paper of this session Lessons Learned from
Developing a Dynamic OCL Constraint Enforcement Tool for Java by Dzidek,
Briand, and Labiche reports on the application of aspect-oriented techniques to
implement an OCL to Java translator.

The final session History and Future of OCL aimed at discussing trends in
future uses of OCL. The papers also try to draw conclusions for the definition of
OCL, including tool support. The paper Proposals for a Widespread Use of OCL
by Chiorean, Bortes, and Corutiu formulates a proposal for defining different
dialects of OCL that rely on a common core. Another topic is the support of
such dialects by a single tool suite. In OCL and Graph Transformations – A

Symbiotic Alliance to Alleviate the Frame Problem by Baar, a combination of
OCL with graph grammars is proposed. This combination is motivated by the
frame problem, which has not been sufficiently addressed in OCL yet.

Finally, I would like to express my sincere gratitude to all members of the
organizing committee for the lively discussion on the topic of this year’s OCL
workshop, for their dedication to writing reviews, and for useful suggestions for
the final program. Last but not least, the authors of all submitted papers are
gratefully thanked for having made this workshop possible. Might this workshop
have given some inspiration to all workshop attendees. Might, furthermore, this
inspiration culminate in interesting new papers on OCL, laying the foundations
for scientific disputes at forthcoming workshops and conferences.

September 2005 Thomas Baar

Organization

Organizing Committee

Thomas Baar (Switzerland)
Dan Chiorean (Romania)
Alexandre Correa (Brazil)
Martin Gogolla (Germany)
Heinrich Hußmann (Germany)
Octavian Patrascoiu (UK)
Peter H. Schmitt (Germany)
Jos Warmer (The Netherlands)

Table of Contents

Application of OCL

On Squeezing M0, M1, M2, and M3 into a Single Object Diagram 1
Martin Gogolla, Jean-Marie Favre, Fabian Büttner

Formal Description of OCL Specification Patterns for Behavioral
Specification of Software Components . 15
Jörg Ackermann

Tool Support for OCL

Supporting OCL as part of a Family of Languages . 30
David H. Akehurst, Gareth Howells, Klaus D. McDonald-Maier

Generation of an OCL 2.0 Parser . 38
Birgit Demuth, Heinrich Hussmann, Ansgar Konermann

Lessons Learned from Developing a Dynamic OCL Constraint
Enforcement Tool for Java . 53
Wojciech J. Dzidek, Lionel C. Briand, Yvan Labiche

History and Future of OCL

Proposals for a Widespread Use of OCL . 68
Dan Chiorean, Maria Bortes, Dyan Corutiu

OCL and Graph Transformations – A Symbiotic Alliance to Alleviate
the Frame Problem . 83
Thomas Baar

Author Index . 101

On Squeezing M0, M1, M2, and M3

into a Single Object Diagram

Martin Gogolla, Jean-Marie Favre, Fabian Büttner

University of Bremen (D), University of Grenoble (F), University of Bremen (D)

Abstract. We propose an approach for the integrated description of
a metamodel and its formal relationship to its models and the model
instantiations. The central idea is to use so-called layered graphs per-
mitting to describe type graphs and instance graphs. A type graph can
describe a collection of types and their relationships whereas an instance
graph can represent instances belonging to the types and respecting
the relationships required by the type graph. Type graphs and instance
graphs are used iteratively, i.e., an instance graph on one layer can be
regarded as a type graph of the next lower layer. Our approach models
layered graphs with a UML class diagram, and operations and invari-
ants are formally characterized with OCL and are validated with the
USE tool. Metamodeling properties like strictness or well-typedness and
features like potency can be formulated as OCL constraints and oper-
ations. We are providing easily understandable definitions for several
metamodeling notions which are currently used in a loose way by mod-
elers. Such properties and features can then be discussed on a rigorous,
formal ground. This issue is also the main purpose of the paper, namely,
to provide a basis for discussing metamodeling topics.

Keywords: System, Model, Metamodel, Meta-Metamodel, Class,
Instance, InstanceOf, RepresentedBy, ConformsTo, Well-Typedness,
Strictness, Potency, Layered Graph.

1 Motivation

Recent research activities and results in software engineering indicate that meta-
modeling is becoming more and more important [Sei03,Tho04,Bez05]. There are
a lot of discussions about properties and notions of metamodels like the strict-
ness of a metamodel or the potency of elements in it [AKHS03,AK03]. There are
special sessions at scientific events on metamodeling. Standardized (e.g., by the
OMG) and scientific, alternative metamodels have been developed for impor-
tant languages like UML [ESW+05], MOF, OCL [WK02,RG99], and CWM,
to name only a few. A book on metamodeling is currently under develop-
ment [CESW04]. Metamodeling is important within the Model Driven Architec-
ture [Fra03,KWB03,MSUW04], and metamodeling is beginning to be broadened
to megamodeling [Fav05b,Fav05a].

However, notions within the metamodeling area are often loose due to a lack
of formalization. This has been recently referred to as the meta-muddle. Let us
mention some examples. (A) A recent nice paper [Bez05] distinguishes between
System, Model, Metamodel, and Meta-Metamodel whereas the conventional OMG
approach uses the notion User Objects (User Data) instead of System. (B) In
the same paper the author calls something a metamodel what would be called a
model in the OMG terminology. (C) There are continuing discussions on whether
the metamodels for UML 1 and UML 2 are strict or not.

The aim of this paper is to present a framework for discussing such notions
and properties of metamodels by formalizing them. We will use a graph-based
approach. Within metamodels one usually has different layers of abstractions,
and each layer is more or less formally described. However, the relationship
between the different layers is usually not explicitly discussed and described
only implictly. Our approach allows to formally describe the different layers as
well as the connection between the layers in an abstract form. Each layer will
build a graph with nodes and edges, and also the connections between the layers
will be formally described by edges. Thus we will obtain a comprehensive single
graph covering the metamodel layers and their connections.

The structure of the rest of the paper is as follows. Section 2 will introduce the
basic idea by means of a simple example. Section 3 formally shows our approach
with its underlying class diagram including invariants and operations. Section 4
discusses further examples. The paper is finished with a concluding section which
also contains open questions.

2 Describing Layered Graphs as Object Diagrams

Our layered graphs allow to organize complex metamodel structures into several
abstraction layers. As an example, consider the graph in the left part of Fig. 1
possessing three layers: On the bottom layer one identifies nodes like ada and
edges like ada ibm; in the middle layer there are the nodes Person and Company
and the edge Job; the top layer consists of the node Thing and the edge Connec-
tion. We discuss features of layered graphs by considering, for the example, the
three layers one after the other, starting with the middle layer.

Middle layer: The middle layer can be thought of as representing a class dia-
gram with two classes and one association.

Bottom layer: The bottom layer can be regarded as an object diagram with
respect to the middle layer. The nodes and edges on this layer are all typed
by dashed edges going to the middle layer. For example, the node ada is
typed with a dashed edge going to node Person and the edge ada ibm is
typed with a dashed edge to the edge Job. Both typing elements, i.e., Person
and Job, belong to the next higher layer.

Top layer: The top layer can be thought of as showing a class diagram such
that the middle layer diagram becomes an object diagram for this top layer

2 M. Gogolla, J.-M. Favre, and F. Büttner

Fig. 1. Job Example as a Layered Graph and as an Object Diagram

diagram. The nodes Person and Company are typed as being nodes of type
Thing and Job is an edge of type Connection.

The aim of the paper is to propose a general model for graphs like the one
depicted in the left part of Fig. 1 but where not only three layers but an arbitrary
number of layers can be captured. Each layer may have (solid) nodes and (solid)
edges which can be typed by (dashed) edges to the next higher layer. We call
such a graph consisting of several layers and (dashed) typing edges between the
layers a layered graph.

The USE [RG01] screenshot in right part of Fig. 1 shows how the graph from
the left part is represented as a UML object diagram. We will first explain the
basic structure of the object diagram and introduce the respective class diagram
later. One basic observation is that the nodes and the solid (non-dashed), named
edges from the left part are represented as objects, but the dashed, unnamed
edges are represented as links. The objects belong to (A) the class Nodus which
realizes the nodes from the left part or (B) the class Linea which realizes solid
edges from the left part. In order to have new, neutral names we have chosen
the respective latin words as class names (see [Fav05b,Fav05a] for a discussion
of the importance of distinguishing metamodel levels). Objects can be typed by
Typus links. Nodus objects are typed by NodusTypus links, and Linea objects by
LineaTypus links. The Typus links have been shown in the left part of Fig. 1 by
dashed edges. Linea objects indicate their participating Nodus objects with links
labelled LineaPars1 and LineaPars2. The latin word pars means part.

A layered graph does not induce a unique object diagram: For example, instead
of having the link labelled LineaPars1 from Job to Person and the link labelled
LineaPars2 from Job to Company, we could exchange 1 and 2 and have a link
LineaPars2 from Job to Person and a link LineaPars1 from Job to Company.

On Squeezing M0, M1, M2, and M3 into a Single Object Diagram 3

3 Class Diagram, Operations, and Invariants

The class diagram in Fig. 2 shows our modeling for layered graphs by intro-
ducing the classes Nodus and Linea, the associations NodusTypus, LineaTypus,
LineaPars1, and LineaPars2, and the names of the invariants.

* typingNodus

Linea

nomen:String

pars():Bag(Nodus)
typusPlus():Set(Linea)
allTypusPaths():Seq(Seq(Linea))
potency():Integer

Invariants

Nodus::noTypusCycle
Linea::noTypusCycle

Linea::stronglyWellTyped
Linea::weaklyWellTyped

Nodus::uniquelyTyped
Linea::uniquelyTyped

Nodus::stronglyStrict
Nodus::weaklyStrict
Linea::stronglyStrict
Linea::weaklyStrict

Nodus::balanced
Linea::balanced

Linea::noneOrOneLinea

Nodus

nomen:String

typusPlus():Set(Nodus)
allTypusPaths():Seq(Seq(Nodus))
potency():Integer

* typus

1 pars1

* typingLinea

* partedLinea1

* typus

1 pars2

* partedLinea2

NodusTypus

LineaTypus

LineaPars1 LineaPars2

Fig. 2. UML Class Diagram for Nodus and Linea

– The class Nodus describes nodes. Nodus objects as well as Linea objects
possess a string-valued name attribute nomen. The operation typusPlus is the
transitive closure of the role name typus which will be explained below. The
operation potency provides one definition for the potency of Nodus objects
which basically indicates the layer to which the Nodus object belongs. The
operation allTypusPaths delivers all paths without node repetitions consisting
of Nodus objects starting in the respective Nodus object and using typing
edges (dashed edges) only.

4 M. Gogolla, J.-M. Favre, and F. Büttner

– The class Linea describes edges. Apart from having analogous operations
mentioned already for the class Nodus, it possesses the operation pars yielding
the bag of Nodus objects the respective Linea object is connected to.

– The association NodusTypus represents the typing of Nodus objects. Its role
names are typus and typingNodus. typus yields the types of the current nodus
object in the next higher layer (dashed edges upwards), whereas typingNodus
yields the objects in the next lower layer which are typed through the cur-
rent nodus object (dashed edges downwards). The association LineaTypus
represents the typing of Linea objects. This association has analogous role
names as NodusTypus. We emphasize that the multiplicities for NodusTypus
and LineaTypus do not require a unique typing mechanism: Nodus and Linea
objects can have multiple types.

– The associations LineaPars1 and LineaPars2 give the two Nodus objects the
Linea object is connected to. These two Nodus objects have not to be distinct
as, for example, the edge Connection in Fig. 1 shows. The choice between
what is LineaPars1 and what is LineaPars2 is not important.

We now turn to the invariants. Not all these invariants are expected to be true
in all system states which we discuss. The invariants are used to display whether
certain properties hold in the current system state or not. Our USE tool al-
lows with the invariant window to display such properties in a compact way,
and therefore, we have formulated most properties as invariants. Alternatively,
we could have formulated the invariants with observer operations, but then we
could not have displayed the resuls in a compact way. However, the interest-
ing discussion points will occur when certain invariants are not satisfied. Our
introductory example however satisfies all invariants.

Most invariants are formulated for the class Nodus as well as for the class Linea.
Therefore, we only show the invariants for class Nodus because the ones for class
Linea are formulated analogously.1

– context self:Nodus inv noTypusCycle: -- also for Linea

self.typusPlus()->excludes(self)

Nodus::noTypusCycle requires that dashed edges between nodes do not in-
clude a cycle: The association NodusTypus constitutes a directed, acyclic
graph (dag).

– context self:Linea inv stronglyWellTyped: -- only for Linea

self.typus->notEmpty implies

self.pars().typus=self.typus.pars()

Linea::stronglyWellTyped demands that the types of the nodes of a (solid)
edge are equal to the nodes of the types of the edge (types of the nodes vs.
nodes of the types). In other words, for any (solid) edge, typing and building
edge components are interchangeable.

1 OCL invariants without explict variables possess an implicit variable self typed by
the context class. We here prefer to name variables explicitly because we need a
second context class variable for this constraint.

On Squeezing M0, M1, M2, and M3 into a Single Object Diagram 5

– context self:Linea inv weaklyWellTyped: -- only for Linea

self.typus->notEmpty implies

self.pars().typus->includesAll(self.typus.pars())

Linea::weaklyWellTyped claims that the types of the nodes of a (solid) edge
are a superset of the nodes of the types of the edge (again, types of the nodes
vs. nodes of the types). In other words, for any (solid) edge, calculating first
the type and then the edge components is compatible with calculating first
the edge components and then the type, but not the other way round.
The last two well-typedness properties can be formulated only for the class
Linea.

– context self:Nodus inv uniquelyTyped: -- also for Linea

self.typus->notEmpty implies self.typus->size=1

Nodus::uniquelyTyped means that all nodes except the nodes in the top layer
have exactly one type.

– context self:Nodus inv stronglyStrict: -- also for Linea

self.typus->notEmpty implies

self.typus->forAll(n|self.potency()+1=n.potency())

Nodus::stronglyStrict demands that the potency of a node lies exactly under
all the potencies of the types of the node being on the next higher layer.

– context self:Nodus inv weaklyStrict: -- also for Linea

self.typus->notEmpty implies

self.typus->forAll(n|self.potency()+1<=n.potency())

Nodus::stronglyStrict requires that the potency of a node lies under, but not
necessarily exactly under all the potencies of the types of the node being on
the next higher layer.

– context self:Nodus inv balanced: -- also for Linea

Nodus.allInstances->forAll(self2|

self<>self2 and self.potency()=self2.potency() implies

self.typingNodus->notEmpty=self2.typingNodus->notEmpty)

Nodus::balanced states that all layers are balanced in the sense that two
different nodes with the same potency also both possess typing nodes.

– context self:Linea inv noneOrOneLinea: -- only for Linea

Linea.allInstances->forAll(self2|

self<>self2 implies self.pars()<>self2.pars())

Linea::noneOrOneLinea requires that between two nodes there can be at most
one (solid) edge. This invariant could also be formulated in a restricted way
for particular layers only.

– The overall aim of operation2 potency shown in Fig. 3 is to return the layer
number in which the respective Nodus object lies. The numbering starts
with zero on the lowest layer. The formal definition of potency is rather
complex, partly because potency should yield a result even in cases when
the underlying NodusTypus structure is cyclic. The operation potency uses
the helper operations max and allTypusPaths. allTypusPaths in turn needs
the helper operation oneStep. allTypusPaths computes all paths consisting
of nodes and (dashed) edges going upwards but a single node is allowed to
occur only once. So, if there are cycles in the dashed edges between nodes,

2 We employ the USE syntax for operation definitions.

6 M. Gogolla, J.-M. Favre, and F. Büttner

i.e., invariant Nodus::noTypusCycle is not valid, allTypusPaths and with this
potency will yield no usable result.

oneStep(aSeq:Sequence(Sequence(Nodus))):Sequence(Sequence(Nodus))=

if aSeq->isEmpty or aSeq->isUndefined then

oclEmpty(Sequence(Sequence(Nodus)))

else

aSeq->iterate(s:Sequence(Nodus);

r1:Sequence(Sequence(Nodus))=oclEmpty(Sequence(Sequence(Nodus)))|

s->last.typus->iterate(n:Nodus;r2:Sequence(Sequence(Nodus))=r1|

if s->excludes(n)

then r2->append(s->including(n)) else r2 endif))

endif

allTypusPaths():Sequence(Sequence(Nodus))=

Nodus.allInstances->iterate(n:Nodus;

r:Sequence(Sequence(Nodus))=Sequence{Sequence{self}}|

let new=oneStep(r)->reject(s|r->includes(s)) in r->union(new))

max():Integer=

Nodus.allInstances->collect(n|n.allTypusPaths())->flatten->

collect(size)->iterate(i:Integer;r:Integer=0 |

if i>r then i else r endif)

potency():Integer=

max()-self.allTypusPaths()->collect(p|p->size)->iterate(

i:Integer;r:Integer=0 | if i>r then i else r endif)

Fig. 3. Operation potency

In order to give a simple example, how the operation potency works, we show
its results for the introductory example:

potency

ada,bob,ibm,sun,ada_ibm,bob_sun 0

Person,Company,Job 1

Thing,Connection 2

After having formulated these abstract properties let us turn to some more
examples in order to see how the invariants behave in concrete situations.

4 Further Examples

The first example is about the poodle fido where poodle in turn is regarded as a
breed. The situation is displayed in Fig. 4 as a layered graph and in Fig. 5 as a
USE object diagram. The (solid) edges express an InstanceOf association. fido is
typed as an Object and as a Poodle, Poddle is typed as a Breed, as an Object and
as a Class, and Breed is typed as a Class. Thus the invariant Nodus::uniquelyTyped
is invalid. This formally reveals that Poodle is a clabject. A clabject is a cross
between class and object [AKHS03,AK03]. In formal terms this can be captured
as Poodle.typus = Set{Breed,Class,Object}. The typing is also not strongly strict,

On Squeezing M0, M1, M2, and M3 into a Single Object Diagram 7

i.e., the invariant Nodus::stronglyStrict is invalid, because Poodle.potency()=1
but, e.g., Object.potency()=3. Last, the Linea objects are not strongly well-typed
because, e.g., Poodle fido.pars().typus = Bag{Breed,Class,Object,Object,Poodle}
but Poodle fido.typus.pars() = Bag{Class,Object}. However, Linea objects are
weakly well-typed, because the second mentioned bag is included in the first
bag.

Fig. 4. The Fido Example as a Layered Graph

Fig. 5. The Fido Example as a USE Object Diagram

The second example shows in Fig. 6 and Fig. 7 parts of a modeling for the
Entity-Relationship model, the Relational data model and their translation. The
left part expresses that the instance adaInstance is typed by PersonEntity and
PersonEntity in turn is typed by Entity. The right part shows that the tuple

8 M. Gogolla, J.-M. Favre, and F. Büttner

adaTuple is typed by PersonRelSchema which in turn is typed by a Relational
schema (RelSchema). Both elements, Entity and RelSchema, are typed as classes.
The (solid) edges express a Reification connection between the elements. All
invariants are satisfied and the potencies work in the hopefully expected way.

Fig. 6. The ER-RE Example as a Layered Graph

Fig. 7. The ER-RE Example as a USE Object Diagram

The third example in Fig. 8 and Fig. 9 shows a variation of the previous ER and
Relational data model example where clabjects are used. As said already, inter-
esting points come up where invariants are not satisfied. As in the first example

On Squeezing M0, M1, M2, and M3 into a Single Object Diagram 9

of this section, Nodus::stronglyStrict and Nodus::uniquelyTyped fail. In this exam-
ple, the Linea objects are not uniquely typed, but they are strongly well-typed.
And the Linea object potencies are not strongly strict, because the (solid) edge
potencies violate the requirements: PersonEntity PersonRelSchema.potency()=1,
but PersonEntity PersonRelSchema.typus.potency()=Bag{2,3}.

Fig. 8. Alternative ER-RE Example as a Layered Graph

5 Conclusion and Open Questions

This paper proposes to describe metamodeling notions and relationships with
OCL invariants and operations. Such rigorous characterizations allow a precise
and sharper discussion of such notions, the different metamodelling layers and
their relationships. We have defined two versions of the notion strict metamod-
eling (weakly and strongly strict metamodeling), and we have formally defined
the notion potency. An overview of our approach is given in Fig. 10. All four
OMG metamodel layers are represented in a single object diagram which con-
forms to the Nodus-Linea class diagram. This is shown by the outer CD-OD
bracket (CD-OD: Class Diagramm - Object Diagram). As indicated by the inner
CD-OD brackets within this object diagram, further object and class diagrams
with relationships between the layers are present. Note that in Fig. 10 the as-
sociation Job and the link ada ibm are displayed in the Nodus-Linea compliant
style as nodes.

Future research includes the following questions.

– Fig. 10 assumes that the CD-OD brackets all obey the same rules or in other
words that the class and object diagrams are UML respectively MOF dia-
grams. Are the inner CD-OD brackets and the outer CD-OD brackets really
of the same kind?

10 M. Gogolla, J.-M. Favre, and F. Büttner

Fig. 9. Alternative ER-RE Example as a USE Object Diagram

On Squeezing M0, M1, M2, and M3 into a Single Object Diagram 11

C
D

-O
D

C
D

-O
D

C
D

-O
D

ada ada_ibm ibm

Person Job Company

UML Association

MOF Class

M0

M1

M2

M3

Nodus Linea

UML Class

C
D

-O
D

Fig. 10. Overview on the Approach

– The classes Nodus and Linea can be generalized to a common superclass
GraphElement. This would make the model shorter but also even more ab-
stract. Up to now our typing has to map nodes to nodes and edges to edges.
A generalization class GraphElement could also allow, e.g., that nodes are
type mapped to edges. Would this generalization condense the model or
introduce more confusion?

– We have developed also an easier definition of the potency notion than the
one we have shown. How does this easier definition relate to the more complex
definition? Under which conditions do the two definitions coincide? How do
these implicit or calculated potencies relate to an explicit assignment of
potency in the class or object diagram?

– In our view a layer is collection of nodes and edges which have the same
potency. And layers like M0, M1, M2, and M3 are then collections of objects
and nodes with the respective potency. Is it possible to introduce particular
constraints for particular layers? For example, naming conventions like object
names on the lowest layer (System) only have lower case letters? Or, for
example, uniqueness constraints for names within a particular namespace,
like Person names are unique?

– In [Bez05] the view is taken that the System is RepresentedBy the Model and
that the Model then ConformsTo the Metamodel. What are the consequences
from the fact that both relationships RepresentedBy and ConformsTo are
represented in our approach uniformly as dashed typing edges?

– Our approach also allows to discuss particular language feature of UML
diagrams, e.g., ternary (and higher order) associations in class diagrams.

12 M. Gogolla, J.-M. Favre, and F. Büttner

Fig. 11. UML in MOF - Ternary UML Assocs in MOF

What is the relationship between a UML Association and a MOF Association?
In our approach, the question would be stated as: How is the typing of the
Nodus object UML Association with respect to the next higher layer, i.e., with
respect to the Nodus object MOF Association (as indicated in Fig. 11)? Goes
the typing from UML Association to (A) MOF Class, (B) MOF Association,
or (C) MOF Class and MOF Association?

– The general question behind this concrete question is: Where and how is the
relationship between metamodeling layers expressed?

– Currently, our OCL tool USE (and also other tools) only allows to handle
two layers: One class diagram and one object diagram layer. How can our
approach help to develop Meta-OCL tools which support more layers where
the middle layer (in a three layer setting) is at the same time an object
diagram for the top layer and a class diagram for the bottom layer?

References

[AK03] C. Atkinson and T. Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, 2003.

[AKHS03] C. Atkinson, T. Kühne, and B. Henderson-Sellers. Systematic Stereotype
Usage. Software and System Modeling, 2(3):153–163, 2003.

[Bez05] J. Bezivin. On the Unification Power of Models. Software and System
Modeling, 4(2):171–188, 2005.

[CESW04] T. Clark, A. Evans, P. Sammut, and J. Willans. Applied Metamodelling: A
Foundation for Language Driven Development. Xactium, 2004.

[ESW+05] A. Evans, P. Sammut, J. S. Willans, A. Moore, and G. Maskeri. A Unified
Superstructure for UML. Journal of Object Technology, 4(1):165–182, 2005.

[Fav05a] J.-M. Favre. Foundations of Meta-Pyramids: Languages vs. Metamodels –
Episode II: Story of Thotus the Baboon. In J. Bezivin and R. Heckel, edi-
tors, Language Engineering for Model-Driven Software Development, num-
ber 04101 in Dagstuhl Seminar Proceedings, 2005.

[Fav05b] J.-M. Favre. Foundations of Model (Driven) (Reverse) Engineering: Mod-
els – Episode I: Stories of The Fidus Papyrus and of The Solarus. In

On Squeezing M0, M1, M2, and M3 into a Single Object Diagram 13

J. Bezivin and R. Heckel, editors, Language Engineering for Model-Driven
Software Development, number 04101 in Dagstuhl Seminar Proceedings,
2005.

[Fra03] D. Frankel. Model Driven Architecture: Applying MDA to Enterprise Com-
puting. John Wiley and Sons, 2003.

[KWB03] A.G. Kleppe, J.B. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Pearson Education, 2003.

[MSUW04] S.J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled. Addison
Wesley, 2004.

[RG99] M. Richters and M. Gogolla. A Metamodel for OCL. In R. France
and B. Rumpe, editors, Proc. 2nd Int. Conf. Unified Modeling Lan-
guage (UML’99), pages 156–171. Springer, Berlin, LNCS 1723, 1999.

[RG01] M. Richters and M. Gogolla. OCL - Syntax, Semantics and Tools. In
T. Clark and J. Warmer, editors, Advances in Object Modelling with the
OCL, pages 43–69. Springer, Berlin, LNCS 2263, 2001.

[Sei03] E. Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, 2003.
[Tho04] D.A. Thomas. MDA: Revenge of the Modelers or UML Utopia? IEEE

Software, 21(3):15–17, 2004.
[WK02] J.B. Warmer and A.G. Kleppe. The Object Constraint Language: Getting

Your Models Ready for MDA. Addison-Wesley, 2nd Edition edition, 2002.

