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Abstract. Field experimental data in the atmospheric surface layer are analyzed using tools from
statistical geometry. The data consist of velocity measurements from sonic anemometer arrays. In the
context of large eddy simulations (LES), these arrays permit the spatial filtering needed to separate
large from small scales. Time series of various quantities relevant to LES are evaluated from the
data. Results show that the preferred filtered fluid deformation is axisymmetric extension and the
preferred subgrid stress state is axisymmetric contraction. The filtered fluctuating vorticity shows
preferred alignments with the mean vorticity, with the streamwise direction, and with the intermediate
strain-rate eigenvector. The alignment between eigenvectors of the subgrid-scale stress and filtered
strain rate is used to test eddy viscosity and mixed model formulations. In qualitative agreement with
prior laboratory measurements at much lower Reynolds numbers, a bimodal distribution is observed,
which can be reduced to good alignment with eddy viscosity closure using the mixed model.

Keywords: Atmospheric turbulence, Large eddy simulation, Statistical geometry, Subgrid-scale
modelling.

1. Introduction

In large eddy simulation (LES) of turbulence, including the simulation of the
atmospheric boundary layer (ABL), the subgrid-scale-stress tensor (SGS)

τij = ũiuj − ũi ũj (1)

must be parameterized in terms of the resolved fields. A tilde (∼) represents spatial
filtering at a scale � comparable with the numerical grid spacing used in the LES,
and ui is the velocity vector field. The formulation of τij reflects the multiple
length scales that are inherent to turbulence (the above having filtered products
and products of filtered velocity), and its three-dimensional properties (the SGS
stress being a second rank tensor).

� Corresponding author, E-mail: chad@jhu.edu

Boundary-Layer Meteorology 109: 59–83, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147903894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


60 CHAD W. HIGGINS ET AL.

Closure expressions are similarly needed for scalar turbulent transport:

qi = T̃ ui − T̃ ũi , (2)

where the above expression is the SGS heat flux per unit heat capacity. Closure
requires that the above quantities be expressed in terms of resolved scale variables
such as the strain rate tensor,

S̃ij = 1

2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
,

the temperature gradient vector, or other Galilean-invariant properties of the re-
solved fields or domain geometry. Several recent articles on LES give a general
overview of issues associated with SGS modelling and measurement interpretation
(Piomelli, 1999; Meneveau and Katz, 2000; Porté-Agel et al., 2000a; Stevens and
Lenschow, 2001).

Important features of SGS fluxes have recently been studied based on field ex-
perimental measurements in the ABL: Porté-Agel et al. (1998, 2000b, 2001a, b)
and Tong et al. (1999). The emphasis of the analysis of Porté-Agel et al. was
on statistical properties of so-called subgrid dissipation (i.e., the impact of the
fluxes upon budgets of turbulent kinetic energy and scalar variance), as well as
the effects of atmospheric stability and commonly observed coherent structures
(onset of sweeps and ejections) upon relationships between resolved and subgrid
variables.

The study of interactions among scales in turbulence has been enhanced by new
measurement methods applied in detailed laboratory experiments. Specifically, the
recent analysis carried out on holographic particle image velocimetry (HPIV) data
by Tao et al. (2002) has provided remarkable insight into current, commonly used
closure models and extends previous understanding of subgrid-scale physics ob-
tained from low Reynolds number direct numerical simulation (DNS) studies. The
three-dimensional velocity field measured by Tao et al. (2002) permits detailed
studies of various model formulations. Briefly, their overall measurement domain
covered a 57 × 57 × 45 m3 volume in the core of a turbulent square duct flow.
They used a spatial filter size of � = 3.3 mm with the Kolmogorov scale ∼ 0.1
mm. The Taylor-scale Reynolds number was Rλ ≈ 260. Geometric features of SGS
motions were studied by deducing the relative geometric alignment angles between
the eigendirections of the SGS stress tensor and those predicted by various SGS
models. Statistical geometric alignment trends were studied by measuring joint
probability density functions of the three relevant alignment angles. They found a
bimodal distribution of preferred alignment angles, and determined that the mixed
model (a linear combination of a scalar and tensor eddy viscosity, see below) gave
good predictions of the observed alignment trends. Moreover, they observed that
axisymmetric extension was the preferred flow topology of the filtered velocity
field.
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The results of Tao et al. (2002) motivate the study of alignment trends in other
flow situations and on different spatial scales. In this paper we apply the analysis
techniques used by Tao et al. (2002) to investigate alignment trends for turbulence
in the atmospheric surface layer on scales about three orders of magnitude greater
than those interrogated by the HPIV data (with filter scales � on the order of sev-
eral metres as opposed to millimetres). We make use of the field data collected in
Davis, California in the summer of 1999 (Porté-Agel et al., 2001a, b; Pahlow et al.,
2001). The new analysis tools of Tao et al. (2002) are well suited for characterizing
flow processes at the filtered scale (e.g., relationships between filtered temperature
gradient and filtered strain rate), and in determining the alignments of the SGS
stress and filtered strain rate with the mean flow directions. In the sections that
follow, we provide a general overview of the data set of velocity and temperature,
collected in the atmospheric surface layer using arrays of sonic anemometers. Then
the analysis methodology is described. Observations of the flow properties, and a
priori tests of closure models are presented, and where possible compared to results
obtained by Tao et al. (2002).

2. Data Sets and Basic Characterization

Two horizontal arrays of sonic anemometers were used in an experiment under-
taken in the summer of 1999 in Davis, California to obtain spatial measurements
of temperature (T) and velocity (ui). A detailed account of the data set is provided
in Porté-Agel et al. (2001a, b) and Pahlow et al. (2001). The lower array contained
seven sonic anemometers, and centered above it was an upper array containing five
sonic anemometers. The entire setup was oriented in a field such that the angle
of attack of the prevailing wind was nearly perpendicular to the line joining the
instruments in each array. High temporal resolution (20 Hz) data were logged, and
for each realization in time the three components of velocity and the temperature
were measured. See Porté-Agel et al. (2001a, b) or Pahlow et al. (2001) for more
details on the experiment, including photographs presented in Porté-Agel et al.
(2001b) of the instrumental setup.