14 M. Gogolla, J.-M. Favre, and F. Büttner

Formal Description of OCL Specification Patterns for
Behavioral Specification of Software Components

Jörg Ackermann

Chair of Business Informatics and Systems Engineering,
University of Augsburg, Universitätsstr. 16, 86135 Augsburg

joerg.ackermann@wiwi.uni-augsburg.de

Abstract. The Object Constraint Language (OCL) is often used for behavioral
specification of software components. One current problem in specifying be-
havioral aspects comes from the fact that editing OCL constraints manually is
time consuming and error-prone. To simplify constraint definition we propose
to use specification patterns for which OCL constraints can be generated auto-
matically. In this paper we outline this solution proposal and develop a way
how to formally describe such specification patterns on which a library of reus-
able OCL specifications is based.

Keywords. Software Component Specification, OCL, Specification Patterns

1 Introduction

The Object Constraint Language (OCL) [20] has great relevance for component-based
software engineering (CBSE): A crucial prerequisite for applying CBSE successfully
is an appropriate and standardized specification of software components [27]. Behav-
ioral aspects of components are often specified using OCL (see Sect. 2). From this
results one of the current problems in component specifications: Editing OCL con-
straints manually is time consuming and error-prone (see Sect. 3).

To simplify constraint definition we propose to utilize specification patterns for
which OCL constraints can be generated automatically (see Sect. 4). [4] identifies nine
patterns that frequently occur in behavioral specifications of software components. In
this paper we develop a solution how to formally describe specification patterns that
enable a precise pattern specification and aid the implementation of constraint genera-
tors (Sect. 5). We conclude with discussion of related work (Sect. 6) and a summary
(Sect. 7).

The main contributions of this paper are: the proposal to use specification patterns
to simplify component specifications and the formal description of specification pat-
terns by use of so called OCL pattern functions – together with the identified patterns
we obtain a library of reusable OCL specifications. The results are not specific for
software components and might therefore be interesting for any user of OCL con-
straints.

2 Specification of Software Components

The basic paradigm of component-based software engineering is to decouple the pro-
duction of components (development for reuse) from the production of complete sys-
tems out of components (development by reuse). Applying CBSE promises (amongst
others) a shorter time to market, increased adaptability and reduced development costs
[8,25].

A critical success factor for CBSE is the appropriate and standardized specification
of software components: the specification is prerequisite for a composition methodol-
ogy and tool support [23] as well as for reuse of components by third parties [26].
With specification of a component we denote the complete, unequivocal and precise
description of its external view - that is which services a component provides under
which conditions [27].

Various authors addressed specifications for specific tasks of the development
process as e.g. design and implementation [9,10], component adaptation [28] or com-
ponent selection [15]. Approaches towards comprehensive specification of software
components are few and include [7,23,27]. Objects to be specified are e.g. business
terms, business tasks (domain-related perspective), interface signatures, behavior and
coordination constraints (logical perspective) and non-functional attributes (physical
perspective).

Behavioral specifications (which are topic of this paper) describe how the compo-
nent behaves in general and in borderline cases. This is achieved by defining con-
straints (invariants, pre- and postconditions) based on the idea of designing applica-
tions by contract [18]. OCL is the de-facto standard technique to express such con-
straints – cf. e.g. [9,10,23,27].

Fig. 1. Interface specification of component SalesOrderProcessing

To illustrate how behavioral aspects of software components are specified we intro-
duce a simplified exemplary component SalesOrderProcessing. The business task of
the component is to manage sales orders. This component is used as example through-
out the rest of the paper.

16 J. Ackermann

Fig. 1 shows the interface specification of SalesOrderProcessing using UML [21].
We see that the component offers the interface ISalesOrder with operations to create,
check, cancel or retrieve specific sales orders. The data types needed are also defined
in Fig. 1. Note that in practice the component could have additional operations and
might offer additional order properties. For sake of simplicity we restricted ourselves
to the simple form shown in Fig. 1 which will be sufficient as example for this paper.

To specify the information objects belonging to the component (on a logical level)
one can use a specification data model which is realized as an UML type diagram and
is part of the behavioral specification [3]. Fig. 2 displays such a model for the compo-
nent SalesOrderProcessing. It shows that the component manages sales orders (with
attributes id, date of order, status, customer id) and sales order items (with attributes
id, quantity, product id) and that there is a one-to-many relationship between sales
orders and sales order items.

Fig. 2. Specification data model for component SalesOrderProcessing

Note that the interface ISalesOrder is connected to the component and not to one of
the types in Fig. 2 – the types do not have operations at all. This is because the type
diagram is only intended for specification purposes and shall not display internal re-
alization details (black-box reuse). As a consequence the coupling between interface
definition and type diagram is only loose. Of course one would expect that e.g. sales
orders read by operation ISalesOrder.getOrderData correspond to the sales orders
represented by type SalesOrder. This is, however, not automatically guaranteed and
must be specified explicitly.

The behavioral specification of a component is based on its interface specification
and on its specification data model and consists of OCL expressions that constrain the
components operations – for an example see Fig. 3. The first constraint is an invariant
for type SalesOrder: It guarantees that different sales orders always differ in the value
of their id – that is the attribute id is a semantic key for sales orders. By defining an
invariant this constraint needs only to be formulated once and does not need to be
repeated in several pre-and postconditions. (Note that an invariant is supposed to hold
for all component instances of a component installation within one system. But this
distinction is not so important in our example because the component is by design a
service-based component [16] which means that typically only one component in-
stance is instantiated which serves all incoming requests.) The second constraint in
Fig. 3 displays a precondition for operation ISalesOrder.getOrderData: The operation

Formal Description of OCL Specification Patterns 17

can only be called for a sales order that already exists in the component. (More pre-
cise: there must exist a sales order which id equals the value of the input parameter
orderId. Note that the invariant guarantees that there is at most one such sales order).

context SalesOrder
inv: SalesOrder.allInstances()->forAll(i1, i2 | i1 <> i2

implies i1.id <> i2.id)

context ISalesOrder::getOrderData(orderId: string, orderHeader:
OrderHeaderData, orderItem: OrderItemData, orderStatus: Order-
Status)

pre: SalesOrder.allInstances()->exists(id = orderId)

Fig. 3. (Partial) Behavioral specification of component SalesOrderProcessing

3 Problems in Behavioral Specification of Components

Most component specification approaches recommend notations in formal languages
since they promise a common understanding of specification results across different
developers and companies. The use of formal methods, however, is not undisputed.
Some authors argue that the required effort is too high and the intelligibility of the
specification results is too low – for a discussion of advantages and liabilities of for-
mal methods compare [14].

The disadvantages of earlier formal methods are reduced by UML OCL [20]: The
notation of OCL has a simple structure and is oriented towards the syntax of object-
oriented programming languages. Software developers can therefore handle OCL
much easier than earlier formal methods that were based on set theory and predicate
logic. This is one reason why OCL is recommended by many authors for the specifica-
tion of software components.

Despite its advantages OCL can not solve all problems associated with the use of
formal methods: One result of two case studies specifying business components [1,2]
was the insight that editing OCL constraints manually is nevertheless time consuming
and error-prone. Similar experiences were made by other authors that use OCL con-
straints in specifications (outside the component area), e.g. [13,17]. They conclude
that it takes a considerable effort to master OCL and use it effectively.

It should be noted that behavioral aspects (where OCL is used) have a great impor-
tance for component specifications: In the specification of a rather simple component
in case study [2], for example, the behavioral aspects filled 57 (of altogether 81) pages
and required a tremendous amount of work. For component specifications to be prac-
tical it is therefore mandatory to simplify the authoring of OCL constraints.

18 J. Ackermann

4 Solution Proposal: Utilizing Specification Patterns

Solution strategies to simplify OCL specifications include better tool support (to re-
duce errors) and an automation of constraint editing (to reduce effort) – the latter can
e.g. be based on use cases or on predefined specification patterns (compare Sect. 6).

To use specification patterns seems to be particularly promising for the specifica-
tion of business components: When analyzing e.g. the case study [2] one finds that
70% of all OCL constraints in this study can be backtracked to few frequently occur-
ring specification patterns. Based on this observation we analyzed a number of com-
ponent specifications and literature about component specification and identified nine
specification patterns that often occur [4]. These specification patterns are listed in
Table 1. Although the nine patterns occurred most often in the investigated material
there will be other useful patterns as well and the list might be extended in future.

Table 1. Behavioral specification patterns identified in [4]

Constraint type Pattern name

Invariant Semantic Key Attribute

Invariant Invariant for an Attribute Value of a Class

Precondition Constraint for a Input Parameter Value

Precondition Constraint for the Value of an Input Parameter Field

Precondition Instance of a Class Exists

Precondition Instance of a Class does not Exist

Postcondition Instance of a Class Created

Definition Variable Definition for an Instance of a Class

Precondition Constraint for an Instance Attribute for an Operation Call

Under (OCL) specification pattern we understand an abstraction of OCL constraints
that are similar in intention and structure but differ in the UML model elements used.
Each pattern has one or more pattern parameters (typed by elements of the UML
metamodel) that act as placeholder for the actual model elements. With pattern instan-
tiation we denote a specific OCL constraint that results from binding the pattern pa-
rameters with actual UML model elements.

As an example let us consider the pattern “Semantic Key Attribute”: It represents
the situation that an attribute of a class (in the specification data model – cf. Fig. 2)
plays the semantic role of a key – that is all instances of the class differ in their value
of the key attribute. Pattern parameters are class and attribute and a pattern instantia-
tion (for the class SalesOrder and attribute id) can be seen in the upper part of Fig. 3.

Formal Description of OCL Specification Patterns 19

Table 2. Description scheme for pattern Semantic Key Attribute [4]

Characteristic Description

Pattern name Semantic Key Attribute

Pattern parameter class: Class; attribute: Property

Restrictions attribute is an attribute of class class

Constraint type Invariant

Constraint context class

Constraint body name(class).allInstances()->forAll(i1, i2 |
i1 <> i2 implies i1.name(attribute) <>
i2.name(attribute))

Based on the ideas of [11] we developed a description scheme that details the proper-
ties of a specification pattern: pattern name, pattern parameters, restrictions for pattern
use as well as type, context and body of the resulting constraint [4]. Note that the
constraint body is a template showing text to be substituted in italic. The description
scheme for the pattern Semantic Key Attribute is displayed in Table 2.

Fig. 4. Selection screen for generating an OCL constraint

The following points connected with the exemplary pattern are worth mentioning: For
sake of simplicity we presented the pattern with only one key attribute. In its regular
version the pattern allows that the key is formed by one or more attributes of the class.
(Note that this is the reason for not using the operator isUnique which would be rather
constructed for more than one attribute.) One can also see that the patterns presented

20 J. Ackermann

here are rather static – they allow for substituting UML model elements but do not
allow for structural changes. For structural variations on the pattern (e.g.: the attribute
id of class SalesOrderItem in Fig. 2 is only unique in the context of a specific instance
of class SalesOrder) one has to define additional patterns.

We will now illustrate how such patterns can be exploited for specifications: Sup-
pose the person who specifies our exemplary component is in the middle of the speci-
fication process and wants to formulate the invariant from Fig. 3. He checks the li-
brary of predefined specification patterns (which is part of his specification tool) and
finds the pattern for a semantic key attribute (compare section 1 of Fig. 4). After se-
lecting this pattern the tool will show him the pattern description and an associated
template OCL constraint (showing the pattern parameters in italic). The user has to
select model elements for the parameters (in section 3 of Fig. 4) – in our example the
class SalesOrder and its attribute id are selected. Note that the tool can be built in
such a way that it restricts the input to those model elements that are allowed for a
pattern – in section 3 of Fig. 4 for instance you can see that the tool only offers the
attributes of class SalesOrder for selection. After providing pattern and parameter
values the user can start the generation. The tool checks the input for consistency and
then generates the desired OCL constraint (compare section 4 of Fig. 5) which can be
included into the component specification.

Fig. 5. Display of the generated OCL constraint

Following this approach has the following advantages: For the specification provider
maintenance of specifications is simplified because it becomes faster, less error-prone
and requires less expert OCL knowledge. For a specification user the understanding of

Formal Description of OCL Specification Patterns 21

specifications is simplified because generated constraints are uniform and are there-
fore easier recognizable. Moreover, if the patterns were standardized, it would be
enough to specify a pattern and the parameter values (without the generated OCL text)
which would make recognition even easier.

5 Technical Details of the Solution

To realize the solution outlined in Sect. 4 we need a way to formally describe the
specification patterns. Such a formal pattern description is on one hand prerequisite
for a tool builder to implement corresponding constraint generators – on the other
hand it might also be interesting for a user creating specifications to check if a pattern
meets his expectations (although one would not generally expect that a user has the
knowledge to understand the formal pattern specifications). In this section we discuss
how the specification patterns can be formalized and be described such that their in-
tention, structure and application become unambiguous.

To do so we first show how such patterns can be formally described and applied
(Sect. 5.1). After that we discuss the relationship of the solution to the UML meta-
model (Sect. 5.2), argue why we have chosen it compared to other approaches (Sect.
5.3) and cover some implementation aspects (Sect. 5.4).

5.1 Defining OCL Pattern Functions for Specification Patterns

The basic idea how to formally describe the specification patterns is as follows: For
each OCL specification pattern a specific function (called OCL pattern function) is
defined. The pattern parameters are the input of the pattern function. Result of the
pattern function is a generated OCL constraint which is returned and (if integrated
with the specification tool) automatically added to the corresponding UML model
element. The OCL pattern functions themselves are specified by OCL – from this
specification one can determine the constraint properties (e.g. invariant) and its textual
representation. All pattern functions are assigned as operations to a new class OclPat-
tern which logically belongs to the layer of the UML metamodel (layer M2 in the
four-layer metamodel hierarchy of UML [19] – compare also Sect. 5.2).

This approach will now be discussed in detail for the specification pattern “Seman-
tic Key Attribute” (see Sect. 4). For this pattern we define the OCL pattern function
Create_Inv_SemanticKeyAttribute. Input of the function are a class cl and an attribute
attr which is the key attribute of cl – both understood as UML model elements. (To
avoid naming conflicts with UML metamodel elements we did not use the pattern
parameter names as displayed in the tool in Fig. 4 (like class) but more technical ones
(as cl) as input parameters of the pattern functions.) Result is an UML model element
of type Constraint. The complete specification of this pattern function is shown in
Fig. 6.

22 J. Ackermann

context OclPattern::Create_Inv_SemanticKeyAttribute(cl: Class,
attr: Property): Constraint

(1) pre: attr.class = cl

(2) post: result.oclIsNew
(3) post: result.namespace = result.context
(4) post: result.specification.isKindOf(OpaqueExpression)
(5) post: result.specification.language = ‘OCL’

(6) post: result.stereotype.name = ’invariant’
(7) post: result.context = cl
(8) post: result.name = ‘Semantic Key Attribute’
(9) post: result.specification.body = OclPattern.Multiconcat

 (cl.name, ‘.allInstances()->forAll(i1, i2 | i1 <> i2
 implies i1.’, attr.name, ‘ <> i2.’, attr.name, ‘)’)

Fig. 6. Specification of pattern function OclPattern.Create_Inv_SemanticKeyAttribute

The specification of each OCL pattern function consists of three parts:
• Preconditions specific for each pattern function (1)
• General postconditions (2)-(5)
• Postconditions specific for each pattern function (6)-(9).
The function specific preconditions describe which restrictions must be fulfilled when
calling the pattern function. These preconditions must assure that the actual parame-
ters conform to the specification pattern. For instance defines the signature of the
pattern function in Fig. 6 only, that cl is any class and attr is any property. The pre-
condition (1) demands additionally that attr is an attribute that belongs to class cl.

The general postconditions (2)-(5) are identical for all OCL pattern functions and
represent in a way the main construction details. These postconditions (together with
the functions signature) establish the following:
• The return of each pattern function is a UML model element of type Constraint.
• This constraint is added to the model (2) and is assigned to the model element

which is the context of the constraint (3).
• The attribute specification of the constraint is of type OpaqueExpression (4) and

is edited in the language OCL (5). (This is in conjunction with the newest version
of OCL [20] from June 2005 – earlier there was an inconsistency in the OCL 2.0
specification. Compare Fig. 29 of [20].)

In difference to the general postconditions (2)-(5) the postconditions (6)-(9) vary
between different pattern functions. The function specific postconditions establish the
following:
• (6) describes of which constraint type (e.g. invariant, pre- or postcondition) the

returned constraint is. The constraint of our example is an invariant.
• (7) defines the context of the constraint to be the class cl. The context of an in-

variant is always some class and the context of a pre- or postcondition is the clas-
sifier to which the operation belongs. Note that OCL imposes additional condi-
tions depending on the constraint type. (An invariant, for instance, can only con-
strain one model element.) These additional constraints are part of the OCL speci-
fication [20, p. 176ff.] and will therefore not be repeated here.

Formal Description of OCL Specification Patterns 23

• Constraint is a subtype of NamedElement and therefore has an attribute called
name [21, p. 94]. This attribute is used in (8) where the constraint is assigned a
name which is derived from the specification pattern (in our example the name
SemanticKeyAttribute).

• The textual OCL representation of a constraint can be found in the attribute body
of the property specification (which is of type OpaqueExpression) of the con-
straint. Postcondition (9) specifies this textual representation by combining fixed
substrings (as ‘ <> i2.’) with the name of model elements which were supplied as
pattern parameter values (e.g. cl.name).

Note that standard OCL contains the function concatenate which allows concatenating
two substrings. In postconditions like (9) of Fig. 6 it is necessary to concatenate many
substrings. Technically one could do so by repeated application of OCL concatenate
but the resulting expressions were hard to read. Instead we define a help function
OclPattern.Multiconcat. Input of this function is a sequence of string arguments and
its result is a string which is formed by repeated concatenation of the arguments (in
the order given by the sequence).

constr := OclPattern.Create_Inv_SemanticKeyAttribute (SalesOr-
der, id)

Fig. 7. Call of pattern function OclPattern.Create_Inv_SemanticKeyAttribute

Fig. 7 shows how the pattern function Create_Inv_SemanticKeyAttribute is called in
our example from Fig. 3: As values for the pattern parameters the class SalesOrder
and the property id are used. The precondition is fulfilled because id is indeed an
attribute of SalesOrder. The generated constraint constr is an invariant and its textual
OCL representation is (as expected) the one shown as result in Fig. 5. (Due to missing
UML syntax for operation calls we use in Fig. 7 a syntax that resembles the OCL
syntax for operation calls.)

Other specification patterns can be described analogously. When defining OCL pat-
tern functions one must be careful to select the correct UML metamodel elements for
the pattern parameters (classes, properties (of classes), parameters, properties (of
parameters) etc.) and to denote all relevant preconditions.

One aspect to be mentioned is that some specification patterns require pattern pa-
rameters with multiplicity higher than one. (In the regular version of the semantic key
pattern there can be one or more attributes that form together the key of the class.)
This can be solved by allowing input parameters of a pattern function to have multi-
plicity greater than one ([1..*]) and by employing the OCL operator iterate to con-
struct the textual OCL specification in something like a loop.

5.2 Relationship with the UML Metamodel

The aim of this section is to discuss the relationship of the new class OclPattern with
the UML language definition.

 The UML metamodel is based on a four-layer metamodel hierarchy [19, p. 17ff.]:
Layer M0 consist of the run time instances of model elements as e.g. the sales order

24 J. Ackermann

with id ‘1234’. Layer M1 contains the actual user model in which e.g. the class Sale-
sOrder is defined. Layer M2 defines the language UML itself and contains e.g. the
model element Class. Note that layers M2 and M1 are the meta-layers for layers M1
and M0, respectively. Additionally there exists the layer M3 for the Meta Object Fa-
cility (MOF) which is an additional abstraction to define metamodels like UML.

For the constraint patterns we defined in Sect. 5.1 a new class OclPattern. To de-
cide to which layer this class logically belongs we can analyze input and output of the
pattern functions: Input of an OCL pattern function are elements of a UML model
(like class SalesOrder or attribute id – on layer M1) that are typed by elements of the
UML metamodel (like Class or Property – on layer M2). Analogously the output is
always a constraint for a UML model element and is typed by the metamodel element
Constraint (on layer M2). Consequently the pattern functions operate on layer M2 and
therefore the new class OclPattern logically also belongs to layer M2.

On first glance it might seem desirable to integrate the class OclPattern into the
UML metamodel (layer M2). The definition of UML, however, does not allow defin-
ing new elements in its metamodel. Adding the class OclPattern to layer M2 would
effectively mean to define a new modeling language UML’ which consists of UML
and one extra class – leaving standard UML yields to many disadvantages (potential
compatibility and tool problems) and is not an adequate solution.

When looking more closely one finds that it is not necessary to integrate the class
OclPattern that tightly into the UML metamodel because it does not change the lan-
guage in the sense of introducing new model elements or changing dependencies.

As a conclusion it was decided: the class OclPattern will be denoted with the
stereotype «oclHelper», operates on layer M2 but stands in parallel to the UML meta-
model. The class needs only to be known to the specification tool implementing the
constraint generators and is of no direct relevance for model users. The class might be
integrated into the UML metamodel at a later time if the UML definition allows it.
Note that on a related question OCL users asked to allow user defined OCL functions
(Issue 6891 of OCL FTF) which was not realized in OCL 2.0.

5.3 Discussion of the Solution

In this section we will discuss the reasons why the approach presented in Sect. 5.1 was
chosen and compare it with other solution approaches that seem (at least at first
glance) possible.

By defining OCL pattern functions for the specification patterns it became possible
to formally describe the patterns completely and quite elegantly: the pattern parame-
ters can be found as function parameters and the function specification (which uses
again OCL) describes the prerequisites to apply the pattern and the properties of the
constraint to be generated. Moreover it is possible to actually specify that the con-
straint is added to the UML model element in consideration (assuming the pattern
generator is integrated with the specification tool). One big advantage is that this ap-
proach only uses known specification techniques and does not require the invention of
new ones. There is only one new class OclPattern that encapsulates the definition of
all patterns.

Formal Description of OCL Specification Patterns 25

An alternative approach would be to use a first-hand representation for the abstract
constraints before parameter binding – [5] uses this approach and calls this representa-
tion constraint schema. The advantage is its explicit representation of the constraint
schema. The disadvantage, however, is that constraint schemata are not defined in the
UML metamodel – specifying them requires the invention of a special description
technique (either outside UML or by introducing a new UML metamodel element).
Therefore we decided against using this approach.

UML itself offers a mechanism called Templates that allows parameterizing model
elements. The following approach seems to be promising and elegant: For each pat-
tern one defines a template constraint which is parameterized by the pattern parame-
ters – when applying the pattern these parameters are bound to the actual model ele-
ments. Unfortunately this solution is technically not possible because UML does not
allow parameterizing Constraints (only Classifiers, Packages and Operations) [21, p.
600].

To use UML templates nevertheless one might think about parameterizing the con-
text of a constraint (which is a classifier or an operation). But this approach is rather
constructed and results in many disadvantages: For each invariant pattern used there
needs to be a type in the specification data model and all business types using the
pattern need to be bound to it. As a result the model would become overcrowded con-
tradicting the clarity guideline from the guidelines of modeling [6]. (Similar problems
occur with patterns of type pre- or postcondition where template operations need to be
added to the interface model.)

5.4 Prototype Implementation

Constraint generators for specification patterns were implemented as a prototype
(compare Fig. 4 and 5 in Sect. 4). The prototype enables to select a specification pat-
tern and values for the pattern specific parameters. As far as possible pattern precondi-
tions were considered when providing input for pattern parameters. All other precon-
ditions must be checked after value selection. As a result the prototype generates the
desired OCL constraint and displays it for the user. Planned for the future is an inte-
gration of constraint generators into a component specification tool – that would per-
mit to automatically add the generated constraint to the correct model element of the
UML model in work.

It shall be noted that the pattern parameters to be filled and the preconditions to be
checked depend on the specification pattern – in the prototype these were hard coded.
One could imagine something like a meta description that enables to
(semi)automatically generate the constraint generator. The associated effort, however,
seemed not appropriate for only nine specification patterns.

6 Related Work

Due to its importance component specifications are discussed by many authors (e.g.
[9,10,23,27] – for an overview compare e.g. [23]). Most current specification ap-

26 J. Ackermann

proaches identify the need for behavioral specifications and propose to use pre- and
postconditions based on OCL [20]. Problems related with using OCL were so far only
reported in the case studies [1,2] and the author is not aware of any solution to this
problem in the area of component specifications.

There are several publications outside the component area discussing the problems
of editing OCL constraints manually [5,13,17]. There exist several approaches to
simplify constraint writing: [13] develops an authoring tool that supports a developer
with editing and synchronizing constraints in formal notation (OCL) and informal
notation (natural language). [17] discusses an approach how to generate OCL expres-
sions automatically. They constrain themselves, however, to the single use case of
connecting two attributes within an UML model by an invariant. [12] discusses strate-
gies to textually simplify OCL constraints that were generated by some algorithm. [24]
develops an algorithm that allows in the analysis phase to transform use cases into
class diagrams and OCL specifications. The author suggests that generation of OCL
constraints might be possible but gives no details for it. [5] proposes a mechanism to
connect design patterns with OCL constraint patterns which allows to instantiate OCL
constraints automatically whenever a design pattern is instantiated.

The idea of [5] is very similar to our solution proposal. Its realization, however, can
not be employed for specifying components: When instantiating a design pattern the
mechanism of [5] always creates a new class (or several classes) into a class diagram
together with the creation of the corresponding OCL constraints. This is not practical
for component specification because the specification type diagram might already
exist (e.g. derived from requirements definition [9]) or it might happen that (at speci-
fication time) several specification patterns need to be applied to a class in a combina-
tion not foreseen at pattern definition time. Moreover, the approach as presented in [5]
is not integrated with the UML 2.0 metamodel, because its simple integration into the
UML 1.3 metamodel (via properties of the type oclType) is not longer possible in
UML 2.0.

7 Summary

The paper discussed one of the current problems in component specifications: editing
OCL constraints manually is time consuming and error-prone. As solution we pro-
posed to utilize specification patterns for which OCL constraints can be generated
automatically. In this paper we developed a solution how to describe such specifica-
tion patterns formally. As a result we achieved a precise pattern specification which
aids e.g. the implementation of constraint generators. How such specification patterns
can be utilized in the specification process was shown in a prototype implementation.
Direction of future research include to gain more experience with the identified speci-
fication patterns (and extend the pattern library if needed) and to include the constraint
generator functionality into the component specification tool [22] which is developed
for the specification framework [27].

Formal Description of OCL Specification Patterns 27

References

1. Ackermann, J.: Fallstudie zur Spezifikation von Fachkomponenten. In: Turowski, K. (ed.): 2.
Workshop Modellierung und Spezifikation von Fachkomponenten. Bamberg (2001) 1-66
(In German)

2. Ackermann, J.: Zur Spezifikation der Parameter von Fachkomponenten. In: Turowski, K.
(ed.): 5. Workshop Komponentenorientierte betriebliche Anwendungssysteme (WKBA 5).
Augsburg (2003) 47-154 (In German)

3. Ackermann, J.: Spezifikation von Fachkomponenten mit der UML 2.0. In: Turowski, K.
(ed.): 4. Workshop Modellierung und Spezifikation von Fachkomponenten. Bamberg
(2003) 23-30 (In German)

4. Ackermann, J.: Frequently Occurring Patterns in Behavioral Specification of Software Com-
ponents. In: Turowski, K.; Zaha, J.M. (eds.): Component-Oriented Enterprise Applications.
Proceedings of the Conference on Component-Oriented Enterprise Applications (COEA
2005). Erfurt (2005) 41-56

5. Baar, T.; Hähnle, R.; Sattler, T.; Schmitt, P.H.: Entwurfgesteuerte Erzeugung von OCL-
Constraints. In: Softwaretechnik-Trends 3 (2000) (In German)

6. Becker, J.; Rosemann, M.; von Uthmann, C.: Guidelines of Business Process Modeling. In:
van der Aalst, W.; Desel, J.; Oberweis, A. (eds.): Business Process Management: Models,
Techniques and Empirical Studies. Springer-Verlag. Berlin (2000) 30-49

7. Beugnard, A.; Jézéquel, J.-M.; Plouzeau, N.; Watkins, D.: Making Components Contract
Aware. In: IEEE Computer 7 (1999) 38-44

8. Brown, A.W.: Large-Scale, Component-Based Development. Prentice Hall, Upper Saddle
River (2000)

9. Cheesman, J.; Daniels, J.: UML Components. Addison-Wesley, Boston (2001)
10. D'Souza, D.F.; Wills, A.C.: Objects, Components, and Frameworks with UML: The Cataly-

sis Approach. Addison-Wesley, Reading (1998)
11. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
12. Giese, M.; Hähnle, R.; Larsson, D.: Rule-Based Simplification of OCL Constraints. In:

Workshop on OCL and Model Driven Engineering at UML’2004. Lisbon (2004)
13. Hähnle, R.; Johannisson, K.; Ranta, A.: An Authoring Tool for Informal and Formal Re-

quirements Specifications. In: Kutsche, R.-D.; Weber, H. (eds.): Fundamental Approaches
to Software Engineering, 5th International Conference FASE. Grenoble (2002) 233-248

14. Hall, A.: Seven Myths of Formal Methods. In: IEEE Software 5 (1990) 11-19
15. Hemer, D.; Lindsay, P.: Specification-based retrieval strategies for module reuse. In: Grant,

D.; Sterling, L. (eds.): Proceedings 2001 Australian Software Engineering Conference.
IEEE Computer Society. Canberra (2001) 235-243

16. Herzum, P.; Sims, O.: Business Component Factory. Wiley Computer Publishing, New
York (2000)

17. Ledru, Y.; Dupuy-Chessa, S.; Fadil, H.: Towards Computer-aided Design of OCL Con-
straints. In: Grundspenkis, J.; Kirikova, M. (eds.): CAiSE Workshops 2004, Vol. 1. Riga
(2004) 329-338

18. Meyer, B.: Applying "Design by Contract". In: IEEE Computer 10 (1992) 40-51
19. OMG (ed.): Unified Modeling Language: UML 2.0 Infrastructure Specification. Finalized

Convenience Document, 2004-10-16 URL: http://www.omg.org/technology/documents,
Date of Call: 2005-09-09 (2004)

20. OMG (ed.): Unified Modeling Language: UML 2.0 OCL Specification, 2005-06-06. URL:
http://www.omg.org/technology/documents, Date of Call: 2005-09-09 (2005)

28 J. Ackermann

21. OMG (ed.): Unified Modeling Language: UML 2.0 Superstructure Specification. Formal
version, 2005-07-04. URL: http://www.omg.org/technology/documents, Date of Call: 2005-
09-09 (2005)

22. Overhage, S.: Komponentenkataloge auf Basis eines einheitlichen Spezifikationsrahmens -
ein Implementierungsbericht. In: Turowski, K. (ed.): Tagungsband des 3. Workshop Model-
lierung und Spezifikation von Fachkomponenten. Nürnberg (2002) 1-16 (In German)

23. Overhage, S.: UnSCom: A Standardized Framework for the Specification of Software
Components. In: Weske, M.; Liggesmeyer, P. (eds.): Object-Oriented and Internet-Based
Technologies, Proceedings of the 5th Annual International Conference on Object-Oriented
and Internet-Based Technologies, Concepts, and Applications for a Networked World
(NODe 2004). Erfurt (2004)

24. Roussev, B.: Generating OCL specifications and class diagrams from use cases: A newto-
nian approach. In: Proceedings of 36th Annual Hawaii International Conference on System
Sciences (HICSS’03). Big Island (2003)

25. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. 2. ed. Addi-
son-Wesley, Harlow (1998)

26. Turowski, K.: Spezifikation und Standardisierung von Fachkomponenten. In: Wirtschafts-
informatik 3 (2001) 269-281 (In German)

27. Turowski, K. (ed.): Standardized Specification of Business Components: Memorandum of
the working group 5.10.3 Component Oriented Business Application System, February
2002. University of Augsburg, Augsburg (2002) URL: http://www.fachkomponenten.de.
Date of Call: 2005-09-09

28. Yellin, D.; Strom, R.: Protocol Specifications and Component Adaptors. In: ACM Transac-
tions on Programming Languages and Systems 19 (1997) 292–333

Formal Description of OCL Specification Patterns 29

Supporting OCL as part of a Family of Languages
David H. Akehurst, Gareth Howells, Klaus D. McDonald-Maier

University of Kent at Canterbury
D.H.Akehurst@kent.ac.uk

Abstract. With the continued interest in Model Driven techniques for software
development more and more uses are found for query or expression languages
that navigate and manipulate object-oriented models. The Object Constraint
Language is one of the most frequently used languages; however, its original
intended use as a constraint expression language has been succeeded by its
frequently proposed use as a basis for a more general model query language,
model transformation language and potential action language. We see a future
where OCL forms a basis for a family of languages related in particular to
Model Driven Development techniques; as a consequence we require an
appropriate tool suite to aid in the development of such language families. This
paper proposes some important aspects of such a tool suit.

1 Introduction
The Object Constraint Language (OCL) is often the language of choice for adding

precision to models or as a core component in model based expression languages. The
Object Management group is currently going though the adoption process for version
2.0 of the OCL standard. However, there have been a number of problems with the
specification as documented in papers such as [6, 7].

Despite problems with the standard the last few of years have seen the
development of a number of OCL tools and modelling tools that support OCL; for
example, the Dresden OCL tool kit [9], Octopus [13], Poseidon [10] and our own
works [2, 3, 7] just to name a few.

In addition there have also been a number of papers suggesting extensions to the
standard, e.g. adding relations [1], or using the OCL expression language as a basis
for other languages such as an action language [11] or a model transformation
language [4, 8, 15].

This use and reuse of OCL as a core expression language built on to provide other
associated languages distinctly implies an ‘OCL Family’ of languages. Standard
support for constructing tools for text based languages such as OCL do not generally
support the notion of a language family, and few provide mechanisms for language
reuse.

When constructing a family of languages, it is desirable if these parts can be
reused, rather than redefined for each member of the family. This paper proposes a
Framework for supporting such families of languages as plug-ins to the Eclipse [12]
integrated development environment; focusing in particular on the specification of
grammars to support reuse of the scanner and parser aspects of a language processor.

Parser Generators have been around for a long time; however there have been few
advances towards enabling reuse of generated parsers or the grammar specifications
used as input, other than basic cut and paste from one specification to another. This is

primarily due to technical aspects of the algorithms used to implement efficient
parsers. The Antlr [14] parser generator is one of the few that includes a grammar
inheritance mechanism and we use something similar.

In this paper we define a family of OCL like languages using an EBNF based
grammar specification language. The parsers for the languages have been
implemented, based on the given specifications, and tested in an Eclipse based
framework for enabling us to plug-in language processors.

2 An Eclipse Language Framework
To facilitate a mechanism to plug-in families of languages we define the concepts

of LanguageProcessor and Expression as indicated in the class diagram of Figure 1.
To access the range of potential languages available we also require a language
Registry.

Registry Language
Processor

Expression

language : String
body : String
/scan : Object
/parse : Object
/analyse : Object
/evaluate : Object
/synthesise : Object

Variable
Declarationcontext *

name:String

/ processor

Figure 1 Language Framework

A LanguageProcessor is written and plugged-in in order to provide support for a
particular language. An Expression can defined for any language, if a processor for
that language has been provided, then it is used to provide scan, parse, analyse,
evaluate and synthesis capabilities to the expression; or a subset of those capabilities.
When the plug-in description for a language processor is specified, we can define
which capabilities are supported by the processor.

We use this framework to plug-in our OCL family of languages.

3 A Family of OCL based Grammars
The following subsections illustrate a family of grammars using an object-oriented

style wrapper for EBNF. The grammars specify the concrete syntax for a family of
languages suitable for expressing queries, constraints, actions and transformations
within an object-oriented and Model Driven Development based context. The
grammars are based on the original OCL syntax although a few alterations have been
made.

Supporting OCL as part of a Family of Languages 31

The grammar specifications are split into four packages:
1. oel – the base object expression language
2. ocl – an object constraint language
3. oql – an object query language
4. oal – an object action language

The overall relationship between the grammars is shown in Figure 2.

<<grammar>>
primitives

<<grammar>>
types

<<grammar>>
literals

<<grammar>>
expressions

<<grammar>>
actions

<<grammar>>
queries

<<grammar>>
constraints

oel

oal oql ocl

Figure 2 A Family of OCL like Languages

3.1 Object Expression Language (OEL)
The first, object expression language, we sub-divide into four related grammars, as

this eases the specification and understanding of the language. The most basic aspect
of oel is the specification of primitive values; the grammar for specifying these values
is shown in Table 1.

package oel;

grammar primitives {
 primitive = BOOLEAN | STRING | INTEGER | REAL;
 BOOLEAN = 'true' | 'false' ;
 STRING = "\x27[^\x27]*\x27";
 INTEGER = "[0-9]+" ;
 REAL = "[0-9]+[.][0-9]+" ;
}

Table 1 Object Expression Language Primitives Grammar

32 D. H. Akehurst, G. Howells, and K. D. McDonald-Maier

In addition to primitive values we would also like to be able to refer to various
types of object (classes or classifiers from a model) either directly or as collections or
tuples. Table 2 shows a grammar for defining types; this grammar could also be used
to define the valid type expressions used within graphical languages such as class
diagrams.
package oel;

grammar types {
 pathName = NAME ('::' NAME)* ;
 type = pathName | collectionType | tupleType ;
 collectionType = 'Set' '(' type ')'
 | 'OrderedSet' '(' type ')'
 | 'Sequence' '(' type ')'
 | 'Bag' '(' type ')'
 ;
 tupleType = 'Tuple' '(' variableDeclarationList ')' ;
 variableDeclarationList = variableDeclaration
 (',' variableDeclaration)*;
 variableDeclaration = NAME ':' type ;
 NAME = "[a-zA-Z_][a-zA-Z_0-9]*" ;
}

Table 2 Object Expression Language Types Grammar

The next stage in the definition of the syntax of the object expression language is
to providing syntax for defining literal values. The literals grammar is shown in Table
3; it extends (resues) both the types and primitives grammars, i.e. the production rules
defined in types and primitives are semantically included in the definition of the
literals grammar.

Note that there is an apparently redundant production rule expression used in the
rules for variableDefinition and collectionLiteralPart, this production will be
overridden in a sub grammar to facilitate more complex expressions to be used in the
definition of variables and collection literal parts.

package oel;

grammar literals extends primitives, types {
 expression = literal;
 literal = primitive
 | collection
 | tuple
 | type
 ;
 collection = 'Set' '{' [collectionLiteralPartList] '}'
 | 'OrderedSet' '{' [collectionLiteralPartList] '}'
 | 'Sequence' '{' [collectionLiteralPartList] '}'
 | 'Bag' '{' [collectionLiteralPartList] '}'
 ;
 collectionLiteralPartList = collectionLiteralPart
 (',' collectionLiteralPart)* ;
 collectionLiteralPart = expression | range ;
 range = expression '..' expression ;

Supporting OCL as part of a Family of Languages 33

 variableDefinitionList = variableDefinition
 (',' variableDefinition)*;
 variableDefinition = NAME [':' type] '=' expression ;
 tuple = 'Tuple' '{' variableDefinitionList '}' ;
}

Table 3 Object Expression Language Literals Grammar

The final part of the object expression language grammar is the definition of syntax
for writing expressions; Table 4 shows the relevant grammar. There are a number of
aspects to note in this definition. Firstly we redefine the rule for type, as there is no
syntactic mechanism to distinguish a single name as a type or variable reference, the
distinction must be made during syntactic analysis. We also introduce an additional
bit of syntax into the standard for EBNF, which has no mechanism for specifying
precedence; we use the ‘<’ symbol to indicate a precedence amongst a number of
choices (we do not show here a mechanism for indicating operator associativity).

Finally, we show in this syntax and extension to the standard OCL notion of an
if…then…else…endif expression. The standard OCL semantics actually have a tertiary
logic based on true, false and undefined, we feel that it would be useful to reflect this
in the associated if construct.
package oel;

grammar expressions extends literals {
 type = collectionType | tupleType ;
 expression = NAME
 < literal
 < '(' expression ')';
 < navigationExpression
 < unaryCall
 < binaryInfixCall
 < ifExp
 < letExp
 ;

 navigationExpression = iterateCall
 | iteratorCall
 | collectionOperationCall
 | operationCall
 | qualification
 | propertyCall
 ;
 iterateCall = expression '->' 'iterate' '('
 variableDeclaration ';'
 variableDefinition '|' expression ')' ;
 iteratorCall = expression '->' NAME '(' declaratorList '|'
 expression ')' ;
 declaratorList = declarator (',' declarator)* ;
 declarator = NAME | variableDeclaration ;
 collectionOperationCall = expression '->' NAME '('
 [argumentList] ')' ;
 operationCall = [expression '.'] NAME '(' [argumentList] ')' ;
 qualification = [expression '.'] NAME '[' argumentList ']' ;

34 D. H. Akehurst, G. Howells, and K. D. McDonald-Maier

 propertyCall = expression '.' NAME ;
 letExp = 'let' variableDefinitionList 'in' expression ;
 ifExp = 'if' expression 'then' expression
 'else' expression 'undefined' expression 'endif' ;
 unaryCall = '-' expression | 'not' expression ;
 binaryInfixCall = expression '/' expression
 < expression '*' expression
 < expression '+' expression
 < expression '-' expression
 < expression ('div' | 'mod') expression
 < expression ('and' | 'or'
 | 'xor' | 'implies') expression
 < expression ('>' | '<' | '>=' | '<='
 | '<>' | '==') expression
 ;
 argumentList = expression (',' expression)* ;
}

Table 4 Object Expression Language Expressions Grammar

This expression language does not include all parts of the original OCL, for
example the ‘@pre’ construct is not included, neither are the constructs for sending
messages. These omissions could be added to this grammar, or added to an extension
of it.

3.2 An Object Constraint Language (OCL)
Now that we have defined a basic object expression language, we can reuse this

syntax to aid in the definition of other languages based upon it. We first show a
specification for an object constraint language in Table 5.

package ocl;

grammar constraints extends oel.expressions {

 constraint = typeConstraint | operationConstraint ;
 typeConstraint = invariant | defintion ;
 invariant = 'context' type 'inv' ':' expression ;
 definition = propertyDefinition | operationDefinition ;
 propertyDefinition = 'context' type 'def ':'
 variableDeclaration '=' expresison ;
 operationDefinition = 'context' type 'def ':'
 operationSignature '=' expresison ;
 operationConstraint = 'context' operationSignature
 ('pre'|'post'|'body') ':' expression ;
 operationSignature = pathName '(' variableDeclarationList ')'
 ':' type ;
}

Table 5 Object Constraint Language Grammar

Supporting OCL as part of a Family of Languages 35

3.3 An Object Query Language (OQL)
An object query language expression is simply an object expression in the context

of a number of free variables; Table 6 illustrates a grammar specification.

package ocl;

grammar queries extends oel.expressions {

 query = 'context' variableDeclarationList
 'query' ':' expression
}

Table 6 Object Query Language Grammar

3.4 An Object Action Language (OAL)
To provide an object action language, it is necessary to provide mechanisms to

create and destroy objects and to assign values to properties. We can extend the object
expression language to add these mechanisms as shown in grammar of Table 7.

package oal;

grammar actions extends oel.expressions {

 actionList = (action ';')+ ;
 action = constructObject | destroyObject
 | assignment | variableDefinition ;
 constructObject = 'create' type
 '{' variableDefinitionList '}' ;
 destroyObject = 'destroy' expression ;
 assignment = navigationExpression ':=' expression ;
}

Table 7 Object Action Language Grammar

4 Conclusion
Many improvements to the OCL have been suggested in the literature and we

believe they are required in order to improve the language. In addition, since OCL
was originally developed, its use has begun to exceed its original purpose for
specifying constraints, and is now used as a basis for a number of different languages.
We suggest that this be more officially recognised in the OCL standard, perhaps by
altering its name, or at least by discussing its use in a family of languages. In
particular much of the specification of OCL can be altered to improve the easy by
which it is reused as the core for other languages.

In addition to altering the specification of the OCL, improvements should be
targeted at tools that provide support for new languages, in order for the tools to
support the notion of families of languages. This paper has illustrated a possible
mechanism for defining the concrete syntax of a family of languages, using an EBNF
like syntax. Tool support for this grammar specification approach has been built and
is currently being tested for efficiency and flexibility. We are also investigating

36 D. H. Akehurst, G. Howells, and K. D. McDonald-Maier

mechanisms for providing extensible semantic mappings based on the notion of
model transformations. A more complex extension to OCL is illustrated in [5].

References
[1] Akehurst D. H., "Relations in OCL," in proceedings UML <<2004>> Workshop:

OCL and Model Driven Engineering, Lisbon, Portugal, October 2004.
[2] Akehurst D. H., "Validating BPEL Specifications Using OCL," University of Kent at

Canterbury, technical report: 15-04, August 2004.
[3] Akehurst D. H. and Bordbar B., "On Querying UML data models with OCL," in

proceedings <<UML>> 2001 - The Unified Modeling Language: Modelling
Languages, Concepts and Tools, Springer, LNCS 2185, October 2001.

[4] Akehurst D. H., Howells W. G., and McDonald-Maier K. D., "Kent Model
Transformation Language," in proceedings MoDELS 2005 Workshop Model
Transformations in Practice, Montego Bay, Jamaica, October 2005.

[5] Akehurst D. H., Howells W. G., and McDonald-Maier K. D., "Kent Model
Transformation Language," in proceedings Model Transformations in Practice
Workshop, part of MoDELS 2005, Montego Bay,Jamaica, October 2005.

[6] Akehurst D. H., Linington P. F., and Patrascoiu O., "OCL 2.0: Implementing the
Standard," University of Kent, Canterbury 12-03, November 2003.

[7] Akehurst D. H. and Patrascoiu O., "OCL 2.0 – Implementing the Standard for
Multiple Metamodels," in proceedings UML 2003 Workshop, OCL 2.0 - Industry
standard or scientific playground?, San Francisco, USA, October 2003.

[8] Cariou E., Marvie R., Seinturier L., and Duchien L., "OCL for the Specification of
Model Transformation Contracts," in proceedings <<UML>> 2004 Workshop OCL
and Model Driven Engineering, Lisbon, Portugal, October 2004.

[9] Demuth B., "The Dresden OCL Toolkit and its Role in Information Systems
Development," in proceedings 13th International Conference on Information Systems
Development: Methods and Tools, Theory and Practice Conference, Advances in
Theory, Practice and Education (ISD'2004), Vilnius, Lithuania, September 2004.

[10] Gentleware, "Poseidon UML tool," www.gentleware.org, 2003.
[11] Haustein S. and Pleumann J., "OCL as Expression Language in an Action Semantics

Surface Language," in proceedings <<UML>> 2004 Workshop OCL and Model
Driven Engineering, Lisbon, Portugal, October 2004.

[12] IBM, "Eclipse Universal Tool Platform," 2001, http:/www.eclipse.org
[13] Klasse-Objecten, "Octopus: OCL Tool for Precise Uml Specifications," 2005,

http://www.klasse.nl/english/research/octopus-intro.html
[14] Parr T., "ANTLR Parser Generator," 2005, www.antlr.org
[15] Patrascoiu O. and Rodgers P., "Embedding OCL Expressions in YATL," in

proceedings <<UML>> 2004 Workshop OCL and Model Driven Engineering,
Lisbon, Portugal, October 2004.

Supporting OCL as part of a Family of Languages 37

http://www.gentleware.org/
http://www.eclipse.org/
http://www.klasse.nl/english/research/octopus-intro.html
http://www.antlr.org/

Generation of an OCL 2.0 Parser

Birgit Demuth1, Heinrich Hussmann2, and Ansgar Konermann3

1 Technische Universität Dresden, Department of Computer Science
bd1@inf.tu-dresden.de

2 Ludwig-Maximilians-Universität München,
Faculty of Mathematics, Computer Science and Statistics

heinrich.hussmann@ifi.lmu.de
3 Technische Universität Dresden, Department of Computer Science

ansgar.konermann@gmx.de

Abstract. The OCL 2.0 specification defines explicitly a concrete and
an abstract syntax. The concrete syntax allows modelers to write down
OCL expressions in a textual way. The abstract syntax represents the
concepts of OCL using a MOF compliant metamodel. OCL 2.0 imple-
mentations should follow this specification. In doing so emphasis is placed
on the fact that at the end of the processing a tool should produce the
same well-formed instance of the abstract syntax as given in the specifi-
cation. This offers the possibility to implement OCL-like languages with
the same semantics that are for example easier to use for business model-
ers. Therefore we looked for a parser technique that helps us to generate
an OCL parser to a large extent. In this paper we present the technique
we developed and proved within the scope of the Dresden OCL Toolkit.
The resulting Dresden OCL2 parser is especially characterized by using
a generation approach not only based on a context-free grammar but
on an attribute grammar to create the required instance of the abstract
syntax of an OCL expression.

1 Introduction

The OCL 2.0 specification [1] defines explicitly a concrete and an abstract syn-
tax. The abstract syntax represents the concepts of OCL using a MOF compliant
metamodel. In the following, this model is also referred to as OCL metamodel.
The definition of such a model-based abstract syntax is often used for modeling
languages [2, 3]. The concrete syntax allows modelers to write down OCL ex-
pressions in a textual way. OCL 2.0 implementations should follow the OMG
specification. In doing so emphasis is placed on the fact that at the end of the
processing of an OCL expression a tool should produce the same well-formed
instance of the abstract syntax as given in the specification. This offers the
possibility to relatively cost-efficient implement OCL-like languages that are for
example easier to understand and write for business modelers. In [4], an exam-
ple of a Business Modeling Syntax for OCL is described. Implementing a parser
by hand however is a tedious and error-prone process. Thus, instead of man-
ual implementation, all parts of a parser should be generated from one or more

formal specifications. Therefore we developed a parser technique that helps us
to generate an OCL parser to a large extent. This includes the generation not
only based on a context-free grammar but on an attribute grammar to create
the required instance of the abstract syntax of an OCL expression. As a result of
this technique an extended SableCC version of the well-known parser generator
SableCC [5] for lexical and syntactical analyzers has been developed.

Besides the concrete syntax a further subject of variability are the UML and
MOF metaclasses that are used in the OCL metamodel. The current OCL 2.0
specification refers to the UML 1.4 metamodel. In future the OCL metamodel
has to be aligned with the UML 2.0 or other metamodels. Therefore we extended
our generation approach to the overall compiler architecture as explained in [6, 7].
All metamodel classes are implemented by the JMI (JavaTM Metadata Interface
[8]) based generation of their Java Interfaces. Metamodels can be incorporated
by XMI files.

To the best of our knowledge our approach currently provides maximal flex-
ibility and high productivity in the OCL 2.0 parser construction process. We
developed and proved the parser generation approach within the scope of the
Dresden OCL Toolkit [9]. Our solution differs from comparable implementations
such as Octopus [10] by providing a clean separation of code which computes
inherited and synthesized attributes, and code which performs tree walking and
attribute passing to and from nodes. This separation eases implementation of
semantic analysis, since the implementor is not required to deal with the tedious
and error-prone task of attribute handling. Instead, a clean and elegant API to
the attribute evaluator skeleton is provided. In addition, this approach simplifies
the development of the generator for the attribute evaluator skeleton. The ap-
proach also facilitates maintenance of the attribute evaluator in case of changes
or extensions to the OCL language, since large parts of the implementation can
be generated from an L-attribute grammar. Due to this separation, our solution
is superior to those ones mixing tree walking, attribute handling and attribute
computation, as it is often the case with compiler generators employing semantic
actions to specify semantic analysis.

In the following, we analyze the current OCL 2.0 specification and point
out its major problems with respect to automatic parser construction (Section
2). In Section 3 we propose solutions for them. The main part of the paper
(Section 4) explains how we implemented our parser generation approach in the
Dresden OCL2 Toolkit (the reengineered Dresden OCL Toolkit). In Section 5 we
summarize the results and the experience with the parser construction process.
We also give an outlook on further development plans within the scope of the
Dresden OCL2 Toolkit.

2 Deficiencies of the OCL 2.0 Concrete Syntax

The concrete syntax of OCL 2.0 exhibits some properties which complicate au-
tomatic parser construction. This section names those properties and explains
why they make parser construction difficult.