In this paper we consider the subset of data taken under unstable atmospheric
stability. The friction velocity u∗ = (〈u′w′〉2 +〈v′w′〉2)1/4 and the Obukhov length
L = −〈T 〉u3∗/κg〈T ′w′〉 were used to classify the data into subsets according to the
values of z/L where z is the average height of the sensors above the ground. Primes
denote fluctuating quantities, 〈.〉 represents averaging over time, κ is von Kármán’s
constant (κ = 0.4) and g is the acceleration of gravity. Data sets with z/L within
a range of −0.6 to −0.07 are classified as corresponding to convective conditions
and were included in the data analyzed here. The average friction velocity for the
data used was u∗ = 0.27 m s−1. Other subsets of near-neutral conditions were also
considered but some of the statistics obtained were not fully converged to allow
unambiguous conclusions to be drawn; therefore, the results are not presented. This
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Figure 1. Spectra of a 30-min segment of data from the central sonic in the lower array. The height
of the measurement from the ground is 3.8 m. The spectra were calculated with linear detrending
and windowing segments of 1024 samples with a Hanning window. As can be discerned from the
spectra, the filter size lies within the inertial subrange, and we see a range of Kolmogorov scaling.

classification provided us with a total of about 900,000 data points, corresponding
to about 32 segments of data (20 to 30 minutes long) covering a total of 11 hours
of data (assembled from data taken over 10 days during June 1999).

For the direct calculation of the SGS fluxes (Equations (1) and (2)), the field
measurements are filtered in the spanwise horizontal direction with a box filter, and
in the streamwise direction with a Gaussian filter. Taylor’s hypothesis is invoked
to convert the temporal data record into a streamwise spatial record for streamwise
filtering. The filter size used throughout the present work corresponds to five times
the instrument spacing � ∼= 2 m, which lies in the inertial range of the turbulence
spectra (see Figure 1). No filtering is performed in the vertical direction. For a
comprehensive description of this approximate filtering technique, see Porté-Agel
et al. (2001a) for applications to this same atmospheric data set, and Cerutti and
Meneveau (2000) for applications to wind-tunnel laboratory data from arrays of
hot-wire anemometers.
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The properties of the measured SGS stress are compared with tensors that arise
in typical parameterizations. The classical base-line SGS model is the Smagorinsky
model,

τ s
ij = −2(cs�)2|S̃|S̃ij , (3)

where cs is a dimensionless model parameter and τ s
ij is the Smagorinsky paramet-

erization for the deviatoric (traceless) part of the SGS stress tensor (the tensor in
Equation (1) minus 1

3τkkδij ). As reviewed in Meneveau and Katz (2000), on a local
basis the model is known to exhibit a low correlation with the real stress, although
in numerical simulations it performs better than these low correlations would indic-
ate. This suggests that the three orthogonal eigenvectors of the resolved strain-rate
tensor S̃ij provide a meaningful local coordinate frame for further analysis. Indeed,
the analysis of Tao et al. (2002) uses this approach. For example, one may ask
about the alignment of the real SGS stress eigenvectors with this local coordinate
frame.

The nonlinear (or tensor eddy-viscosity) SGS parameterization (Leonard, 1974;
Clark et al., 1979; Liu et al., 1994)

τnl
ij = Cnl�

2

(
∂ũi

∂xk

∂ũj

∂xk

− 1

3

∂ũm

∂xk

∂ũm

∂xk

δij

)
(4)

yields significantly better results in correlation studies, and allows for the negative
dissipation of turbulent kinetic energy. Although this latter feature is thought to be
physically more realistic, negative dissipation can cause numerical errors to grow,
leading to numerical instability. A third formulation, the so-called mixed model, is
a linear combination of (3) and (4), and has been shown to perform well in a variety
of flow situations when the dimensionless model coefficients are chosen to match
the mean dissipation. (For a review of applications of the mixed model in LES see
Meneveau and Katz, 2000). The models require evaluation of gradients of filtered
velocity signals in all three directions. As in Porté-Agel et al. (2001a, b), vertical
derivatives (in the z-direction) are calculated using finite difference approximations
across the height separating the sensor arrays in the vertical direction. Transverse
derivatives (in the y-direction) are calculated from data off the lower array by filter-
ing using the first 5 and last 5 anemometers on the array and taking the difference.
Streamwise derivatives are evaluated from temporal differences of filtered velocity.
Taylor’s hypothesis is invoked to convert temporal derivatives into stream-wise
spatial derivatives. In order to provide approximately the same resolution in all
directions, the distance across which finite differences are evaluated is h = �/5
in all three directions. Specifically, in the temporal (streamwise) direction, this
distance is larger than the distance between the actual data points (separated by the
finer data acquisition period corresponding to 20 Hz). Where data are not available
at exactly the points required (especially for filtering and differentiation in the y-
direction), linear interpolation is used. The above treatment of the data allows for
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TABLE I

Basic Statistics of S̃ij and τij .

S̃11 S̃22 S̃33 S̃12 S̃13 S̃23 [s−1]

Mean 0.00 0.00 0.00 0.00 0.15 0.00

RMS 0.11 0.22 0.18 0.14 0.19 0.18

τ11 τ22 τ33 τ12 τ13 τ23 [m2 s−2]

Mean 0.16 0.14 0.079 −0.0088 −0.027 0.0019

RMS 0.21 0.21 0.071 0.13 0.055 0.045

τ11 − τd τ22 − τd τ33 − τd [m2 s−2]

Mean 0.037 0.0095 −0.0465

RMS 0.12 0.12 0.11

the complete resolution of the SGS stress, SGS heat flux, filtered strain rate, filtered
vorticity, and filtered temperature gradient. In this paper we focus our attention on
features of the velocity field.