Generation of an OCL 2.0 Parser 39

Mixed recognition stages. The concrete syntax specification mixes specifica-
tion means for all three stages of a parser, that is lexical, the syntactical and the
context-sensitive analysis. For example, there is no precise definition of names.1

Thus, a parser built based on this grammar would not take full advantage of the
capabilities provided by the lexical analysis stage.

Instead, valid names are often only recognized by taking context information
into account.2 This also makes syntactical analysis context-sensitive, which is
hard to handle with efficient parsing algorithms. Names can easily be recognized
using regular languages, so the current approach of the specification easily leads
to complex, inefficient parsers. As another example, valid binary operators are
defined using disambiguation rules, typically executed during context-sensitive
analysis. This prohibits successful analysis of binary expressions during the syn-
tactical analysis stage.

In summary, the specification overstrains syntax analysis while underutilizing
lexical analysis and using context-sensitive analysis inefficiently.

No analytic grammar. As above explained, the specification is structured
around concepts of the abstract syntax. For the vast majority of elements of the
abstract syntax, the specification contains one production, potentially consisting
of more than one alternative. Each alternative defines a language making up
valid textual representations of the abstract syntax element. These languages
often bear little to no syntactic similarity. As an example, consider productions
IteratorExpCS or AttributeCallExpCS. For parsing, it is important to group lan-
guages which are syntactically similar. This reduces the risk of parsing conflicts
and is often the key to rendering efficient deterministic parsing possible.

Ineffective disambiguation. On the other hand, alternatives which do bear
syntactic similarity are scattered across the specification. For each ambiguous
production, a set of disambiguation rules is given, intended to disambiguate
the regarding productions. The spatial dispersion of the rules makes it difficult
to check whether they really make the grammar unambiguous. Our analysis
showed in a similar manner as in [11] that in many cases, they do not. Since
the disambiguation rule sets do not impose a defined order of evaluation, each
set of rules must separate the language of the regarding production from all
other productions involved in the ambiguity. An explicit evaluation order would
alleviate the situation, since it introduces an additional implicit rule into each
rule set except the first, ensuring that all previous rule sets did not match.

No model of input artifacts. The transformation from concrete to abstract
syntax is specified in terms of an attribute grammar. Attribute evaluation and
syntactic disambiguation usually take place during context-sensitive analysis and
are specified on top of the concrete syntax. The concrete syntax tree hence is

1 of classifiers, attributes etc.
2 namely, checking whether a name exists in the model

40 B. Demuth, H. Hussmann, and A. Konermann

an input artifact for the attribute evaluator. To allow for concise specification of
context-sensitive analysis, an explicit model of the concrete syntax is required.
The specification does not define an explicit model of the concrete syntax, leav-
ing derivation of the eventually existing implicit model to the user of the speci-
fication. This situation is unsatisfactory, as it involves guessing. It is especially
true in the presence of inconsistent use of this model. This manifests itself in
the specification in different notations for referring to the abstract syntax tree
node ast or the inherited attribute env. Most attribute evaluation rules use Pro-
ductionName.ast to denote the current AST node, but TupleLiteralExpCS uses
tuplePart, some attribute evaluation rules also use ProductionName. Most rules
use ProductionName.env to refer to the inherited attribute, but VariableExpCS
uses env.lookup().

Not machine-readable. The specification of the concrete syntax is provided by
the OMG as a PDF file. Although being machine-readable in a narrower sense,
the file format can neither be understood by parser generators, nor be easily
transformed into an appropriate format automatically. The relevant parts of the
specification have to be extracted and converted into the desired input file format
manually. Older versions of the OCL included a link to a machine-readable
grammar of OCL [12] (Chap. 6.9). To alleviate automatic parser generation,
future versions of the specification should again include links to machine-readable
versions of the concrete syntax.

3 Overcoming the Limitations of the Concrete Syntax

During the development of the OCL 2.0 parser for the Dresden OCL2 Toolkit,
we encoutered the problems described in Section 2. This section explains the
measures we took to solve or circumvent those problems.

Separate specifications for each transformation stage. From the OCL 2.0
specification, distinct specifications of lexical and syntactical language structure
were derived, in essence manually. Both were written in SableCC [5] syntax. This
allowed for subsequent testing of completeness and absence of parsing conflicts
by simply feeding the specifications to the generator. The disambiguation and
attribute evaluation rules were first dropped completely and re-introduced later.

Removal of syntactical ambiguities. The resulting grammar exhibited nu-
merous parsing conflicts, resulting from syntactic ambiguities. It can be proved
that no algorithm exists which computes for any given context-free grammar
whether it is ambiguous or not ([13], Chap. 9.10). To allow for systematical
removal of ambiguities, it is useful to construct the appropriate LR(k) automa-
ton and remove any parsing conflict. If no parsing conflicts exist, the grammar
is guaranteed to be unambiguous. We followed this algorithm to iteratively re-
move conflicts. Whenever a run of the SableCC parser generator revealed pars-
ing conflicts, we modified the grammar by merging ambiguous productions. The

Generation of an OCL 2.0 Parser 41

language described by a grammar thus modified is usually larger than the one
described by the original grammar. To keep the recognized language identical,
all merged productions were noted. During context-sensitive analysis, they need
to be differentiated and sentences not allowed by the original grammar need to
be sorted out. This quickly led to a grammar partially resembling the OCL 1.x
grammar quite closely [12]. Recognizing this, parts of the OCL 1.x grammar and
the grammar from our older Dresden OCL Toolkit [14] were used as references
during the remaining process of grammar restructuring.

This step resulted in an analytical LALR(1) grammar representing OCL 2.0,
available in SableCC syntax and ready for automatic parser generation. It is a
firm basis for definition of context-sensitive analysis.

Introducing an explicit model of the concrete syntax. Thanks to the use
of SableCC, an explicit model of the concrete syntax comes for free. SableCC is
capable of generating an object-oriented framework of classes representing the
syntax tree. The transformation from grammar to framework classes is explicitly
defined ([15], Chap. 5). Using the API of the framework classes, we can access
each node of the syntax tree in a well-defined manner, including navigation to
child and parent nodes as well as retrieval of token texts.

Redefining context-sensitive analysis. Having modified the OCL 2.0 gram-
mar heavily, the disambiguation and attribute evaluation rules from the specifi-
cation did not fit the new grammar any more. A new definition of the context-
sensitive analysis stage had to be derived by hand. We stipulated that the re-
sulting attribute grammar should be an L-attribute grammar [16]. This allows
attribute evaluation to be performed in a single depth-first, left-to-right tree
walk. We divided the context sensitive analysis stage into two alternating sub-
stages. The first one performs the walk over the concrete syntax tree, automat-
ically passing attributes up and down in the tree. By default, it automatically
creates ASM node instances for each synthesized attribute. It calls hook meth-
ods pertaining to the second substage whenever computation of attribute values
or disambiguation is required. The specification of the first substage was incor-
porated into the tailored SableCC grammar, allowing complete generation of
implementation code for this substage. The second substage comprises of imple-
mentations for the hook methods. These were implemented manually.

4 The OCL Parser of the Dresden OCL2 Toolkit and Its

Generation Process

The Dresden OCL Toolkit is a well-established software package [9] providing
OCL support, either through standalone tools or through libraries which can be
integrated into tools by third parties. It has been developed at the Technische
Universität Dresden and underwent a reengineering process to accomodate it to
the new OCL 2.0 standard, with the new version called Dresden OCL2 Toolkit.

42 B. Demuth, H. Hussmann, and A. Konermann

This section describes the build process used to create the OCL2 parser of the
Dresden OCL2 Toolkit. It sketches important aspects of the parser’s architecture,
followed by a detailed explanation of the features of both a SableCC extension
used to generate an attribute evaluator skeleton and of the resulting parser
implementation. A few examples illustrate the features.

< < m a n u a l> >

Exte n d e d Sa b le CC g ra m m a r

a n d s ou rce cod e

< < m a n u a l> >

Pa rs e r s ys te m

s p e cifica t ion file

Con ta in s toke n d e fin it ion s , EBNF

p rod u ct ion s for LALR(1) p a rs e r p lu s

a t t rib u te e va lu a tor g e n e ra t ion h in t s

Don e

Sta rt

Pa rs e r Sys te m Exe cu ta b le
Com p ile p a rs e r s ys te m

At t rib u te Eva lu a tor

Im p le m e n t a t t rib u te e va lu a t ion ru le s

< < m a n u a l> >

At t rib u te e va lu a tor s ke le tonLALR(1) s yn ta x a n a lyze rLe xica l a n a lyze r

Pla in Sa b le CC p a rs e r g e n e ra tor

Ge n e ra te le xe r, p a rs e r a n d

a t t rib u te e va lu a tor s ke le ton

"Sa b le CC-Exte n d e d "

e xe cu ta b le p rog ra m

Ge n e ra te e xte n d e d Sa b le CC

p a rs e r g e n e ra tor

Fig. 1. Generation process used to generate the OCL 2.0 parser

4.1 Generation Process

The process employed to generate the parser is outlined by the activity diagram
given in Figure 1. Activities and objects tagged manual are performed or created

Generation of an OCL 2.0 Parser 43

by hand, the remaining ones automatically. The process requires the following
tools and input artifacts:

– an unmodified instance of the open-source compiler generator SableCC, ver-
sion 2.18.1 [5]

– an extended version of SableCC, consisting of
• a SableCC grammar for extended grammar files
• enhanced Java source code making SableCC capable of parsing and using

extended grammar files
– an OCL 2.0 grammar in extended syntax
– an attribute evaluator implementation for OCL 2.0

Building the parser system involves three major steps. First, an extended ver-
sion of SableCC has to be created, allowing it to act as a generator for the con-
text sensitive analysis stage implementation. During the next step, the extended
SableCC is used to generate a lexical and syntactical analyzer for OCL 2.0, plus
an attribute evaluator skeleton. This is an abstract base class and has to be im-
plemented according to the OCL 2.0 specification to derive a working attribute
evaluator.

4.2 The Parser Architecture

The resulting parser uses two passes to transform the input text into an Abstract
Syntax Model (ASM). The ASM represents an instance of the OCL metamodel
as defined by the OCL 2.0 specification. During the first pass, it constructs the
concrete syntax tree (CST). This is performed automatically by the SableCC-
generated parser code. In the second pass, an attribute evaluator transforms the
CST into an ASM. The attribute evaluator makes use of a modified visitor design
pattern [17] called tree walkers, as do all of the tree walker classes generated by
SableCC ([15], Chap. 6).

The attribute evaluator is designed to successfully perform attribute evalua-
tion for any L-attribute grammar. Thus it performs a single-sweep, depth-first,
left-to-right tree walk. All visit methods now take one additional argument, rep-
resenting the inherited attributes. The synthesized attributes are passed to their
parent node as return value.

The parser is integrated into the existing metamodel-based OCL 2.0 compiler
architecture of the Dresden OCL2 toolkit [6, 7]. All ASM nodes are created using
a variant of an abstract factory [17], which in turn uses the API exposed by the
compiler architecture to create instances of appropriate OCL 2.0 metamodel
elements.

4.3 Features of the Extended SableCC Generator

Implementing tree walking code for the context-sensitive analysis stage by hand
was soon identified as a tedious and error-prone task. This is even more true
since tree walking alone is not sufficient for an attribute evaluator. It must pass

44 B. Demuth, H. Hussmann, and A. Konermann

inherited attribute values into child nodes and collect synthesized attributes pro-
duced for child nodes. Besides, it must perform computation of attribute values,
observing data dependencies between them. Finally, all synthesized attributes
must be stored for later use, and possibly passed to attribute evaluation code
for sibling child nodes.

Lacking a generally available generator for efficient attribute evaluators in
Java, we decided to add some simple attribute evaluation features to SableCC
2.18.1. We also considered using SableCC 3.x and its built-in CST-to-AST trans-
formation techniques. It supports transformation of a CST into an AST made up
of classes generated from appropriate grammar productions. Since we needed to
use our own JMI-based ASM classes, we quickly discarded this approach. Besides,
SableCC 3.x does not support using context information during transformation
from CST to AST. This feature is however elementary for OCL 2.0, since many
transformations depend on model information and are thus context-sensitive.

The section motivates the need for a more elaborate tree walking code than
currently generated by SableCC. It illustrates the main features of our SableCC
extension.

Support for attribute handling. SableCC allows generation of simple tree-
walker classes based on the visitor design pattern [15]. They allow calling of
custom code at the beginning and end of a visit method for each node, but
nowhere in between. This is not sufficient for L-attribute grammars, where in-
herited attribute values may need to be computed between sibling child nodes.
The code does not store the ASM nodes computed during attribute evaluation
of child nodes. The only possibility to achieve this using original SableCC are
two generic maps, called in and out. They are intended to hold data items asso-
ciated with ASM nodes, the ASM node objects acting as map keys. If using this
facility, code to store and retrieve objects from these maps, as well as any type
casting from java.lang.Object, needs to be written by hand. This is error-prone
and should be prevented.

Figure 2 shows the grammar extract we use to describe OCL let expressions.
It is written in extended SableCC syntax. Words in angle brackets, exclama-
tion marks and keywords starting with a hash sign (#) are part of the syntax
extensions, which can be ignored for now.

Figure 3 shows tree walking code generated by the original SableCC for the
production introduced in Figure 2. Custom code can be utilized in line 2 and
13 by overriding methods {in|out}ALetExpCs. For let expressions however, the
OCL 2.0 specification stipulates that all variable declarations must be passed
to the attribute evaluation code of the body expression as part of the inherited
attribute env. This means that somewhere between line 7, where attribute evalu-
ation for the variable declarations occurs, and line 11, where the same occurs for
the body expression, custom code to compute the correct value for env must be
incorporated. Besides, the generated code does allow neither passing inherited
attribute values into the attribute evaluation method, nor passing synthesized
attribute values back to the parent node. Please also note that the code descends

Generation of an OCL 2.0 Parser 45

1 Tokens

2 ! in = ’in’;

3 ! let = ’let’;

4 Productions

5 let_exp_cs <LetExp> =

6 let [variables]:initialized_variable_list_cs

7 in [expression]:expression #customheritage

8 ;

Fig. 2. Grammar extract describing let expressions

into child nodes representing irrelevant syntactic sugar, like the ’let’ token. This
is a waste of computational resources and should be prevented.

1 public void caseALetExpCs(ALetExpCs node) {

2 inALetExpCs(node);

3 if(node.getLet() != null) {

4 node.getLet().apply(this);

5 }

6 if(node.getVariables() != null) {

7 node.getVariables().apply(this);

8 }

9 // ...

10 if(node.getExpression() != null) {

11 node.getExpression().apply(this);

12 }

13 outALetExpCs(node);

14 }

Fig. 3. Original SableCC tree walker code traversing a let expression node (simplified)

Figure 4 shows the code generated by our extended SableCC. First note that
an additional parameter param was introduced, which is automatically casted to
type Heritage. This type is a data container comprising all inherited attributes
ever required during the tree walk, including env. Attributes not used in a specific
context contain null values. The return type of the visit method is now LetExp,
as specified on line 5 of Figure 2. The ASM nodes of child nodes are returned
by their visit methods (lines 8, 17) and stored in a variable. This even works for
lists of CST nodes, which are converted to lists of their ASM nodes.

Computing inherited attributes. Incorporation of custom code for compu-
tation of inherited attributes is performed on demand if the corresponding pro-
duction element is followed by the keyword #customheritage, as it is the case for
expression in Figure 2. The generated code in Figure 4 (lines 14-15) calls an ab-

46 B. Demuth, H. Hussmann, and A. Konermann

1 public final LetExp caseALetExpCs(ALetExpCs node, Object param) {

2 Heritage nodeHrtg = (Heritage) param;

3 Heritage childHrtg = null;

4
5 PInitializedVariableListCs childVariables = node.getVariables();

6 List astVariables = null;

7 if(childVariables != null) {

8 astVariables = (List) childVariables.apply(this, nodeHrtg.copy());

9 }

10
11 PExpression childExpression = node.getExpression();

12 OclExpression astExpression = null;

13 if(childExpression != null) {

14 childHrtg = insideALetExpCs_computeHeritageFor_Expression(node,

15 childExpression, nodeHrtg.copy(), astVariables);

16 // ...

17 astExpression = (OclExpression) childExpression.apply(this,

18 childHrtg);

19 }

20
21 LetExp myAst = (LetExp) factory.createNode("LetExp");

22 myAst = computeAstFor_ALetExpCs(myAst, nodeHrtg,

23 astVariables,

24 astExpression);

25 return myAst;

26 }

Fig. 4. Tree-walker code generated by extended SableCC traversing a let expression
node (simplified)

Generation of an OCL 2.0 Parser 47

stract method inside<Alternative> computeHeritageFor <Node>. The parame-
ter list of this method has a variable length, determined at generator run-time.
It contains the current CST node, the CST node of the child we are about to
visit, a copy of the current heritage, and the ASM nodes of all left siblings. The
latter is required to fully support L-attribute grammars.

Skipping irrelevant child nodes. The code in Figure 4 does not descend
into all child nodes given in the grammar production. The exclamation mark
in front of a token definition or a production element prevents the attribute
evaluator generator to create code for irrelevant nodes, such as tokens merely
used as syntactic markers (e. g. ’if’, ’let’, etc). This can save some computational
resources.

Creation and computation of ASM nodes. Creation of ASM nodes is
performed automatically by default, using a factory (Figure 4, line 21). This
can be switched off on demand. Computation of the ASM node’s member values
is delegated to an abstract method called computeAstFor <AlternativeName>.
This method is basically responsible for computation of synthesized attributes
according to the attribute evaluation rules defined in [1]. Again, the parameter
list is variable, allowing not only to pass the ASM node to be initialized and
the current Heritage, but also the ASM nodes of all left sibling nodes. This
is required to support L-attribute grammars. Besides, the implementation can
take context information into account, obtained as inherited attribute Heritage,
to perform proper disambiguation.

Automatic node creation can be switched off for each element of a produc-
tion by appending the keyword #nocreate. This will result in a slightly mod-
ified signature for the corresponding createAstFor Xxx method. The feature is
particularly useful for efficient conversion of recursively defined lists into their
equivalent ASM counterparts.

As an example, the relevant grammar extract for context declaration lists is
shown in Figure 5. The grammar recursively describes a simple list of context
declarations. Figure 6 shows the corresponding generated code. The ASM node
type for a context declaration list is a List of OclContextDeclaration instances,
a type specific to our implementation. It is not defined in the OCL 2.0 abstract
syntax.

1 context_declaration_list_cs <List> =

2 [context]:context_declaration_cs

3 [tail]:context_declaration_list_cs? #nocreate

4 ;

Fig. 5. Grammar extract for context declaration lists

48 B. Demuth, H. Hussmann, and A. Konermann

1 public final List caseAContextDeclarationListCs(...) {

2 if(childContext != null) {

3 astContext = (OclContextDeclaration) childContext.apply(...);

4 }

5 if(childTail != null) {

6 astTail = (List) childTail.apply(this, nodeHrtg.copy());

7 }

8 List myAst = computeAstFor_AContextDeclarationListCs(nodeHrtg,

9 astContext, astTail);

10 return myAst;

11 }

Fig. 6. Generated code for context declaration lists (simplified)

In contrast to Figure 4, where the ASM node is created just before the
call to the computeAstFor method (line 21), there is no such call in Figure 6
(line 7-8). Instead, the responsibility to create the ASM node is delegated to the
computeAstFor method (line 8-9). This method will be called for the last context
in the input text first, since the tree walker performs a depth-first descent and all
child nodes are evaluated first, including potential list tails. Thus, the skeleton
code allows for the attribute evaluation code of the last context declaration to
create a list instance containing the ASM couterpart for the currently processed
node. All preceding context declarations can then be added to the head of this
list. Figure 7 shows the actual implementation code for this example.

1 public List computeAstFor_AContextDeclarationListCs(

2 Heritage nodeHrtgCopy, OclContextDeclaration astContext,

3 List astTail)

4 {

5 List result = null;

6 if (astTail != null) {

7 astTail.add(0, astContext);

8 result = astTail;

9 } else {

10 result = new LinkedList();

11 result.add(astContext);

12 }

13 return result;

14 }

Fig. 7. Attribute evaluation code for context declaration lists (simplified)

Generation of an OCL 2.0 Parser 49

Automatic attribute passing for chain rules. The concrete syntax spec-
ification contains numerous productions comprising alternatives of the form
A → B, with A and B being nonterminals. Such rules serve to subsume various
syntactical instances of a generic semantic concept under a common produc-
tion, delegating definition of the actual syntax to subordinate productions. We
call these productions chain rules. One example in our modified grammar is
literal exp cs (Fig. 8).

The attribute evaluator code can be simplified for this type of productions. It
is not necessary to compute an ASM node, if the ASM node type of subordinate,
chained alternatives is conforming to the ASM node type of the embracing pro-
duction. Our attribute evaluator generator supports this simplification through
the keyword #chain appended to respective alternatives. The ASM node type
for the embracing production is LiteralExp, which is a supertype of all ASM
node types of the chained alternatives. The generator checks type conformance
at generator run-time and issues an error message if the types do not match.

1 literal_exp_cs <LiteralExp> =

2 {lit_collection} collection_literal_exp_cs #chain

3 | {lit_tuple} tuple_literal_exp_cs #chain

4 | {lit_primitive} primitive_literal_exp_cs #chain

5 ;

Fig. 8. Production for literal expressions (simplified)

1 public final LiteralExp caseALitCollectionL...(...) throws ... {

2 // ...

3 CollectionLiteralExp astCollectionLiteralExpCs = null;

4 if(childCollectionLiteralExpCs != null) {

5 astCollectionLiteralExpCs = (CollectionLiteralExp)

6 childCollectionLiteralExpCs.apply(...);

7 }

8 LiteralExp myAst = astCollectionLiteralExpCs;

9 return myAst;

10 }

Fig. 9. Generated code for chained alternative lit collection of literal exp cs (simplified)

Figure 9 shows the generated code for this example. After descending into
the (only) child node (lines 4-7), the visit method simply returns the ASM node
created for the child (lines 8-9). This completely removes the need to implement
ASM node computation manually.

50 B. Demuth, H. Hussmann, and A. Konermann

4.4 Features of the Attribute Evaluator Implementation

Some features of the parser belong to the overall implementation and are not
limited to the attribute evaluator. This section sketches them.

Balanced syntactical and semantic analysis for leaner implementa-

tion. During implementation of the attribute evaluator, the structure of the
grammar was further modified to minimize implementation effort. The genera-
tor creates one visit method per alternative. Context-sensitive analysis for each
alternative is to be performed in the corresponding visit method. In situations
where it is possible to distinguish similar languages syntactically, care must
be taken not to overuse this possibility. It can easily lead to a large number
of alternatives describing nearly identical languages. By experience we learned
that context-sensitive analysis for similar alternatives tends to require similar
context-sensitive checks. This would result in sections of the same code in a
large number of visit methods. To prevent code-duplication, we tried to balance
exploitation of syntactical analysis and redundancy of context-sensitive analysis.
Thus, some recognition effort was shifted from syntactical to contextual analysis,
reducing the number of visit methods and thereby leading to a slightly leaner
implementation.

Support for multiple iterator variables. According to [11], it is hard to
implement multiple iterator variables syntactically using the grammar given in
[1]. We were able to solve this problem using different syntactic constructs for
variable declarations with or without initializer values, as assumed by [11].

5 Summary

We have learned that to generate an OCL 2.0 parser according to the OMG
specification is a challenging task. Experimenting with the OCL 2.0 concrete
syntax and changing it, we found a technique that allows to a large extent
automated generation of a parser creating the ASM for a given OCL expression.
The algorithm is based on a L-attribute grammar and has been implemented as
extension of the SableCC parser generator. We plan to prepare this extension as
User Contributed Tool to the Open Source Community ([5]). We implemented
and tested the attribute evaluation based on an L-attribute grammar as part
of the Dresden OCL2 Parser. Furthermore, our OCL2 Parser is integrated into
the Dresden OCL2 Toolkit architecture. A first use case of the parser can be
demonstrated by the OCL22SQL tool that generates SQL code as explained in
[18]. We are currently starting a few new projects around the Dresden OCL2
Toolkit. Among other things we will investigate techniques for code generation
of procedural/object-oriented (e.g. Java or C#) and declarative (e.g. SQL or
XML query languages) code.

Generation of an OCL 2.0 Parser 51

Acknowledgment. We would like to thank all people who have contributed
over several years to the Dresden OCL Toolkit project. The project has been
initiated in 1999. In the following years many students accounted both with
research ideas and implementations to the Dresden OCL Toolkit and made their
modules available to the open source community. Concerning the Dresden OCL2
Toolkit, Stefan Ocke created a solid basis for the new toolkit version by his
Dresden OCL2 Repository that manages models and metamodels and has been
an important prerequisite for the running Dresden OCL2 Parser.

References

1. Object Management Group: UML 2.0 OCL Specification. (2004) OMG Document
ptc/2004-10-14.

2. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories. Assembling Ap-
plications with Patterns, Models, Frameworks, and Tools. Wiley (2004)

3. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodelling. A Foun-
dation for Language Driven Development Version 0.1. albini.xactium.com (2005)

4. Warmer, J., Kleppe, A.: The Object Constraint Language Second Edition. Getting
Your Models Ready for MDA. Addison-Wesley (2003)

5. Gagnon, E.M.: Sablecc parser generator. (www.sablecc.org)
6. Ocke, S.: Entwurf und Implementation eines metamodellbasierten OCL-Compilers.

Master’s thesis, Technische Universität Dresden, Department of Computer Science
(2003)

7. Loecher, S., Ocke, S.: A Metamodel-Based OCL-Compiler for UML and MOF.
Electr. Notes Theor. Comput. Sci. 102 (2004) 43–61

8. JCP: The JavaTM Metadata Interface (JMI) Specification.
(www.jcp.org/en/jsr/detail?id=40)

9. Technische Universität Dresden, D.o.C.S.: Dresden OCL Toolkit. (dresden-
ocl.sourceforge.net)

10. Klasse: Octopus: OCL Tool for Precise Uml Specifications.
(www.klasse.nl/english/research/octopus-intro.html)

11. Akehurst, D.H., Patrascoiu, O.: OCL 2.0 - Implementing the Standard for Multiple
Metamodels. Electr. Notes Theor. Comput. Sci. 102 (2004) 21–41

12. Object Management Group: Unified Modeling Language Specification Version
1.4.2. (2004) OMG Document formal/04-07-02, www.omg.org.