To reduce bias errors (constant offsets that could be different from one anem-
ometer to the next) the temporal mean value from each anemometer is subtracted
from each data segment. As a consequence, the mean vertical shear for the data is
zero and is not included in most of the analysis. Thus, from here on, S̃ij represents
the fluctuating part of the filtered strain-rate tensor (mean subtracted).

To show the effects of mean shear on the fluctuating results, some of the ana-
lysis of the present work will be performed including the mean shear. To include
mean quantities in the presence of possible bias errors, the temporal mean is still
subtracted from each sensor, but the mean velocity from each array (upper and
lower) is added to the individual signals of sensors in each respective array. Thus,
〈S̃13〉 is the only strain-rate element with non-zero mean (〈S̃13〉 ≈ 0.15 s−1 over the
entire data set.

Table I presents mean and RMS values for the filtered strain rate and SGS stress
elements. As discussed earlier, the only filtered strain rate element having non-zero
mean is 〈S̃13〉. The RMS values of the diagonal elements of S̃ij show anisotropy
since S̃11 has an RMS that is half the value of S̃22, while the off diagonal terms
of S̃ij have similar RMS values. The mean values of the SGS stress tensor are of
the expected order of magnitude. Specifically, the order of magnitude of diagonal
elements of the SGS stress tensor in the inertial range can be estimated as squared
velocity increments over �, i.e., a second-order structure function at displacement
r = �, which is ∼ ε2/3�2/3. Using ε ∼ u3∗/z yields the diagonal elements of
order (�/z)2/3u2∗ ≈ 0.11 m2 s−2 in the present data. RMS values of the SGS stress
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elements show that τ33 has a much smaller RMS than either τ11 or τ22, which is
consistent with the usual anisotropic behaviour of the Reynolds stress, e.g., near
the ground. For the analysis to follow, we subtract one third of the trace of the
SGS stress tensor from the diagonal elements. The same procedure is applied for
the strain-rate tensor. While in theory the trace of S̃ij should vanish due to incom-
pressibility, the presence of noise, measurement, and differentiation errors, result
in a trace that is not exactly zero. Hence, 1

3 S̃kkδij is subtracted from the diagonal
elements of S̃ij . Table I also presents the statistics of the diagonal elements of τij

after τd = 1
3τkkδij has been subtracted.

3. Eigenvalue Structure and SGS Dissipation

Before addressing the angles that characterize alignment properties of tensors in
Section 4, we first describe a scalar parameter that characterizes the relative mag-
nitude of the eigenvalues of a tensor. Suppose that αs , βs , and γs are the eigenvalues
of the strain rate tensor, ordered so that αs > βs > γs , and for incompressible flow
αs +βs +γs = 0 (this also holds by construction for our field data after the trace has
been subtracted). Hence, αs > 0, and γs < 0, while βs can have either sign. The
relative magnitudes of the positive and negative eigenvalues, and their frequency
of occurrence, have been the subject of various studies in turbulence (Ashurst et
al., 1987; Tsinober et al., 1992; Lund and Rogers, 1994). In particular, Lund and
Rogers (1994) proposed a local non-dimensional parameter called the strain state
parameter, s∗

s∗ = −3
√

6αsβsγs

(α2
s + β2

s + γ 2
s )3/2

. (5)

The strain state parameter is bounded between −1 and 1, and is useful since it
indicates the type of deformation occurring at the location of the measured filtered
strain rate. For example s∗ = 1 corresponds to axisymmetric extension (i.e., αs =
βs > 0, γs < 0); s∗ = 0 (i.e., βs = 0) corresponds to plane shear, and s∗ = −1
(i.e., αs > 0, βs = γs < 0) corresponds to axisymmetric contraction. Moreover,
Lund and Rogers (1994) have shown that for random data the probability density
function (PDF) of s∗ is an unbiased uniform distribution between −1 and 1.

The strain state parameter s∗ is evaluated from the data at every data point,
and the PDF of s∗ is constructed. The measured PDF is shown in Figure 2. The
increased value around s∗ = 1 shows that the most likely structure of the filtered
fluctuating strain rate in atmospheric surface-layer turbulence is axisymmetric
extension. The same conclusion was reached for unfiltered turbulence at lower
Reynolds numbers and smaller scales by Lund and Rogers (1994) (from DNS data),
by Tsinober et al. (1992) (from multi component hot wire data), and by Tao et al.
(2002) (for filtered data from three-dimensional (3-D) holographic particle-image
velocimetry data in a square duct).
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Figure 2. Probability density distribution of strain-rate state s∗ (solid line) and negative SGS stress
tensor state (dashed line) obtained from filtered field experimental data in the atmospheric surface
layer. The filter scale is � = 2 m. These probability density functions show that local axisymmetric
extension is the most likely state of the strain-rate tensor, and local axisymmetric contraction is the
most likely state of the SGS stress.

Another parameter, the SGS stress state parameter, s∗−τ , was used by Tao et
al. (2002) to perform a similar characterization of the relative eigenvalues of the
deviatoric part of the SGS stress tensor. The same formulation (Equation (5)) is
used, but applied to the eigenvalues of the negative SGS stress tensor: α−τ , β−τ , and
γ−τ . Negative stress is chosen in view of the minus sign in Equation (3) associated
with the classical eddy-viscosity closure.

The measured PDF of s∗−τ (dot-dashed line in Figure 2) shows that the most
likely state of the negative SGS stress is also axisymmetric extension. However
this is interpreted as axisymmetric contraction for the positive SGS stress tensor
as s∗−τ = −s∗

τ , i.e., the SGS motions cause preferentially two inward forces of
equal magnitude, with one stretching direction. Also, the peak in the PDF is more
pronounced than the peak for the strain-rate tensor.

The SGS dissipation of energy from large to small scales defined as,

� = −τij S̃ij , (6)

is a critical issue in LES modelling (Meneveau and Katz, 2000). A probability
density function of the local SGS dissipation (Figure 3) shows negative values (not
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Figure 3. Probability density distribution of local SGS energy dissipation (� = −τij S̃ij ) measured
from an array of sonic anemometers in the atmospheric surface layer under unstable conditions. Filter
scale is � = 2 m. There is a considerable probability of energy backscatter, but the mean dissipation
is positive, thus transferring energy from large to small scales.

reproducible by the Smagorinsky model) indicating localized backscatter of energy
from small scales to large scales. The mean dissipation is positive, and therefore
most of the kinetic energy is transferred from the resolved to subgrid-scale motions.
Mean dissipation is often used to calibrate (Lilly, 1967), or to evaluate empiric-
ally (Porté-Agel et al., 2001a, b) the coefficients cs , and Cnl in Equations (3) and
(4). Clearly the alignment between the eigenvectors of the SGS stress tensor and
the strain-rate tensor will determine the magnitude of the tensors’ inner product
(Equation (6)). A subsequent publication will investigate the relationships between
the eigenvalues and eigenvector structure of the strain rate, and the SGS stress on
dissipation.

4. Statistical Geometry Analysis Tools

Closure for vector quantities, such as the equality of the SGS heat flux and its
parameterizations, implies that both the direction and magnitude must match, i.e.,
perfect angular alignment and equality of magnitudes. In this section, we focus on
purely geometrical alignment trends. These do not depend upon the model coeffi-
cients cs and Cnl (except for the mixed model where the results depend upon the
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Figure 4. Definition of two angles to fully characterize relative alignment between a vector, v, and
an orthogonal (symmetric) tensor whose eigenvectors are α, β, and γ . These angle definitions are
analogous to spherical coordinates and are consistent with definitions used in previous studies.

ratio of the coefficients). Here we present the analysis quantifying the orientation
of a vector relative to a symmetric tensor, and its further extension to fix the relative
alignment of two symmetric tensors. The relative orientation between two vectors
in three-dimensional space is described by a single angle. To provide unbiased res-
ults, the PDF of the cosine of this angle is measured. For instance, for the vorticity
ω, and the most extensive strain-rate eigenvector αS̃ , one measures

cos(θ) =
∣∣ω · αS̃

∣∣∣∣ω∣∣∣∣αS̃

∣∣ (7)

and its PDF. For random vectors, such a PDF is uniform.
To characterize the alignments between a vector (e.g., vorticity or temperature

gradient) and a tensor (e.g., strain rate or SGS stress), or between two tensors
(e.g., strain rate and SGS stress) requires the specification of two or three angles,
respectively.

The filtered strain rate and the SGS stress tensors are (by construction) symmet-
ric and traceless, thus the eigenvectors of the tensors are both real and orthogonal
(i.e., they form a basis of three-dimensional space). The directionality of any given
vector relative to the eigenvector basis of the symmetric strain rate tensor can be
specified by two angles (defined in Figure 4), as is common practice in spherical
coordinates. The statistics of alignment trends between vectors and the strain-rate
tensor basis are quantified using joint probability density functions of these two
angles. This joint PDF is plotted on the unit sphere in order to emphasize the
relative alignment, in physical space, of the two quantities.

Characterization of the full tensor-tensor alignment (e.g., SGS stress and strain-
rate tensor) is more complicated, and as will be shown below, requires the
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Figure 5. Definition of three angles to fully characterize relative alignment between two orthogonal
(symmetric) tensors. The angles θ and φ are elevation and azimuth angles of the vector α−τ relative
to the filtered strain rate eigendirections. The angle ζ is the angle between γ

p

S̃
, the projection of

γ
S̃

onto the α−τ -β−τ plane, and γ −τ . Joint probability density functions of cos(θ), φ, and ζ

yield unbiased results for randomly orientated tensors, and this angle convention allows for direct
comparison with previous studies.

specification of three angles (see Figure 5). We begin by choosing an eigenvector
of the SGS stress (e.g., α−τ ) and describe its orientation in the strain rate eigensys-
tem α

S̃
, β

S̃
, and γ

S̃
. Thus, the extensive eigendirection of the SGS stress, α−τ ,

is described in spherical coordinates relative to the strain rate eigendirections by
specifying two angles

θ = cos−1

∣∣αS̃ · α−τ

∣∣∣∣α
S̃

∣∣∣∣α−τ

∣∣ , (8)

φ = cos−1

∣∣βS̃ · (α−τ − (α−τ · αS̃)αS̃)
∣∣∣∣(α−τ − (αS̃ · α−τ )αS̃)

∣∣ ∣∣βS̃

∣∣ . (9)

Still, the orientation of the SGS stress relative to the filtered strain rate has not yet
been fixed completely since the contractive, γ −τ , and intermediate, β−τ , eigendir-
ections are free to rotate in a plane perpendicular to α−τ (see Figure 5). In order
to fix the orientation of (say) γ −τ on this plane perpendicular to α−τ , a reference
direction is required. A possibility would be the contracting strain rate direction
γ

S̃
, although there is no guarantee that γ

S̃
is on the γ −τ , β−τ plane. To provide a

unique reference direction on the γ −τ , β−τ plane, the contracting eigendirection
of the filtered strain rate, γ

S̃
, is projected into the plane perpendicular to the fixed

SGS stress eigendirection α−τ . This projection now lies in the plane spanned by
two eigendirections of the SGS stress γ −τ and β−τ , and its angle,

ζ = cos−1

∣∣γ −τ · (γ S̃ − (γ S̃ · α−τ )α−τ )
∣∣

|γ −τ | ∣∣(γ S̃ − (γ S̃ · α−τ )α−τ

∣∣ , (10)
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relative to the contracting direction of the SGS stress, α−τ , now completes the
description of the relative alignment of the two tensors. Algebraically, this can be
interpreted as solving for a rotation matrix that transforms one set of eigendirec-
tions into the other. The results of this analysis are presented as the 3-D joint PDF
of cos(θ), φ, and ζ defined as P(cos θ, φ, ζ ). These variables produce unbiased
results, i.e., P(cos θ, φ, ζ ) is uniform when applied to randomly oriented data.
Additional details of the analysis technique are presented in Tao et al. (2002).
Presently, 3-D joint PDFs are calculated from the data by dividing the variable
ranges into 10 bins, and accumulating statistics over all points of the signals.