13. Grune, D., Jacobs, C.J.H.: Parsing techniques: a practical guide. Ellis Horwood,
Upper Saddle River, NJ, USA (1990)

14. Finger, F.: Design and Implementation of a Modular OCL Compiler. Master’s
thesis, Technische Universität Dresden, Department of Computer Science (2000)

15. Gagnon, E.: SableCC, an Object-Oriented Compiler Framework. Master’s thesis,
McGill University (1998)

16. Grune, D., Bal, H.E., Jacobs, C.J., Langendoen, K.G.: Modern Compiler Design.
Wiley (2000)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

18. Demuth, B., Hussmann, H., Löcher, S.: OCL as a Specification Language for
Business Rules in Data Base Applications. In Gogolla, M., Kobryn, C., eds.: UML
2001 - The Unified Modeling Language. 4th International Conference. LNCS 2185,
Springer (2001)

52 B. Demuth, H. Hussmann, and A. Konermann

Lessons Learned from Developing a Dynamic OCL
Constraint Enforcement Tool for Java

Wojciech J. Dzidek2, Lionel C. Briand1,2, Yvan Labiche1

1 Software Quality Engineering Laboratory, Department of Systems and Computer
Engineering – Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

{briand, labiche}@sce.carleton.ca
2 Simula Research Laboratory

Lysaker, Norway
dzidek@simula.no

Abstract. Analysis and design by contract allows the definition of a formal
agreement between a class and its clients, expressing each party’s rights and
obligations. Contracts written in the Object Constraint Language (OCL) are
known to be a useful technique to specify the precondition and postcondition of
operations and class invariants in a UML context, making the definition of
object-oriented analysis or design elements more precise while also helping in
testing and debugging. In this article, we report on the experiences with the
development of ocl2j, a tool that automatically instruments OCL constraints in
Java programs using aspect-oriented programming (AOP). The approach strives
for automatic and efficient generation of contract code, and a non-intrusive
instrumentation technique. A summary of our approach is given along with the
results of an initial case study, the discussion of encountered problems, and the
necessary future work to resolve the encountered issues.

1 Introduction

The usefulness of analysis and design by contract (ADBC) has been recognized by
current and emerging software paradigms. For example, in [1], a book on component
software, an entire chapter is devoted to the subject of contracts, and the author argues
that using a formal language to specify them would be ideal except for the
disadvantage of the complexity associated with the usage of a formal language.
However, recent experiments have shown that OCL provides a number of advantages
in the context of UML modeling [2], thus suggesting its complexity to be manageable
by software engineers. Likewise in [3], a book discussing distributed object-oriented
technologies, Emmerich argues that the notion of contracts is paramount in distributed
systems as client and server are often developed autonomously. Last, model driven
architecture (MDA), also known as model driven development (MDD), is perceived
by many as a promising approach to software development [4]. In [4], the authors
note that the combination of UML with OCL is at the moment probably the best way
to develop high-quality and high-level models, as this results in precise,
unambiguous, and consistent models. Having discussed the advantages of OCL, it

comes as a surprise that the language is not used more widely for ADBC. One reason
for this might be the well-established prejudices against any formal elements among
software development experts and many influential methodologists. Another reason
for the unsatisfactory utilization of OCL is the lack of industrial strength tools, e.g.,
tools to generate code assertions from OCL contracts.

The benefits of using contract assertions in source code is shown in [5], where a
rigorous empirical study showed that such assertions detected a large percentage of
failures and thus can be considered acceptable substitutes to hard-coded oracles in test
drivers. This study also showed that contract assertions can be used to significantly
lower the effort of locating faults after the detection of a failure, and that the contracts
need not be perfect to be highly effective. Based on such results, the next step was
therefore to address the automation of using OCL contracts to instrument Java
systems. This paper reports on our experience with the development and use of ocl2j,
a tool for the automated verification of OCL contracts in Java systems [6]. These
verifications are dynamic, i.e., performed at run time, as opposed to offline – after the
application executed.

The paper briefly starts with background information and related work. Then we
go through an overview of our approach, followed by a discussion of some of the
main technical and methodological issues with respect to transformation of
constraints from OCL to Java. Next, an initial case study, aimed at showing the
feasibility of the ocl2j approach, is presented. Finally, difficulties with using OCL for
this purpose are outlined, conclusions are then provided.

2 Related Work

Currently, two tools exist for the purpose of dynamic enforcement of OCL constraints
in Java systems: the Dresden OCL toolkit (DOT) [7, 8] and the Object Constraint
Language Environment (OCLE) [9]. We decided to implement our own solution as
DOT did not fulfill all of our requirements (as discussed below) and OCLE did not
exist at the time and, after close examination, turned out not to fully address our
needs.

Our aim was to have a tool that would: (1) support all the core OCL 1.4
functionality, (2) correctly enforce constraints, (3) instrument (insert the contract
checking and enforcement code) program code at the bytecode level (as opposed to
altering the source-code), (4) allow for optional dynamic enforcement to the Liskov
Substitution Principle (LSP) [10], (5) support for separate compilation (i.e., allowing
modifications of the application source code without recompiling assertion code or
vice-versa), (6) correctly check constraints when exceptions are thrown, (7) have the
ability for assertion code to use private members, (8) have the option to use either
compile-time or load-time instrumentation (with load-time instrumentation constraint
checking code can be installed or removed without requiring recompilation), and (9)
have the ability to add assertions to classes for which the source-code is not available.

DOT was the pioneering work for this problem and is open-source software. It
relies on the following technical choices. First, the instrumentation occurs at the
source code level, requiring that the original program’s source code be heavily

54 W. J. Dzidek, L. C. Briand, and Y. Labiche

modified. Original methods are renamed and wrapped, and supplementary code is
added. The second choice is to check invariants only after methods that modify
attributes used in invariants, instead of checking them before and after every public
operation. The latter could indeed turn out to be inefficient when only a subset of
methods in the class affect the invariant. In order to achieve this, DOT introduces a
backup attribute for every attribute in every class, virtually cloning each object. It is
then possible to check after a method execution whether it modified an attribute
involved in the class invariant, i.e., whether the invariant should be checked. Another
technical choice concerns the differences between OCL and Java types. DOT
implements the OCL types in Java and wraps Java variables (attributes, method
parameters or return value) used in assertions with equivalent OCL types. This results
in additional objects created at runtime and more method calls (the resolution of the
OCL to Java types occurs at runtime, this topic will be discussed in Section 4.2). Last,
the generated code is constructed in such a way that it uses Java reflection
mechanisms at runtime (i.e., when the instrumented program executes) to determine
implementation details. The above technical decisions result in a large memory and
performance penalty as a direct consequence of the virtual cloning (of all objects) and
the wrapping (of all objects involved in OCL constraints). Support for OCL is also
incomplete as, for example, query operations are not supported. Furthermore,
constraints on elements in collections are not properly enforced as changes to
elements in the collection can go unnoticed [6]. Additionally, since DOT inserts the
contract code directly into the source code the user is faced with a dilemma: keep only
the clean version or the instrumented one, or keep both versions of the source code.
These options have disadvantages as when only one version of the code is kept then
the user must deal with the long wait times for the cleaning and instrumentation
whenever a change to the source needs to be made. If the version of the code being
kept is the instrumented version then the code must be cleaned whenever the user
wants to read the code. Keeping both versions of the source code solves some of those
problems but introduces new ones. If a version management system is used, two
versions of the source code must be kept in the system thus leading to inevitable
inconsistencies. Last, there is no support for constraint inheritance.

OCLE is a UML CASE tool offering OCL support both at the UML metamodel
and model level, though we only look at a portion of the tool: it’s support for dynamic
OCL constraint enforcement. Like DOT, instruments the source code and is limited in
its support of OCL (e.g. the @pre keyword and the oclIsNew() operation are not
supported). Furthermore, it cannot instrument existing source code (it only generates
code skeletons from class specifications).

Note that although other tools exist that add design by contract support to Java [11,
12], they are not discussed in this paper as they do not address the transformation of
OCL expressions into assertions.

3 The ocl2j Approach

This section presents our approach (ocl2j) towards the automatic generation and
instrumentation of OCL constraints in Java. Our approach consists of Java code being

Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 55

created from OCL expressions and the target system then being instrumented: (1) The
necessary information is retrieved from the target system’s UML model and source
code; (2) Every OCL expression is parsed, an abstract syntax tree (AST) is generated
[7], and the AST is used to create the assertion code (the OCL to Java transformation
rules were defined as semantic actions associated with production rules of the OCL
grammar [13]. The generation of Java assertions from OCL constraints is thus
rigorously defined and easily automated.); (3) The target system is then instrumented
with the assertion code, using AspectJ which is the main Java implementation of
Aspect Oriented Programming (AOP) [14, 15]. Note that since the techniques
involved in step (3) are already covered in [16], this paper will only contain a brief
overview of the strategy.

The ocl2j instrumentation is non-intrusive, as AOP technology is used to separate
the assertions from the target system’s source code. The user can work on the code
without having to regenerate the contract assertions before each compile. This is true
as long as the class diagram (including operation signatures and class relationships)
and contracts do not change as then the contract code will not need to change either.
Furthermore, this solution allows for parallel development of the target system’s
source code and its aspects, once again as long as the class diagram and contracts are
stable. If the user wants to run the program without the contracts the user can
recompile the code without including/weaving the aspects or chose not to weave the
aspects into the bytecode at load-time if that instrumentation method is used. The
weaving of the contract code and the target system's code is done at the byte code
level. For this reason the source code is not necessary for the insertion of the contract
code. This is very important if the target system uses classes for which the source
code is not available.

Furthermore, instead of converting all variables in the Java target system's source
code that participate in contracts to their OCL equivalent variables (through wrapping
and cloning), a set of rules transform OCL types and operations to their equivalent
Java types and operations. Note that in the ocl2j approach these transformations are
performed when the target system is instrumented (as opposed to them being
performed when the instrumented target system executes).

The section starts (Section 3.1) with a discussion of how OCL types are
transformed in Java types. Next, Section 3.2 discusses the topic of equality with
respect to OCL and Java. Section 3.3 shows how the OCL @pre construct is
addressed. Section 3.4 provides rules on when contracts should be checked, with the
corresponding discussion on how we do this with AspectJ in Section 3.5. Finally,
after a brief introduction to AspectJ, Section 3.6 shows how we were able to use
AspectJ to provide clean and efficient support for oclAny::oclIsNew().

3.1 OCL to Java Transformations

The checking of contracts at runtime slows down the execution of the program. If this
slowdown is too great the developers will not use the technology. For this reason it is
important to focus on techniques that enable faster checking of contracts. One of these
techniques is to translate OCL expressions directly into Java using the types retrieved
from the target system (through reflection) at the assertion-code generation stage,

56 W. J. Dzidek, L. C. Briand, and Y. Labiche

instead of wrapping Java types and operations with OCL-like types and operations.
The translation time is thus spent during instrumentation rather than execution. This
distinction becomes critical during maintenance of large systems since changes to the
system only occur to the subsystem under development. For this reason it is both
unnecessary and inefficient to perform the OCL to Java type resolution over the
whole system every time the system is executed.

Our OCL to Java type resolution relies on the following principles. First,
whenever a simple mapping exists between OCL and Java types/operations, the
translation is straightforward. For instance, OCL collection operation size() maps
directly to the size() operation of the java.util.Collection interface
(which every collection class in Java implements). When OCL types/operations
cannot be directly converted to types/operations from standard Java libraries, the
instrumentation code (aspect code) provides the functionality that is “missing” in the
libraries. This ensures that no wrapping is necessary, and no additions to the target
system are required. The aspect contains inner classes with operations that provide
additional functionality to complete the mapping to Java such as the
collection->count(obj):Integer operation, that counts the number of
times object obj occurs in collection and does not have any counterpart in Java
collection classes/interfaces. The aspect code thus contains inner class
OclCollection with a count operation that takes two arguments: the collection
on which count must be performed and the object that needs to be counted.

Next, OCL, unlike Java, has no notion of primitive types (e.g., int) as everything
is considered an object. Java, on the other hand, supports primitive types and
corresponding primitive value wrapper classes, or simply wrapper classes (e.g.,
Integer). OCL provides four, so-called, basic types: Boolean, Integer, Real
and String. There is one exception to these differences in OCL and Java type
systems: strings are objects in both OCL and Java. Having both primitive types and
wrapper classes has a major impact on the process of transformation of OCL
constraints into Java code1. For example, consider the following OCL constraint:
someCollection-> includes(5). When transforming the OCL expression
into Java source code, 5 has to be transformed into either primitive value 5 or an
instance of wrapper class Integer (new Integer(5)). As Java collections only
take objects as elements, the latter is the correct choice.

A general, trivial solution to this problem would be to convert every literal value
into an object, but as already discussed, this is inefficient. A more efficient solution
consists in analyzing the types used in the OCL expression, the types required in the
corresponding Java source code, as well as the characteristics of the expression, and
converting objects to their primitive types when possible. During the transformation
of OCL constraints into Java code the following strategy is followed:
• Values used in logical, addition, multiplication, and unary operations are evaluated

in their primitive form.
• Values used as arguments in operation calls are converted, if necessary, into an

instance of the required Java type according to the operation signature. E.g., the

1 Note that this is only a problem for systems written in Java 1.4 and earlier as Java 1.5 has the

autoboxing feature that addresses this problem.

Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 57

java.util.Collection::contains(o:Object): boolean operation
expects the parameter to be an object. Thus, in the case of the OCL constraint
integerCollection->contains(10), where integerCollection is
implemented in the Java source code as a Java collection (the class implements
java.util.Collection), “10” is converted to an object using the integer
object wrapper: new Integer(10). This would not be necessary if the
expected parameter were of int type.
Taking a closer look at collection types reveals that OCL has three collection

types, namely Set, Bag, and Sequence, whereas, Java only has two main
collection interfaces, namely java.util.Set and java.util.List (we
assume that the user-define collection implement java.util.Collection
directly or indirectly). There is a direct mapping between OCL Set and
java.util.Set and between OCL Sequence and java.util.List.
However, OCL Bag does not have a direct Java counterpart. A bag is a collection in
which duplicates are allowed [17]. java.util.Set cannot be used to implement
an OCL Bag as it does not allow duplicates. The only possible alternative, which is
assumed in the ocl2j approach, is to implement OCL Bag with java.util.List.

The three following situations are encountered when translating collection
operations:
1. There is a direct mapping between an OCL collection operation and a
java.util.Set or java.util.List operation, e.g., OCL operation
includes() and Java operation contains().

2. The OCL collection operation does not have a direct counterpart but its
functionality can easily be derived from existing java.util.Set or
java.util.List operations. For instance, an implementation of OCL
operation symmetricDifference() on Set can be built from operations
removeAll() and addAll(). These transformations are performed by a
specialized class within the aspect code, called OclCollection.

3. OCL collection operations that iterate over collections and evaluate an OCL
expression (passed as a parameter to the operation) on elements in the collection
are more complex. They do not have a direct Java counterpart and cannot be
simply implemented using the operations provided by java.util.Set or
java.util.List. These OCL operations are exists, forAll, isUnique,
sortedBy, select, reject, collect, and iterate. They require more
attention as the parameter is an OCL expression which requires to be instrumented
as well in the aspect code. Templates and transformation rules are used to generate
a unique method (residing in the aspect) for every distinct use of these operations.
Furthermore, note that transformations involving collections may also require that

intermediate collections be generated in the assertion code for collections of objects
that are used in OCL constraints but are not necessarily explicitly implemented as
attributes in the code. This is the case with OCL collection operation
coll->including(obj) that returns a collection with all the elements found in
collection coll plus object obj. For instance, if an OCL expression shows
coll->including(obj)->select(…), where select(expr) yields a
subset of the collection (on which it is applied) containing all elements for which

58 W. J. Dzidek, L. C. Briand, and Y. Labiche

expr is true/satisfied. In that case, an intermediate collection containing all the
elements of coll and obj has to be created before performing operation select.

3.2 Testing for Equality

Assertion code that tests for equality can take any one of three forms. First, if the
values to be compared are of primitive type then the Java “==” construct is used in
the equality test. Next, if the values being compared (or just one of them) are of
reference type wrapping a primitive then the primitive value is extracted from the
object using the appropriate method (e.g., intValue() for an object of type
Integer) and again the values are tested for equality using the Java “==” construct.
In other cases, objects are tested for equality using their
equals(o:Object):boolean method. This is done as equality in OCL is
defined at the object level, not the reference level. For example, let’s take a look at the
java.awt.Point class which has two attributes: x:int and y:int. Next, given
two points Point a = new Point(5, 5) and Point b = new
Point(5, 5). If we compare these points at a “reference level” they will not be
equal (a == b will evaluate to false), even though they the two objects a and b
do represent the same point. Thus, Point’s equals method must be used to
evaluate their equality (a.equals(b) does evaluate to true).

We assume that the equals() method is properly implemented [18] so that
objects are deemed equal when their key attributes are equal. We define key attributes
as attributes that define an object’s identity (e.g., attributes x and y in the case of the
Point class). Sometimes each instance of a class is unique (no clones are possible)
in which case the default equals() functionality (i.e., inherited from
java.lang.Object, considers each instance only equal to itself) will suffice as
this functionality only compares reference values for equality, but when this is not the
case the equals() method must be overridden. Note that this last point is often
neglected by developers of Java-based systems.

3.3 Using Previous Property Values in OCL Postconditions

This section discusses the practical implementation of the OCL language construct
@pre, used in postconditions to access the value of an object property at the start of
the execution of the operation. Depending on the property that the @pre is associated
with different values and amount of data must be stored temporarily until the
constrained method finishes executing so that the postcondition can be checked.
@pre can be used with respect to one of the following:
1. Java types corresponding to OCL Basic types or query methods that return a value

of such a type. The mapping between these types is discussed in Section 3.1. In the
case of a primitive type, the primitive value is stored in a temporary variable. In the
case of an object, the reference to the object is stored in a temporary variable. Only

Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 59

the reference is stored as these types are immutable and thus they cannot change
(during the execution of the constrained method).

2. Query methods that return an object. In this case the objects are handled in the
same way as described above, only the reference to that object is stored in a
temporary variable (duplicated), the object itself is not cloned. The object is not
cloned as we assume that the target system is written with proper encapsulation
techniques, meaning that query methods that return an object to which the context
class (the class containing the query method) is related via composite aggregation
return a clone of the object, not the object itself. This is standard practice as
discussed in Item 24 of [18]. Note that this is a necessary requirement as the
following example will demonstrate: Consider a query method that returns the
reference to an object X is queried, within the context of a postcondition, before a
constrained method M executes (via the @pre keyword). During the execution of
M, X is modified. Once M finishes execution the postcondition must be verified.
Note that since the query method only returned a reference to X (instead of a clone
of X), the postcondition will be evaluated with respect to the new version of X, as
opposed the original version at precondition-time.

3. Objects (references to objects). The object types in this discussion exclude the ones
discussed in the points above. In this case a clone of the object is taken and stored
in a temporary variable. We assume that the programmer properly implements
cloneability support (as will be discussed).

4. Collections. A collection’s identity is defined by the elements in that collection,
thus a clone of a collection contains a clone of every element in the original
collection. Using @pre on a collection will result in such a duplication of the
collection in most cases. When the OCL collection operation being invoked on
someCollection@pre is size():Integer, isEmpty():Boolean,
notEmpty():Boolean, or sum():T then only the result of the operation is
stored in the temporary variable. We note that in a lot of cases it may not be
necessary to duplicate the collection in such a manner to enforce the postcondition
correctly, but this is a subject for future work.
For a guide to providing support for cloneability see Item 10 in [18]. Essentially,

two types of cloning methods exist. First, a shallow copy is where the fields declared
in a class and its parents (if any) will have values identical to those of the object being
cloned. In the case of a class exhibiting one or more composite relationships the
shallow copy is not sufficient and a deep copy must be used—during a deep copy all
the objects in the composition hierarchy must also themselves be cloned. To
understand why, recall our objective here: We need access to the objects, as they
were, before the constrained method executed. Objects are uniquely identified by their
key attributes (key attributes are discussed in Section 3.2). If these objects have
composite links to other objects (i.e., their class has composite relationships), thus
forming a hierarchy of objects, the key attributes may be located anywhere in the
hierarchy. A deep copy is therefore necessary.

60 W. J. Dzidek, L. C. Briand, and Y. Labiche

3.4 Checking Contracts

Instrumenting a constraint requires that we identify where the corresponding assertion
needs to be checked, the insertion point. The insertion point for an assertion checking
a precondition is right before the execution of the corresponding method. Similarly,
the insertion point for an assertion checking a postcondition is right after the
execution of the corresponding method. As for class invariants, Meyer states that a
class invariant must be true (i) after an instance creation and (ii) before and after any
remote call to an operation [19]. In UML terms, this means that every public
operation must be instrumented as public operations are the only ones that can
participate to a remote call, according to Meyer’s definition. However, a public
operation in a UML model may end up being implemented as a public, package
(default), or protected methods in Java, as package/protected methods are accessible
to other classes in the same package2. In our approach, we decided to adhere to the
UML definition: Only public operations as defined in the UML model are
instrumented, whether those operations are implemented as public methods or not in
the source code. This strategy is summarized in Table 1, which is adapted from [12].
Table 1. Constraint Checking

 public
(UML)

not public
(UML) constructor

Pre entry X X X
regular exit X X X Post exception
entry X N/A
regular exit X X Inv
exception X

Table 1 also shows what is checked when an exception is thrown during the

execution of a constrained method. A postcondition is not checked on abnormal
termination of a method or constructor as the contract is likely not satisfied. The
invariant is checked on abnormal termination of a public method execution since the
object should still be in a legal state if the exception handling is correct. This is not
the case for a constructor as an abnormal termination then suggests the construction of
the object failed: checking the invariant is then not relevant.

This strategy for the instrumentation of assertions checking constraints is valid for
non-static methods and constructors. Checking pre and postconditions for static
methods can follow the same principles. Since the notions of invariants and constraint
inheritance (following section) for static methods is not clearly defined in the
literature, we decided to omit the check of constraints on static methods altogether in
this paper, although further details can be found in [6].

2 This differs from the UML definition of a protected operation which states that any descendant of the

classifier can use the feature.

Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 61

3.5 Instrumentation

Since our (non-OCL specific) instrumentation approach (for enforcing preconditions,
postconditions, and invariants) is described in detail in [16], we will only provide a
brief overview of our method here. Our instrumentation strategy relies on aspect-
oriented programming (AOP) [14]. AOP is a methodology that facilitates the
modularization of concerns in software development. In particular, it extracts cross-
cutting concerns from classes and turns them into first-class elements: aspects. By
decoupling these concerns and placing them in aspects, the original classes are
relieved of the burden of managing functionalities orthogonally related to their
purpose. Later, the aspect code is injected into appropriate places by a process known
as weaving (usually at the program compilation stage).

Note that by using AOP as our instrumentation technology we were able to: (a)
manipulate the bytecode instead of the source code; (b) be independent of coding
conventions or extensions to the Java Virtual Machine (JVM); (c) optionally support
LSP enforcement; (d) support separate compilation (i.e., allowing modifications of the
application source code without recompiling assertion code or vice-versa); (e) support
contract checking in the presence of exceptions; (f) have the ability for assertion code
to use private members; (g) have the option to use either compile-time or load-time
instrumentation (with load-time instrumentation constraint checking code can be
installed or removed without requiring recompilation); and (h) have the ability to add
assertions to classes for which the source-code is not available.

Let us describe, as an example, the structure of the aspect code for preconditions.
Fig. 1 shows the code template (where strings in bold represent the variable parts of
the aspect code) required to instrument the byte code. A before advice executes
before the specified pointcut executes (i.e., the constrained method). The before
keyword exposes variable names (with types) that can be used in the advice code:
self of type aClass, and any method parameter (name and type) that the advice
should use. (These will be used in the pointcut.) In the pointcut: execution(…)
specifies, using a method signature, that any execution of method aMethod on any
instance of class aClass is intercepted; target(self) maps self (defined in
before(…)) to the object executing the intercepted method (on which the constraint
is being evaluated). In the advice code, variable self will then be a reference to the
object executing the intercepted method execution; args(…) maps names appearing
in parenthesis (and defined in before(…[params])) to the parameters of
aMethod so that its arguments can be referred to in the advice code;
within(aClass) specifies that the version of the executing method must be
declared in class aClass. This is to prevent the interception of aMethod’s
execution on subclasses of aClass that override aMethod (and thus likely have a
precondition different from the one of aMethod in class aClass).

before(aClass [, method parameters] self):
execution(method_return_type aClass.aMethod([method parameter

types])) && target(self) [&& args(parameter names)]
&& within(aClass) {… //Check the precondition.}

Fig. 1. AspectJ code template for enforcing preconditions

62 W. J. Dzidek, L. C. Briand, and Y. Labiche

In the following example, class Person has attributes salary, and
maxSalary, all of type Integer in the UML model (java.lang.Integer in
code). Additionally, class Person has an operation called
implementRaise(raise:Integer) that raises the person’s salary. The
precondition for implementRaise is the following:
context Person::implementRaise(raise:Integer)
pre: self.salary + raise <= self.maxSalary

Fig. 2 shows the (incomplete) AspectJ code for the example, i.e., the aspect class in
charge of checking the above precondition, following the template presented above.
privileged aspect Ocl2jAspect {

// Before the execution of the implementRaise method in Person
before(Person self, int raise) :
execution(public void Person.implementRaise(int))
&& target(self) && args(raise) && within(Person) {

if (!((self.salary.intValue()+raise)<=self.maxSalary.intValue())){
constraintFailed("self.salary + raise <= self.maxSalary"); } }

void constraintFailed(String constraint) {
 … // Report constraint failure. }
}

Fig. 2. AspectJ code for example precondition

3.6 oclAny::oclIsNew() Support

Any OCL type in a UML model, including user-defined classes, is an instance of
OclType: it allows access to meta-level information regarding the UML model. In
addition, every type in OCL is a child class of OclAny, i.e., all model types inherit
the properties of OclAny. Among those properties is operation
oclAny::oclIsNew() that can only be used in a postcondition: It evaluates to
true if the object on which it is called has been created during the execution of the
constrained method.

Java does not provide any functionality to which this operation could be mapped
to. A traditional solution to the problem would be to instrument every construct that
could be used to create the object of interest (e.g. all the constructors), though this
solution would not be adequate in the case that the source code for the object of
interest could not be modified.

The ocl2j solution to the problem of implementing operation
oclAny::oclIsNew() is the following. If this operation is used on a type in any
OCL expression, a collection is added to the aspect. This collection will store
references to all the instances of the type created during the execution of the
constrained method (as oclAny::oclIsNew() can only be used in the context of
a postcondition): This is easily achieved with AspectJ as it only requires that the
aspect comprises an advice to add, at the end of the execution of any constructor of
the type of interest or its subtypes, the reference of the newly created instance. This
raises the question of the choice of the Java data structure to store those references
and the impact of aspect code on object garbage collection in Java: Objects in the
instrumented program should be garbage collected if they are not used in the

Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 63

application code, even though they may be referenced by the aspect code. A solution
to this problem is to use class java.util.WeakHashMap to store these references
in the aspect. This was specifically designed so as to store references that would not
be accounted by the garbage collector. It is based on a hash map where the keys are
weak references to the objects we are monitoring. The garbage collector can get rid of
an object, even when this object is still referenced, provided that these references are
only used in instances of class WeakHashMap. When this is the case, the object is
garbage collected and any reference to it removed from instances of the
WeakHashMap.

Determining whether an object was created during the execution of the constrained
method involves checking the WeakHashMap collection for the presence of the
object in question. Finally, after the constrained method finishes executing and the
postcondition is checked, the collection of instances (created during the execution of
that method) is discarded.

Please note that this solution is not easily mapped to a solution that enables the use
of the oclAny:: allInstances() construct as there is not way to force the
JVM to run the garbage collection operation (though
Runtime.getRuntime().gc() can be used to suggest this to the JVM). Thus,
such an implementation of oclAny:: allInstances() could, in certain
instances, return a collection of objects including ones that are designated for garbage
collection (no longer referenced).

4 Preliminary Case Study

The case study is based on the system presented in [17]: The “Royal and Loyal”
system example. Though modest in size, this system was chosen due to the large
number of diverse constraints being already defined for it, including some quite
complex ones. It should then provide initial evidence that ocl2j works for a wide
variety of constraints. The UML model in [17] was expanded in this work to the
system shown in [6] in order to be implementable. Once expanded, it was
implemented in Java and consisted of 381 LOCs, including 14 classes, 47 OCL
constraints, 53 attributes, and 46 operations.

The original version of the R&L system and the version with the assertion code
(instrumented) are compared for a common scenario where a customer is added and
makes purchases. We use the following three criteria for comparison: (1) bytecode
size of the classes, (2) time it takes to execute the programs, (3) memory footprint.
We only report in this paper the detailed results for (2) and provide a summary for (1)
and (3).

Table 2 is based on the execution of five scenarios where the two main parameters
affecting performance are varied from 1 to 100 (as indicated between brackets): (1)
number of customers, (2) number of purchases over $25. Those two parameters affect
the size of collections that are involved in the instrumented OCL contracts and are
accessed during the execution of the program.

Our first observation was that all constraints were correctly translated into Java
without encountering unexpected cases. Programs that have relatively large

64 W. J. Dzidek, L. C. Briand, and Y. Labiche

collections with many complicated constraints associated with these collections can
expect, as a ballpark figure, a degradation in execution time of 2 to 3 times.
Otherwise, the degradation in performance is smaller as the execution speed is slowed
down by roughly 60%. This is significant but does not prevent the use of instrumented
contracts in most cases during testing, unless the system’s behavior is extremely
sensitive to execution deadlines. The sources of degradation in performance have
been further investigated in [6] where solutions are proposed for optimization. With
respect to criteria (1), the target system grew 2.5 times in size, and (3), the maximum
overhead percentage observed for the above scenarios were 14% and 10.5%,
respectively.

Table 2. Execution time comparisons
Execution Time (ms) Scenario

Original Instrumented
Instrumented version slower by

1 (1,1) 38 62 63%
2 (10, 10) 41 64 56%

3 (100, 100) 47 111 136%
4 (1, 100) 39 76 94%
5 (100, 1) 47 106 125%

5 Future Challenges

While developing ocl2j we ran into several non-trivial issues that require significant
work to address. Among others:
• The implementation of support for the @pre keyword leaves a lot of room for

performance optimizations. For example, to evaluate the postcondition
“self.someCollection@pre = self.someCollection” properly in
every scenario one must create a new collection (say tempCollection) that
holds a clone of every element present in self.someCollection. If
someCollection is large or if the elements in that collection are expensive to
clone, then the evaluation of this postcondition becomes very expensive.
Furthermore, this potentially expensive operation is not even necessary if all the
designer intended to check was whether self.someCollection@pre and
self.someCollection point to the same object (i.e. hold the same reference).
In such a situation the designer should be allowed to distinguish weather a deep or
shallow copy is meant by the @pre. One way of addressing this would be by
adding the keyword @preShallow to OCL.

• The use of @pre may lead to un-computable expressions. As shown in [20], the
expression self.b.c@pre with respect to the example in Section 7.5.15 in [21]
is not computable: “Before invocation of the method, it is not yet known what the
future value of the b property will be, and therefore it is not possible to store the
value of self.b.c@pre for later use in the postcondition!”.

• Our experience revealed that, by far, the largest performance penalties (execution
time overhead) of checking the OCL constraints during the execution of the system
came from OCL collection operations [6]. For this reason we have started working

Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 65

on an approach to minimize these performance penalties. In general the strategy
involves checking a constraint on a collection whenever the state of the collection
changes in such a way that it could invalidate the constraint. For example, consider
the constraint someCollection->forAll(someExpression). If this
constraint is an invariant then it will be checked before and after any public method
executes, even if neither the state of someCollection nor its elements changes.
An alternative to this would be to check that someExpression holds for a newly
added element to someCollection, and that someExpression holds for
elements in the collection that undergo changes that may invalidate
someExpression. This alterative will be more efficient on a large, often-
checked, collection that does not undergo large changes. Note that this kind of
strategy is facilitated by the use of AOP as the instrumentation technology.

• The implementation of the OclAny::allInstances():Set(T) functionality
in Java is challenging since Java uses automatic garbage collection, i.e., objects do
not have to be explicitly destroyed. Thus, the only way to know whether an object
is ready to be garbage collected (and therefore not be in the allInstances set)
is to run the garbage collection operation (costly execution-wise) after every state
change in the system involving the destruction of a reference.

6 Conclusions

We have presented a methodology, supported by a prototype tool (ocl2j), to
automatically transform OCL constraints into Java assertions and instrument these
into the target program. The user of ocl2j can then specify whether a runtime
exception is thrown or an error message is printed to the standard error output upon
the falsification of an assertion during execution. This has shown, in past studies [5],
to be extremely valuable during testing to detect failures and help debugging.

Transformation rules to translate OCL constraints into Java assertions have been
derived in a systematic manner with the goal that upon instrumentation the generated
assertion code will be efficient in terms of execution time and memory overhead. This
was largely achieved thanks to the systematic definition of efficient semantic actions
on production rules in the OCL grammar, and the minimization of reflection use at
runtime.

The instrumentation of those Java code assertions is performed by employing
aspect-oriented programming (AOP) as this technology helps overcome the problems
of source code pollution: The assertions are not inserted into the target system’s
source code, but into an aspect file, which is woven with the target system’s bytecode.
An initial case study has shown that the overhead due to instrumentation compares
very well to previous approaches [8] and is likely to be acceptable in most situations,
at least as far as testing is concerned. More empirical studies are however required.

Furthermore, we have shown how we dealt with aspects of the OCL specification
that present serious instrumentation challenges (e.g. providing support for @pre and
oclIsNew()) and reported on issues that we feel require future work (e.g.
refinement of the OCL syntax and advanced optimization techniques).

66 W. J. Dzidek, L. C. Briand, and Y. Labiche

References

1. Szyperski, C., Component Software. 2nd ed. 2002: ACM Press.
2. Briand, L.C., et al. A Controlled Experiment on the Impact of the Object Constraint

Language in UML-Based Development. in IEEE ICSM 2004. 2004. Chicago, Illinois, USA.
3. Emmerich, W., Engineering Distributed Objects. 2000: Wiley.
4. Kleppe, A., J. Warmer, and W. Bast, MDA Explained - The Model Driven Architecture:

Practice and Promise. 2003: Addison-Wesley.
5. Briand, L.C., Y. Labiche, and H. Sun, Investigating the Use of Analysis Contracts to

Improve the Testability of Object-Oriented Code. Software - Practice and Experience, 2003.
33(7): p. 637-672.

6. Briand, L.C., W. Dzidek, and Y. Labiche, Using Aspect-Oriented Programming to
Instrument OCL Contracts in Java. 2004. SCE-04-03. http://www.sce.carleton.ca/squall.

7. Finger, F., Design and Implementation of a Modular OCL Compiler. 2000, Dresden
University of Technology.

8. Wiebicke, R., Utility Support for Checking OCL Business Rules in Java Programs. 2000,
Dresden University of Technology.

9. LCI, Object Constraint Language Environment (OCLE). http://lci.cs.ubbcluj.ro/ocle/.
10. Liskov, B., Data Abstraction and Hierarchy. SIGPLAN Notices, 1988. 23(5).
11. Plösch, R., Evaluation of Assertion Support for the Java Programming Language. Journal

Of Object Technology, 2002. 1(3).
12. Lackner, M., A. Krall, and F. Puntigam, Supporting Design by Contract in Java. Journal Of

Object Technology, 2002. 1(3).
13. Appel, A.W., Modern Compiler Implementation in Java. 2nd ed. 2002: Cambridge

University Press.
14. Elrad, T., R.E. Filman, and A. Bader, Aspect-oriented programming: Introduction.

Communications of the ACM, 2001. 44(10): p. 29-32.
15. AspectJ-Team. The AspectJ Programming Guide. [cited; Available from:

http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-
home/doc/progguide/index.html.

16. Briand, L.C., W.J. Dzidek, and Y. Labiche. Instrumenting Contracts with Aspect-Oriented
Programming to Increase Observability and Support Debugging. in To appear in IEEE
International Conference on Software Maintenance (ICSM 2005). 2005. Budapest,
Hungary.

17. Warmer, J. and A. Kleppe, The Object Constraint Language. 1999: Addison-Wesley.
18. Bloch, J., Effective Java: Programming Language Guide. 2001: Addison Wesley.
19. Meyer, B., Object-Oriented Software Construction. 2nd ed. 1997: Prentice Hall.
20. Hussmann, H., F. Finger, and R. Wiebicke. Using Previous Property Values in OCL

Postconditions - An Implementation Perspective. in <<UML>>2000 Workshop - "UML 2.0
- The Future of the UML Constraint Language OCL". 2000. York, UK.

21. OMG, Unified Modeling Language Specification 1.3. 1999. http://www.omg.org.

Lessons Learned from Developing a Dynamic OCL Constraint Enforcement Tool 67

Proposals for a Widespread Use of OCL

Dan Chiorean, Maria Bortes, Dyan Corutiu

Babes-Bolyai University, Computer Science Laboratory (LCI)
Str. M. Kogalniceanu 1, Cluj-Napoca 400084, Romania

chiorean@cs.ubbcluj.ro

Abstract. In spite of the fact that OCL and UML evolved simultane-
ously, the usage of the constraint language in modeling real-world appli-
cations has been insignificant compared to the usage of the graphical lan-
guage. Presently, OCL is requested in new modeling approaches: Model
Driven Architecture, Model Driven Development, Domain Specific Lan-
guages, Aspect Oriented Modeling, and various emerging technologies:
Semantic Web, Business Rules. In this context, the question What has
to be done for OCL to become the rule, not the exception, in the mod-
eling domain? is more pressing than ever. The purpose of this paper is
to propose an answer to this question, although not a complete one. Our
work is an attempt to synchronize the language specification and its un-
derstanding, straight related to the language implementation in CASE
tools, by proposing solutions for incomplete or non-deterministic OCL
specifications. In order to manage the new extensions required for the
constraint language, a new language structure is suggested.

Keywords: MOCL, UML, MOF, improving OCL, refactoring OCL , OCL
extension

1 Introduction

The occasional use of OCL specifications in real-world applications is mainly
due to the lack of appropriate tools supporting the language. This is quite a
unanimous opinion in the expert community. In [1], John Daniels, one of OCL’s
grandparents, expresses his disappointment regarding OCL tools:

”Despite being a full part of UML 1.3 and being used extensively in the
definition of UML itself, OCL is almost completely unsupported by cur-
rent mainstream modeling tools, which is a shame because OCL allows
us to be much more precise, especially when we specify component behav-
ior.”

Four years after the publication of Daniels’ book, the state of facts changed, but
not so much as needed. The position of one of the experts, published in [2], is:

”In recent years, the tool support for OCL has been pretty poor - as bad
as the development environments we had to put up with in the eighties

(or even worse). I’ve struggled along with a couple of these less than
usable tools to check that the OCL I’ve used in tutorials is correct, but
quite often I end up fighting with the tool and give up.”

The number of modeling directions requesting the use of OCL increases sig-
nificantly by the day. In these circumstances, identifying the reasons of the un-
satisfactory state of facts that persists in the OCL tool world and proposing
reasonable solutions represents the first step. A clear, unequivocal and com-
plete language specification is among the preconditions for conceiving and im-
plementing the OCL tools required by real-world projects. The recommendations
expressed in this paper are based on OCL features, on the language role and the
requirements resulted from the application domain.

The paper is structured in 6 sections. Section 2 describes the characteristics
that individualize this specification language. The OCL evolution is briefly ana-
lyzed in Section 3, where different unsolved language problems are highlighted.
Some fallacies regarding the language are presented in the next section, Section
4. Finally, the authors’ position regarding the improvement of the OCL specifi-
cation is explained in Section 5 and the conclusions drawn are presented in the
last section, Section 6.

2 Language Characteristics

Among the most important characteristics of OCL are: complementarity, con-
ciseness and comprehensibility. OCL is not a stand-alone language. On one hand,
OCL expressions need to be defined in the context of a model which provides the
information for validation and evaluation of OCL specifications. On the other
hand, the information provided by textual specifications complements the in-
formation provided by the graphical formalism, UML. For instance, in Figure 1
diagram the graphical formalism reflects the fact that a company has at least
one employee and a person may be employed by zero or more companies:

0..* 1..*

company person

Person
-age:Integer
-isUnemployed:Boolean

Company

1.1, Class3

1.1, Class3

Fig. 1. A simple UML class diagram

However, a person cannot be hired by a company unless he/she is at least 18
years old. This fact cannot be graphically illustrated, but can be specified in an
OCL invariant for the Person class:

context Person inv major :
s e l f . company−>notEmpty () implies s e l f . age > 18

Proposals for a Widespread Use of OCL 69

In addition, the isUnemployed attribute of the Person class is a derived
property since its value can be computed by navigating the company association
end from the Person class. The expression which computes this value can be
specified as follows:

context Person : : isUnemployed : Boolean
de r i v e :

s e l f . company−>isEmpty ()

As a straightforward consequence of complementarity, the OCL type system
integrates with the type system of a modeling language (UML, MOF or other
modeling languages). For instance, the UML primitive types: Boolean, String,
Real, Integer map to the corresponding OCL primitive types and each type
exported from a UML model (instance of a descendant of the Classifier meta-
class) is a descendant of the OclAny type. The parallelism between the MOF
based modeling languages’ evolution and OCL’s evolution is, from our point of
view, another consequence of complementarity. New requirements emerged in the
modeling domain generated new requirements for the textual formalism OCL.
As an example, the usage of OCL for model transformations requires language
extensions with constructs that allow transformation specification. The ongoing
OMG standard, Query View Transformation [3], uses OCL extensively:

”All QVT packages are defined using EMOF from MOF 2.0, and extend
the MOF 2.0 and OCL 2.0 specifications.”

The transformation languages proposed in [4,5] are also based on OCL. The in-
fluence that Smalltalk exerts over OCL is reflected in the conciseness and com-
prehensibility of OCL specifications. A simple comparison among an operation
specification in OCL, Smalltalk and Java is suggestive:

1

0..*

folder

content

File
-isFolder:Boolean

Folder
+files:File[]

1.1, Class3

1.1, Class3

Fig. 2. The File and Folder model

−− OCL code
f i l e s () : Set (F i l e) = s e l f . content−>r e j e c t (f | f . i sFo l d e r)

70 D. Chiorean, M. Bortes, and D. Corutiu

” Smal l ta lk code”
f i l e s

| f o l d e r F i l e s |
f o l d e r F i l e s := s e l f contents s e l e c t [: f | f i sFo l d e r]
. ˆ f o l d e r F i l e s

// Java code
pub l i c Set f i l e s () {

Set setContent = Folder . t h i s . getContent () ;
Set s e tRe j e c t = new HashSet () ;
f i n a l I t e r a t o r i t e r = setContent . i t e r a t o r () ;
whi l e (i t e r . hasNext ()) {

f i n a l F i l e f = (F i l e) i t e r . next () ;
boolean bI sFo lder = f . i sFo l d e r ;
i f (! b I sFo lder) s e tRe j e c t . add (f) ;

}
re turn s e tRe j e c t ;

}

3 OCL Evolution

This section presents the language evolution and highlights aspects neglected in
OCL specification and some unargued or controversial adopted decisions. Most
of these aspects are analyzed in detail in Section 5, where some solutions are
proposed.

The Object Constraint Language was conceived as a textual formalism com-
plementary to the graphical formalism of UML. Obviously, the OCL evolution
is aligned with the UML evolution.

The first official version of OCL, 1.1, was published in September 1997 [6],
accompanying the 1.1 version of UML [7]. In that version, an OCL constraint
had an implicit context: the model element, which the Constraint element was
attached to. Conforming to the UML metamodel, the OCL constraint persistence
could be achieved only through the instantiation of the Constraint metaclass.
Beginning with the 1.3 version [8], the context and package concepts have been
adopted. Their main purpose was to allow the specification of an explicit con-
text for OCL constraints. A straightforward outcome of this adoption is that it
allows constraints to be extracted from the model and managed (transferred and
modified) by means of text files.

The 1.x OCL versions had a type system that comprised: primitive types,
OclAny, OclType, OclState (since 1.3), OclExpression and Collection types.
Nested collections were not allowed, thus successive navigations were followed
by automatic collection flattening. Although since version 1.1 it has been stated
that:

”OCL is a typed language, so each OCL expression has a type. In a
correct OCL expression all types used must be type conformant”,

Proposals for a Widespread Use of OCL 71

the language specification did not fulfill this fundamental requirement. For in-
stance, the type of the undefined value, OclVoid, was established later and
adopted only in the 2.0 version [9]. Besides OclVoid, the type system of the 2.0
version was enriched with OclTuple, OclMessage and OrderedSet. OclTuple al-
lows the description of database specific structures (e.g. result sets). OclMessage
is used to monitor messages passed between objects, while OrderedSet is used
to manage ordered sets. Also, in 2.0 version, nested collections are allowed, thus
successive navigations are not followed by automatic collection flattening.

In order to provide an efficient and unambiguous support for the UML graph-
ical formalism, OCL was extended with new language constructs. Thus, the
navigation towards an AssociationClass in case of an auto-association was
clarified in version 1.3, but the preferred syntactical solution overlaps with the
one proposed for navigation of a qualified association with a single qualifier (see
Section 5 Recommendations). The let construct was introduced in version 1.3 [8]
and the def construct in 1.4 [10]. These constructs allow new observer functions
to be defined in a Classifier context, along with granting their reusability.
In the context of object-oriented architectures, the functions can be redefined
in descendants. This important aspect was neglected in the OCL specification.
Therefore, most OCL tools don’t support redefinition of functions specified by
means of the def construct.

Similar to most specification or programming languages, OCL evolved in
order to provide better solutions or resolve open issues, as well as to allow adap-
tation to new requirements. Unfortunately, this evolution was based only to
a small extent on requirements obtained from practical experience because this
knowledge is hardly significant. Undoubtedly, the small number of available OCL
tools and, mainly, their characteristics, represented one of the main reasons for
this state of facts.

”The Amsterdam Manifesto on OCL” [11] offers a consistent set of solutions
to a number of problems that remained unsolved in past versions. Along with
[9], [11] provides the most exhaustive and consistent set of proposals regarding
the evolution of OCL. Despite this fact, the authors explicitly state that not all
the problems known at that time were approached:

”During our meeting we discussed other subjects in the OCL standard
that needed clarification. However, up to September 1999 we did not
have the opportunity to discuss them further and include a clarification
in this manifesto.”

Some of the proposed solutions, for instance, the elimination of the generalization
relation connecting Collection and OclAny, as well as the incorporation of the
oclIsNew() operation in OclAny, are arguable, and we will try to prove this fact
(see Section 5 - Recommendations).

OCL version 2.0 [9] offers a consistent set of solutions to a number of problems
that remained unsolved in past versions. However, several problems mentioned
as of [11] were still left unsolved or partially solved in OCL 2.0. This new version
paid an increased interest to the language extension aspect as compared to the
clarification of open issues inherited from previous versions. It is important to

72 D. Chiorean, M. Bortes, and D. Corutiu

notice that the documentation for this version contains not only the Specifica-
tion, but also a document [12] that describes unsolved problems and proposes
several language extensions. In Section 5 - Recommendations we will look into
into some of the problems that need to be solved for the language to fulfill all
its promises.

4 Fallacies

Since the release of OCL’s first version, several books [13,14,15,4,16] etc., have
admirably promoted the language and the advantages it bestows. Also, many
articles recommended the usage of OCL in a number of domains because of the
promised advantages. Unfortunately, there are many misunderstandings dissem-
inated not only by articles that attempt to present OCL in a poor light, but also
by articles that try to promote OCL. Among OCL users, beginners or not, these
false opinions may lead to misconceptions. Consequently, our recommendation
to the OCL expert community is to analyze and shed light on these fallacies.

OCL is hard to understand and, as a consequence, difficult to use.
This statement is frequently publicized either without argumentation, or
with a poor one that proves exactly the opposite [17]. A language’s qual-
ity does not automatically grant the quality of the specifications realized
in that language. The efficient use of OCL specifications requires, besides a
good knowledge of the constraint language, the complete comprehension of
the model for which the specifications were designed.

OCL has to be side effect free.
This characteristic originates from the first versions. At that time, the pur-
pose of the language was limited to assertion and observer operation specifi-
cations. In these cases, the evaluation of OCL specifications should not alter
the model state. Lately, the usage of OCL in transformation specification
and in behavior description for non-query operations requires imperative
constructs [4,5]. The side effect free property is not a quality, but a require-
ment for assertion and observer operation specification. New objectives like
those mentioned above need an imperative language.

The OCL metamodel must be used for OCL expression persistence,
similar to the way the UML metamodel is used to ensure UML model in-
terchange through the XMI format. Such an approach is highly inefficient.
A textual format is the most appropriate interchange format for textual
formalisms, as it was already proven by programming languages. Also, this
approach involves minimal resource consumption (memory, processor time)
and offers obvious advantages in specification management.

OCL Collections must be homogenous.
It is not allowed for a collection to contain elements whose single common an-

Proposals for a Widespread Use of OCL 73

cestor is OclAny. This restriction is not reasonable. Object-oriented program-
ming languages provide means to manage heterogenous collections through
a common base interface for collection elements (e.g. Object in Java). In
OCL’s case, the role of this common base interface can be played by OclAny.
The existence of a root interface for all types also solves the type reso-
lution problem that may appear while analyzing an if-then-else-endif
construct.

5 Recommendations

In order to be achieved, the objective stated at the beginning of the paper -
the widespread use of OCL specifications for realizing real-world applications
by means of modern modeling technologies - requires a much more careful re-
quirement analysis both for the constraint language and for the CASE tools that
support its usage.

5.1 Language Requirements

Lately, the modeling domain has evolved considerably, demanding new features
for the textual language that accompanies the graphical language. Among these
new features there are: support for metamodeling (MOF based and Domain
Specific Modeling), model transformation, Aspect Oriented Modeling, extensions
for behavior specifications, support for model testing and simulation, ontology
development and validation for the Semantic Web, etc.

The extension of OCL with new features should not affect its simplicity,
coherence and clearness. In this context, the extension of OCL requires first a
language refactoring by means of: modularization, elimination of redundant con-
structs or those having model dependent semantics, unequivocal type resolution
for all OCL expressions, clarification of open issues related to the type system,
complete and unambiguous specification of evaluation results for all OCL ex-
pressions.

5.1.1 Language modularization By modularization we understand the
organization of language concepts in highly cohesive and lowly coupled units -
language modules. These modules describe all aspects related to the contained
concepts, including their syntax and semantics.

The main purpose of modularization is to obtain an Open-Closed architecture
[18]. Such an architecture offers advantages both for language users and for
language developers: language users are given the opportunity to concentrate
only on language modules that are of interest for their application domain, while
language developers have to concentrate only on those modules that are subject
of creation or modification, being assured that their modifications would not be
propagated across other language modules.

74 D. Chiorean, M. Bortes, and D. Corutiu

The OCL version we considered for modularization is 2.0, because it takes
into account the use of OCL in conjunction with the MOF modeling language
and contains the richest set of concepts.

For each application domain, OCL modules can be developed to cover domain
specific concepts. These modules may be assembled with other OCL modules in
a dialect associated to the modeling language.

In a MOF-based environment the model defined types integrate with the
OCL type system. Model navigation is the basic functionality without which
no textual specification would be possible. Consequently, we propose to group
together, in a language module named ”Core OCL”, the OCL type system and
the language concepts that realize model navigation. This module is independent
of any other module and it is used (directly or indirectly) in any other module.
”Core OCL” contains only the language concepts needed to navigate a MOF
model. For modeling languages with concepts that require specific navigations
(e.g. qualified associations in UML), ”Core OCL” can be extended with specific
language concepts that realize these navigations.