5. Results

5.1. FILTERED SCALE OBSERVATIONS

The first, and most intuitive, application of the methods described in Section 4 is
in the statistical description of the orientation of the filtered fluctuating vorticity
vector. We present the alignment of filtered vorticity with flow coordinates (i.e.,
a fixed coordinate system aligned with the mean flow), the alignment of filtered
vorticity and the filtered strain rate eigendirections (i.e., a varying local coordinate
system depending on the instantaneous alignments of S̃ij ), and the alignment of
filtered strain rate eigendirections with the flow coordinate system.

The joint PDF characterizing the alignment of filtered fluctuating vorticity with
the mean-flow defined coordinate system exhibits a bimodal behaviour, Figure
6a. The primary alignment trend observed is for the fluctuating filtered vorticity
to be aligned with the cross-stream y-direction. In any boundary layer with the
mean velocity aligned in the x-direction and z being the wall normal direction, the
mean vorticity is aligned with the y-axis. Therefore, the primary alignment trend in
Figure 6a shows that the most likely orientation of the fluctuating turbulent filtered
vorticity vector is aligned with the mean vorticity (associated with boundary-layer
behaviour). The secondary local peak corresponds to stream-wise vorticity pointing
in the x-direction. It is well known that turbulent boundary layers have distinct
stream-wise vortices (Cantwell, 1981; Bernal and Roshko, 1986; Lasheras and
Choi, 1988; Bell and Metha, 1992; Lin, 1999; Finnigan, 2000) and the results here
show that such structures are present in the fluctuating filtered vorticity field.

Investigations concerning the alignment of vorticity and the eigenvectors of
the filtered strain rate have already received considerable attention. Ashurst et al.
(1987) observed that vorticity was aligned with the intermediate eigendirection,
(βS̃), of the strain-rate tensor in DNS data. Tsinober et al. (1992) found similar res-
ults from hot-wire measurements. Tao et al. (2002) observed the same result based
on their filtered holographic particle image velocimetry (HPIV) measurements. We
repeat the analysis of Tao et al. here using the atmospheric data obtained from
arrays of sonic anemometers. Figure 6b shows a very strong peak in the measured
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joint PDF of angles between filtered fluctuating vorticity and filtered fluctuating
strain-rate basis. The filtered fluctuating vorticity is clearly preferentially aligned
with the intermediate direction of the filtered fluctuating strain rate.

In Figure 7 the alignment of the filtered strain rate with the mean flow co-
ordinate system is plotted. Like the filtered fluctuating vorticity, the filtered strain
rate exhibits a bimodal alignment trend. The primary peak (a) is consistent with
a boundary-layer behaviour (but again note that the mean strain rate has been
subtracted from the signals and is thus not included in the present analysis). In
this alignment trend, the intermediate eigendirection, βS̃ , is aligned with the cross-
stream direction while the extending direction, αS̃ , is 45◦ from the vertical in the
downstream direction. At the same time the most contracting eigendirection, γ S̃ , is
aligned 45◦ from the vertical. This is the alignment for an ideal boundary layer in
which only a vertical gradient of velocity exists. This behaviour is consistent with
the mean strain in which the only non-zero strain element is 〈S̃13〉. Thus, for the
primary peak in alignment, the filtered fluctuating strain is aligned with the mean
straining directions, and the mean straining directions are characteristic of an ideal
boundary-layer flow. In Figures 6a and b we showed that the fluctuating filtered
vorticity is aligned with β

S̃
and the cross-stream horizontal direction (the primary

alignment of vorticity with flow defined coordinates). The observed alignment of
β

S̃
with the cross-stream direction (again one of two possible alignment config-

urations of filtered strain rate and Cartesian coordinates) is consistent with the
previous observations of filtered fluctuating vorticity. A composite picture of the
primary alignments of fluctuating vorticity, fluctuating strain, and the flow defined
coordinate system is presented in Figure 8a.

The secondary alignment trend (b) in Figure 7 is interpreted as the intermediate
eigendirection, βS̃ , aligned with the stream-wise direction while the extensive and
contracting directions are tilted 45◦ from the vertical as they lie in the y-z plane. In
Figures 6a and b, the secondary alignment of filtered fluctuating vorticity with flow
defined coordinates was that the fluctuating filtered vorticity be aligned with βS̃ and
the streamwise direction. The observed alignment of βS̃ with the streamwise direc-
tion in this secondary configuration is consistent with the previous observations of
filtered fluctuating vorticity. Combining information deduced from Figures 6a, 6b,
and 7 shows that in the secondary alignment of filtered quantities: (1) the filtered
fluctuating vorticity, (2) the intermediate eigendirection of the fluctuating filtered
strain βS̃ , and (3) the streamwise direction are colinear. A composite picture of
the secondary alignments of fluctuating vorticity, fluctuating strain, and the flow
defined coordinate system is presented in Figure 8b.