Fig. 3. A modular architecture for OCL

OCL 2.0 allows constraint specification (invariants, pre and post-conditions,
guards), behavior specification for query operation (body and def constructs),
initial and derived property values (init and derive constructs). The above-
mentioned constructs can be separated in two modules: ”Assertion OCL” which
contains constructs for constraint specification and ”Behavior OCL” which con-
tains constructs for behavior specification and for initial and derived property
values. The latter module could also contain mechanisms for the management
of exceptions, an aspect completely absent from the OCL specification.

The complete behavior specification and model transformation [5] - a fun-
damental mechanism in MDA - would not be possible without adding modi-
fiers1 to OCL - constructs that produce side effects. Moreover, these constructs
are also needed for a ”Command OCL” module which allows the construction
1 modifier = operation that alters the state of an object

Proposals for a Widespread Use of OCL 75

and modification of object snapshots, similar to the USE command language
[19]. This module is useful for model testing and simulation. As more modules
depend on ”modifiers”, these constructs can be isolated in a separate module,
”Imperative OCL”. Obviously, the modules ”Behavior OCL”, ”Command OCL”
and ”Transformation OCL” (a module for transformation specification) depend
on it.

5.1.2 Elimination of redundant constructs or those having model de-
pendent semantics

5.1.2.1 Redundant constructs. In order to preserve language conciseness and
comprehensibility, each language feature should be realized through one language
construct; more constructs for the same language feature do not enrich the lan-
guage, but increase its complexity. A redundancy example is the oclIsNew()
operation that belongs to the OclAny type. This operation can be used exclu-
sively in postconditions and its role is to distinguish objects that have been
created during the execution of the operation. For example, the execution of the
hire(p:Person) operation from the Company class (see Figure 3) implies the
instantiation of the Job class. In order to check whether, right after operation
execution, the person’s wage is higher than the minimum wage, the following
postcondition can be specified:

0..* 1..*

company person

Job
Person

-age:Integer
-isUnemployed:Boolean

Job
+salary:Integer

Company

+hire:void

hire(p:Person):void

1.1, Class3

1.1, Class3

Fig. 4. UML class diagram

context Company : : h i r e (p : Person)
post :

p . job−>s e l e c t (j | j . oclIsNew())−> f o rA l l (j | j . s a l a r y > 800)
−− or ,
post :

p . job−>exc lude sA l l (p . job@pre)−> f o rA l l (j | j . s a l a r y > 800)

The above example contains two postconditions that express differently the
same constraint: the first one uses the oclIsNew() operation while the second
uses the @pre construct that holds the set of jobs for Person p before the exe-
cution of hire(p:Person) operation.

76 D. Chiorean, M. Bortes, and D. Corutiu

The oclIsNew() operation can be completely substituted by the @pre con-
struct, because the newly created objects during operation execution can be
identified by removing from the collection of existing objects, at the end of oper-
ation execution, the collection of existing objects prior the operation execution,
obtained with the @pre construct.

Along with its redundancy, oclIsNew() operation brings in some other prob-
lems. Although it is part of OclAny interface, it cannot be called on any OclAny
descendant. For instance, oclIsNew() has no sense for the primitive types:
Boolean, String, Real and Integer. The same problem occurs for the
allInstances() operation in OclType. oclIsNew() also exhibits an unusual
behavior: it is the only operation in OCL standard library that can be used ex-
clusively in postconditions, in spite of the fact it belongs to the OclAny interface.

The operation any() can be considered another redundant construct speci-
fied on collections. The last OCL specification, [9] defines any() as being realized
with the help of asSequence() and first(), operations defined on Collection
and Sequence. The operation any() can be also replaced with sortedBy() suc-
ceeded by at(i), where 0<=i<=size.

5.1.2.2 Evaluation of non-deterministic constructs in OCL. Another contro-
versial topic regarding OCL specifications, topic debated on the pUML mail-
ing list, is represented by non-deterministic constructs. Recently, Mr. Thomas
Baar published a detailed paper on this topic [20], where, among other things,
it is stated: ”specifications in constructive languages using non-deterministic
constructs can easily be rewritten in OCL without using non-deterministic con-
structs”. This conclusion coincides with our proposal regarding the removal of
the any() operation. In fact, as specialists agree, the asSequence() operation
is also non-deterministic. This unpleasant situation can be removed by stating
that in the obtained Sequence, the order of elements remains unchanged from
the initial collection.

On the pUML Mailing list, the sortedBy() operation is also mentioned as
a possible cause for non-deterministic behavior. In our opinion, this aspect can
be easily removed by mentioning that if the strict ordering criterion is not ac-
complished, the order of compared elements remains unchanged. For example,
the result of evaluating the specification Setp1, p2->sortedBy(e | e.name),
where p1.name = p2.name, will be Sequencep1, p2 and not Sequencep2, p1,
because the initial order remains unchanged.

The above-mentioned additional information is important for CASE tools
implementors because it offers the opportunity to have different CASE tools
that produce the same results for identical inputs.

5.1.2.3 Constructs with model dependent semantics. The semantics of the
following constraint is model dependent:

context A
inv :

s e l f . b [c] . notEmpty ()

Proposals for a Widespread Use of OCL 77

For the model presented in Figure 5, self.b[c] represents the result of
navigating the auto-association class B from class A, through the association end
named c.

0..* 1..*

company person

Job

0..*

0..*

d

c

B

Person
-age:Integer
-isUnemployed:Boolean

Job
+salary:Integer

Company

+hire:void

A

B

hire(p:Person):void

1.1, Class3

1.1, Class3

Fig. 5. First model context: navigation of an auto-association class

For the model presented in Figure 6, self.b[c] represents the result of
navigating the qualified association between A and B through the B class, having
the value of the c attribute of A class as value for the id qualifier.

0..* 1..*

company person

Job

0..*

a b

id:Integer

Person
-age:Integer
-isUnemployed:Boolean

Job
+salary:Integer

Company

+hire:void

BA
+c:Integer

hire(p:Person):void

1.1, Class3

1.1, Class3

Fig. 6. Second model context: navigation of a qualified association

The above example illustrates how the same OCL expression can have mul-
tiple semantics, depending on its model context. This ambiguity can be elimi-
nated through designating a new language construct for navigation of the auto-
association classes. Since this solution keeps the OCL expression context inde-
pendent, it helps both the user (in unequivocally understanding the OCL spec-
ification) and the OCL compiler providers (in detecting compilation errors in
early stages, without complex context analysis).

The concrete syntax we propose for navigating auto-association classes is the
following:

context A inv :
s e l f . b#c . isEmpty ()

where the above constraint applies to the model in Figure 5. By replacing the
square brackets with ’#’ we can unambiguously identify this situation.

5.1.3 Improving type checking for OCL expressions In case of
if-then-else-endif expressions:

78 D. Chiorean, M. Bortes, and D. Corutiu

i f booleanExpress ion (cond i t i on)
then thenExpress ion
else e l s eExp r e s s i on

endif ,

the only information about the thenExpression and elseExpression is that
they are OclExpressions [9] (page 46). As presented in [9] (page 128, Figure
28), the Collection type is not a descendant of OclAny. In this context, if the
type of thenExpression is a Collection type and the type of elseExpression
is not a Collection type, the type of the if expression cannot be determined.
Consequently, the if expression is rejected by a OCL compiler because the
thenExpression and elseExpression do not have a common base type. The
above-mentioned problem has at least two reasonable solutions:

– the acceptance of Collection type as a descendent of OclAny,
– the definition of a constraint that ensures the existence of a common base

type for thenExpression and elseExpression.

The first solution is also beneficial for a natural specification of nested col-
lections.

5.1.4 A better approach for the type cast operation Concerning the
type cast operation, widely used in OCL specifications, in [9] it is stated:

”When it is certain that the actual type of the object is the subtype, the object

can be re-typed using the operation oclAsType(OclType). This operation re-

sults in the same object, but the known type is the argument OclType. When

there is an object object of type Type1 and Type2 is another type, it is allowed

to write: object.oclAsType(Type2) — evaluates to object with type Type2.

An object can only be re-typed to one of its subtypes; therefore, in the exam-

ple, Type2 must be a subtype of Type1. If the actual type of the object is not

a subtype of the type to which it is re-typed, the expression is undefined (see

(”Undefined Values”)).”

As stated in [9] about ”Accessing overridden properties of supertypes” (page
20, paragraph 7.5.8), the casting of a type to a supertype is also allowed. In case
the source and target types of the cast operation are not related, the compiler
should report an error.

5.1.5 Detailed specification for evaluation of expressions containing
undefined values The evaluation of operations invoked on collections that
contain undefined values is superficially approached in all OCL specifications.
The fact that the collection contains undefined values should not imply that all
collection operations invoked on that collection result in undefined. For instance:

– the evaluation of the collection size should always return a positive integer
value:

Proposals for a Widespread Use of OCL 79

Bag{1 , 9 , undef ined , undef ined }−> s i z e = 4
Sequence{1 , 9 , undef ined , undef ined }−> s i z e = 4

– the evaluation of the exist() operation should iterate the entire collection
and not terminate the iteration when an undefined value is encountered:

Collection{undef ined , 1 , 9 , undef ined}−>
e x i s t (e | e > 7) = true

Collection {1 , 9 , undef ined}−>
e x i s t (e | e = 7) = undef ined

– the evaluation of the any() operation on a collection that contains at least
one element that satisfies the condition of the any() operation should result
in one of these elements:

Collection {1 , 9 , undef ined , undef ined }
−>any (e | e>1) = 9

Collection {1 , 9 , undef ined }
−>any (e | e>10) = undef ined

– the evaluation of a forAll() operation on a collection that contains one
element that does not satisfy the forAll() condition should result in false:

Collection {1 , 9 , undef ined }
−>f o rA l l (e | e>2) = f a l s e

Collection {1 , 9 , undef ined }
−>f o rA l l (e | e>=1) = undef ined

The use of the undefined value is helpful in specifying operation behavior.
Therefore, a new kind of Expression, UndefinedLiteralExpression, needs to be
defined in the OCL grammar.

5.2 Tool Requirements

Due to the complementarity between the textual and graphical formalism, there
are two directions in OCL tool development:

– stand-alone tools - they offer support for both formalisms, implementing fea-
tures specific to CASE tools along with features characteristic to the textual
formalism; these tools are based on proprietary repositories and graphical
editors;

– plug-ins for CASE tools - they offer support only for the textual formalism
and use the CASE tools’ repositories and graphical editors (e.g. Octopus and
Pampero are OCL plug-ins for EMF-Eclipse, and ModelRun is a Rational
Rose plug-in).

For a broad acceptance, OCL tools must prove their efficacy and straightfor-
wardness. Starting from the proposed modular architecture of the OCL language,
a variety of OCL tools may be conceived and implemented, ranging from general
tools, that implement most of the language modules, to more specific tools, that

80 D. Chiorean, M. Bortes, and D. Corutiu

implement only modules that target a well defined functionality, tools for model
checking against a set of OCL rules [21], tools for model transformation, tools
for model simulation, etc.

The fundamental functionalities of any OCL tool are: compilation, evalua-
tion and debugging of OCL specifications. Along with the OCL support, these
tools may provide additional functionalities as code generation from OCL spec-
ifications [21] to various programming languages or notations.

Features like user friendly IDE functionalities: syntax highlighting, auto-
indentation, auto-completion, interactive debugging, help system are also im-
portant factors that influence the widespread use of such tools.

If OCL tools fail to reasonably provide the above-mentioned functionalities,
it will be almost impossible to use the OCL language at its true value.

6 Conclusion

Our belief is that, for the success of the newly emerged modeling technologies
- MDA, MDD, MDE, LDD, DSM - the usage of a textual formalism as OCL
represents more than a UML routine, it is a must.

The textual formalism has real perspectives of a broad use. In order to ma-
terialize these perspectives, the language and the tools supporting it have to
adapt to new requirements while preserving the spirit of the language and its
advantages.

It is mandatory to take into consideration the lessons learned throughout
the OCL evolution. The development and adoption of a new version of the
OCL standard should be primarily guided by technical arguments and validated
through a productive debate, not by a vote majority built around individual
interests. Also, the illustration of several misconceptions about the constraint
language, followed by a clear argumentation of the state of facts, is useful both
for decision makers and users alike.

References

1. John Cheesman and John Daniels. UML Components – A Simple Process for
Specifying Components-Based Software. Addison Wesley, 2001.

2. UML and Agile Development discussion board. OCL evaluator. Available at
http://parlezuml.com/blog/?postid=13, April 2005.

3. OMG QVT Merge Group. Revised submission for MOF 2.0 - query/views/trans-
formations rfp, v. 1.6. OMG Document formal/04-08-16, August 2004.

4. Tony Clark and Jos Warmer. Object Modeling with the OCL – The Rationale
behind the Object Constraint Language, volume 2263 of LNCS. Springer, 2002.

5. The ATLAS group. Atlas Transformation Model, User Manual, version 0.5. Avail-
able at http://www.sciences.univ-nantes.fr/lina/atl/atlProject/atlas/, 2005.

6. OMG. Object constraint language specification v. 1.1. OMG Document formal/97-
08-08, August 1997.

7. OMG. Unified modeling language specification v. 1.1. OMG Document formal/97-
08-03, August 1997.

Proposals for a Widespread Use of OCL 81

8. OMG. Unified modeling language specification v. 1.3. OMG Document formal/99-
06-09, June 1999.

9. OMG. Object constraint language specification v. 2.0. OMG Document formal/03-
10-14, October 2003.

10. OMG. Unified modeling language specification v. 1.4 with action semantics. OMG
Document formal/02-01-09, January 2002.

11. Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe,
Jos Warmer, and Alan Wills. UML 2.0 request for informa-
tion response - the amsterdam manifesto on OCL. Available at
http://www.trireme.com/whitepapers/design/components/oclmanifesto.pdf,
1999.

12. OMG. Ocl 2.0 final rtf/ftf report. OMG Document formal/05-06-05, June 2005.
13. Jos Warmer and Anneke Kleppe. The Object Constraint Language. Addison Wes-

ley, first edition edition, 1999.
14. Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your

Models Ready for MDA. Addison Wesley, second edition edition, 2003.
15. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained, the Model Driven

Architecture: Practise and Promise. Addison Wesley.
16. Desmond D’Souza and Alan Cameron Wills. Objects, Components and Frameworks

with UML - The Catalysis Approach. Addison Wesley, 1999.
17. Dan Chiorean, Maria Bortes, and Dyan Corutiu. Good practices for creating cor-

rect, clear and efficient OCL specifications. In Proceedings of 2nd Nordic Workshop
on the Unified Modeling Languages, pages 127–142, http://crest.cs.abo.fi/nwuml04,
2004.

18. Robert C. Martin. The open-closed principle. C++ Report, 1996.
19. University of Bremen. The USE tool. Available at http://www.db.informatik.uni-

bremen.de/projects/USE.
20. Thomas Baar. Non-deterministic constructs in OCL – what does any() mean.

In Andreas Prinz, Rick Reed, and Jeanne Reed, editors, Proc. 12th SDL Forum,
Grimstad, Norway, June 2005, volume 3530 of LNCS, pages 32–46. Springer, 2005.

21. Dan Chiorean, Maria Bortes, Dyan Corutiu, and Radu Sparleanu. UML/OCL tools
- objectives, requirements, state of the art - the OCLE experience. In Proceedings
of the NWPER’2004, pages 163–180, http://crest.cs.abo.fi/nwper04, 2004.

82 D. Chiorean, M. Bortes, and D. Corutiu

OCL and Graph-Transformations – A Symbiotic
Alliance to Alleviate the Frame Problem?

Thomas Baar

École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
thomas.baar@epfl.ch

Abstract. Many popular methodologies are influenced by Design by
Contract. They recommend to specify the intended behavior of opera-
tions in an early phase of the software development life cycle. In prac-
tice, software developers use most often natural language to describe
how the state of the system is supposed to change when the operation
is executed. Formal contract specification languages are still rarely used
because their semantics often mismatch the needs of software develop-
ers. Restrictive specification languages usually suffer from the ”frame
problem”: It is hard to express which parts of the system state should
remain unaffected when the specified operation is executed. Construc-
tive specification languages, instead, suffer from the tendency to make
specifications deterministic.
This paper investigates how a combination of OCL and graph trans-
formations can overcome the frame problem and can make constructive
specifications less deterministic. Our new contract specification language
is considerably more expressive than both pure OCL and pure graph
transformations.

Keywords: Design by Contract, Behavior Specification, Graph Gram-
mars, OCL, QVT

1 Motivation

Design by Contract (DbC) [1, 2] encourages software developers to specify the
behavior of class operations in an early phase of the software development life
cycle. Precise descriptions of the intended behavior of operations can be of great
help to grasp design decisions and to understand the responsibilities of classes
identified in the design.

The specification of behavior is given in form of a contract consisting of a
pre- and a post-condition, which clarify two things: The pre-condition explicates
all conditions that are expected to hold whenever the operation is invoked. The
post-condition describes how the system state looks like upon termination of the
operation’s execution. Basically, contracts can be formulated in an informal way

? This work was supported by Hasler-Foundation, project DICS-1850.

or using a formal language such as OCL. Formally specified contracts have the
advantage to be a non-ambiguous criterium for the correctness of a given im-
plementation. Furthermore, contracts written in a formal language are machine
readable and can be automatically processed in later stages of the software de-
velopment life cycle, e.g. for the purpose of test case generation [3].

There are many specification languages available to define contracts formally.
Despite their differences at the surface level, all languages can be divided into
only two classes. The classification is based on the technique to specify the
post-condition of a contract. Restrictive specification languages formulate the
post-condition in form of a predicate, i.e. a Boolean expression, which restricts
the allowed values for properties in the post-state. Well-known examples for
restrictive languages are OCL, JML, Z, and Eiffel. Constructive specification
languages interpret post-conditions not as restrictions on the post-state but –
conceptually completely different – as updates, which transform the pre-state
into the post-state. Well-known examples for constructive languages are B, ASM,
graph transformations, and UML’s Action Language.

The main disadvantage of using restrictive languages is the well-known frame
problem [4]: The predicate for the post-condition can hardly express which parts
of the system should not change.

context FundMngr : : s e l l 1 (amount)
post : va l1 = val1@pre−amount

context FundMngr : : s e l lAny (amount)
post : va l1+val2 = val1@pre+

val2@pre−amount

(a) Restrictive specifications using OCL

sell1(self:FundMngr, amount:Integer)

self:FundMngr
val1= x

self:FundMngr
val1= x-amount

sellAny(self:FundMngr, amount:Integer)

?
(b) Constructive specifications
using graph transformations

Fig. 1. Specification of ’simple’ operations

Suppose, a (simplified) class FundMngr has two attributes val1, val2 rep-
resenting the value of two stock depots. The intended behavior of operation
sell1(amount) is to sell shares of value amount from the first depot. Typically,
the operation sell1() would be specified in OCL as shown in the upper part of
Fig. 1 (a). This specification, however, does not capture the intended semantics
because also implementations of sell1() conform to the OCL specification that
not only decrease val1 by amount but in addition change the value of val2.

Constructive specification languages do not suffer from the frame problem
but from a severe, complementary problem. Since a constructive specification
describes how to ’construct’ the post-state out of the pre-state, it prescribes

84 T. Baar

the implementation of the operation completely. Consequently, all decisions on
the operation’s behavior have to be taken in time of writing the specification
and cannot be deferred to the implementation phase. Hence, the constructive
specification and the implementation of an operation coincide.

The pros and cons of constructive specification languages are illustrated in
Fig. 1 (b). Here, the behavior specification is given in form of a graph transfor-
mation rule, which consists of two graph patterns called left-hand side (LHS)
and right-hand side (RHS). They define how to ’construct’ a post-state out of
a given pre-state: The pre-state is assumed to be represented as an object di-
agram. In a first step, all subgraphs of the object diagram are searched that
matches with LHS. In a second step, each matching subgraph is rewritten with
a new subgraph that can be uniquely computed based on RHS (see Sect. 3.2 for
details).

The specification of operation sell1() in Fig. 1 (b) is read as follows. When-
ever in the pre-state a subgraph can be found consisting of object self whose
value for attribute val1 matches with a (fresh) variable x then this subgraph
is rewritten by the same object self whose attribute val1 has now the value
x-amount. Note that object self is passed as a parameter to the rule which lets
LHS match with only one subgraph of the pre-state. All objects and links of the
pre-state that are not part of the matching subgraph remain unchanged. The
same holds for the values of all attributes of object self that are not mentioned
in RHS. Consequently, if an implementation of sell1() would change for object
self the value of attribute val2 then this implementation would not conform
to the constructive specification.

In order to illustrate the disadvantages of constructive specification languages
we consider a second operation sellAny(amount) whose intended behavior is to
sell shares of value amount but it is not important whether shares from the first
or from the second depot are sold. The final implementation of sellAny(), of
course, had to realize an algorithm that determines for each depot the num-
ber of shares to be sold, but the decision, which algorithm should be taken, is
intentionally deferred to the implementation phase.

A contract for sellAny() can easily be given using a restrictive language.
Figure 1 (a) shows an OCL contract where the post-state is underspecified : if a
concrete pre-state is given, the post-state properties val1, val2 can have more
than one solution. In other words, the post-state is not (always) determined by
the pre-state and the contract. We call such contracts non-deterministic. Non-
deterministic contracts cannot be expressed by purely constructive languages
(see Fig. 1 (b)) because there is no unique update that could by applied to the
pre-state in order to construct the post-state (if there were such an update, the
contract would be deterministic).

This paper investigates how the expressive power of constructive languages –
as an example we consider graph transformations – can be improved to master
non-deterministic contracts. In Sect. 3, graph transformations are extended with
restrictive specification elements (OCL clauses). In its extended version, graph
transformations are more powerful but still not powerful enough to formalize all

OCL and Graph-Transformations 85

contracts that are relevant in practice. Thus, a second extension is discussed in
Sect. 4, which allows to simulate the loose semantics of restrictive languages.
To summarize, the proposed extensions of graph transformations enable soft-
ware developers to write formal contracts that (1) do not suffer from the frame
problem, (2) are non-deterministic, and (3) allow to change a state freely.

Related work. The idea to use graph transformations to formalize contracts
is not novel. There are even already tools for this purpose available [5, 6]. The
examples we found in the literature, however, are always deterministic contracts,
which do not require to extend graph transformations with restrictive specifica-
tion elements.

The idea to extend graph transformations with OCL clauses has been adopted
from the Query/Views/Transformations proposal (QVT) [7], which is a response
on a corresponding request for proposals by the OMG. In Sect. 3, the QVT ap-
proach is, however, put into a broader context by providing the link from model
transformation (the original application domain of QVT) to formal contract
specification.

Another attempt in the literature to make graph transformations less deter-
ministic is by Heckel et al. in [8]. Having the same goal as our approach of Sect. 4,
they first introduce graph transformations based on a loose semantics and make
this notation, in a second step, more constructive by specifying explicit frame
conditions on selected types.

Combining OCL with object diagrams has been explored in the literature also
for a different target than contract formalization. The language VOCL (Visual
OCL) uses collaborations to represent OCL constraints in a visual format for
better readability [9]. Similarly, the proposal made by Schürr in [10] is inspired
by Spider diagrams and aims at a more readable, graphical depiction of OCL
constraints. The approaches described in [9, 10] cannot be compared with the
approach presented in this paper because they have a fundamentally different
goal. Firstly, [9, 10] do not use OCL in order to improve the expressive power
of a graphical formalism. Instead, the graphical formalism is merely used as an
alternative to OCL’s textual standard syntax. Secondly, our approach targets
only operation contracts whereas [9, 10] aim at a visualization of any kind of
OCL constraints including invariants.

2 Restrictive Languages and the Frame Problem

In this section, we analyze why restrictive languages can hardly avoid the frame
problem. The frame problem is much more complex than the trivial example in
Sect. 1 was able to illustrate. This complexity makes naive approaches to tackle
the frame problem, as for instance by adding frame axioms to the post-condition,
very questionable. Some restrictive languages try to alleviate the frame problem
by inventing a new clause for contracts. The new clause describes which parts
of the system state must remain unchanged when executing the operation.

86 T. Baar

2.1 Example: CD-player

A formal specification of that are provided by CD-players will illustrate well the
complexity of the frame problem. In Section 3, this example will be used again
to point out limitations of constructive languages.

CD Track

CDPlayerWithFader
isFaderActivated:Boolean

0..10..1 1..*

«ordered»

<<enumerate>>
TimeDM

elapsed
remaining

CDPlayer
timeDisplayMode:TimeDM
currentTrack:Integer

setNextTrack()
setRandomTrack()
play()

inserted

Fig. 2. Static model of CD-player scenario

The main purpose of CD-players is to entertain people and to play the content
of compact discs (CDs). The content of a CD is organized by tracks that are
burned in a certain order on the CD. We want to assume that a CD can be played
in two modes. In the normal mode, all tracks on the CD are played in the same
order as they appear on the CD. In addition, the CD-player can work in a shuffle
mode in which the tracks are played in a randomized order. Finally, we want
to assume that a CD-player has a display on which, depending on the chosen
display mode, the elapsed or remaining time for the current track is shown.

This CD-player scenario is modeled straightforwardly by the class diagram
shown in Fig. 2. The subclass CDPlayerWithFader can be ignored for the mo-
ment; later we will come back to it when discussing how object-oriented designs
can evolve (e.g. by adding new subclasses) and which consequences this has on
the semantics of operation contracts.

In the next subsection, we will focus on the formal behavior specification for
the operations setNextTrack() whose intended semantics is to determine the
next track to be played if the CD-player is working in the normal mode. The
operation setRandomTrack() will be specified in Sect. 3 and determines the next
track if the CD-player works in the shuffle mode.

2.2 Complexity of the Frame Problem

The intended semantics of operation setNextTrack() is to move one track for-
ward on the CD and to increase the value of attribute currentTrack by one.
The formalization of this behavior in a restrictive language such as OCL seems
to be straightforward but there are some traps one can fall into.

OCL and Graph-Transformations 87

context CDPlayer : : setNextTrack ()
pre : s e l f . i n s e r t ed−>notEmpty ()
post : s e l f . currentTrack = (s e l f . currentTrack@pre mod
s e l f . i n s e r t e d . track−>s i z e ()) + 1

This contract has some merits since it resolves ambiguities that were hidden
in the informal description of the behavior. The first important information is
expressed by the pre-condition saying that the CD-player assumes to have a CD
inserted whenever the operation setNextTrack() is invoked. Note that this
assumption is indeed necessary because the post-condition navigates over the
currently inserted CD. The second merit of the contract is to make explicit the
behavior of setNextTrack() when the current track is the last one on the CD.
Reasonable variants might be to set currentTrack to zero (and thus to stop
playing) or to continue with the first track on the CD as it is stipulated by our
OCL constraint.