5.2. ALIGNMENTS BETWEEN FILTERED SCALE AND SUBGRID-SCALE

QUANTITIES

In this section, we describe the observed alignments between filtered and SGS
quantities. Here we are concerned with the alignment of filtered vector quantities,



72 CHAD W. HIGGINS ET AL.

Figure 6. (a) Joint probability density function of two angles describing the orientation of filtered
fluctuating vorticity vector in the mean flow frame of reference. Filter scale is � = 2 m. The mean
flow streamwise direction is x, and z is the vertical axis. The bimodal distribution shows two likely
orientations of filtered fluctuating vorticity. In the primary configuration, vorticity is aligned with the
cross-stream horizontal direction, while in the secondary configuration, vorticity is aligned with the
streamwise direction. (b) Joint PDF of two angles describing the orientation of filtered fluctuating
vorticity vector in local strain-rate tensor eigensystem. The β

S̃
-axis corresponds to the strain-rate ei-

gendirection associated with the intermediate eigenvalue of the filtered fluctuating strain-rate tensor.
This figure shows the strong alignment of filtered vorticity with the intermediate eigendirection of
the fluctuating filtered strain rate, β

S̃
.
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Figure 7. Joint probability density function of three angles describing the orientation of filtered
fluctuating strain-rate tensor eigensystem in mean flow frame of reference. Filter scale is � = 2 m.
The mean flow streamwise direction is x, z is the vertical axis, and y is the transverse horizontal
direction. Here, the planes represent slices through the three-dimensional function at locations where
the modes of probability lie. The two modes present in this alignment are consistent with the vorticity
behaviour (see text).

Figure 8. Sketch of two most likely alignments of filtered fluctuating vorticity, filtered fluctuating
strain rate eigendirections, and the mean flow coordinate system. Composite alignments are deduced
from individual alignments presented in Figures 6a, 6b and 7, and show the two most likely orient-
ations of all the filtered quantities analyzed here. Sketch (a) shows the primary alignment trend, and
(b) shows the secondary alignment trend.
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such as the filtered vorticity, as described within a local orthogonal coordinate
system given by the eigenvectors of the SGS stress tensor. The joint PDF of
angles of filtered vorticity relative to eigenvectors of the (negative) SGS stress
tensor is shown in Figure 9a. A bimodal distribution is apparent. The strongest
PDF peak shows the preferential alignment of filtered fluctuating vorticity with
the intermediate eigendirection of the negative SGS stress, β−τ . Tao et al. (2002)
also observed this alignment trend in their laboratory data. The secondary peak
shows the fluctuating filtered vorticity is aligned with the most extensive direction
of the negative SGS stress, α−τ , which is the most contracting direction of the
positive SGS stress (this secondary peak was not apparent in the data of Tao et
al. (2002)). Recall from Figure 2 that the stress-state parameter had a most likely
value of 1 (s∗−τ = 1). This indicates that the most likely state of negative SGS
stress is axisymmetric extension, meaning that both α−τ and β−τ are contracting
at the same magnitude most of the time. Therefore, in the most likely sense, the
fluctuating filtered vorticity is preferentially aligned with a contracting direction of
the SGS stress. This can also be understood as the filtered vorticity is preferentially
perpendicular to the extensive SGS stress eigendirection.

In Figure 9b the results characterizing the alignment of the SGS stress with
the mean flow directions are presented. Clearly there are preferred orientations,
showing that in this flow the mean shear retains significant influence in determining
small-scale statistics such as SGS stress-tensor orientations. The results indicate
that the intermediate eigendirection of the SGS stress, β−τ , is aligned with the
cross-stream horizontal direction. The most extensive SGS stress eigendirection,
γ −τ , and the most contracting SGS eigendirection, α−τ , are confined to the x-z
plane. γ −τ is inclined at about 75 degrees from the vertical direction, 15 degrees
from the horizontal streamwise direction, and α−τ is aligned 15 degrees from
the horizontal in the upstream direction. If we again consider the alignments of
vorticity, SGS stress, and mean flow directions we see that the filtered fluctuat-
ing vorticity, the intermediate eigendirection of the SGS stress, and the horizontal
cross-stream direction are all most likely co-linear.

Given the prominence of the Smagorinsky model in LES, the measurement of
alignment trends between the negative SGS stress tensor and the filtered strain
rate is of particular importance. The three-dimensional tensor-tensor alignment of
fluctuating filtered strain rate, S̃ij , and negative SGS stress, −τij , is presented in
Figure 10. It is apparent that, in terms of preferred alignment, there are two relative
alignments displaying elevated levels of probability. The first peak, denoted by (a),
gives the strongest trend, is interpreted as α−τ , is preferentially aligned at about
28◦ from αS̃ (cos[θ(α−τ −αS̃)] ≈ 0.88) while simultaneously having a projection
onto the γ S̃ − βS̃ plane that is aligned with γ S̃ (φ[α−τ −βS̃] ≈ 90◦) and the angle
ζ [γ −τ γ

S̃
p ] ≈ 0◦. The second, slightly weaker peak (b) is given by the trio of angles

cos[θ(α−τ − αS̃)] ≈ 0, φ[α−τ − βS̃] ≈ 0◦, and ζ [γ −τ − γ
p

S̃
] ≈ 30◦. Interpretive

sketches of the alignment trend observed in each respective case are presented in
Figure 10. The difference between configurations (a) and (b) is that α−τ and β−τ
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Figure 9. (a) Joint probability density function of two angles describing the orientation of filtered
fluctuating vorticity vector in local negative SGS stress-tensor eigensystem. Filter scale is � = 2 m.
The filtered fluctuating vorticity has a bimodal distribution giving two likely alignment config-
urations. The primary alignment is between filtered fluctuating vorticity and the intermediate
eigendirection of the SGS stress, β−τ . The secondary alignment is vorticity and the extensive eigen-
direction of the negative SGS stress, α−τ . (b) Joint PDF of three angles describing the orientation of
SGS stress tensor eigensystem in mean flow frame of reference. Filter scale is � = 2 m. The mean
flow streamwise direction is x, z is the vertical axis, and y is the transverse horizontal direction. The
planes represent slices through the three-dimensional function.



76 CHAD W. HIGGINS ET AL.

rotate 90◦ about γ −τ . Neither configuration is consistent with the assumption of
perfect alignment ((c) in Figure 10) used in the Smagorinsky model. This result is
similar to the observed trends in HPIV and DNS data from Tao et al. (2002). It is
noted that the preferred angles measured in the HPIV data are slightly higher than
those obtained here: 32 as opposed to 28 degrees. Those in DNS are even higher,
closer to 40 (S. Chen, personal communication, 2002 and Figure 14 of Tao et al.,
2002). It is not clear what specific physical effects account for these quantitative
differences in angles, but it is remarkable that the same basic alignment trends
are observed in different turbulent flows of such disparate length scales, Reynolds
numbers, and flow conditions.

To examine the effects of Taylor’s hypothesis on the results, we divide the data
set into two distinct regimes: High turbulence levels |u′| ≥ 2u∗, and low turbulence
levels |u′| ≤ 1

2u∗. The alignment analysis is performed on these subsets of data,
and we see that the resulting PDFs are quite similar (Figure 11a and b). The RMS
difference between the joint PDF of the conditional results and the joint PDF from
the entire data set is less than 0.035 in both cases, and gives confidence that the
results obtained here are robust to the use of Taylor’s hypothesis.

As discussed in Section 2, the focus of this study has been on the fluctuating
quantities. But, for completeness, we include an analysis of stress-strain alignment
with the filtered strain-rate elements that include their mean value. In this analysis,
the only filtered strain-rate element with a nonzero mean is 〈S̃13〉 ≈ 0.15 s−1 (taken
from Table I). This stress-strain alignment is shown in Figure 11c. As can be seen,
the inclusion of the mean shear in the alignment analysis affects the strength of the
peaks, but not their overall position. By comparison to the PDF of the fluctuating
analysis (Figure 10), we see that the peak in probability corresponding to (a) is
now stronger, and the peak in probability corresponding to (b) remains in the same
position and is slightly weaker. Thus the only significant effect of the mean shear,
associated with boundary-layer behaviour as discussed in Section 5.1, is to increase
the probability of the primary peak.

5.3. ALIGNMENT TRENDS OF THE MIXED MODEL

As discussed in Section 2, the mixed model is sometimes used in LES. In terms
of alignments, however, it turns out that we now must specify the ratio of two
coefficients in order to study the alignments of the mixed model eigendirections
relative to the measured SGS stress eigendirections. Alternatively, as was done in
Tao et al. (2002), we can subtract from the real SGS stress tensor the nonlinear
model multiplied by some coefficient. For instance, in Tao et al. (2002), it was
suggested to subtract a Taylor expansion of the Galilean invariant Leonard stress
Iij = ũi ũj − ũi ũj ; where the overbar represents a second filtering at the same scale
�. Similar to the non-linear model, the Taylor series approximation to Iij yields

I
∗
ij = 1

12
�2

(
∂ũi

∂xk

∂ũj

∂xk

− 1

3

∂ũm

∂xk

∂ũm

∂xk

δij

)
(11)
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Figure 10. Joint probability density function of three angles describing the orientation of negative
SGS stress tensor in filtered fluctuating strain-rate tensor eigensystem. Planes represent slices through
the three dimensional function. A random alignment would correspond to a uniform 3-D distribution
of joint probability equal to (π/2)−2 ≈ 0.40. Filter scale is � = 2 m. Interpretive sketches of
each peak are given in (a) and (b). The eddy-viscosity alignment is given by interpretive sketch (c),
corresponds to the line cos[θ(α−τ − α

S̃
)] = 1 and ζ(γ−τ − γ

p

S̃
) = 0◦.

with a coefficient of 1/12. This term is often argued to be a good model for that part
of the SGS stress that arises purely from the resolved velocity field in conjunction
with smooth filters (such as the box and Gaussian filters used in the present ana-
lysis). If so, we can repeat the analysis of Section 5.2, subtracting Equation (11)
from the SGS stress. The trace-free ‘remainder stress’, i.e.,

ψij ≡
(

τij − 1

3
τkkδij

)
− Cnl�

2

(
∂ũi

∂xk

∂ũj

∂xk

− 1

3

∂ũm

∂xk

∂ũm

∂xk

δij

)
(12)
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Figure 11. Joint probability density function of three angles describing the orientation of negative
SGS stress tensor in filtered fluctuating strain-rate tensor eigensystem conditionally sampled on the
high magnitudes |u′| ≥ 2u∗ (a) and low magnitudes |u′| ≤ 1

2u∗ (b) of the velocity fluctuations. The
RMS difference between (a) and the PDF representing the entire data set is 0.0256, and the RMS
difference between (b) and the PDF representing the entire data set is 0.0347. The deviation between
the conditionally sampled PDFs and the PDF representing the entire data set is therefore about 1/30
of the total range of the joint PDF. (c) Joint probability density function of three angles describing
the orientation of negative SGS stress tensor in the filtered fluctuating strain-rate tensor eigensystem,
when the strain includes the mean (the only non-zero mean shear is 〈S̃13〉).
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should now be well aligned with the strain-rate tensor basis if the mixed model
provides realistic predictions of alignment trends. The choice of Cnl is an issue
since now the alignment results depend upon this value. In Tao et al. (2002), a
value of Cnl ≈ 0.125 (as opposed to 1/12 of Equation (11)) was justified in terms
of finite-difference evaluations of the gradients involved in the non-linear model.
This was the natural approach since the data of Tao et al. (2002) were sufficient to
permit 3-D spatial filtering.