Although the OCL contract clarifies the informally given specification in some
respects, it does not capture completely the intended behavior. According to the
formal semantics of OCL in [11], an implementation still fulfills the contract
even if it would not only change the value of currentTrack but also the display
mode (attribute timeDisplayMode). Or the implementation could create/delete
other objects, or could change the state of other objects, or could change the
connections (links) between objects.

2.3 Strategies to Overcome the Frame Problem

A very naive strategy to exclude unintended implementations is by adding equa-
tions (so-call frame axioms) to the post-condition in order to make explicit which
parts of the state should remain unchanged. In case of setNextTrack(), one had
to add equations such as self.timeDisplayMode=self.timeDisplayMode@pre
and CD.allInstances=CD.allInstances@pre and The huge number of nec-
essary equations, however, let the size of the post-condition explode. Another
drawback of this ’solution’ is the need to rewrite all contracts of the design when-
ever the state space of the designed system is changed, e.g. by introducing a new
class CDPlayerWithFader.

Unfortunately, this poor strategy of adding frame axioms is currently the
only possibility, how OCL users can try to tackle the frame problem. To our
knowledge, there has not been any attempt yet to make the language OCL more
expressive so that users can easily add to a contract some information on which
parts of the system remain unchanged.

Other restrictive languages have tried to tackle the frame problem by adding
syntactical constructs which makes the semantics of a contract stronger. Users of
the specification language Z [12] can separate the state space of the system into
one part that is not affected by the operation and one part that can change freely
as long as the restrictions formulated in the post-conditions are satisfied. The
language JML [13], a contract specification language for methods implemented

88 T. Baar

in Java, offers besides pre-/post-conditions an additional clause assignable (also
known as modifies) where all locations that might change their value must occur.

There has been also attempts in the literature to ’compute’ then changing
part of the system merely based on the post-condition [14]. This, however, makes
formal reasoning on formal specifications much more complicated.

3 Constructive Languages and Non-Deterministic
Contracts

After the last section has pointed out the most important drawback of restric-
tive languages, this section discusses a corresponding problem of constructive
languages, namely, the principal obstacles for keeping the operation behavior
to a certain degree unspecified. This can be only achieved by non-deterministic
contracts.

Graph transformations are introduced as a constructive specification lan-
guage. It is discussed, why pure graph transformations can specify the operation
setNextTrack() but fail to specify setRandomTrack() correctly. To overcome
this problem, we finally discuss a combination of constructive and restrictive
specification style.

3.1 Non-deterministic Contracts

Non-deterministic contracts are necessary when not all details of the operation
behavior should be fixed in time of writing the contract.

The intended behavior of setRandomTrack() is a typical example for a non-
deterministic contract. The operation name setRandomTrack might be mislead-
ing as it might set up the expectation that our contract will enforce a true
randomized behavior of the implementation in the sense that invoking the op-
eration twice in the same state can result in different post-states. Note that this
kind of randomness cannot be expressed by a contract (neither in OCL nor in
any other contract language) because it would require to describe formally the
behavior of multiple invocations whereas a contract can specify only the behavior
of a single invocation.

The specification of setRandomTrack() in OCL looks as follows:

context CDPlayer : : setRandomTrack ()
pre : s e l f . i n s e r t ed−>notEmpty ()
post : Set { 1 . . s e l f . i n s e r t e d . track−>s i z e ()}

−>i n c l ud e s (s e l f . currentTrack)

This contract suffers again from the frame problem but, if this is ignored
for a while, the post-condition keeps intentionally the exact post-state open
and thus allows many different implementations. Even, an implementation that
constantly sets attribute currentTrack to 1 was possible and would conform to
this contract.

OCL and Graph-Transformations 89

3.2 Graph Transformations as a Constructive Language

Graph transformations have their roots in graph grammars and were originally
applied to describe the syntax of graphical languages. A graph grammar is a set
of rules that specifies all syntactically correct sentences of a visual language. A
visual sentence is syntactically correct if it can be derived by the recursive ap-
plication of grammar rules starting on an initial graph. Graph grammars mimic
in many respects the traditional syntax definition of textual languages by EBNF
rules. Instead of sequences of strings, a graph grammar generates sets of visual
objects placed in an n-dimensional space, or – to describe the outcome more
abstract – a graph grammar generates (typed) graphs. From a more abstract
point of view, rule applications are nothing but graph transformations and graph
grammar rules are an elegant way to specify these graph transformations.

It has also been recognized in the literature (see [6] for a survey and [5] for a
concrete example) that graph transformations can be used to specify the behav-
ior of operations. System states can easily be represented as graphs, e.g. in form
of object diagrams, and system state changes can be encoded as a transformation
of graphs.

A graph transformation rule consists of two graph patterns called left-hand
side (LHS) and right-hand side (RHS). Graph patterns are normal graphs whose
elements, i.e. nodes and links connecting some nodes, are identified by labels.
It is possible to use both in LHS and RHS the same label for the same kind
of elements (nodes or links). The application of a graph transformation rule on
a given graph is roughly described in two steps. In the first step, it is checked
whether the given graph has a subgraph that matches with LHS. If not, the rule
is not applicable on this graph. If yes, the matching subgraph is substituted by
a new graph derived from RHS under the matching obtained in step 1. If a label
for an element occurs only in LHS but not in RHS then the matching element
is removed, if it occurs in RHS but not in LHS then a new element is created,
if a label occurs in both LHS and RHS then the element is remained unchanged
during the application of the rule.

Besides this basic version of graph transformation rules, where LHS and RHS
consist of simple nodes and links, modern graph transformation systems offer
much more sophisticated elements to describe patterns such as typed nodes,
multiobjects, negative application conditions (NACs), parameters, etc. In the
rest of the paper, we will use the graph transformation system QVT submitted
as a proposal to the OMG for the standardization of model transformations.
For details on the syntax/semantics of this formalism, the interested reader is
referred to [7]. A bigger example on how QVT can be used as a contract speci-
fication language is given in [15].

As a simple example for a behavioral specification using graph transforma-
tions, Fig. 3 shows a rule specifying the intended behavior of setNextTrack().

The graph patterns LHS, RHS use typed nodes (e.g. self:CDPlayer) that
must comply to the system description given in Fig. 2. The LHS of the rules
serves two things. First, it imposes restrictions that must hold in order to make

90 T. Baar

setNextTrack(self:CDPlayer)

self:CDPlayer
currentTrack=x

aCD:CD

tr:Track

inserted

track

self:CDPlayer
currentTrack=
 (x mod tr->size()) + 1

aCD:CD

tr:Track

inserted

track

Fig. 3. Specification of setNextTrack with QVT

the rule applicable for the given state. For setNextTrack(), the effective re-
striction is that the CD-player self has a CD inserted (expressed by the link
between self and aCD). The second purpose of LHS is to query the pre-state
and to extract information that is important for the post-condition encoded
by RHS. In our example, the variable x extracts the current value of attribute
currentTrack and multiobject tr denotes the set of all tracks of the inserted
CD. Note that the attribute currentTrack and the multiobject tr could have
been omitted in LHS and the rule would still be applicable on exactly the same
set of graphs as before.

The RHS of setNextTrack() is almost identical to LHS except for the value
of attribute currentTrack. Consequently, applying the rule on a state will
change only the value of currentTrack on the object self and nothing else.
The new value of this attribute is computed based on the information queried
during the first step of the rule application.

3.3 Mixing Constructive and Restrictive Languages

Graph transformation rules, as they were explained so far, can capture deter-
ministic contracts in an elegant way whereas it seems hopeless to use them for
non-deterministic contracts.

Fortunately, there is a solution and the same problem has been already tack-
led by other constructive languages. The language B, for example, offers, besides
a pseudo-programming language for computing the post-state, the construct
ANY-WHERE. This construct causes a non-deterministic split in the control
flow and connects the same pre-state with possibly many post-states. The non-
deterministic choices are, however, restricted by a predicate, which has to be
evaluated in all control flows to true. In other words, constructive and restrictive
specification style is mixed. The formal semantics of ANY-WHERE is defined in
[16]. For an example-driven explanation of ANY-WHERE, the reader is referred
to [17].

By integrating ANY-WHERE, the language B has lost its purely constructive
semantics. The gain of expressive power is paid by loosing the executability of B
specifications. This makes tool support for B more challenging but not impossible
[18, 19].

OCL and Graph-Transformations 91

setRandomTrack(self:CDPlayer)

self:CDPlayer
currentTrack=x

aCD:CD

tr:Track

inserted

track

self:CDPlayer
currentTrack= y

aCD:CD

tr:Track

inserted

track

{when}
0 < y and y < tr.size() + 1

Fig. 4. Specification of setRandomTrack with QVT

Basically, for increasing the expressive power of graph transformations the
same idea as in B can be applied. In QVT, variables can occur in RHS even if
they do not occur in LHS. Consequently, the value of these fresh variables is not
fixed anymore by the first step of the rule application and can be chosen non-
deterministically. In order to get at least partial control over the values of these
variables, QVT has added when-clauses to transformation rules. A when-clause
contains constraints written in OCL. The constraint restricts the possible values
not only for fresh variables used in RHS but for all elements in LHS and RHS.

The specification of setRandomTrack() shown in Fig. 4 takes advantage of
the fresh variable y in RHS. The value of y is restricted in the when-clause what
exactly captures the intended semantics.

4 Giving Graph Transformations a Loose Semantics

Although the integration of the when-clause is a necessary step to make graph
transformations widely applicable and to overcome the determinism problem,
this step is not sufficient. Another immanent problem of constructive languages
remained unsolved. It is sometimes necessary to express in the contract that the
implementations of the operation are allowed to change parts of the system state
in an arbitrary way. If one puts this request to its very end, it means that in
some cases the loose semantics of restrictive languages is needed.

In this section, we propose an extension of QVT that makes it possible to
simulate the loose semantics of purely restrictive contracts written in OCL. These
enrichments require a slight extension of QVT’s notation to describe LHS and
RHS.

4.1 Possible Side Effects of Restrictive Specifications

As argued in Sect. 2, the contract for setNextTrack() written in OCL does not
exclude unintended side effects. These side effects can be classified as follows:

1. On object self, the values of the attributes not mentioned in the post-
condition might have been changed.

92 T. Baar

Attribute
name:String

Class

ObjectSlot

*

*

*

1

1

1

1

anchestorclasses *

Class.allAttributes:Set(Attribute) = self.anchestorclasses->including(self)->collect(attribute)

Association
name:String

Link

2 participants

*

1

*

* 2 *

Fig. 5. Simplifed metamodel for states

2. The values of attributes of CDPlayer-objects different from self might have
been changed.

3. The values of attributes of objects of other classes might have been changed.
4. An unrestricted number of objects of some classes might have been newly

created.
5. An arbitrary number of existing objects except self might have been deleted.
6. An arbitrary number of links might have been created/deleted.

We will demonstrate in Sect. 4.3 how the contract for setNextTrack() shown
in Fig. 3 had to be changed in order to capture each of these possible side effects.
Beforehand, in the next subsection, the new constructs proposed for QVT, which
are needed to simulate loose semantics, are summarized.

4.2 A Proposal for Extending QVT

Optional Creation/Deletion of Objects and Links. Graph transformation
rules must be able to express that an object is optionally created or deleted. The
same holds for links. So far, one can only specify that an object/link must have
been created (deleted) by displaying the object/link in RHS but not LHS (in LHS
but not in RHS). We propose to adorn an object/link in RHS with a question
mark (’?’) to mark its optional creation/deletion.

Note that it is a proven technique to adorn elements in LHS and RHS in order
to modify the standard semantics of the rule. QVT and other graph transforma-
tion formalisms allow already to adorn elements with ’X’ in order to express a
negative application condition (NAC).

Placeholders to Denote Arbitrary Attributes/Classes. A more signif-
icant extension of graph transformations is the introduction of placeholders.
Currently, QVT allows to describe the change of an attribute value only if the
name of the attribute is known. One can, for example, not specify the reset of
all attributes of type Integer to 0 unless all these attributes explicitly occur in
the graph transformation rule.

OCL and Graph-Transformations 93

We propose to use placeholders for attributes as a representation of arbitrary
attributes. These placeholders appear in the same compartment of the object
as normal attributes. In order to distinguish between normal attributes and
placeholders, we start the name of the latter always with a backslash (\). This
convention relies on the assumption that the name of normal attributes never
starts with backslash. For example, if \att appears in the attribute compartment
of an object, then it represents all attributes of this object (including attributes
inherited from super-classes).

Sometimes, a placeholder should not represent all possible attributes but only
some of them. To achieve this, we propose to use QVT’s when-clause to define
using OCL constraints which attributes are represented by which placeholders.
Such OCL constraints, however, refer to the metamodel of UML object diagrams.
To ease the understanding, we rely here on a simplified version of the official
metamodel as shown in Fig. 5.

Furthermore, in order to distinguish easily OCL constraints referring to the
metamodel from ordinary ones, we decided – slightly abusing OCL’s official
concrete syntax – to precede within OCL expressions each navigation on the
metalevel with a backslash.

Besides placeholders for attributes there are also analogously defined place-
holders for classes.

4.3 Realization of Possible Side Effects

We give examples on how possible side effects of OCL constraints presented in
Sect. 4.1 can be simulated using our extension of QVT. In all cases, we start
from the constructive specification of setNextTrack() shown in Fig. 3.

Other Attributes for self can change. A naive solution could be to explicitly
list all attributes of object self in both LHS and RHS and to assign in RHS a
fresh variable to the attribute.

This solution is first of all tedious to write down and in addition has the limits
that were already discussed: In time of writing the contract, not all subclasses
of CDPlayer might be known. Be aware that the QVT rule formulated in Fig. 3
is applicable even when self matches with an object whose actual type is not
CDPlayer but a subclass of it. The core of the problem is, that, when writing
the contract, we cannot predict which attributes the object self actually has.

The rule shown in Fig. 6 overcomes this principal problem. Each attribute of
self is represented by placeholder \attDiffCurrentTrack as long as its name
is different from ’currentTrack’. This is precisely described in the when-clause by
an OCL constraint: For the actual class of self (which might be a subclass of
CDPlayer) all valid declarations of attributes are collected. Note that attributes
can have also been declared in one of the super-classes. The OCL constraint in
the when-clause stipulates that the placeholder \attDiffCurrentTrack stands
for any attribute as long as it is not named ’currentTrack’ since this attribute
cannot be changed in an arbitrary way. The value of \attDiffCurrentTrack
in LHS is represented by variable v, which does not occur in the RHS. The

94 T. Baar

new value v’ in RHS shows that the value of the attribute matching with
\attDiffCurrentTrack might have been changed during the execution of the
operation.

setNextTrack(self:CDPlayer)

self:CDPlayer
currentTrack=x
\attDiffCurrentTrack=v

aCD:CD

tr:Track

inserted

track

self:CDPlayer
currentTrack= (x mod n) + 1
\attDiffCurrentTrack=v'

aCD:CD

tr:Track

inserted

track

{when}n = tr.size() and
self.\class.\attribute->reject(a¦a.name="currentTrack")->includes(\attDiffCurrentTrack)

Fig. 6. Different attribute values for self

State of other CDPlayer-objects might change. This side effect is similar
to the effect of changing the state of self and can be captured by applying the
same technique to enrich the QVT transformation. A new object other is added
to both LHS and RHS. In RHS, the value of the placeholder \att is changed to
a possibly new value v’.

setNextTrack(self:CDPlayer)

self:CDPlayer
currentTrack=x

aCD:CD

tr:Track

inserted

track

self:CDPlayer
currentTrack= (x mod n) + 1

aCD:CD

tr:Track

inserted

track

{when}
n = tr.size() and
self <> other and
other.\class.\allAttribute->includes(\att)

other:CDPlayer
\att=v

other:CDPlayer
\att=v'

Fig. 7. Different attribute values for other objects of class CDPlayer

State of objects of other classes might change. In order to simulate state
changes on objects of arbitrary classes different from CDPlayer (and its sub-
classes) placeholders for classes are needed. We have introduced the placeholder
\OtherClass whose value is restricted by an appropriate constraint in the when-
clause. The technique to change the state of objects of class \OtherClass is the
same as the one exploited above to simulate the state change of CDPlayer-
objects.

OCL and Graph-Transformations 95

setNextTrack(self:CDPlayer)

self:CDPlayer
currentTrack=x

aCD:CD

\att1 = v1

tr:Track

inserted

track

self:CDPlayer
currentTrack= (x mod n) + 1

aCD:CD

\att1=v1'

tr:Track

inserted

track

{when}
n = tr.size() and
\Class.allInstances->reject(c| c.\name="CDPlayer" or c.\anchestorclasses.\name->includes("CDPlayer")->
 includes(\OtherClass) and
other.\class.\allAttribute->includes(\att)

other:\OtherClass
\att=v

other:\OtherClass
\att=v'

Fig. 8. Different attributes for object of other classes

Objects different from self might have been deleted. It is not enough to
add the question mark to the new object other (that represents an arbitrary
object different from self). Unfortunately, the question mark must also be at-
tached on all objects different from self that are explicitly mentioned in RHS
(without such a question mark, the QVT semantics stipulates that all objects
occurring in RHS are not deleted). In addition, also the multiobject tr might
change since some of its elements are possibly deleted. Consequently, a new mul-
tiobject tr1 is introduced in RHS, which – according to the when-clause – must
be a subset of the original multiobject tr.

setNextTrack(self:CDPlayer)

self:CDPlayer
currentTrack=x

aCD:CD

tr:Track

inserted

track

self:CDPlayer
currentTrack= (x mod n) + 1

aCD:CD

tr1:Track

inserted

track

{when}
n = tr.size() and
self<>other and
tr->includesAll(tr1)

other:\Class other:\Class

?

?

Fig. 9. Deletion of objects

Objects might have been created. Optional creation of arbitrarily many
objects is expressed by adding a multiobject other to RHS. For each class,
other represents the set of newly created objects. Furthermore, the multiobject
tr might have been enlarged and became tr1.

96 T. Baar

setNextTrack(self:CDPlayer)

self:CDPlayer
currentTrack=x

aCD:CD

tr:Track

inserted

track

self:CDPlayer
currentTrack= (x mod n) + 1

aCD:CD

tr1:Track

inserted

track

{when}
n = tr.size() and
tr1.includesAll(tr)

other:\Class

Fig. 10. Creation of objects

Links might have been created. For the optional creation of links, two arbi-
trary objects o1, o2 are searched in LHS. The classes of o1, o2 must be connected
by an association with name assoname. RHS stipulates the optional creation of
a corresponding link between both objects.

setNextTrack(self:CDPlayer,assoname:String)

self:CDPlayer
currentTrack=x

aCD:CD

tr:Track

inserted

track

self:CDPlayer
currentTrack= (x mod n) + 1

aCD:CD

tr1:Track

inserted

track

{when}
n = tr->size() and
tr1->includesAll(tr) and
\Class1.anchestorclasses->including(Class1)->exists(c1|
 \Class2.anchestorclasses->including(Class2)->exists(c2|
 \Association.allInstances->select(name=assoname)->exists(a|
 a.participants = Set(c1,c2))))

o1:\Class1

o2:\Class2

o1:\Class1

o2:\Class2
?assoname

Fig. 11. Creation of links

Links might have been deleted. Analogously to the optional deletion of
objects we mark also links that are deleted optionally with a question mark.
Note, that the deletion of links might have be an effect on the multiobject tr
the same way the deletion of objects has.

setNextTrack(self:CDPlayer)

self:CDPlayer
currentTrack=x

aCD:CD

tr:Track

inserted

track

self:CDPlayer
currentTrack= (x mod n) + 1

aCD:CD

tr1:Track

inserted

track

?

{when}
n = tr->size() and
tr->includesAll(tr1)

o1:\Class1
?

o2:\Class2

o1:\Class1

o2:\Class2

Fig. 12. Deletion of links

OCL and Graph-Transformations 97

5 Conclusion and Future Work

In this paper, pros and cons of the two main behavior specification paradigms –
constructive and restrictive style – are discussed. If restrictive languages do not
provide provision for tackling the frame problem (such as OCL), then the speci-
fied contracts are comparably weak and do most often not capture the behavior
intended by the user. Constructive languages suffer from the opposite problem as
they sometimes prescribe too detailed the behavior and do not allow the freedom
for variations among possible implementations. These two fundamental problems
make it also very difficult to define a semantically preserving transformation from
specifications of restrictive specification languages into specifications written in
a constructive language, or vice versa.

Graph transformations can be used as a basically constructive specification
language but it is sometimes also possible to pursue a restrictive specification
style. Contracts given in form of a graph transformation rule have the advantage
of being easily accessible by humans due to the visual format. In many cases,
constructive contracts are intended and constructive contracts work well. For
the case that a purely constructive semantics is not appropriate, we have given
in Sect. 4 a catalog of proposals to enrich a graph transition rule so that the
intended behavior is met. This approach to adapt the semantics of the rule more
to the loose semantics of restrictive languages is very flexible since the user has
the possibility to traverse the metamodel with OCL constraints.

A lot of work remains to be done. First of all, the proposed formalism of
extended graph transformations should be implemented by a tool to resolve all
the small problems that can only be recognized if a tool has to be built. In order
to become confident in the formal semantics of the formalism, an evaluator needs
to be implemented that can decide for any contract and any given state transition
whether or not the transition conforms to the contract.

Once such a tool is available, it should be applied on bigger case studies
showing or disproving the appropriateness of the proposed formalism for practi-
cal software development.

References

1. Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51,
October 1992.

2. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs, second edition, 1997.

3. Levi Lucio, Luis Pedro, and Didier Buchs. A methodology and a framework
for model-based testing. In Nicolas Guelfi, editor, Rapid Integration of Software
Engineering Techniques, First International Workshop, RISE 2004, Luxembourg-
Kirchberg, Luxembourg, November 26, 2004, Revised Selected Papers, volume 3475
of LNCS, pages 57–70. Springer, 2004.

4. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, pages 463–502, 1969.

98 T. Baar

5. Claudia Ermel and Roswitha Bardohl. Scenario animation for visual behavior
models: A generic approach. Software and Systems Modeling (SoSym), 3(2):164–
177, 2004.

6. Lars Grunske, Leif Geiger, Albert Zündorf, Niels van Eetvelde, Pieter van Gorp,
and Dániel Varró. Model-driven Software Development - Volume II of Research
and Practice in Software Engineering, chapter Using Graph Transformation for
Practical Model Driven Software Engineering. Springer, 2005.

7. OMG. Revised submission for MOF 2.0, Query/Views/Transformations, version
1.8. OMG Document ad/04-10-11, Dec 2004.

8. Reiko Heckel, Mercè LLabrés, Hartmut Ehrig, and Fernando Orejas. Concurrency
and loose semantics of open graph transformation systems. Mathematical Struc-
tures in Computer Science, 12:349–376, 2002.

9. Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer.
Consistency checking and visualization of OCL constraints. In Andy Evans, Stu-
art Kent, and Bran Selic, editors, UML 2000 - The Unified Modeling Language,
Advancing the Standard, Third International Conference, York, UK, October 2-6,
2000, Proceedings, volume 1939 of LNCS, pages 294–308. Springer, 2000.

10. Andy Schürr. Adding graph transformation concepts to UML’s constraint language
OCL. Electronic Notes in Theoretical Computer Science, Proceedings of UNIGRA
2001: Uniform Approaches to Graphical Process Specification Techniques, 44(4),
2001.

11. OMG. UML 2.0 OCL Specification – OMG Final Adopted Specification. OMG
Document ptc/03-10-14, Oct 2003.

12. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1992.
13. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:

A behavioral interface specification language for java. Technical Report TR 98-06-
rev28, Department of Computer Science, Iowa State University, 2005. Last revision
July 2005, available from www.jmlspecs.org.

14. A. Borgida, J. Mylopolous, and R. Reiter. ...And Nothing Else Changes: The
Frame Problem in Procedure Specifications. In Proceedings of ICSE-15, pages
303–314. IEEE Computer Society Press, 1993.

15. Slavǐsa Marković and Thomas Baar. Refactoring OCL annotated UML class dia-
grams. In Lionel Briand and Clay Williams, editors, Proc. ACM/IEEE 8th Inter-
national Conference on Model Driven Engineering Languages and Systems (MoD-
ELS), volume 3713 of LNCS, pages 280–294. Springer, 2005.

16. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, August 1996.

17. Thomas Baar. Non-deterministic constructs in OCL – what does any() mean.
In Andreas Prinz, Rick Reed, and Jeanne Reed, editors, Proc. 12th SDL Forum,
Grimstad, Norway, June 2005, volume 3530 of LNCS, pages 32–46. Springer, 2005.

18. ClearSy. Atelierb homepage. http://www.atelierb.societe.com, 2005.
19. Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro

Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
LNCS 2805, pages 855–874. Springer-Verlag, 2003.

OCL and Graph-Transformations 99

Author Index

Ackermann, Jörg 15
Akehurst, David H. 30

Büttner, Fabian 1
Baar, Thomas 83
Bortes, Maria 68
Briand, Lionel C. 53

Chiorean, Dan 68
Corutiu, Dyan 68

Demuth, Birgit 38
Dzidek, Wojciech J. 53

Favre, Jean-Marie 1

Gogolla, Martin 1

Howells, Gareth 30
Hussmann, Heinrich 38

Konermann, Ansgar 38

Labiche, Yvan 53

McDonald-Maier, Klaus D. 30

	AllPapersEnlargedAlignedConcatedAuthorFinal.pdf
	pap2AuthorFinal.pdf
	Introduction
	An Eclipse Language Framework
	A Family of OCL based Grammars
	Object Expression Language (OEL)
	An Object Constraint Language (OCL)
	An Object Query Language (OQL)
	An Object Action Language (OAL)

	Conclusion
	References

	pap6AuthorFinal.pdf
	Proposals for a Widespread Use of OCL
	Dan Chiorean, Maria Bortes, Dyan Corutiu