To provide a more fruitful comparison with a SGS stress computed with a two-
dimensional (2-D) filter (as used in the present data analysis), we include only
those terms in the calculation of ψij that are relevant to the filter operation. More
specifically, if a 2-D filter G(x, y) is used, then Iij = ũi ũj − ũi ũj ; can be rewritten
in terms of filtering convolutions as

Iij =
∫

−

∫
−

G(ξ, χ)ũi(x − ξ, y − χ, z, t)ũj (x − ξ, y − χ, z, t) dξ dχ

−
∫

−
G(ξ, χ)ũi(x − ξ, y − χ, z, t) dξ dχ

×
∫

−
G(ξ, χ)ũj (x − ξ, y − χ, z, t) dξ dχ. (13)

The dimensionality of the filter operation dictates the variables over which ũi is
expanded. In the case of our 2-D filter operation, the Taylor series expansion of ũi

is

ũi (x − ξ, y − χ, z, t) � ũi(x, y, z, t) − ξ
∂ũi

∂x
− χ

∂ũi

∂y
. (14)

Using this expansion for ũi in Equation (13), we obtain an equation for I∗
ij that is

relevant to the 2-D filtering employed in the present data analysis

I∗
ij = 1

12
�2

(
∂ũi

∂x

∂ũj

∂x
+ ∂ũi

∂y

∂ũj

∂y

)
. (15)

Equation (15) is similar to Equation (11), but lacks the inclusion of vertical gradi-
ents. Since the form of the convolution kernel dictates the Taylor series expansion
of ũi , the final form (but not the constant �2/12) of the Leonard stress approxima-
tion is also determined by the dimensionality of the filter operation. Using Equation
(15), we redefine the trace free ‘remainder stress’ of Equation (12) as

ψij ≡
(

τij − 1

3
τkkδij

)
− Cnl�

2

×
(

∂ũi

∂x

∂ũj

∂x
+ ∂ũi

∂y

∂ũj

∂y
− 1

3

∂ũm

∂x

∂ũm

∂x
δij − 1

3

∂ũm

∂y

∂ũm

∂y
δij

)
. (16)
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Figure 12. RMS difference from the ideal eddy viscosity alignment PDF and the measured PDF as a
function of Cnl . The best value of Cnl is 0.12, for which the RMS difference is minimized.

To find an optimal value of Cnl for the present data, we search for a value of Cnl

that minimizes the RMS difference between two joint PDFs of alignment angles.
The first is the alignment between the remainder stress of Equation (16) and the
filtered strain-rate tensor PCnl

(cos θ, φ, ζ ). The second is the joint PDF of the ideal
eddy-viscosity alignment Peddy = δ(cos θ − 1)δ(ζ − 0). In this eddy-viscosity
alignment, cos(θ[αS̃ −α−τ ]) = 1 at all times (i.e., αS̃ and α−τ are always aligned)
and ζ [γ p

S̃
− γ −τ ]) = 0◦ at all times (i.e., given the alignment of αS̃ and α−τ , γ S̃

and γ −τ are always aligned). In the data analysis, Peddy = (2/5)π2 in the 10 bins
closest to cos θ = 1 and ζ = 0. The RMS difference between both PDFs is defined
as

�(Cnl) =
{∫ π/2

0

∫ π/2

0

∫ 1

0
(PCnl

(cos θ, φ, ζ ) − Peddy)
2 d(cos θ) dζ dφ

}1/2

. (17)

Figure 12 presents a plot of �(Cnl) that can be interpreted as a measure of the
disparity between the alignment PDF resulting from a particular value of Cnl in the
remainder stress, and the ideal eddy-viscosity alignment Peddy. Although the actual
values of �(Cnl) vary over a small range, the resulting PDFs for different values of
Cnl are visibly different. From Figure 12, it is clear that a value of Cnl = 0.12, sim-
ilar to the value reported by Tao et al. (2002), gives an alignment of the remainder
stress, ψij with the strain-rate eigenvectors that is closest to eddy viscosity.
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Figure 13. Joint probability density function of three angles describing the orientation of negative
SGS stress tensor with nonlinear model part subtracted (as in Equation (8)) with Cnl = 0.12. The
orientation is with respect to the filtered fluctuating strain-rate tensor eigensystem. A random align-
ment would correspond to a uniform 3-D distribution of joint probability equal to (π/2)−2 ≈ 0.40.
The collapse towards alignment of θ(α

S̃
− α−τ ) ≈ 0 shows that alignment trends of the remainder

of the SGS stress are well reproduced by an eddy-viscosity closure, and that a mixed model is well
supported by present results.

The alignment trend observed between the remainder stress with the optimal
value of Cnl = 0.12 and filtered strain rate is shown in Figure 13. The bimodal
secondary peak that was visible in Figure 10 has disappeared, and the primary
peak has moved so that the most likely value of cos(θ[α

S̃
−α−τ ]) = 1 and ζ [γ p

S̃
−

γ −τ ]) = 1 this now corresponds to the eddy-viscosity alignment for the remainder
stress.

6. Summary and Discussion

We have analyzed field experimental data obtained in the atmospheric surface layer
using tools from statistical geometry. Specifically, the field data consisted of velo-
city measurements from sonic anemometer arrays that permit spatial filtering. Such
filtering separates large from small scales so that the data can be interrogated in the
context of large eddy simulation (LES). Time series of various quantities relevant
to LES were evaluated from the data, such as SGS stress tensor, filtered vorticity
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vector and filtered strain-rate tensor. The PDFs of strain-state parameters indicated
that the preferred fluid deformation is axisymmetric extension and the preferred
SGS stress state is axisymmetric contraction. The filtered fluctuating vorticity has
preferred alignments with the mean vorticity, with the streamwise direction (e.g.,
streamwise vortices), and with the intermediate strain-rate eigenvector.

The alignment between eigenvectors of the SGS stress and filtered strain rate
was used to test the eddy-viscosity model formulation, and a bimodal distribution
was observed. Moreover, we observed the collapse of the alignment to the eddy-
viscosity model when a portion of the Leonard stress is taken from the SGS stress,
in support of the mixed model. Good qualitative agreement with previous results
in laboratory experimental studies and numerical results at much lower Reynolds
numbers suggest that the present observations are indicative of universal features of
turbulent flows. However, quantitative differences (such as in exact values of align-
ment angles) suggest that more research is needed to better understand underlying
physics and to provide quantitative parameterizations. It should also be stressed
that in this paper the focus was on purely geometric alignment trends. Improved
SGS parameterizations will also require a better understanding of how to model
the magnitudes of the tensor eigenvalues.
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